
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GENERALIZABLE 3D EDGE DETECTION FOR SOFT &
HARD FEATURES

Anonymous authors
Paper under double-blind review

ABSTRACT

Understanding 3D objects based on their geometric and physical properties–
independent of predefined labels–is essential for creating, modifying, and using
the objects in diverse contexts. However, most machine learning approaches in
the 3D domain rely heavily on semantic or primitive labeled-data to achieve these
tasks. We present a 3D edge detection algorithm that decomposes point clouds
into precise geometric components without relying on primitives or semantic la-
bels. This enables us to tackle datasets of freeform, entirely unrestricted objects
(as in the Thang3D dataset) that are challenging, and in many cases impossible,
for current models in the literature to segment, reconstruct, or produce paramet-
rically. Additionally, we achieve state-of-the-art (SOTA) edge detection accuracy
on both the complex Fusion360 Segmentation, Thang3D, and simpler standard
ABC benchmarks. Our approach maintains reliable edge detection on soft fea-
tures where most existing models fail. In addition, when the detected edges are
used as input for segmentation, our method outperforms recent segmentation mod-
els on intricate geometries. This framework provides a robust and generalizable
foundation for edge-aware analysis, segmentation, and generation of diverse 3D
shapes well beyond what can be easily labeled by humans.

1 INTRODUCTION

Human perception and communication demonstrate how geometric reasoning underlies our ability
to interact with the world across modalities. Consider the process of assembling furniture, improvis-
ing a bottle opener from a flat-edged tool, or fabricating replacement components with a 3D printer.
In vision, diagrams often replace text when furniture assembly defies easy vernacular description.
In multimodal contexts such as CAD (computer-aided design) or 3D fabrication, humans construct,
segment, and manipulate shapes through purely geometric cues – often initially creating a shape
graphically then exporting it to a domain specific language, not the other way around. These ex-
amples highlight a key principle: humans flexibly decompose objects into meaningful geometric
substructures and reason about their functions, often independent of linguistic labels or categorical
constraints Shams & Tarr (2002).

In contrast, much of contemporary 3D machine learning (ML)–across reconstruction, generation,
and robotic applications–remains constrained by pre-specified shape categories. Such approaches
often classify entire objects or their segments into predefined primitives or CAD sequence elements,
thereby restricting the scope of representable and analyzable shapes Mo et al. (2019); Engelmann
et al. (2020). These constraints propagate through the ML pipeline: reconstruction methods fail
when objects contain segments that defy primitive-based categorization; generative models are
limited to producing either simple, primitive-composed artifacts suitable for basic 3D printing or
complex visual renderings (e.g., Neural Radiance Fields or meshes) tethered to colloquial textual
prompts (e.g., “an orange cat”). However, these latter outputs are unsuitable for feature-based
manufacturing and offer little support for human editing, as they remain collections of points or
unstructured surface elements (“triangle soup”) He et al. (2024); Betsas et al. (2025).

Finally, functional understanding under primitive- or label-based paradigms is inherently limited.
Shapes are interpreted only through their assigned categories, leaving unlabeled or unconventional
geometries without utility. For example, a knife cannot be recognized as a potential bottle opener,
despite possessing the requisite sharp edge, and a hook must conform to stereotypical visual expec-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Types of segmentation where (a) shows semantic segmentation of a shape (colors indicate
labels), (b) shows class-based geometric segmentation into primitives (colors indicate primitives),
and (c) shows classless geometric segmentation (every segment has a unique color).

tations rather than to context-specific geometric affordances. Thus, current ML approaches fall short
of the human ability to flexibly reason about geometry and function beyond predefined labels.

Classless geometric segmentation directly addresses these limitations by shifting the focus away
from rigid labels and toward the intrinsic structure of shapes, enabling a more flexible and gen-
eral understanding of geometry that better supports functional, constructive reasoning. This method
partitions a 3D model in any representation into meaningful subregions or “parts” using purely
geometric and topological cues (curvature, thickness, geodesic distance, skeleton structure, etc.).
Unlike semantic (Mo et al. (2019); Engelmann et al. (2020); He et al. (2024); Betsas et al. (2025)) or
primitive-based (Nguyen & Le (2013); Shamir (2008); Attene et al. (2018)) approaches that attempt
to fit pieces of a shape to known labels or primitive classes, pure geometric segmentation works di-
rectly on the surface or volume, grouping portions of the shape into clusters whose boundaries align
with salient features such as ridges, valleys, and protrusions. Often performed by humans when cre-
ating or recreating a shape, classless geometric segmentation serves as a fundamental pre-processing
step in nearly every domain that manipulates or analyzes geometric data – from CAD and graphics to
biomedical imaging to scientific visualization – where precisely identifying and understanding each
geometric component of the object, rather than the semantic label of each segment, is paramount.

As seen in Figure 1, primitive, class-based segmentation (either semantic or geometric) tends to
operate at a much coarser-grained scale where a singular ‘segment’ in their case can have multiple
geometric pieces that should be further broken down to achieve the granularity shown in item (c).
These pieces shown in (c) might not necessarily have a logical semantic or categorical label. Ad-
ditionally, in real world data, these geometric segments can be very small, such as a bevel or fillet
comprising of only fraction of the object’s total volume or surface area. The accurate capturing
of those small segments has historically proven challenging for segmentation models. While it is
often visually obvious to a human where a boundary line can be drawn, those deductions must be
extracted through pure physical properties of the shape – such as a change in curvature or inflection
point – no matter how small the total size of the segment is relative to the original shape Nguyen
& Le (2013); Shamir (2008). We introduce a primitive-less method of decomposing shapes based
purely on geometry, capable of handling arbitrarily fine features in very large point clouds. This
allows us to accurately outline then segment exceptionally diverse shapes.

