
Workshop track - ICLR 2016

REVISITING DISTRIBUTED SYNCHRONOUS SGD

Jianmin Chen, Rajat Monga, Samy Bengio & Rafal Jozefowicz
Google Brain
Mountain View, CA, USA
{jmchen,rajatmonga,bengio,rafalj}@google.com

1 THE NEED FOR A LARGE SCALE DEEP LEARNING INFRASTRUCTURE

The recent success of deep learning approaches for domains like speech recognition (Hinton et al.,
2012) and computer vision (Ioffe & Szegedy, 2015) stems from many algorithmic improvements
but also from the fact that the size of available training data has grown significantly over the years,
together with the computing power, in terms of both CPUs and GPUs.

While a single GPU often provides algorithmic simplicity and speed up to a given scale of data and
model, there exist an operating point where a distributed implementation of training algorithms for
deep architectures becomes necessary.

2 ASYNCHRONOUS STOCHASTIC GRADIENT DESCENT

In 2012, Dean et al. (2012) presented their approach for a distributed stochastic gradient descent
algorithm. It consists of two main ingredients. First, the parameters of the model can be distributed
on multiple servers, depending on the architecture. This set of servers are called the parameter
servers. Second, there can be multiple workers processing data in parallel and communicating with
the parameter servers. Each worker processes a mini-batch of data independently of the other ones,
as follows:

• it fetches from the parameter server the most up-to-date parameters of the model needed to
process the current mini-batch;

• it then computes gradients of the loss with respect to these parameters;

• finally, these gradients are sent back to the parameter server, which then updates the model
accordingly.

Since each worker communicates with the parameter server independently of the others, this is called
Asynchronous Stochastic Gradient Descent (or Async-SGD). A similar approach was later proposed
by Chilimbi et al. (2014).

In practice, it means that while a worker computes gradients of the loss with respect to its parameters
on a given mini-batch, other workers also interact with the parameter server and thus potentially
update its parameters; hence when a worker sends back its gradients to the parameter server, these
gradients are usually computed w.r.t. the parameters of an old version of the model. When a model
is trained with N workers, each update will be N − 1 steps old on average.

While this approach has been shown to scale very well up to a few dozens of workers for some mod-
els, experimental evidence show that increasing the number of workers sometimes hurt the training
of the model with the noise introduced by the discrepancy between the model used to compute
gradients and the model actually updated.

3 REVISITING SYNCHRONOUS SGD AND ITS VARIANTS

Both Dean et al. (2012) and Chilimbi et al. (2014) use versions of Async-SGD where the main po-
tential problem is that each worker computes gradients over a potentially old version of the model.
In order to remove this discrepancy, we propose here to reconsider a synchronous version of dis-
tributed stochastic gradient descent (Sync-SGD), where the parameter server waits for all workers

1



Workshop track - ICLR 2016

to send their gradients, aggregates them, and sends the updated parameters to all workers afterward,
making sure that the actual algorithm is a true mini-batch stochastic gradient descent, where the
actual batch size is the sum of all the mini-batch sizes of the workers.

While this approach solves the discrepency problem, it also introduces two potential problems: the
effective size of the batch is now significantly larger, and the actual update time now depends on
the slowest worker. In order to alleviate the latter, we introduce backup workers Dean & Barroso
(2013) as follows: instead of having N workers, we use a few more, say 5% more, but as soon as
the parameter server receives gradients from N of the workers, it stops waiting and sends back the
updated parameters, while the slower workers’ gradients will be dropped when they arrive.

4 IMAGENET EXPERIMENTS

We conducted experiments on the ImageNet Challenge dataset (Russakovsky et al., 2015), where the
task is to classify images out of 1000 categories. We used the latest Inception model from Szegedy
et al. (2016) and trained it in several conditions, including using from 50 to 200 workers, each of
which runs on a k40 GPU, and using asynchronous SGD, synchronous SGD and synchronous SGD
with backups. All the experiments in this paper are using the TensorFlow system Abadi et al. (2015).

Number of workers Test Accuracy (%) Time (hrs) speedup relative to 25
25 78.94 184.9 1
50 78.83 97.67 1.89

100 78.44 51.97 3.56
200 78.04 22.94 8.06

Table 1: Comparison of test accuracy and time to convergence using asynchronous SGD training
with different numbers of workers.

Table 1 shows the test accuracy when training using asynchronous SGD with different number of
workers. As can be seen, when the number of workers is doubled, the time to convergence is almost
halved, however, while the accuracy loss from 25 to 50 workers is only 0.11%, it is much worse
after 50.

Figure 1: Comparison of test accuracy and number of epochs to converge for synchronous and
asynchronous SGD.

Figure 1 shows the comparison of the test accuracy and epochs to converge between synchronous
and asynchronous SGD with different numbers of workers. With synchronous SGD, all gradients are
summed before updating the parameters: with N workers, it means effectively about N times bigger
updates than with a single worker trained with SGD. Since we used RMSProp with momentum, the
effective learning rate increase is less compared with single worker SGD as the parameters are only
updated once instead of N times with asynchronized training.

Figure 1 shows that synchronous training

• can achieve about 0.5 to 0.9 percent higher accuracy;
• needs fewer epochs to converge;
• scales better as there is only 0.04% accuracy loss from 50 to 100 workers.

However, the most important concern about synchronous training is the overhead expected from the
synchronization of the workers in a large scale distributed system: 1. After computing the gradients,

2



Workshop track - ICLR 2016

Figure 2: Comparison of the step time for synchronous, synchronous with backup and asynchronous
training, for 50, 100 and 200 workers.

