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ABSTRACT

Understanding 3D objects based on their geometric and physical properties–
independent of predefined labels–is essential for creating, modifying, and using
the objects in diverse contexts. However, most machine learning approaches in
the 3D domain rely heavily on semantic or primitive labeled-data to achieve these
tasks. We present a 3D edge detection algorithm that decomposes point clouds
into precise geometric components without relying on primitives or semantic la-
bels. This enables us to tackle datasets of freeform, entirely unrestricted objects
(as in the Thang3D dataset) that are challenging, and in many cases impossible,
for current models in the literature to segment, reconstruct, or produce paramet-
rically. Additionally, we achieve state-of-the-art (SOTA) edge detection accuracy
on both the complex Fusion360 Segmentation, Thang3D, and simpler standard
ABC benchmarks. Our approach maintains reliable edge detection on soft fea-
tures where most existing models fail. In addition, when the detected edges are
used as input for segmentation, our method outperforms recent segmentation mod-
els on intricate geometries. This framework provides a robust and generalizable
foundation for edge-aware analysis, segmentation, and generation of diverse 3D
shapes well beyond what can be easily labeled by humans.

1 INTRODUCTION

Human perception and communication demonstrate how geometric reasoning underlies our ability
to interact with the world across modalities. Consider the process of assembling furniture, improvis-
ing a bottle opener from a flat-edged tool, or fabricating replacement components with a 3D printer.
In vision, diagrams often replace text when furniture assembly defies easy vernacular description.
In multimodal contexts such as CAD (computer-aided design) or 3D fabrication, humans construct,
segment, and manipulate shapes through purely geometric cues – often initially creating a shape
graphically then exporting it to a domain specific language, not the other way around. These ex-
amples highlight a key principle: humans flexibly decompose objects into meaningful geometric
substructures and reason about their functions, often independent of linguistic labels or categorical
constraints Shams & Tarr (2002).

In contrast, much of contemporary 3D machine learning (ML)–across reconstruction, generation,
and robotic applications–remains constrained by pre-specified shape categories. Such approaches
often classify entire objects or their segments into predefined primitives or CAD sequence elements,
thereby restricting the scope of representable and analyzable shapes Mo et al. (2019); Engelmann
et al. (2020). These constraints propagate through the ML pipeline: reconstruction methods fail
when objects contain segments that defy primitive-based categorization; generative models are
limited to producing either simple, primitive-composed artifacts suitable for basic 3D printing or
complex visual renderings (e.g., Neural Radiance Fields or meshes) tethered to colloquial textual
prompts (e.g., “an orange cat”). However, these latter outputs are unsuitable for feature-based
manufacturing and offer little support for human editing, as they remain collections of points or
unstructured surface elements (“triangle soup”) He et al. (2024); Betsas et al. (2025).

Finally, functional understanding under primitive- or label-based paradigms is inherently limited.
Shapes are interpreted only through their assigned categories, leaving unlabeled or unconventional
geometries without utility. For example, a knife cannot be recognized as a potential bottle opener,
despite possessing the requisite sharp edge, and a hook must conform to stereotypical visual expec-
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Figure 1: Types of segmentation where (a) shows semantic segmentation of a shape (colors indicate
labels), (b) shows class-based geometric segmentation into primitives (colors indicate primitives),
and (c) shows classless geometric segmentation (every segment has a unique color).

tations rather than to context-specific geometric affordances. Thus, current ML approaches fall short
of the human ability to flexibly reason about geometry and function beyond predefined labels.

Classless geometric segmentation directly addresses these limitations by shifting the focus away
from rigid labels and toward the intrinsic structure of shapes, enabling a more flexible and gen-
eral understanding of geometry that better supports functional, constructive reasoning. This method
partitions a 3D model in any representation into meaningful subregions or “parts” using purely
geometric and topological cues (curvature, thickness, geodesic distance, skeleton structure, etc.).
Unlike semantic (Mo et al. (2019); Engelmann et al. (2020); He et al. (2024); Betsas et al. (2025)) or
primitive-based (Nguyen & Le (2013); Shamir (2008); Attene et al. (2018)) approaches that attempt
to fit pieces of a shape to known labels or primitive classes, pure geometric segmentation works di-
rectly on the surface or volume, grouping portions of the shape into clusters whose boundaries align
with salient features such as ridges, valleys, and protrusions. Often performed by humans when cre-
ating or recreating a shape, classless geometric segmentation serves as a fundamental pre-processing
step in nearly every domain that manipulates or analyzes geometric data – from CAD and graphics to
biomedical imaging to scientific visualization – where precisely identifying and understanding each
geometric component of the object, rather than the semantic label of each segment, is paramount.

