
Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

THE EFFECT OF MODEL SIZE ON LLM POST-HOC
EXPLAINABILITY VIA LIME

Henning Heyen∗, Amy Widdicombe, Noah Y. Siegel, Marı́a Pérez-Ortiz, Philip Treleaven
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ABSTRACT

Large language models (LLMs) are becoming bigger to boost performance. How-
ever, little is known about how explainability is affected by this trend. This work
explores LIME explanations for DeBERTaV3 models of four different sizes on
natural language inference (NLI) and zero-shot classification (ZSC) tasks. We
evaluate the explanations based on their faithfulness to the models’ internal de-
cision processes and their plausibility, i.e. their agreement with human explana-
tions. The key finding is that increased model size does not correlate with plausi-
bility despite improved model performance, suggesting a misalignment between
the LIME explanations and the models’ internal processes as model size increases.
Our results further suggest limitations regarding faithfulness metrics in NLI con-
texts.

1 INTRODUCTION

Research has shown that performance in language models depends strongly on scale and less on
model shape (Kaplan et al., 2020), where scale refers to the number of parameters, the training
dataset size, and the amount of compute for training. For instance, OpenAI’s series of Generative
Pre-Trained Transformers (GPT) has grown from 1.5 billion parameters for GPT-2 to 175 billion
parameters for GPT-3 which helped improve across various NLP tasks (Brown et al., 2020). This
trend seems likely to continue.

As LLMs grow in size and performance and are increasingly deployed in high-stakes applications,
the need to understand and explain their behaviour becomes more crucial. Post-hoc explainability
methods such as LIME (Ribeiro et al., 2016) are one way of attempting to do this. Although these
methods have been widely applied to LLMs (Madsen et al., 2022), to the best of our knowledge no
research has been conducted on the impact of model size on the quality of these kinds of explana-
tions. Here we begin to fill this gap by investigating the impact of model size on the quality of LIME
explanations. We apply two approaches to assess the quality of explanations, namely faithfulness
(Chan et al., 2022) and plausibility (DeYoung et al., 2020). While faithfulness aims to measure the
extent to which an explanation reflects the true internal decision processes, plausibility assesses the
quality of the explanations based on their agreement with human-generated explanations.

We find that, even though model performance increases with model size, the agreement between
human-generated and LIME-generated explanations does not. This indicates some extent of mis-
alignment between the explanations and the true internal decision processes. Our findings also
imply possible flaws in removal-based faithfulness metrics based on the NLP task which points to
more general limitations for highlight-based post-hoc explainability in NLP such as lack of expres-
siveness. This study serves as a first attempt to understand how post-hoc explainability is affected
by model size. We hope that this research encourages others to further explore this area and to that
end we provide an extensible code repository1 for others to build on.

∗Contact: henning.heyen.22@ucl.ac.uk
1https://github.com/henningheyen/Scalability-Of-LLM-Posthoc-Explanations
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2 METHODOLOGY

Models and Datasets We use fine-tuned DeBERTaV3 models from Huggingface of four differ-
ent sizes, ranging from 22 to 304 million parameters2. Note that state-of-the-art models exhibit
parameter counts in the order of billions. Due to computational constraints, we could not experi-
ment with larger models. The models were fine-tuned on two standard natural language inference
(NLI) datasets, matched MNLI (Williams et al., 2018) and SNLI (Bowman et al., 2015). Instead of
SNLI, we use e-SNLI (Camburu et al., 2018) which extends SNLI by human annotated highlights
indicating the most important tokens with respect to the label. Additionally, we apply the models
in a zero-shot classification (ZSC) setting using the CoS-e (Rajani et al., 2019) dataset. CoS-e con-
sists of commonsense questions with five candidate labels where the candidate labels differ for each
question3. Similarly to e-SNLI, CoS-e contains human annotated highlights4.