2 RELATED WORK

Edge Detection Most edge detection has primarily focused on detecting sharp edges, not smooth
transitions. Most real world man-made objects, however, tend to have bevels, chamfers, or fillets
(shown in Figure 2) as these provide crucial structural and safety features (truly sharp edges are
usually unique to where it necessitates). Meanwhile, sharp edges are practically nonexistent in tasks
related to more organic objects, like topology optimization and medical segmentation. In order to
accurately segment, reconstruct, or generate these sorts of shapes, smooth edge detection must also
be possible. An overview of desirable model capabilities is shown in Table 1.

As the baseline comparison in this paper, PCEDNet Himeur et al. (2022) introduces a multi-
scale Scale-Space Matrix (SSM) descriptor per point (differential shape cues across radii) and a

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Method Primitive-less Soft features Unlimited Points Arbitrary Resolution Points Only

DEF [2022] ✗ ✗ ✗ ✗ ✗
PIENet [2020] ✗ ✗ ✗ ✓ ✓
SEDNet [2023] ✗ ✗ ✗ ✗ ✓
PCED [2022] ✓ ✓ ✓ ✗ ✗
NerVE [2023] ✗ ✗ ✓ ✗ ✓

Ours ✓ ✓ ✓ ✓ ✓

Table 1: Abilities of edge-detection methods in point clouds, highlighting whether the initial ex-
traction relies on primitives or not, soft feature detection, scalability to unlimited points, handling
of arbitrary resolution, and reliance on point-only input (no normals). Our method provides all 5
capabilities, making it highly generalizable.

lightweight MLP/CNN that classifies edge, near-edge, and non-edge points. It precomputes SSM
features at 4–128 scales, and the released code reports classification of millions of points in seconds
with small training sets. Datasets include their ‘Default’ shapes, ABC CAD patches, and a SHREC
curve benchmark converted to point clouds. Our other baseline, NerVE Zhu et al. (2023) learns
a neural volumetric edge grid whose voxels store occupancy, orientation, and offsets; the grid is
converted to a piecewise-linear graph via simple search, then spline-fitted.

EC-Net Yu et al. (2018), a precursor to PCEDNet, is a PointNet++ patch-based network that upsam-
ples and consolidates points while being explicitly edge-aware. It regresses both (a) residual coordi-
nates and (b) point-to-edge distances, and uses a joint loss L = Lsurf + λ1Ledge + λ2Lrep + λ3Lreg,
where Lrep encourages even spacing and Lreg is a truncated regression for distances. The model is
trained on virtual scans of ShapeNet-like meshes with manually annotated polylines for edges, with
patches extracted consistently at train and test time; KNN in Lrep typically uses K = 4, and the
PointNet++ backbone features D=256 per point.

Other less-generalizable baselines include primitive-based models. DEF Matveev et al. (2022) pre-
dicts a distance-to-edge scalar field on local patches, then fuses patch fields to scale to large clouds;
feature curves are extracted by following field minima and fitted as parametric primitives. Supervi-
sion is based on distance to the nearest sharp curve, the model is trained on synthetic CAD (ABC)
and then fine-tuned on scans, and the outputs feed a parametric curve reconstructor. PIE-NET Wang
et al. (2020) formulates edges as a set of parametric curves (lines, circles, B-splines). A region-
proposal stage over-generates edge and corner candidates, and a ranking stage selects a consistent
subset and fits primitives end-to-end. SEDNet Li et al. (2023) is a two-stage fusion network that la-
bels surface/edge points to drive geometric primitive fitting (planes, cylinders, etc.) AGPN Ni et al.
(2016) detects edges using neighborhood geometry (RANSAC + angular gap) and then traces feature
lines via region growing/model fitting–an important non-learned baseline and evaluation reference.

We evaluate against PCEDNet and NerVE as they are both newer improvements on DEF and are
capable of processing much larger point clouds than DEF in a practical amount of time. DEF states
it only extracts sharp features, and our interest is in extracting very fine details, both sharp and soft.
This requires very densely scanned point clouds akin to what would be seen in industrial scanning
tools which can create millions of points at a time on a single object Franaszek et al. (2024).

Segmentation Two works relevant to recent advances in geometric segmentation are ParSeNet
Sharma et al. (2020) and SpelsNet Cherenkova et al. (2024) – which attempt to reconstruct bound-
ary representation (BREP) files from discrete forms. ParSeNet extends the above paradigms by de-
composing point clouds into parametric surface patches–including B-spline and primitive models–
within an end-to-end trainable framework, improving segmentation fidelity and producing robust
parametrizations for shapes with clear primitives. SpelsNet, building on ParSeNet, jointly lever-
ages both spatial and topological cues: a sparse-convolutional encoder feeds into (1) a spatial head
that classifies each point’s primitive type (e.g. planar face, cylindrical face, line-edge, spline-edge)
and learns metric embeddings for grouping points into coherent surface or curve elements, and (2)
a graph-based head that, via a novel point-to-BREP adjacency formulation, directly supervises the
Linear Algebraic Representation (LAR) of the underlying BREP chain complex. Both these datasets
primarily train on the ABC parts dataset, and unfortunately the SpelsNet does not release CC3D-
VEF dataset or else it is no longer available online. Both models are still primitive-driven in their
segmentation and reconstruction pipelines.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: (a) soft features (fillet, chamfer, revolve – features without a sharp change in curvature)
and hard features (cut, extrude – features with a sharp change in curvature) from the F360+ dataset
Lambourne et al. (2021), (b) complex, unrestricted shapes from the Thang3D dataset.