As seen in Figure 1, primitive, class-based segmentation (either semantic or geometric) tends to
operate at a much coarser-grained scale where a singular ‘segment’ in their case can have multiple
geometric pieces that should be further broken down to achieve the granularity shown in item (c).
These pieces shown in (c) might not necessarily have a logical semantic or categorical label. Ad-
ditionally, in real world data, these geometric segments can be very small, such as a bevel or fillet
comprising of only fraction of the object’s total volume or surface area. The accurate capturing
of those small segments has historically proven challenging for segmentation models. While it is
often visually obvious to a human where a boundary line can be drawn, those deductions must be
extracted through pure physical properties of the shape – such as a change in curvature or inflection
point – no matter how small the total size of the segment is relative to the original shape Nguyen
& Le (2013); Shamir (2008). We introduce a primitive-less method of decomposing shapes based
purely on geometry, capable of handling arbitrarily fine features in very large point clouds. This
allows us to accurately outline then segment exceptionally diverse shapes.

2 RELATED WORK

Edge Detection Most edge detection has primarily focused on detecting sharp edges, not smooth
transitions. Most real world man-made objects, however, tend to have bevels, chamfers, or fillets
(shown in Figure 2) as these provide crucial structural and safety features (truly sharp edges are
usually unique to where it necessitates). Meanwhile, sharp edges are practically nonexistent in tasks
related to more organic objects, like topology optimization and medical segmentation. In order to
accurately segment, reconstruct, or generate these sorts of shapes, smooth edge detection must also
be possible. An overview of desirable model capabilities is shown in Table 1.

As the baseline comparison in this paper, PCEDNet Himeur et al. (2022) introduces a multi-
scale Scale-Space Matrix (SSM) descriptor per point (differential shape cues across radii) and a
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Method Primitive-less Soft features Unlimited Points Arbitrary Resolution Points Only

DEF [2022] ✗ ✗ ✗ ✗ ✗
PIENet [2020] ✗ ✗ ✗ ✓ ✓
SEDNet [2023] ✗ ✗ ✗ ✗ ✓
PCED [2022] ✓ ✓ ✓ ✗ ✗
NerVE [2023] ✗ ✗ ✓ ✗ ✓

Ours ✓ ✓ ✓ ✓ ✓

Table 1: Abilities of edge-detection methods in point clouds, highlighting whether the initial ex-
traction relies on primitives or not, soft feature detection, scalability to unlimited points, handling
of arbitrary resolution, and reliance on point-only input (no normals). Our method provides all 5
capabilities, making it highly generalizable.

lightweight MLP/CNN that classifies edge, near-edge, and non-edge points. It precomputes SSM
features at 4–128 scales, and the released code reports classification of millions of points in seconds
with small training sets. Datasets include their ‘Default’ shapes, ABC CAD patches, and a SHREC
curve benchmark converted to point clouds. Our other baseline, NerVE Zhu et al. (2023) learns
a neural volumetric edge grid whose voxels store occupancy, orientation, and offsets; the grid is
converted to a piecewise-linear graph via simple search, then spline-fitted.

EC-Net Yu et al. (2018), a precursor to PCEDNet, is a PointNet++ patch-based network that upsam-
ples and consolidates points while being explicitly edge-aware. It regresses both (a) residual coordi-
nates and (b) point-to-edge distances, and uses a joint loss L = Lsurf + λ1Ledge + λ2Lrep + λ3Lreg,
where Lrep encourages even spacing and Lreg is a truncated regression for distances. The model is
trained on virtual scans of ShapeNet-like meshes with manually annotated polylines for edges, with
patches extracted consistently at train and test time; KNN in Lrep typically uses K = 4, and the
PointNet++ backbone features D=256 per point.