Explainability Method There exist different notions of explainability in NLP. One is in the form
of free-text natural language explanations and another is in the form of highlight-based, typically
post-hoc explanations. While the former approach commonly requires human evaluation the latter
can be measured more objectively because post-hoc techniques in NLP are normally mappings from
tokens to real-valued importance scores. Common techniques can be categorised as gradient-based,
attention weight-based and perturbation-based. While gradient-based techniques are highly vulner-
able to adversarial perturbation (Wang et al., 2020) several studies argue that explanations based on
attention weights are unreliable. The study “Attention is not Explanation“ (Jain & Wallace, 2019),
for instance, identified different attention distributions yielding equivalent predictions. We believe
perturbation-based methods avoid some of these pitfalls - we use one such method, LIME (Ribeiro
et al., 2016), in our experiments. LIME is a well-known and widely used explainability technique
that is based on locally approximating the prediction with a simple interpretable model. The weights
of the simple model serve as feature importance scores. Figure 1 illustrates a LIME explanation on
a CoS-e instance.

Figure 1: LIME example on a CoS-e instance using the xsmall DeBERTaV3 model. LIME maps
every token to a real-valued importance score.

Explainability Metrics There is no single framework for evaluating post-hoc explanations due to
a lack of consensus on what constitutes a high-quality explanation. In this work, we examine two
different approaches, namely faithfulness and plausibility:

Faithfulness as discussed in Chan et al. (2022) aims to measure to what extent the explanation re-
flects the model’s internal decision process. Generally, faithfulness metrics rely on removing tokens
from the input sequence based on the explanation and measuring the change in prediction. While
several faithfulness metrics exist, they are “not always consistent with each other and even lead to
contradictory conclusions“ (Chan et al., 2022) - they compared six faithfulness metrics and con-
cluded that comprehensiveness is the most diagnostic and the least complex. Based on this we use
comprehensiveness for our experiments. Proposed by DeYoung et al. (2020), comprehensiveness
suggests that an explanation is faithful if the prediction strongly deviates when the most impor-
tant tokens (as identified by the explanation method) are removed from the input sequence5. More
formally,

2For architectural specifics see Table 4 in the appendix.
3The Huggingface API internally transforms zero-shot classification problems to an NLI problem.
4For examples from MNLI, e-SNLI and CoS-e refer to Table 5, 6 and 7 in the appendix.
5For a visualization of the comprehensiveness metric see Figure 3 in the appendix.
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COMP(x, c, k) = p(c | x; θ)− p(c | x\xk; θ), (1)

where p(c | x; θ) denotes the model’s prediction for class c on the entire input sequence and
p(c | x\xk; θ) denotes the model’s prediction when the top k most important tokens xk are removed
from the input string. Practically, we obtain the most important tokens by taking the top t percent
tokens from the list of tokens with associated real-valued importance scores generated by a post-hoc
explainability method such as LIME. We denote this explanation as xt. To enhance the metric’s re-
liability, the original paper proposes aggregated comprehensiveness which averages the comprehen-
siveness over different lengths of explanations. In this work, we use bins t ∈ T = {10%, 30%, 50%}
to vary the length of explanations. The aggregated comprehensiveness can be defined as,

COMPagg(x, c) =
∑
t∈T

COMP(x, c, t) =
∑
t∈T

(p(c | x; θ)− p(c | x \ xt; θ)) . (2)

Plausibility, as compared to faithfulness, defines the quality of an explanation by the intersection
between the highlights generated by a post-hoc explainability technique and some human-annotated
highlights. In other words, plausibility measures the “agreement between extracted and human ratio-
nale“ (DeYoung et al., 2020). Plausibility fundamentally differs from faithfulness in that plausible
explanations do not reveal whether the model actually relied on the explanation. Assessing plausibil-
ity typically requires human evaluation (Strout et al., 2019). However, more recently some existing
datasets have been extended by human-annotated highlights (DeYoung et al., 2020) which allows for
more quantitative evaluation of plausibility. In this paper, we use two datasets with human-annotated
highlights, namely CoS-e (Rajani et al., 2019) and e-SNLI (Camburu et al., 2018). Similarly to DeY-
oung et al. (2020) we measure plausibility by the intersection over union (IOU). As proposed by
DeYoung et al. (2020), we take the number of most important tokens according to the average ex-
planation length provided by humans for each dataset6. Suppose x1 is the set of tokens from the
human explanation and x2 is the set of generated tokens. Then IOU can be formalised by

IOU(x1,x2) =
|x1 ∩ x2|
|x1 ∪ x2|

. (3)

3 EXPERIMENTS AND RESULTS

The results for Experiment 1 and 2 are summarised in Table 1. Experiment 3 results are visualised
in Figure 2.