3 EXPERIMENTAL SETUP

We demonstrate high-fidelity, classless edge-detection on variable-sized point clouds (sampled from
remeshed versions of BREP files) into their respective fine grain boundary-representation segments
(as shown in Figure 1 with their soft-features intact). Proper geometric-based edge detection and seg-
mentation allows subsequent precise reconstruction of diverse shapes (e.g. using the reconstruction
pipeline in Point2CAD Liu et al. (2024)) or far more diverse generation when extracted segments
are used as input features (e.g. using Xu et al. (2024)). The starting BREP representation provides
ground truth for metrics to evaluate edge detection performance, but features are extracted from
discrete mesh, point cloud, or neural radiance field representations. Even when starting only with
points and then the approximating normals, the use of other geometric features deterministically
computed allows us to maintain fairly robust edge-detection.

3.1 EVALUATION DATASET

CAD datasets of boundary representation files in either BREP or STEP form are suitable for our
task as they provide precise geometric breakdowns well beyond semantic labels; however, most
3D CAD generation datasets for ML (e.g., Wu et al. (2021), Colligan et al. (2022), Xu et al. (2024))
intentionally lack soft complex features that are necessary for our evaluation. We therefore chose the
Fusion360 Segmentation BREP dataset since it has soft, complex features as well as extremely fine-
grained labeling of geometric segments. Originally presented by Autodesk for segmentation on the
BREP files themselves, we use a modified version of this dataset that was presented by Kimmel et al.
(2025) called F360+ and the complex Thang3D dataset. Thang3D shapes were created by humans
and have no restrictions on what CAD operations, number of segments, or geometric primitives are
allowed to exist in the shape.

An important feature of our model is that it takes an arbitrarily large set of points and classifies them
in batches, iteratively building a global context vector that informs each next batch of points. This
allows us to process much larger point clouds (>200k points) that grow in size as the geometries
become more complex. Through curvature pre-processing, we densely oversample high-curvature
regions to accurately capture rapidly changing geometry, allowing us to identify finer features like
chamfers, fillets, and bevels that might otherwise be missed by smaller, coarser point clouds.

3.2 TASK DEFINITION

We perform edge detection on a dense point cloud, where points and normals are denoted as
X,Y, Z,Nx, Ny, Nz and can either be sampled from either a ‘perfect’ surface descriptor such as
a boundary representation file or a more noisy approximation such as a mesh or neural radiance
field. We generate datasets of surface point clouds and normals sampled from meshes that approxi-
mate BREP files. From the normals, a deterministic pre-processing algorithm approximates both the
local curvature, denoted as H , and the gradient of the curvature, denoted as ∇H , at various sample
sizes. These inputs are fed in sets of 10k points iteratively into the model. A custom deterministic
clustering algorithm is then applied to group enclosed boundary regions into designated segments.
An outline of the overarching process is shown in Figure 3.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: General approach for shape processing: starting from a raw point cloud, features
such as normals, curvature, and curvature gradients are extracted, followed by classification into
boundary/non-boundary points, which enables deterministic segmentation of the shape.

3.3 FEATURE SPACE

Surface points, normals, curvatures and their gradients are input into a convolutional neural network.
It is notable that with a minimal amount of deterministic feature extraction as a pre-processing step,
one can leverage a far less complex architecture and still achieve state of the art results.

Table 2 summarizes the geometric features used as model inputs. Surface points and their normals
define the local representation, while neighborhoods Nk(i) provide context for computing local
properties. Mean curvature is estimated by measuring the divergence of normals, yielding a scalar
that encodes how strongly the surface bends at a point. The curvature gradient extends this by
quantifying how curvature varies across neighbors: its vector form captures direction and magnitude,
while the signed magnitude si incorporates whether curvature is increasing or decreasing. Together,
these equations provide a compact yet expressive description of local surface geometry.

Feature Definition Equation

Surface Points Point cloud with normals {(pi, ni)}Ni=1 ⊂ R3 × S2, ∥ni∥ = 1

Neighborhood k-nearest neighbors of pi Nk(i) = {j1, . . . , jk}

Mean
Curvature

Discrete divergence of normals divn(pi) ≈ 1
k

∑
j∈Nk(i)

(nj−ni)·(pj−pi)

∥pj−pi∥2+ε

Estimated curvature H(pi) ≈ 1
2

∣∣divn(pi)∣∣
Curvature
Gradient

Discrete gradient ∇̂H(pi) =
1
k

∑
j∈Nk(i)

∆Hij

d2ij
∆pij

Definitions ∆pij = pj − pi, ∆Hij = hj − hi, d2ij = ∥∆pij∥2 + ε

Signed magnitude si = sign
(

1
k

∑
j∈Nk(i)

∆Hij

)
∥∇̂H(pi)∥2

Table 2: Geometric feature definitions and equations, pre-computed per-point for model inputs.