Other less-generalizable baselines include primitive-based models. DEF Matveev et al. (2022) pre-
dicts a distance-to-edge scalar field on local patches, then fuses patch fields to scale to large clouds;
feature curves are extracted by following field minima and fitted as parametric primitives. Supervi-
sion is based on distance to the nearest sharp curve, the model is trained on synthetic CAD (ABC)
and then fine-tuned on scans, and the outputs feed a parametric curve reconstructor. PIE-NET Wang
et al. (2020) formulates edges as a set of parametric curves (lines, circles, B-splines). A region-
proposal stage over-generates edge and corner candidates, and a ranking stage selects a consistent
subset and fits primitives end-to-end. SEDNet Li et al. (2023) is a two-stage fusion network that la-
bels surface/edge points to drive geometric primitive fitting (planes, cylinders, etc.) AGPN Ni et al.
(2016) detects edges using neighborhood geometry (RANSAC + angular gap) and then traces feature
lines via region growing/model fitting–an important non-learned baseline and evaluation reference.

We evaluate against PCEDNet and NerVE as they are both newer improvements on DEF and are
capable of processing much larger point clouds than DEF in a practical amount of time. DEF states
it only extracts sharp features, and our interest is in extracting very fine details, both sharp and soft.
This requires very densely scanned point clouds akin to what would be seen in industrial scanning
tools which can create millions of points at a time on a single object Franaszek et al. (2024).

Segmentation Two works relevant to recent advances in geometric segmentation are ParSeNet
Sharma et al. (2020) and SpelsNet Cherenkova et al. (2024) – which attempt to reconstruct bound-
ary representation (BREP) files from discrete forms. ParSeNet extends the above paradigms by de-
composing point clouds into parametric surface patches–including B-spline and primitive models–
within an end-to-end trainable framework, improving segmentation fidelity and producing robust
parametrizations for shapes with clear primitives. SpelsNet, building on ParSeNet, jointly lever-
ages both spatial and topological cues: a sparse-convolutional encoder feeds into (1) a spatial head
that classifies each point’s primitive type (e.g. planar face, cylindrical face, line-edge, spline-edge)
and learns metric embeddings for grouping points into coherent surface or curve elements, and (2)
a graph-based head that, via a novel point-to-BREP adjacency formulation, directly supervises the
Linear Algebraic Representation (LAR) of the underlying BREP chain complex. Both these datasets
primarily train on the ABC parts dataset, and unfortunately the SpelsNet does not release CC3D-
VEF dataset or else it is no longer available online. Both models are still primitive-driven in their
segmentation and reconstruction pipelines.
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Figure 2: (a) soft features (fillet, chamfer, revolve – features without a sharp change in curvature)
and hard features (cut, extrude – features with a sharp change in curvature) from the F360+ dataset
Lambourne et al. (2021), (b) complex, unrestricted shapes from the Thang3D dataset.

3 EXPERIMENTAL SETUP

We demonstrate high-fidelity, classless edge-detection on variable-sized point clouds (sampled from
remeshed versions of BREP files) into their respective fine grain boundary-representation segments
(as shown in Figure 1 with their soft-features intact). Proper geometric-based edge detection and seg-
mentation allows subsequent precise reconstruction of diverse shapes (e.g. using the reconstruction
pipeline in Point2CAD Liu et al. (2024)) or far more diverse generation when extracted segments
are used as input features (e.g. using Xu et al. (2024)). The starting BREP representation provides
ground truth for metrics to evaluate edge detection performance, but features are extracted from
discrete mesh, point cloud, or neural radiance field representations. Even when starting only with
points and then the approximating normals, the use of other geometric features deterministically
computed allows us to maintain fairly robust edge-detection.

3.1 EVALUATION DATASET

CAD datasets of boundary representation files in either BREP or STEP form are suitable for our
task as they provide precise geometric breakdowns well beyond semantic labels; however, most
3D CAD generation datasets for ML (e.g., Wu et al. (2021), Colligan et al. (2022), Xu et al. (2024))
intentionally lack soft complex features that are necessary for our evaluation. We therefore chose the
Fusion360 Segmentation BREP dataset since it has soft, complex features as well as extremely fine-
grained labeling of geometric segments. Originally presented by Autodesk for segmentation on the
BREP files themselves, we use a modified version of this dataset that was presented by Kimmel et al.
(2025) called F360+ and the complex Thang3D dataset. Thang3D shapes were created by humans
and have no restrictions on what CAD operations, number of segments, or geometric primitives are
allowed to exist in the shape.

An important feature of our model is that it takes an arbitrarily large set of points and classifies them
in batches, iteratively building a global context vector that informs each next batch of points. This
allows us to process much larger point clouds (>200k points) that grow in size as the geometries
become more complex. Through curvature pre-processing, we densely oversample high-curvature
regions to accurately capture rapidly changing geometry, allowing us to identify finer features like
chamfers, fillets, and bevels that might otherwise be missed by smaller, coarser point clouds.