Experiment 1 First, the four DeBERTaV3 models were evaluated in terms of performance on the
validation sets of all three datasets (MNLI, e-SNLI, CoS-e). We report on model accuracy and 95%
confidence intervals. We find that, as expected, performance improves monotonically with increas-
ing model size for all three datasets. We can conclude that the models’ capabilities are different
enough to reason about the effect of model size on the LIME explanations.

Experiment 2 We then computed LIME explanations for each model on a subset of 100 test sam-
ples from each dataset. We had to use a subset due to the computational intensity of LIME. The
explanations were always calculated with respect to the predicted class, not necessarily the correct
class. For each explanation, the aggregated comprehensiveness and IOU scores were computed ac-
cording to equation 2 and 3 respectively. Note that IOU scores were only feasible for e-SNLI and
CoS-e instances since MNLI does not provide human-annotated highlights. For each model, we re-
port on the mean comprehensiveness and mean IOU scores across all 100 explanations. We observe
an overall increase in comprehensiveness with the highest scores on the largest model for all three
datasets suggesting that faithfulness of LIME increases with model size. IOU, on the other hand,
stays almost constant across all model sizes for both datasets indicating that the plausibility of the
LIME explanations is uncorrelated with model size.

6Mean explanation-input-ratio e-SNLI: 0.19 (±0.193), CoS-e: 0.26 (±0.137).
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Dataset Model Size Comprehensiveness IOU Accuracy 95% C.I.

MNLI

xsmall 0.785 (± 0.022) – 0.878 (0.871, 0.885)
small 0.817 (± 0.022) – 0.878 (0.872, 0.884)
base 0.796 (± 0.027) – 0.900 (0.894, 0.906)
large 0.823 (± 0.027) – 0.902 (0.896, 0.908)

e-SNLI

xsmall 0.726 (± 0.022) 0.282 (± 0.017) 0.920 (0.915, 0.925)
small 0.724 (± 0.026) 0.259 (± 0.016) 0.922 (0.917, 0.927)
base 0.764 (± 0.025) 0.254 (± 0.016) 0.931 (0.926, 0.936)
large 0.778 (± 0.025) 0.256 (± 0.017) 0.932 (0.927, 0.937)

CoS-e

xsmall 0.304 (± 0.018) 0.233 (± 0.013) 0.331 (0.305, 0.355)
small 0.316 (± 0.019) 0.231 (± 0.014) 0.336 (0.306, 0.362)
base 0.356 (± 0.020) 0.235 (± 0.012) 0.359 (0.330, 0.383)
large 0.391 (± 0.022) 0.230 (± 0.012) 0.378 (0.349, 0.406)

Table 1: Mean comprehensiveness and IOU scores with mean standard errors on 100 test samples for
each dataset across all model sizes and accuracy scores on full validation sets with 95% confidence
intervals. IOU could not be computed on MNLI as this dataset does not provide human annotated
highlights as ground truth explanations.

Experiment 3 Lastly, we investigated both metrics with respect to the labels (entailment, neutral,
contradiction) for MNLI and e-SNLI7. The goal was to see how the metrics change with model size
when we condition on the label. We observe that comprehensiveness improves for contradictory
sentence pairs with larger model sizes in MNLI, while no consistent pattern emerges in e-SNLI.
Generally, we find that neutral sentence pairs achieved lower comprehensiveness scores than con-
tradiction pairs. IOU stays almost constant across different model sizes regardless of the label.

Figure 2: Mean comprehensiveness scores by labels for MNLI (left), e-SNLI (middle) and mean
IOU scores by labels for e-SNLI (right) with mean standard errors on 100 test samples across all
model sizes. Note how neutral sentence pairs achieve generally lower comprehensiveness scores
than contradictive sentence pairs and how IOU scores are almost constant as the model size increases
regardless of the label. Exact numbers are displayed in Table 2 in the appendix.

