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ABSTRACT

Anomaly segmentation aims to identify pixels of objects not present during the
model’s training. Recent approaches address this task using mask-based archi-
tectures, but these methods have high training costs due to the large transformer
backbones involved. While vision adapters can help reduce training costs, they
are not specialized for this task, leading to inferior performance. In this work,
we propose Dual-Stream Adapters (DSA), a vision adapter tailored for anomaly
segmentation. DSA extracts both in-distribution and out-of-distribution features
via (i) an anomaly prior module that produces separate initial embeddings for the
two streams; and (ii) a dual-stream feature refinement that implicitly guides the
separation of in-distribution from out-of-distribution features. We train DSA us-
ing a novel hyperbolic loss function that provides supervised guidance for differ-
entiating in-distribution and out-of-distribution features. Experiments on various
benchmarks show that dual-stream adapters achieve the best results while reduc-
ing training parameters by 38% w.r.t. the previous state-of-the-art.

1 INTRODUCTION

Anomaly segmentation of driving scenes is a task that aims at segmenting, with pixel-level granular-
ity, objects in road scenes not belonging to any category from the training distribution (Ackermann
et al.}|2023f[Blum et al .| [2021}|Gal & Ghahramanil [2016; (Greic et al.| [2022)). This is crucial because,
given an object category that is unseen during training (e.g., a cow), a standard semantic segmenta-
tion model would erroneously classify it as one of its known classes (e.g., car, road), being unable
to flag a potential danger. On the other hand, an anomaly segmentation model should segment such
unseen objects, identifying them as anomalies. Although this task requires making predictions at
the pixel level (anomalous pixel / not anomalous pixel), few recent methods have demonstrated that
it is advantageous to resort to mask-architectures to directly identify anomalies as whole masks (Rai
et al.,[2023ab; |Ackermann et al.,|2023}; [Nayal et al.,|2023). However, the improvements achieved by
these architectures largely depend on training large visual transformer backbones (Liu et al.| 2021}
Dosovitskiy et al., 2021) with a significant number of training parameters and, consequently, a sub-
stantial training cost (cf. Fig.[I). Thus, we aim to develop an anomaly segmentation method that is
more efficient at training time (with fewer trainable parameters).

To achieve this goal, we take inspiration from vision transformer adapters (Chen et al.l [2023),
which have been shown to be effective for dense prediction tasks, while also being efficient in
terms of training parameters. However, these adapters are meant for general computer vision tasks
and are not specialized for anomaly segmentation, a task that not only requires dense predictions,
but it also needs to model the concepts of in-distribution and out-of-distribution. Therefore, in
this work, we present the Dual-Stream Adapter, a novel adapter tailored for anomaly segmenta-
tion. Its architecture consists of two key components: i) an anomaly prior module that initially
learns in-distribution and out-of-distribution features through distinct feature-level encodings; ii) a
dual-stream feature refinement module that refines these features and combines them with the pow-
erful representations of the frozen ViT backbone. This architecture is complemented by a novel hy-
perbolic loss function that guides the learning process, using void labels as supervision, to increase
uncertainty for OOD pixels, while reducing uncertainty for ID pixels. We perform extensive experi-
ments on standard anomaly segmentation benchmarks (Fishyscapes (Blum et al.|[2021)), Segment Me
If You Can (Chan et al., 2021a), Road Anomaly|Lis et al.|(2019)), showing that Dual-Stream Adapter
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Figure 1: Left: State-of-the-methods (Grcié et al., [2023; Rai et al.l 2023b} [Nayal et al., 2023)
requires training of large backbones, such as Swin-L (Liu et al.,[2021), with huge number of trainable
parameters. We propose a Dual-Stream Adapter having a frozen pre-trained backbone to perform
anomaly segmentation and thus making the training parameter efficient. Right: We observe that
our DSA-Large performs best among the recent state-of-the-art methods with 38% lower training
parameters. Triplet of numbers shown for each method represents AuPRC, FPRys5, and number of
trainable parameters in millions, respectively. Best method have lowest FPRg5; and highest AuPRC.

achieves the best results among all anomaly segmentation methods with 38% lower training param-
eters, when compared to the best baseline method (cf. Fig. [T).

To summarize, our contribution is the Dual-Stream Adapter, an adapter-based anomaly segmen-
tation method that achieves state-of-the-art results, but with fewer training parameters than the com-
petitors, while also maintaining higher accuracy on the in-distribution data. It consists of a sym-
metric architecture that allows to disentangle of in-distribution and out-of-distribution features, and
it leverages a novel hyperbolic loss that uses the void/background labels in the training dataset as
supervision to separate in-distribution and out-of-distribution features.