3.2 TASK DEFINITION

We perform edge detection on a dense point cloud, where points and normals are denoted as
X,Y, Z,Nx, Ny, Nz and can either be sampled from either a ‘perfect’ surface descriptor such as
a boundary representation file or a more noisy approximation such as a mesh or neural radiance
field. We generate datasets of surface point clouds and normals sampled from meshes that approxi-
mate BREP files. From the normals, a deterministic pre-processing algorithm approximates both the
local curvature, denoted as H , and the gradient of the curvature, denoted as ∇H , at various sample
sizes. These inputs are fed in sets of 10k points iteratively into the model. A custom deterministic
clustering algorithm is then applied to group enclosed boundary regions into designated segments.
An outline of the overarching process is shown in Figure 3.
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Figure 3: General approach for shape processing: starting from a raw point cloud, features
such as normals, curvature, and curvature gradients are extracted, followed by classification into
boundary/non-boundary points, which enables deterministic segmentation of the shape.

3.3 FEATURE SPACE

Surface points, normals, curvatures and their gradients are input into a convolutional neural network.
It is notable that with a minimal amount of deterministic feature extraction as a pre-processing step,
one can leverage a far less complex architecture and still achieve state of the art results.

Table 2 summarizes the geometric features used as model inputs. Surface points and their normals
define the local representation, while neighborhoods Nk(i) provide context for computing local
properties. Mean curvature is estimated by measuring the divergence of normals, yielding a scalar
that encodes how strongly the surface bends at a point. The curvature gradient extends this by
quantifying how curvature varies across neighbors: its vector form captures direction and magnitude,
while the signed magnitude si incorporates whether curvature is increasing or decreasing. Together,
these equations provide a compact yet expressive description of local surface geometry.

Feature Definition Equation

Surface Points Point cloud with normals {(pi, ni)}Ni=1 ⊂ R3 × S2, ∥ni∥ = 1

Neighborhood k-nearest neighbors of pi Nk(i) = {j1, . . . , jk}

Mean
Curvature

Discrete divergence of normals divn(pi) ≈ 1
k

∑
j∈Nk(i)

(nj−ni)·(pj−pi)

∥pj−pi∥2+ε

Estimated curvature H(pi) ≈ 1
2

∣∣divn(pi)∣∣
Curvature
Gradient

Discrete gradient ∇̂H(pi) =
1
k

∑
j∈Nk(i)

∆Hij

d2ij
∆pij

Definitions ∆pij = pj − pi, ∆Hij = hj − hi, d2ij = ∥∆pij∥2 + ε

Signed magnitude si = sign
(

1
k

∑
j∈Nk(i)

∆Hij

)
∥∇̂H(pi)∥2

Table 2: Geometric feature definitions and equations, pre-computed per-point for model inputs.

4 APPROACH

Model Architecture Our model shown in Figure 4 is designed to process very long sequences of
3D points and their normals by splitting them into subset chunks and carrying forward a learned
“context” vector that captures global shape information. Each chunk of 10k points that is processed
in two parallel branches: a main branch that sees all eleven channels where the per-point input is
of the form:

[X,Y, Z,Nx, Ny, Nz, Hs10, Hs20, ∇̂Hs5, ∇̂Hs10, ∇̂Hs20]

and a skip branch that attends only to a subset of five “late-arriving” features that focus on curvature:

[Hs10, Hs20, ∇̂Hs5, ∇̂Hs10, ∇̂Hs20]

where HsN indicates curvature approximated by the change in normals across a sample size of
N points and ∇̂HsN approximates the gradient of the curvature across a sample size of N . Both
branches consist of a 1×1 convolution (effectively a learned per-point linear projection), followed by
batch normalization and a ReLU nonlinearity; each produces a 64-dimensional per-point embedding.

These two 64-dimensional embeddings are concatenated to yield a 128-dimensional feature vector
at each point, which is immediately “fused” back down to 64 channels via another 1×1 convolution,
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Figure 4: Model architecture where a point cloud of arbitrary size is input in chunks. We combine
a main branch (all features) with a skip branch (focusing on curvature) to capture both global and
local details. It fuses these representations, encodes them into higher-level features, and integrates a
dynamic context vector that updates with each chunk. The final classifier predicts per-point logits.

batch norm, and ReLU. This fused representation is then passed through a small encoder made of
two successive blocks of 1×1 conv → batch norm → ReLU, expanding the channel dimension first
to 128 and then to 256. In this way, each point’s local information is gradually lifted into a richer
256-dimensional space, where higher-order interactions among the original features can be captured.