4 APPROACH

Model Architecture Our model shown in Figure 4 is designed to process very long sequences of
3D points and their normals by splitting them into subset chunks and carrying forward a learned
“context” vector that captures global shape information. Each chunk of 10k points that is processed
in two parallel branches: a main branch that sees all eleven channels where the per-point input is
of the form:

[X,Y, Z,Nx, Ny, Nz, Hs10, Hs20, ∇̂Hs5, ∇̂Hs10, ∇̂Hs20]

and a skip branch that attends only to a subset of five “late-arriving” features that focus on curvature:

[Hs10, Hs20, ∇̂Hs5, ∇̂Hs10, ∇̂Hs20]

where HsN indicates curvature approximated by the change in normals across a sample size of
N points and ∇̂HsN approximates the gradient of the curvature across a sample size of N . Both
branches consist of a 1×1 convolution (effectively a learned per-point linear projection), followed by
batch normalization and a ReLU nonlinearity; each produces a 64-dimensional per-point embedding.

These two 64-dimensional embeddings are concatenated to yield a 128-dimensional feature vector
at each point, which is immediately “fused” back down to 64 channels via another 1×1 convolution,

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 4: Model architecture where a point cloud of arbitrary size is input in chunks. We combine
a main branch (all features) with a skip branch (focusing on curvature) to capture both global and
local details. It fuses these representations, encodes them into higher-level features, and integrates a
dynamic context vector that updates with each chunk. The final classifier predicts per-point logits.

batch norm, and ReLU. This fused representation is then passed through a small encoder made of
two successive blocks of 1×1 conv → batch norm → ReLU, expanding the channel dimension first
to 128 and then to 256. In this way, each point’s local information is gradually lifted into a richer
256-dimensional space, where higher-order interactions among the original features can be captured.

To bring in information about the shape processed so far, the network maintains a context vector
of dimension D (default D = 64). Before classification, this vector is tiled across all points in the
current chunk and concatenated with the 256-dimensional encoded features to yield a (256 + D)-
dimensional per-point representation. A 1×1 convolutional “context fuser” then projects this back
down to 256 channels, normalizes, and applies ReLU, effectively allowing the global summary to
modulate each local descriptor. A lightweight classifier head–again two 1×1 convolutions separated
by batch norm and ReLU–finally reduces the per-point feature to a single logit, producing a score
for each of the up to 10k points in the chunk.

Between chunks, the model updates its context vector so that information can flow across chunk
boundaries without requiring the entire sequence to be resident in GPU memory. Concretely, the
pooled maximum over the 256-dimensional encoded features (i.e., a per-channel max-pool across
all points in the chunk) is passed through a small 1×1 conv → batch norm → ReLU “context update”
module to produce a new D-dimensional vector. This new context is averaged with the incoming
context to form the “updated” context, which is then carried forward to the next chunk.

At inference time, the full point sequence is split into non-overlapping 10k-point chunks; the initial
context is set to zero. Each chunk is processed via the above pipeline, yielding per-point logits and an
updated context, which seeds the next chunk. Finally, the per-point logits are concatenated in order,
yielding a global score for every point in the original sequence, along with the final context vector
summarizing the entire shape. This architecture thus balances fine-grained local modeling (via per-
point convolutions) with coarse, global information flow (via the recurrently updated context vector),
all without any spatial downsampling or dropout, making it well-suited for tasks that demand precise
point-level labeling across very long contours.

Deterministic Segment Clustering: Flood-Fill We used a GPU-based algorithm for geodesic-
style segmentation of 3D point clouds. The method requires only the raw point coordinates P ∈
RN×3 and per-point normals N ∈ RN×3. Affinities, distances, and segmentation decisions are
derived solely from (P,N). No mesh connectivity, surface reconstruction, or external priors are
needed. We construct a boundary-aware clustering of point clouds by modifying a KNN graph to
respect boundary constraints. Given points P ∈ RN×3, normals N ∈ RN×3, and a boundary
indicator B ∈ {0, 1}N , we compute nearest neighbors using a KD-tree and distances to boundaries
di = dist(pi, ∂) via a KD-tree built on boundary points. Candidate edges (i, j) from the k-nearest
neighbors are pruned if they cross boundary sets (Bi ⊕ Bj = 1), if min(di, dj) ≤ τreject, or if the
midpoint m = 1

2 (pi + pj) satisfies dist(m, ∂) ≤ τreject.

Surviving edges are assigned a base weight w = ∥pj − pi∥2. If any of {di, dj , dist(m, ∂)} ≤ rbdry,
we apply two penalties. First, an angular penalty: if θ = arccos(clip(n⊤

i nj ,−1, 1)) > θ0, then w ←
w ·

(
1 + λ θ−θ0

π−θ0

)
. Second, a proximity penalty: letting dmin = min(di, dj , dist(m, ∂)), we set w ←

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

w ·max
(
1,

rbdry

max(10−12,dmin)

)
. The resulting edges are symmetrized and assembled into an adjacency

matrix, either binary (default) or weighted, from which connected components yield cluster labels
ℓ ∈ {1, . . . , C}N . The algorithm guarantees that clusters do not cross boundary/non-boundary
sets, rejects edges too close to boundaries, and adaptively penalizes edges near boundaries through
angular disagreement and inverse-distance factors. In the absence of boundaries, the procedure
reduces to standard kNN connected components. The overall complexity is O(N logN +Nk). The
entire algorithm is described holistically in the appendix in Algorithm 1.