4 DISCUSSION

Overall, we find that for all three datasets, the largest model achieved the highest comprehensiveness
score suggesting that with LIME larger models yield more faithful explanations. However, the IOU
score stays constant across different model sizes suggesting that the plausibility of the explanations
is uncorrelated with model size and performance. Interestingly, this would imply that the agreement
with human-annotated highlights does not improve with model performance which indicates an in-
herent misalignment between the generated explanations and the true internal decision process. This
finding seems contradictory to our previous result that with LIME larger models yield more faithful

7Exact numbers are shown in Table 2 in the appendix, the labels are balanced, see Table 8.
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explanations. Splitting the metrics by labels could reveal potential flaws with the comprehensive-
ness metric in the NLI setting as we found significantly lower scores for neutral sentence pairs.
The problem with comprehensiveness in an NLI setting could be that removing highlighted tokens
from a neutral pair might very well result in another neutral prediction which limits the applicability
of comprehensiveness in this case. More generally, this shows how post-hoc explanations in NLP
lack expressiveness. Highlighting may not be sufficient to fully explain LLMs. While highlighting
can provide some intuition about which tokens LLMs pay attention to, some higher-level reasoning
concepts such as token dependencies or logical relations can hardly be expressed by highlighted to-
kens. This observation limits our finding that LIME explanations are more faithful for larger models.
We conclude that the applicability of comprehensiveness is task-dependent and more coherent and
expressive explainability metrics and techniques are needed.

5 FUTURE WORK

The exclusive focus on LIME cannot capture the full range of challenges and opportunities that
other techniques might present for explainability. Future research could repeat our experiments us-
ing other perturbation-based post-hoc techniques such as Anchors (Ribeiro et al., 2018) or SHAP
(Lundberg & Lee, 2017) to validate our observations. Additionally, other tasks such as sentiment
analysis, text summarisation or language modelling could be explored. Furthermore, none of our
models have gone through Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al.,
2022). We believe that the results on plausibility might significantly change with RLHF. While this
work explored explainability primarily quantitatively, future investigations may benefit from qualita-
tive analysis to deepen understanding of why discrepancies between model explanations and human
understanding occur. Note that our large models had 304 million parameters. The current state-of-
the-art models, however, are much bigger, consisting of billions of parameters. While computational
feasibility with perturbation-based techniques is one concern, the effect on the explainability of very
large models is still unexplored and should be the subject of future investigation. More broadly,
this work aims to emphasize the urgent need for an LLM explainability framework that is human-
interpretable, objective, scalable and expressive. A promising direction from a recent study showed
empirically that the faithfulness of post hoc explanations could improve when the models are op-
timized for robustness against adversarial attacks (Li et al., 2023). The method incorporates the
explanations into the model training process.

6 CONCLUSION

Our work investigated LIME explanations on fine-tuned DeBERTaV3 models of different sizes in
an NLI and ZSC setting. We applied two approaches to capture the quality of explanations, namely
faithfulness and plausibility. We measured faithfulness with comprehensiveness and plausibility
with IOU. We identified limitations of the comprehensiveness metric in the NLI setting which sug-
gests that removal-based faithfulness metrics are task-dependent and that their general applicability
is questionable. Given that performance increased with model size raises questions on why agree-
ment with human annotations does not increase. We suggest that there is some extent of misalign-
ment between the model’s internal decision process and its LIME explanation. This work aims to
serve as an initial step towards understanding the effect of model size on LLM post-hoc explain-
ability. We believe there is an urgent need for further investigations on LLM explainability and a
more coherent explainability framework for LLMs. If we fail to faithfully explain the decisions of
increasingly large language models we risk that those models pursue unexpected objectives rather
than agreeing with human values and intentions.
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A APPENDIX