To bring in information about the shape processed so far, the network maintains a context vector
of dimension D (default D = 64). Before classification, this vector is tiled across all points in the
current chunk and concatenated with the 256-dimensional encoded features to yield a (256 + D)-
dimensional per-point representation. A 1×1 convolutional “context fuser” then projects this back
down to 256 channels, normalizes, and applies ReLU, effectively allowing the global summary to
modulate each local descriptor. A lightweight classifier head–again two 1×1 convolutions separated
by batch norm and ReLU–finally reduces the per-point feature to a single logit, producing a score
for each of the up to 10k points in the chunk.

Between chunks, the model updates its context vector so that information can flow across chunk
boundaries without requiring the entire sequence to be resident in GPU memory. Concretely, the
pooled maximum over the 256-dimensional encoded features (i.e., a per-channel max-pool across
all points in the chunk) is passed through a small 1×1 conv → batch norm → ReLU “context update”
module to produce a new D-dimensional vector. This new context is averaged with the incoming
context to form the “updated” context, which is then carried forward to the next chunk.

At inference time, the full point sequence is split into non-overlapping 10k-point chunks; the initial
context is set to zero. Each chunk is processed via the above pipeline, yielding per-point logits and an
updated context, which seeds the next chunk. Finally, the per-point logits are concatenated in order,
yielding a global score for every point in the original sequence, along with the final context vector
summarizing the entire shape. This architecture thus balances fine-grained local modeling (via per-
point convolutions) with coarse, global information flow (via the recurrently updated context vector),
all without any spatial downsampling or dropout, making it well-suited for tasks that demand precise
point-level labeling across very long contours.

Deterministic Segment Clustering: Flood-Fill We used a GPU-based algorithm for geodesic-
style segmentation of 3D point clouds. The method requires only the raw point coordinates P ∈
RN×3 and per-point normals N ∈ RN×3. Affinities, distances, and segmentation decisions are
derived solely from (P,N). No mesh connectivity, surface reconstruction, or external priors are
needed. We construct a boundary-aware clustering of point clouds by modifying a KNN graph to
respect boundary constraints. Given points P ∈ RN×3, normals N ∈ RN×3, and a boundary
indicator B ∈ {0, 1}N , we compute nearest neighbors using a KD-tree and distances to boundaries
di = dist(pi, ∂) via a KD-tree built on boundary points. Candidate edges (i, j) from the k-nearest
neighbors are pruned if they cross boundary sets (Bi ⊕ Bj = 1), if min(di, dj) ≤ τreject, or if the
midpoint m = 1

2 (pi + pj) satisfies dist(m, ∂) ≤ τreject.

Surviving edges are assigned a base weight w = ∥pj − pi∥2. If any of {di, dj , dist(m, ∂)} ≤ rbdry,
we apply two penalties. First, an angular penalty: if θ = arccos(clip(n⊤

i nj ,−1, 1)) > θ0, then w ←
w ·

(
1 + λ θ−θ0

π−θ0

)
. Second, a proximity penalty: letting dmin = min(di, dj , dist(m, ∂)), we set w ←
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w ·max
(
1,

rbdry

max(10−12,dmin)

)
. The resulting edges are symmetrized and assembled into an adjacency

matrix, either binary (default) or weighted, from which connected components yield cluster labels
ℓ ∈ {1, . . . , C}N . The algorithm guarantees that clusters do not cross boundary/non-boundary
sets, rejects edges too close to boundaries, and adaptively penalizes edges near boundaries through
angular disagreement and inverse-distance factors. In the absence of boundaries, the procedure
reduces to standard kNN connected components. The overall complexity is O(N logN +Nk). The
entire algorithm is described holistically in the appendix in Algorithm 1.

5 EXPERIMENTS

Method Dataset ↑ Acc. ↑ F1 ↑ P ↑ R

NerVE
ABC 0.70 0.42 0.42 0.34
F360+ 0.76 0.34 0.41 0.25
Thang3D 0.75 0.32 0.39 0.24

PCED
ABC 0.95 0.89 0.95 0.82
F360+ 0.94 0.51 0.36 0.82
Thang3D 0.31 0.17 0.11 0.23

Ours
ABC 0.98 0.81 0.81 0.82
F360+ 0.98 0.87 0.85 0.90
Thang3D 0.97 0.78 0.81 0.77

Table 3: Edge detection performance across
datasets: prior methods degrade on more complex
data, while ours remains robust.

