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Efficient “Neural” Community Detection in Attributed
Graphs with a Temporal Modularity Loss Function
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Extended Abstract
The compendium of community detection techniques has been significantly enriched in recent
years by the inclusion of neural network-based architectures for graphs. Although these models
have demonstrated state-of-the-art performance for node, link, and graph-level prediction tasks,
in applications such as recommendation systems, anomaly detection, and protein design, their
utility for community detection, particularly in dynamic graphs, warrants further investigation.
We build upon previous work on “neural” community detection in static graphs and extend an
efficient end-to-end solution [1] to the temporal setting, in which the loss function optimizes a
temporal (longitudinal) version of the classic modularity metric on the graph spectral domain.

L-DMoN learns a (differentiable) function f : G → C(n,k) ∈ [0,1] by spectral modularity
maximization on a dynamic graph G = (V,E,X), where V is the set of n nodes, E is the set
of m temporal edges, and X(n,d) is a matrix of d-dimensional node attributes (feature vectors).
Neural network-based approaches for node classification appeal to real-world applications due
to their scalability and expressiveness, as they are able to learn complex patterns from graphs,
avoiding the need for manual feature engineering. However, node and edge attributes may hold
little relation to the community structure of the network, particularly in temporal settings where
nodes may transition between communities. In contrast with other neural approaches, the use
of unsupervised loss functions that directly optimize a graph-theoretic “quality” metric help to
mitigate this issue by providing a more objective (descriptive) measure of community structure.

Within this framework, node memberships are obtained by relaxing the NP-hard problem of
discrete modularity maximization into a continuous one, in which a message-passing function
receives both the graph structure and node features as input, and outputs low-dimensional
representations followed by a normalized exponential function. The community assignment
matrix is computed as C = softmax(ψ(Ã,X(l))), where ψ is a (possibly multilayer) graph
convolutional encoder, Ã = D− 1

2 AD− 1
2 is the normalized adjacency matrix, and X(l) are the

node features at layer l. Embeddings are computed by X(l+1) = φ(ÃX(l)W+XWskip), where
φ is a non-linear activation function (SeLU), W and Wskip are learnable weight matrices (the
latter with trainable skip connections in place of self-loops), and X(0) = X, i.e., the input node
features. Lastly, dropout is applied between layers to avoid local optima on gradient descent.
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Figure 1: Preliminary benchmarks. Five synthetic datasets Gρ were generated from a degree-
corrected stochastic block model with |V | = 1024 nodes, |E| = 104 edges, |T | = 8 time steps, d = 32
node features, and varying signal-to-noise ratios (SNR) introduced by nodes transitioning communities.
The static model (DMoN) initially displays good performance, but degrades as SNR decreases (ρ → 0).
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The loss function L is based on longitudinal modularity [2], a recent time-aware extension
of the classical metric that abstracts away the need for temporal segmentation (slicing the graph
into snapshots) and incentivizes communities with similar temporal signatures. For efficiency, a
spectral relaxation of the metric is employed, which is maximized by leveraging sparse-matrix
operations and rank-one normalization, with complexity scaling with O(d2n+m). The model
is encouraged to find communities with stable (smooth) temporal dynamics, while the trivial
solution of assigning all nodes to a single community is avoided by adding an inexpensive
collapse regularization term. In a high level, L may be expressed in terms of three components:
the spectral longitudinal modularity Q, temporal smoothness S, and collapse regularization R,

L = Q+S+R =− 1
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where B is the modularity matrix, S is the smoothness matrix, k is the number of communities,
ω ∈ R+ and ϑ ∈ R+ are smoothing and regularizer parameters with a default value of 1, and
|| · ||F is the Frobenius norm of the cluster membership counts, normalized in the range [0,

√
k]

and equal to zero when cluster sizes are perfectly balanced. The modularity term Q is negative
as we minimize L via gradient descent, while S is equivalent to that defined in [2] in case of
hard assignments, i.e., S = ω

2m ∑u ηu, where ηu is the “community switch count” of node u over
time, which is here adapted to the spectral domain with mixed memberships (soft clusters).
We note that recent architectural extensions [3, 4] propose more sophisticated regularization
strategies that may be adapted to the temporal setting, as well as contrastive learning techniques
that aim to enhance cluster separability in the feature space, which we have yet to explore.

Temporal dynamics are considered by defining B = A⋆ −P, where A⋆ is the (weighted,
directed) adjacency matrix and P is a null model matrix that accounts for temporal node activity.
Following the mean-membership longitudinal link expectation model [2], which expects node
interactions to be proportional to the lifetimes of nodes within each community, we hence have

B(n×n) = A⋆− 1
|τ|

⟨dout p⟩T ⟨din p⟩
CT A⋆C

, S(n×n) = In

[
∑

ti∈τu

1if (ti+1 − ti > δ )

∣∣∣∣∀u ∈V

]
where τ and τu is the set of graph and node u time steps, dout and din are the (weighted) out- and
in-degree vectors, p is the vector of node presences pu = |τu|

1
2/|τ| ∈ [0,1], i.e., the geometric

mean of their lifetimes, I is the identity matrix, and δ is a threshold (1 for discrete time steps).
As far as we aware, this is the first neural approach proposed to optimize a temporal version

of modularity in an end-to-end fashion. The presented solution is designed to be efficient and
scalable to large graphs, while the spectral version of longitudinal modularity is novel and may
independently be of interest to the community. An additional challenge of note we aim to tackle
is employing a time-aware graph pooling layer to obtain dynamic community assignments, so
to allow nodes to transition between communities over time. We will further experiment with
and share our implementation online to foster research, ensure fairness and reproducibility, and
properly assess the model’s limitations w.r.t. varying detectability regimes on presentation.
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