A.1 ADDITIONAL TABLES

Dataset Model Size Label Comprehensiveness IOU

MNLI

xsmall
contradiction 0.810 (± 0.038) -
entailment 0.759 (± 0.042) -
neutral 0.788 (± 0.034) -

small
contradiction 0.853 (± 0.041) -
entailment 0.805 (± 0.039) -
neutral 0.794 (± 0.035) -

base
contradiction 0.895 (± 0.034) -
entailment 0.768 (± 0.050) -
neutral 0.728 (± 0.049) -

large
contradiction 0.939 (± 0.018) -
entailment 0.750 (± 0.057) -
neutral 0.789 (± 0.046) -

e-SNLI

xsmall
contradiction 0.805 (± 0.034) 0.289 (± 0.031)
entailment 0.713 (± 0.039) 0.315 (± 0.025)
neutral 0.663 (± 0.035) 0.244 (± 0.028)

small
contradiction 0.744 (± 0.042) 0.286 (± 0.029)
entailment 0.783 (± 0.051) 0.249 (± 0.025)
neutral 0.652 (± 0.040) 0.242 (± 0.030)

base
contradiction 0.808 (± 0.038) 0.264 (± 0.027)
entailment 0.786 (± 0.043) 0.291 (± 0.025)
neutral 0.701 (± 0.045) 0.211 (± 0.028)

large
contradiction 0.759 (± 0.046) 0.259 (± 0.024)
entailment 0.809 (± 0.038) 0.292 (± 0.026)
neutral 0.768 (± 0.042) 0.220 (± 0.036)

Table 2: Mean comprehensiveness and IOU scores with mean standard errors on 100 test samples
split by label for both NLI datasets across all model sizes. IOU could not be computed on MNLI as
this dataset does not provide human-annotated highlights as ground truth explanations.

MNLI e-SNLI CoS-e
xsmall 2min 3s 1min 8s 34min 35s
small 2min 40s 1min 40s 44min 28s
base 5min 20s 3min 35s 1h 27min 7s
large 15min 38s 12min 45s 4h 35min 50s

Table 3: Compute time for all LIME explanations of 100 test instances from each dataset across all
model sizes on Nvidia’s T4 GPU, 51GB RAM.

Parameters Layers Hidden Attention
(in millions) Size Heads

large 304 24 1024 12
base 86 12 768 12
small 44 6 768 12
xsmall 22 12 384 6

Table 4: Architecture comparison for DeBERTaV3 models.
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Premise Hypothesis Label

Look, there’s a legend here. See, there is a well-known hero here. Entailment

Yeah, I know, and I did that all through college
and it worked too.

I did that all through college but it
never worked.

Contradiction

Boats in daily use lie within feet of the
fashionable bars and restaurants.

Bars and restaurants are interesting
places.

Neutral

Table 5: Natural language inference examples from the MNLI dataset.

Premise Hypothesis Label

An adult dressed in black holds a stick . An adult is walking away,
empty-handed .

Contradiction

A child in a yellow plastic safety swing is
laughing as a dark-haired woman in pink and
coral pants stands behind her.

A young mother is playing with her
daughter in a swing.

Neutral

A man in an orange vest
leans over a pickup truck .

A man is touching a truck. Entailment

Table 6: Natural language inference examples from the e-SNLI dataset. Highlighted tokens indicate
human-annotated explanations.

Question Candidate Labels Label

He was a sloppy eater , so where did he leave
a mess?

sailboat, desk, closet, table, apartment table

Where can someone get a new saw ? hardware store, toolbox, logging camp,
tool kit, auger

hardware store

Many homes in this country are built around
a courtyard. Where is it?

hospital, park, spain, office complex,
office

spain

Table 7: Zero shot classification examples from the CoS-e dataset. Highlighted tokens indicate
human-annotated explanations.

Dataset Contradiction Entailment Neutral
MNLI 32 36 32
e-SNLI 33 32 35

Table 8: Number of observations by label for MNLI and e-SNLI for 100 explained test samples.
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A.2 ADDITIONAL FIGURES

Figure 3: Visualistion of comprehensiveness metric on CoS-e instance from (DeYoung et al., 2020).
Comprehensiveness suggests that an explanation is faithful if the prediction strongly deviates when
the most important tokens (as identified by the explanation method) are removed from the input
sequence.

Figure 4: Mean comprehensiveness (left) and IOU (right) scores with mean standard errors on 100
test samples for each dataset across all model sizes. IOU could not be computed on MNLI as this
dataset does not provide human-annotated highlights as ground truth explanations.
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