Edge Detection For boundary point classifi-
cation, we compare our work against NerVE
(2023) and PCED (2022) for a subset of 5k
parts from ABC, as well as the entire F360+
and Thang3D datasets. We train only on the
F360+ dataset, with no fine-tuning for testing
on the ABC and Thang3D datasets (see Table
3, containing accuracy, F1, precision, and re-
call). Output outlines can be seen in Figure 5,
with more in the appendix in Figure 7.

For NerVE, the most recent edge detection
method, precision, recall, and accuracy are
somewhat difficult to compute since the output
of NerVE is a parametrized curve. The origi-
nal paper reported precision and recall for ‘edge
occupancy’ per voxel in their cube grid, that is, a binary classification ‘is there an edge in this voxel’
which is not an accurate measure of outlines. For consistency with ours and PCED, we sample from
their reconstructed parametric curves and compare their sampled points to our sampled points of
the original curves. In Table 3 a point is considered ‘correct’ if it is within 0.05 (i.e. 2.5% of the
shape dimensions, since it was scaled to within the unit sphere) of the original points and incorrect
otherwise. This is a generous threshold, performance rapidly degrades as we tighten the threshold as
shown in the appendix in Table 6. PCED only provides a compiled binary, which we tested on 150
shapes from each non-ABC dataset (ABC values are taken from the original paper). A significant
portion of complex shapes resulted in crashing code, possibly since they are too complex. Numbers
reported are for shapes that successfully ran. Only 61.3% of F360+ and 24% of Thang3D shapes
were fully processed.

Figure 5: Thang3D shapes
outlines with soft features.

While both prior works perform well on relatively simpler shapes
that have clean edges, they fail to detect edges that include soft
features, including bevels, chamfers, and fillets. They perform ex-
ceptionally poorly on ‘real life’ shapes from the Thang3D dataset.

Ablation Studies Ablation studies in Table 4 were performed on
the F360+ dataset, highlighting the contribution of different geo-
metric signals to the overall performance. The full model (“Orig-
inal”) achieves the strongest results, maintaining high accuracy
(0.98) alongside balanced F1, precision, and recall across cate-
gories. Removing curvature gradients results in only a moderate
drop, particularly for “many extrudes” where recall declines, but
the model still preserves relatively strong overall performance. Ar-
chitecturally, discarding the global context vector leads to a sharper
degradation, especially in recall (0.62 overall), underscoring its im-
portance for capturing broader structural patterns. The most severe
impact arises from using only points and normals, where overall
F1 falls to about 0.61 and performance on “many extrudes” drops
substantially (0.41 F1), suggesting that this representation alone is insufficient despite being ex-
ceedingly popular in prior work. Finally, the approximated normals variant (accuracy 0.97, 0.73 F1)
performs between the “no curvature gradients” and “only points and normals” settings, indicating
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Ablation Category Epochs ↑ Accuracy ↑ F1 ↑ Precision ↑ Recall

Original
Overall 28 0.98 0.87 0.85 0.90
Soft features 28 0.98 0.89 0.87 0.91
Many extrudes 28 0.97 0.76 0.79 0.74

Only Points & Normals
Overall 11 0.95 0.61 0.60 0.66
Soft features 11 0.96 0.63 0.66 0.64
Many extrudes 11 0.98 0.41 0.50 0.37

No Curvature Gradients
Overall 9 0.97 0.81 0.80 0.83
Soft features 9 0.96 0.83 0.83 0.84
Many extrudes 9 0.97 0.70 0.76 0.66

No Global Context
Overall 35 0.97 0.68 0.75 0.62
Soft features 35 0.97 0.67 0.75 0.61
Many extrudes 35 0.95 0.60 0.67 0.54

Approximated Normals
Overall 83 0.97 0.73 0.72 0.75
Soft features 83 0.97 0.70 0.71 0.68
Many extrudes 83 0.96 0.70 0.70 0.69

Noise*
Overall 13 0.98 0.83 0.83 0.83
Soft features 13 0.98 0.87 0.87 0.86
Many extrudes 13 0.97 0.63 0.69 0.60

Table 4: Performance of our model on the F360+ dataset with different ablation settings across
categories. Noise values of up to 0.002 (assuming the parts, normalized to the unit sphere, are two
inches in maximum dimension) is similar to that of commercial 3D scanners in midrange conditions,
where commercial scanning abilities range at the high end from 5-50 microns in error to the hobbyist
level 0.1-1mm in error, per Franaszek et al. (2024).

that while normals remain a useful signal even when estimated, their quality critically affects down-
stream predictions. Together, these comparisons show that curvature gradients and global context
substantially boost performance, while high-fidelity normals are essential for robust generalization.