5 EXPERIMENTS

Method Dataset ↑ Acc. ↑ F1 ↑ P ↑ R

NerVE
ABC 0.70 0.42 0.42 0.34
F360+ 0.76 0.34 0.41 0.25
Thang3D 0.75 0.32 0.39 0.24

PCED
ABC 0.95 0.89 0.95 0.82
F360+ 0.94 0.51 0.36 0.82
Thang3D 0.31 0.17 0.11 0.23

Ours
ABC 0.98 0.81 0.81 0.82
F360+ 0.98 0.87 0.85 0.90
Thang3D 0.97 0.78 0.81 0.77

Table 3: Edge detection performance across
datasets: prior methods degrade on more complex
data, while ours remains robust.

Edge Detection For boundary point classifi-
cation, we compare our work against NerVE
(2023) and PCED (2022) for a subset of 5k
parts from ABC, as well as the entire F360+
and Thang3D datasets. We train only on the
F360+ dataset, with no fine-tuning for testing
on the ABC and Thang3D datasets (see Table
3, containing accuracy, F1, precision, and re-
call). Output outlines can be seen in Figure 5,
with more in the appendix in Figure 7.

For NerVE, the most recent edge detection
method, precision, recall, and accuracy are
somewhat difficult to compute since the output
of NerVE is a parametrized curve. The origi-
nal paper reported precision and recall for ‘edge
occupancy’ per voxel in their cube grid, that is, a binary classification ‘is there an edge in this voxel’
which is not an accurate measure of outlines. For consistency with ours and PCED, we sample from
their reconstructed parametric curves and compare their sampled points to our sampled points of
the original curves. In Table 3 a point is considered ‘correct’ if it is within 0.05 (i.e. 2.5% of the
shape dimensions, since it was scaled to within the unit sphere) of the original points and incorrect
otherwise. This is a generous threshold, performance rapidly degrades as we tighten the threshold as
shown in the appendix in Table 6. PCED only provides a compiled binary, which we tested on 150
shapes from each non-ABC dataset (ABC values are taken from the original paper). A significant
portion of complex shapes resulted in crashing code, possibly since they are too complex. Numbers
reported are for shapes that successfully ran. Only 61.3% of F360+ and 24% of Thang3D shapes
were fully processed.

Figure 5: Thang3D shapes
outlines with soft features.

While both prior works perform well on relatively simpler shapes
that have clean edges, they fail to detect edges that include soft
features, including bevels, chamfers, and fillets. They perform ex-
ceptionally poorly on ‘real life’ shapes from the Thang3D dataset.

Ablation Studies Ablation studies in Table 4 were performed on
the F360+ dataset, highlighting the contribution of different geo-
metric signals to the overall performance. The full model (“Orig-
inal”) achieves the strongest results, maintaining high accuracy
(0.98) alongside balanced F1, precision, and recall across cate-
gories. Removing curvature gradients results in only a moderate
drop, particularly for “many extrudes” where recall declines, but
the model still preserves relatively strong overall performance. Ar-
chitecturally, discarding the global context vector leads to a sharper
degradation, especially in recall (0.62 overall), underscoring its im-
portance for capturing broader structural patterns. The most severe
impact arises from using only points and normals, where overall
F1 falls to about 0.61 and performance on “many extrudes” drops
substantially (0.41 F1), suggesting that this representation alone is insufficient despite being ex-
ceedingly popular in prior work. Finally, the approximated normals variant (accuracy 0.97, 0.73 F1)
performs between the “no curvature gradients” and “only points and normals” settings, indicating

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Ablation Category Epochs ↑ Accuracy ↑ F1 ↑ Precision ↑ Recall

Original
Overall 28 0.98 0.87 0.85 0.90
Soft features 28 0.98 0.89 0.87 0.91
Many extrudes 28 0.97 0.76 0.79 0.74

Only Points & Normals
Overall 11 0.95 0.61 0.60 0.66
Soft features 11 0.96 0.63 0.66 0.64
Many extrudes 11 0.98 0.41 0.50 0.37

No Curvature Gradients
Overall 9 0.97 0.81 0.80 0.83
Soft features 9 0.96 0.83 0.83 0.84
Many extrudes 9 0.97 0.70 0.76 0.66

No Global Context
Overall 35 0.97 0.68 0.75 0.62
Soft features 35 0.97 0.67 0.75 0.61
Many extrudes 35 0.95 0.60 0.67 0.54

Approximated Normals
Overall 83 0.97 0.73 0.72 0.75
Soft features 83 0.97 0.70 0.71 0.68
Many extrudes 83 0.96 0.70 0.70 0.69

Noise*
Overall 13 0.98 0.83 0.83 0.83
Soft features 13 0.98 0.87 0.87 0.86
Many extrudes 13 0.97 0.63 0.69 0.60

Table 4: Performance of our model on the F360+ dataset with different ablation settings across
categories. Noise values of up to 0.002 (assuming the parts, normalized to the unit sphere, are two
inches in maximum dimension) is similar to that of commercial 3D scanners in midrange conditions,
where commercial scanning abilities range at the high end from 5-50 microns in error to the hobbyist
level 0.1-1mm in error, per Franaszek et al. (2024).

that while normals remain a useful signal even when estimated, their quality critically affects down-
stream predictions. Together, these comparisons show that curvature gradients and global context
substantially boost performance, while high-fidelity normals are essential for robust generalization.