60 70 80 90 100 110

hours

0.770

0.775

0.780

0.785

0.790

0.795

async50

sync50

sync50+2

35 40 45 50 55

hours

async100

sync100

sync100+5

20 22 24 26 28 30 32 34

hours

async200

sync200

sync200+10

Figure 3: Test accuracies with respect to training time, for synchronous, synchronous with backup
and asynchronous training. Note that to make things clearer, we only show the accuracy range from
0.770 to 0.795

the worker needs to wait for all of them to be applied to the parameters which are then fetched to
process the next batch; This will prolong the step time to process a batch and no such barrier is
needed in the asynchronous setting. 2. Since workers can run at different speed, the overall speed is
governed by the slowest worker.

In the asynchronous training, gradient clipping is needed for stabilization, which requires the worker
to collect all gradients, compute the global norm and then clip all gradients accordingly. However,
synchronization turns out to be very stable so gradient clipping is no longer needed, which means
that applying the upper layers’ gradients can be overlapped with the lower layers’ gradients compu-
tation. Hence the real overhead is only the time to apply the bottom layer’s gradients. Besides, the
overhead of global clipping is also saved in synchronous training. For the concern of the long tail,
since each worker has exactly the same amount of computation and network traffic, the variation of
step time is relatively low. However, there are usually few workers that can be significantly slower
or even dead due to network or hardware malfunctions. Backup workers are useful to remove such
long tail events. Figure 2 shows the average step time of the 3 configurations: Sync is about 20-40%
slower than async but with backup workers, sync is almost as fast as async with up to 100 workers.

Figure 3 shows the test accuracy over time of all 3 configurations with different number of workers.
As shown in the figure, adding backup workers resulted in faster training and for 50 workers with 2
backups, sync can converge in 25% less time compared to the async run with 0.48% better precision.

5 OTHER EXPERIMENTS

We also conducted experiments on large scale character language models (LMs) trained on One
Billion Word Benchmark dataset (Chelba et al. (2013)), which is a popular benchmark for evaluating
LMs. The goal is to predict the next character of a sequence given a history of past words. In order to
make it computationally efficient, we started with the best pre-trained model from Jozefowicz et al.
(2016) that takes characters as inputs and assigns probabilities to the next words. Since we were
interested in predicting characters, the last layer of the model was replaced with a smaller LSTM
that tries to predict the next word one character at a time. The resulting architecture works over
unbounded vocabulary as it can consume any inputs and produce any outputs. More details about
the experimental setting is available in section 5.5 of Jozefowicz et al. (2016). Using 32 synchronous
workers gave us a few percent improvement of the final performance: below 49 per-word perplexity.
Training with Async-SGD was significantly less stable and required using much lower learning rate
due to occasional explosions of the training loss. With synchronized gradients these issues disappear
even in cases when the learning rate was 100 times larger than in the best configuration.

3



Workshop track - ICLR 2016

Finally, we explored distributed training on the DRAW model (Gregor et al. (2015)). This is a
very difficult optimization problem involving recurrent neural networks, attention mechanism and a
very complicated loss function. The models were trained on MNIST dataset. We found that both
synchronous and asynchronous training with 10 workers is significantly faster than using a single
trainer. Additionally, synchronous training allowed for using larger learning rates, which resulted in
40-50% faster convergence speed with the same amount of work.

6 CONCLUSION AND FUTURE WORK

Distributed training strategies for deep learning architectures will become ever more important as
the size of datasets increases. We have shown in this work that synchronous SGD with backup
workers is a viable and scalable strategy. We are currently experimenting with different kinds of
datasets, including word-level language models where parts of the model (the embedding layers) are
often very sparse, which involves very different communication constraints.

We are also working on further improving the performance of synchronous training like combining
gradients from multiple workers sharing the same machine before sending them to the parameter
servers to reduce the communication overhead.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. URL http://tensorflow.org/. Soft-
ware available from tensorflow.org.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. One billion word benchmark for measuring progress in statistical language modeling. arXiv preprint
arXiv:1312.3005, 2013.

T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. Project adam: Building an efficient and scalable deep
learning training system. In Proceedings of the 11th USENIX Symposium on Operating Systems Design and
Implementation, 2014.

J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. A. Ranzato, A. Senior,
P. Tucker, K. Yang, and A. Y. Ng. Large scale distributed deep networks. In Advances in Neural Information
Processing Systems, NIPS, 2012.

Jeffrey Dean and Luiz Andr Barroso. The tail at scale. Communications of the ACM, 56:74–80, 2013. URL
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext.

Karol Gregor, Ivo Danihelka, Alex Graves, and Daan Wierstra. Draw: A recurrent neural network for image
generation. arXiv preprint arXiv:1502.04623, 2015.

G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N.
Sainath, and B. Kingsbury. Deep neural networks for acoustic modeling in speech recognition. IEEE Signal
Processing Magazine, 29:82–97, 2012.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. In Proceedings of the 32nd International Conference on Machine Learning, ICML, 2015.

R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu. Exploring the limits of language modeling. In
ArXiv 1602.02410, 2016.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet large scale visual
recognition challenge. In International Journal of Computer Vision, 2015.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for computer
vision. In ArXiv 1512.00567, 2016.

4

http://tensorflow.org/
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext

	The Need for a Large Scale Deep Learning Infrastructure
	Asynchronous Stochastic Gradient Descent
	Revisiting Synchronous SGD and its Variants
	ImageNet Experiments
	Other Experiments
	Conclusion and Future Work