Category ↑ mIoU ↓ M. Seg ↓ F. Seg10

Pa
rS

eN
et

+ Fillets 0.65 8.37 3.11
Chamfers 0.70 6.17 2.81
Revolve 0.65 4.09 1.69
> 7 Extr. 0.54 7.75 14.54
Average 0.64 5.86 3.48

Pa
rS

eN
et

Fillets 0.60 0.53 7.80
Chamfers 0.63 0.57 7.03
Revolve 0.64 0.83 3.31
> 7 Extr. 0.52 0.09 25.54
Average 0.60 1.13 5.21

O
ur

s

Fillets 0.76 1.21 2.27
Chamfers 0.77 1.42 3.41
Revolve 0.69 0.73 3.10
> 7 Extr. 0.87 2.64 9.64
Average 0.83 0.70 3.32

Table 5: Segmentation Metrics: mIoU =
matched mean IoU, M. Seg = # of miss-
ing segments, and F. Seg10 = # of false
segments, counting matches with≥10%
overlap.

Segmentation We compare our segmentation model
against that of ParSeNet, which was built on top of Point-
Net++. It is the one of the current SOTA models for open-
source for 3D geometric part segmentation to our knowl-
edge as SpelsNet did not release their code, and most
other models (ex: SAMPart3D Yang et al. (2024)) deal
in semantic segmentation.

Our final output averages in Table 5 span all shapes (in-
cluding those without special features) and are averaged
over 4 runs. Our method performs significantly better
across nearly all categories, with the exception being the
number of missing/false segments in ParSeNet’s average.
This is likely because ParSeNet has a maximum cluster
number that never changes and allows small fringe clus-
ters to form, some of which will completely overlap with
where a segment should be even if the cluster itself is
small and largely incorrect. It also intrinsically limits the
number of false segments to the maximum cluster number
(50). In contrast, ours has no maximum cluster amount
and requires a certain number of cluster points to be con-
sidered a valid cluster. Both of the ParSeNet variants av-
erage lower intersection over union scores. We see a sub-
stantial improvement in recovering true segments for shapes with greater than 7 extrusions, likely
due to the fact we can segment a shape with an arbitrary number of segments while again ParSeNet
has a limited number of clusters that can form. Results also show that the ParSeNet variants perform
significantly worse in regards to missing segments with normal vectors (ParSeNet+) than without
normal vectors (ParSeNet) on the points, indicating that at the very least the processing of the nor-
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Figure 6: Improvements using our segmentation method in capturing both fine, soft features like
fillets (left) as well as simpler features and free-form splines (right) compared to ParSeNet+.

mal feature is severely overfit to simplified data. Additionally, our method is able to recover the
true boundaries of regions with a much higher fidelity than ParSeNet, denoted in blue in Figure 6
on the right. Recovering the true boundary is important in any application that requires parametric
surface reconstruction, such as CAD design or medical spline-fitting. Our method performs better
both on ‘soft features’ with free-form curves and fillets as well as hard prismatics – including many
extrusions.

6 CONCLUSION

We introduced a classless 3D edge-detection framework that directly decomposes point clouds into
fine-grained geometric components without reliance on labels or primitives. Our method leverages
curvature and curvature-gradient inputs, combined with a global context vector that scales to large
point sets, enabling high-fidelity segmentation of both hard and soft features. In doing so, we address
key limitations of existing state-of-the-art approaches–namely, their inability to robustly capture
small, soft features such as chamfers, bevels, and fillets that are pervasive in real-world designs as
well as the ability to handle arbitrarily large point clouds (and, ergo, arbitrarily fine features).