Category ↑ mIoU ↓ M. Seg ↓ F. Seg10

Pa
rS

eN
et

+ Fillets 0.65 8.37 3.11
Chamfers 0.70 6.17 2.81
Revolve 0.65 4.09 1.69
> 7 Extr. 0.54 7.75 14.54
Average 0.64 5.86 3.48

Pa
rS

eN
et

Fillets 0.60 0.53 7.80
Chamfers 0.63 0.57 7.03
Revolve 0.64 0.83 3.31
> 7 Extr. 0.52 0.09 25.54
Average 0.60 1.13 5.21

O
ur

s

Fillets 0.76 1.21 2.27
Chamfers 0.77 1.42 3.41
Revolve 0.69 0.73 3.10
> 7 Extr. 0.87 2.64 9.64
Average 0.83 0.70 3.32

Table 5: Segmentation Metrics: mIoU =
matched mean IoU, M. Seg = # of miss-
ing segments, and F. Seg10 = # of false
segments, counting matches with≥10%
overlap.

Segmentation We compare our segmentation model
against that of ParSeNet, which was built on top of Point-
Net++. It is the one of the current SOTA models for open-
source for 3D geometric part segmentation to our knowl-
edge as SpelsNet did not release their code, and most
other models (ex: SAMPart3D Yang et al. (2024)) deal
in semantic segmentation.

Our final output averages in Table 5 span all shapes (in-
cluding those without special features) and are averaged
over 4 runs. Our method performs significantly better
across nearly all categories, with the exception being the
number of missing/false segments in ParSeNet’s average.
This is likely because ParSeNet has a maximum cluster
number that never changes and allows small fringe clus-
ters to form, some of which will completely overlap with
where a segment should be even if the cluster itself is
small and largely incorrect. It also intrinsically limits the
number of false segments to the maximum cluster number
(50). In contrast, ours has no maximum cluster amount
and requires a certain number of cluster points to be con-
sidered a valid cluster. Both of the ParSeNet variants av-
erage lower intersection over union scores. We see a sub-
stantial improvement in recovering true segments for shapes with greater than 7 extrusions, likely
due to the fact we can segment a shape with an arbitrary number of segments while again ParSeNet
has a limited number of clusters that can form. Results also show that the ParSeNet variants perform
significantly worse in regards to missing segments with normal vectors (ParSeNet+) than without
normal vectors (ParSeNet) on the points, indicating that at the very least the processing of the nor-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 6: Improvements using our segmentation method in capturing both fine, soft features like
fillets (left) as well as simpler features and free-form splines (right) compared to ParSeNet+.

mal feature is severely overfit to simplified data. Additionally, our method is able to recover the
true boundaries of regions with a much higher fidelity than ParSeNet, denoted in blue in Figure 6
on the right. Recovering the true boundary is important in any application that requires parametric
surface reconstruction, such as CAD design or medical spline-fitting. Our method performs better
both on ‘soft features’ with free-form curves and fillets as well as hard prismatics – including many
extrusions.

6 CONCLUSION

We introduced a classless 3D edge-detection framework that directly decomposes point clouds into
fine-grained geometric components without reliance on labels or primitives. Our method leverages
curvature and curvature-gradient inputs, combined with a global context vector that scales to large
point sets, enabling high-fidelity segmentation of both hard and soft features. In doing so, we address
key limitations of existing state-of-the-art approaches–namely, their inability to robustly capture
small, soft features such as chamfers, bevels, and fillets that are pervasive in real-world designs as
well as the ability to handle arbitrarily large point clouds (and, ergo, arbitrarily fine features).

Through extensive experiments, we evaluated our approach on standard CAD benchmarks (ABC),
as well as more challenging datasets (F360+, Thang3D), that contain unconventional and irregular
geometries. Across all settings, our model consistently outperformed prior methods such as PCED
and NerVE on edge classification tasks, achieving greater accuracy, precision, and recall, partic-
ularly for shapes with complex or soft features. Ablation studies highlighted the critical role of
curvature gradients, global context, and high-quality normals, demonstrating the necessity of inte-
grating both local geometric cues and long-range structural information. When coupled with our
deterministic flood-fill clustering algorithm, our predictions provided better segmentation than com-
mon ML-based methods (e.g., ParSeNet), delivering higher mIoU and fewer incorrect segments.

These results highlight the generalizability of our method: by grounding inference in geometric and
topological properties rather than in human-imposed categories, our framework extends beyond con-
ventional benchmarks to capture the rich diversity of real-world shapes. The ability to decompose
organic or unlabeled parts into meaningful geometric segments positions our approach as a founda-
tional tool for downstream tasks in reconstruction, generative modeling, and design automation.

7 FUTURE WORK

Currently, our clustering algorithm is efficient and fast, but it could be improved beyond heuristic
methods to be more noise resilient for even better results. Looking forward, the complex segments
and outlines obtained from our primitive-less geometric segmentation hold promising potential for
both reconstructing and generating a much more diverse set of 3D shapes in parametric forms than
what has been previously done. It also allows more generalized processing of 3D data and can be
used to potentially automatically segment larger, currently unlabeled datasets. In other applications,
simply being able to encode outlines as identifiers of a shape could provide crucial information as
to what different use-cases of the shape could be (as in the earlier example of automating furniture
assembly or creating a shape from geometric constraints). These advances open the door to more
versatile and function-aware 3D shape understanding.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Marco Attene, Marcel Campen, Leif Kobbelt, et al. A survey of simple geometric primitives de-
tection methods for captured 3d data. Computer Graphics Forum, 37(1):167–196, 2018. doi:
10.1111/cgf.13451.

Theodoros Betsas, Theodoros Makedonas, and Anastasios Tefas. Deep learning on 3d semantic
segmentation: A detailed review. Remote Sensing, 17(2):298, 2025. doi: 10.3390/rs17020298.

Kseniya Cherenkova, Elona Dupont, Anis Kacem, Gleb A Gusev, and Djamila Aouada. Spelsnet:
Surface primitive elements segmentation by b-rep graph structure supervision. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://
openreview.net/forum?id=Ad3PzTuqIq.

Andrew R. Colligan, Trevor T. Robinson, Declan C. Nolan, Yang Hua, and Weijuan Cao.
Hierarchical cadnet: Learning from b-reps for machining feature recognition. Computer-
Aided Design, 147:103226, 2022. ISSN 0010-4485. doi: https://doi.org/10.1016/j.cad.
2022.103226. URL https://www.sciencedirect.com/science/article/pii/
S0010448522000240.

Francis Engelmann, Martin Bokeloh, Alireza Fathi, and Matthias Nießner. 3d-mpa: Multi proposal
aggregation for 3d semantic instance segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 9031–9040, 2020. URL https:
//arxiv.org/abs/2003.13867.

Marek Franaszek, Helen Qiao, Kamel S. Saidi, and Prem Rachakonda. A method to estimate orien-
tation and uncertainty of objects measured using 3d imaging systems per astm standard e2919-22,
Jan 2024.

Yong He, Hongshan Yu, Xiaoyan Liu, Zhengeng Yang, Wei Sun, Saeed Anwar, and Ajmal Mian.
Deep learning based 3d segmentation: A survey. arXiv preprint arXiv:2103.05423, 2024. URL
https://arxiv.org/abs/2103.05423.

Chems-Eddine Himeur, Thibault Lejemble, Thomas Pellegrini, Mathias Paulin, Loic Barthe, and
Nicolas Mellado. PCEDNet: A lightweight neural network for fast and interactive edge detection
in 3d point clouds. ACM Trans. Graph., 41(1), 2022. doi: 10.1145/3481804.

MA Kimmel, Mueed Ur Rehman, Yonatan Bisk, and Gary K. Fedder. Position: You can’t manu-
facture a neRF. In Forty-second International Conference on Machine Learning Position Paper
Track, 2025. URL https://openreview.net/forum?id=kJzB6lQmcb.

Joseph G. Lambourne, Karl D.D. Willis, Pradeep Kumar Jayaraman, Aditya Sanghi, Peter Meltzer,
and Hooman Shayani. Brepnet: A topological message passing system for solid models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 12773–12782, June 2021.

Yuanqi Li, Shun Liu, Xinran Yang, Jianwei Guo, Jie Guo, and Yanwen Guo. Surface and edge
detection for primitive fitting of point clouds. In ACM SIGGRAPH Conference Proceedings,
2023.

Yujia Liu, Anton Obukhov, Jan Dirk Wegner, and Konrad Schindler. Point2cad: Reverse engineering
cad models from 3d point clouds. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3763–3772, 2024.

Albert Matveev, Ruslan Rakhimov, Alexey Artemov, Gleb Bobrovskikh, Vage Egiazarian, Emil Bo-
gomolov, Daniele Panozzo, Denis Zorin, and Evgeny Burnaev. DEF: Deep estimation of sharp ge-
ometric features in 3d shapes. ACM Trans. Graph., 41(4), 2022. doi: 10.1145/3528223.3530140.

Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas, and Hao
Su. Partnet: A large-scale benchmark for fine-grained and hierarchical part-level 3d object under-
standing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 909–918, 2019. URL https://arxiv.org/abs/1812.02713.

10

https://openreview.net/forum?id=Ad3PzTuqIq
https://openreview.net/forum?id=Ad3PzTuqIq
https://www.sciencedirect.com/science/article/pii/S0010448522000240
https://www.sciencedirect.com/science/article/pii/S0010448522000240
https://arxiv.org/abs/2003.13867
https://arxiv.org/abs/2003.13867
https://arxiv.org/abs/2103.05423
https://openreview.net/forum?id=kJzB6lQmcb
https://arxiv.org/abs/1812.02713


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Anh Nguyen and Bach Le. 3d point cloud segmentation: A survey. 3D Research, 4(1):1–
17, 2013. URL https://www.csc.liv.ac.uk/˜anguyen/assets/pdfs/2013_
PointCloudSeg_Survey.pdf.

Hui Ni et al. Edge detection and feature line tracing in 3d point clouds by analyzing geometric
properties of neighborhoods. Remote Sensing, 8(9):710, 2016.

Ariel Shamir. A survey on mesh segmentation techniques. Computer Graphics Forum, 27(6):1539–
1556, 2008. URL https://www.cs.princeton.edu/courses/archive/fall10/
cos526/papers/shamir08.pdf.