Through extensive experiments, we evaluated our approach on standard CAD benchmarks (ABC),
as well as more challenging datasets (F360+, Thang3D), that contain unconventional and irregular
geometries. Across all settings, our model consistently outperformed prior methods such as PCED
and NerVE on edge classification tasks, achieving greater accuracy, precision, and recall, partic-
ularly for shapes with complex or soft features. Ablation studies highlighted the critical role of
curvature gradients, global context, and high-quality normals, demonstrating the necessity of inte-
grating both local geometric cues and long-range structural information. When coupled with our
deterministic flood-fill clustering algorithm, our predictions provided better segmentation than com-
mon ML-based methods (e.g., ParSeNet), delivering higher mIoU and fewer incorrect segments.

These results highlight the generalizability of our method: by grounding inference in geometric and
topological properties rather than in human-imposed categories, our framework extends beyond con-
ventional benchmarks to capture the rich diversity of real-world shapes. The ability to decompose
organic or unlabeled parts into meaningful geometric segments positions our approach as a founda-
tional tool for downstream tasks in reconstruction, generative modeling, and design automation.

7 FUTURE WORK

Currently, our clustering algorithm is efficient and fast, but it could be improved beyond heuristic
methods to be more noise resilient for even better results. Looking forward, the complex segments
and outlines obtained from our primitive-less geometric segmentation hold promising potential for
both reconstructing and generating a much more diverse set of 3D shapes in parametric forms than
what has been previously done. It also allows more generalized processing of 3D data and can be
used to potentially automatically segment larger, currently unlabeled datasets. In other applications,
simply being able to encode outlines as identifiers of a shape could provide crucial information as
to what different use-cases of the shape could be (as in the earlier example of automating furniture
assembly or creating a shape from geometric constraints). These advances open the door to more
versatile and function-aware 3D shape understanding.

9
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A APPENDIX

We show further examples of how our edge detection algorithm is capable of identifying soft edges,
fine features, and spline-fit edges below.

Figure 7: Examples of extracted outlines from the Thang3D dataset using our method.

Below is a detailed outline of our point-cloud segmentation algorithm.

Algorithm 1 Boundary-Aware Segmentation of Point Clouds
1: Input: points P ∈ RN×3, normals N ∈ RN×3, boundary mask B ∈ {0, 1}N , params

(k, τreject, rbdry, θ0, λ)
2: Normalize N ← N/∥N∥2 row-wise
3: Build KD-tree on P for kNN queries
4: Build KD-tree on boundary points PB = {pi : Bi = 1} and compute di = dist(pi, ∂)
5: Initialize edge set E ← ∅
6: for each i ∈ {1, . . . , N} do
7: for each j in kNN(i) with j > i do
8: m← 1

2 (pi + pj), dm ← dist(m, ∂)
9: if Bi ⊕Bj = 1 or min(di, dj) ≤ τreject or dm ≤ τreject then

10: continue
11: end if
12: w ← ∥pj − pi∥2
13: if min(di, dj , dm) ≤ rbdry then
14: θ ← arccos(clip(n⊤

i nj ,−1, 1))
15: if θ > θ0 then
16: w ← w ·

(
1 + λ θ−θ0

π−θ0

)
17: end if
18: w ← w ·max

(
1,

rbdry

max(10−12,min(di,dj ,dm))

)
19: end if
20: Add edge (i, j, w) to E
21: end for
22: end for
23: Symmetrize edges: E ← E ∪ {(j, i, w) : (i, j, w) ∈ E}
24: Build adjacency A from E (binary or weighted)
25: Compute connected components of A, yielding labels ℓ ∈ {1, . . . , C}N
26: Return: labels ℓ, edge list E
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Our results presented in the paper for accuracy, F1, precision, and recall for the NerVE model
assumed that predicted edge points within 0.05 of the true points were ‘correct.’ However, as the
threshold is tightened, performance vastly drops (F1, precision, and recall being computed over the
entire set of points). Accuracy becomes ‘better’ when the threshold gets lower because as the band
for boundary points tightens, fewer non-boundary points count as false positives within the band.
These results highlight that in reality, the average distance between the predicted edges and the
actual edges is roughly 0.1, which is a fairly large margin of error (5%) since the shape is scaled to
be within the unit sphere.

NerVE Threshold Acc. ↑ F1 ↑ P ↑ R ↑
0.1 0.52 0.65 0.71 0.59

0.05 0.76 0.34 0.41 0.25
0.01 0.93 0.09 0.04 0.03
0.005 0.94 0.03 0.01 0.009
0.001 0.95 0.0003 0.0002 0.0005

Table 6: Table showing NerVE’s performance degradation as the threshold for what is considered a
‘correct’ edge is tightened. Evaluated on the F360+ dataset.
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