Ladan Shams and Michael J. Tarr. Acquisition of visual shape primitives. Vision Research, 42(20):
2543–2553, 2002. doi: 10.1016/S0042-6989(02)00130-X.

Gopal Sharma, Difan Liu, Evangelos Kalogerakis, Subhransu Maji, Siddhartha Chaudhuri, and
Radomı́r Měch. Parsenet: A parametric surface fitting network for 3d point clouds, 2020.

Xiaogang Wang, Yuelang Xu, Kai Xu, Andrea Tagliasacchi, Bin Zhou, Ali Mahdavi-Amiri, and Hao
Zhang. PIE-NET: Parametric inference of point cloud edges. arXiv:2007.04883, 2020.

Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A deep generative network for computer-
aided design models. CoRR, abs/2105.09492, 2021. URL https://arxiv.org/abs/
2105.09492.

Jingwei Xu, Chenyu Wang, Zibo Zhao, Wen Liu, Yi Ma, and Shenghua Gao. Cad-mllm: Unifying
multimodality-conditioned cad generation with mllm, 2024.

Yunhan Yang, Yukun Huang, Yuan-Chen Guo, Liangjun Lu, Xiaoyang Wu, Edmund Y. Lam, Yan-
Pei Cao, and Xihui Liu. Sampart3d: Segment any part in 3d objects, 2024. URL https:
//arxiv.org/abs/2411.07184.

Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. EC-Net: an edge-
aware point set consolidation network. In ECCV, 2018.

Xiangyu Zhu, Dong Du, Weikai Chen, Zhiyou Zhao, Yinyu Nie, and Xiaoguang Han. Nerve: Neural
volumetric edges for parametric curve extraction from point cloud. In CVPR, 2023.

11

https://www.csc.liv.ac.uk/~anguyen/assets/pdfs/2013_PointCloudSeg_Survey.pdf
https://www.csc.liv.ac.uk/~anguyen/assets/pdfs/2013_PointCloudSeg_Survey.pdf
https://www.cs.princeton.edu/courses/archive/fall10/cos526/papers/shamir08.pdf
https://www.cs.princeton.edu/courses/archive/fall10/cos526/papers/shamir08.pdf
https://arxiv.org/abs/2105.09492
https://arxiv.org/abs/2105.09492
https://arxiv.org/abs/2411.07184
https://arxiv.org/abs/2411.07184


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A APPENDIX

We show further examples of how our edge detection algorithm is capable of identifying soft edges,
fine features, and spline-fit edges below.

Figure 7: Examples of extracted outlines from the Thang3D dataset using our method.

Below is a detailed outline of our point-cloud segmentation algorithm.

Algorithm 1 Boundary-Aware Segmentation of Point Clouds
1: Input: points P ∈ RN×3, normals N ∈ RN×3, boundary mask B ∈ {0, 1}N , params

(k, τreject, rbdry, θ0, λ)
2: Normalize N ← N/∥N∥2 row-wise
3: Build KD-tree on P for kNN queries
4: Build KD-tree on boundary points PB = {pi : Bi = 1} and compute di = dist(pi, ∂)
5: Initialize edge set E ← ∅
6: for each i ∈ {1, . . . , N} do
7: for each j in kNN(i) with j > i do
8: m← 1

2 (pi + pj), dm ← dist(m, ∂)
9: if Bi ⊕Bj = 1 or min(di, dj) ≤ τreject or dm ≤ τreject then

10: continue
11: end if
12: w ← ∥pj − pi∥2
13: if min(di, dj , dm) ≤ rbdry then
14: θ ← arccos(clip(n⊤

i nj ,−1, 1))
15: if θ > θ0 then
16: w ← w ·

(
1 + λ θ−θ0

π−θ0

)
17: end if
18: w ← w ·max

(
1,

rbdry

max(10−12,min(di,dj ,dm))

)
19: end if
20: Add edge (i, j, w) to E
21: end for
22: end for
23: Symmetrize edges: E ← E ∪ {(j, i, w) : (i, j, w) ∈ E}
24: Build adjacency A from E (binary or weighted)
25: Compute connected components of A, yielding labels ℓ ∈ {1, . . . , C}N
26: Return: labels ℓ, edge list E

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Our results presented in the paper for accuracy, F1, precision, and recall for the NerVE model
assumed that predicted edge points within 0.05 of the true points were ‘correct.’ However, as the
threshold is tightened, performance vastly drops (F1, precision, and recall being computed over the
entire set of points). Accuracy becomes ‘better’ when the threshold gets lower because as the band
for boundary points tightens, fewer non-boundary points count as false positives within the band.
These results highlight that in reality, the average distance between the predicted edges and the
actual edges is roughly 0.1, which is a fairly large margin of error (5%) since the shape is scaled to
be within the unit sphere.

NerVE Threshold Acc. ↑ F1 ↑ P ↑ R ↑
0.1 0.52 0.65 0.71 0.59

0.05 0.76 0.34 0.41 0.25
0.01 0.93 0.09 0.04 0.03
0.005 0.94 0.03 0.01 0.009
0.001 0.95 0.0003 0.0002 0.0005

Table 6: Table showing NerVE’s performance degradation as the threshold for what is considered a
‘correct’ edge is tightened. Evaluated on the F360+ dataset.

13


	Introduction
	Related Work
	Experimental Setup
	Evaluation Dataset
	Task Definition
	Feature Space

	Approach
	Experiments
	Conclusion
	Future Work
	Appendix