2 RELATED WORK

Anomaly Segmentation is synonymous with the problem of pixel-level anomaly detec-
tion. Hendrycks & Gimpel (2017) first delved into this problem by leveraging techniques origi-
nally developed for image-wide anomaly detection. Their solution, based on the softmax prediction
probability, is still considered a standard baseline for anomaly segmentation. Since then, other tech-
niques have been used to segment anomalies, such as deep ensembles (Fort et al, 2019), Bayesian
deep learning (Mukhoti & Gall,[2018};/Gal & Ghahramanil 2016} [Tu et al,[2024)), and class-logits rea-
soning (Jung et al.| 2021} |Hendrycks et al.,|2021)). Another strategy is to rely on image re-synthesis,
by looking at the discrepancy of the generated data w.r.t the in-distribution training data (Lis et al.,

2019).

While all the methods discussed so far are completely unsupervised, recent methods improve re-
sults via outlier exposure (Bevandié et al 2018} [Di Biase et all, 2021} [Zhang et al, 2023), i.e.,
providing supervision to the model by training on mixed images that contain instances of novel
categories (negative crops) pasted on them. These negative crops are generally sampled from the
MS-COCO or ADE-20K datasets, which contain objects absent
in in-distribution datasets. Alternatively, when appropriate negative data may be unavailable, syn-
thetic negatives may be used effectively, as demonstrated by which introduced a
normalizing flow-based method. Afterward, |[Gudovskiy et al.| (2023) improved the prior approach
with an energy-based normalizing flow method. Concurrently, DaCUP |Vojir & Matas| (2023)) pro-
posed novel embedding bottleneck and image-conditioned distance features to improve anomaly
segmentation.

Current state-of-the-art for anomaly segmentation (Nayal et all, 2023}, [Yu et all 2023; [Grcic et al.
2023} [Ackermann et al,[2023} [Rai et al., leverage mask-based architectures (Cheng et al.
2021}/2022)) that perform pixel-wise classification as a direct set prediction, outputting a set of binary
masks with corresponding category labels. By using these architectures and by aggregating anomaly
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scores on the predicted masks, rather than reasoning on individual pixels, RBA (Nayal et al.,|2023)),
EAM (Grci€ et al.| [2023)), Mask2 Anomaly (Rai et al.,|2023bga)), and Maskomaly (Ackermann et al.,
2023) obtain significant improvements in anomaly segmentation w.r.t. previous solutions. However,
the state-of-the-art results rely on using large Transformer backbones, such as ViT (Dosovitskiy
et al.} 2021) and Swin (Liu et al., |2021)), which have a significant number of training parameters,
thereby incurring in a substantial training cost.

To address this problem, we propose the Dual-Stream Adapter, an adapter tailored for anomaly seg-
mentation, which directly leverages a large ViT backbone, pre-trained on a large dataset to give
robust features without retraining. Our Dual-Stream Adapter retains the advantages of previous
mask-based anomaly segmentation methods, while being more training efficient. Moreover, at de-
ployment, this solution enables model reuse, since the same frozen pre-trained backbone can be
utilized for other downstream tasks, eliminating the need for multiple specialized versions.

Adapters. Learning universal representations that can be specialized to multiple tasks and do-
mains is quintessential in deep learning. Among the techniques developed to transfer learned repre-
sentations, adapters (Rebuffi et al.,|2017;|2018) have emerged as an effective and parameter-efficient
solution. The idea behind adapters is to get compact parametrizations of models by partitioning
their parameters into two parts: a vector of fixed parameters that capture a universal representation,
and a smaller vector of learnable parameters that are domain or task-specific. Adapters have re-
cently gained a lot of traction in Natural Language Processing (NLP), where they have been used
as a mechanism to adapt the large language models, such as BERT (Devlin et al.| 2019), to many
downstream tasks, while using a minimal number of trainable parameters (Houlsby et al.| [2019).
In computer vision, adapters have been utilized for incremental and multi-task/multi-domain learn-
ing (Rebuffi et al.,[2017; Rosenfeld & Tsotsos}, |2018; Rebuffi et al., 2018)). More recently, with the
success of vision-language models, a plethora of adapters (Zhang et al.l 2022 [Sung et al.| [2022)),
for the CLIP architecture (Radford et al.,|2021)), were introduced to address zero-shot/few-shot clas-
sification or vision-language tasks. Similarly to NLP, in computer vision the emergence of large
pre-trained models (Kirillov et al., 2023} |Oquab et al., [2024)) is making the utilization of adapters
quite compelling. In fact, fine-tuning these models for possibly many downstream tasks is inefficient
not only in terms of required training resources, but also in terms of deployed resources, as a de-
vice that must perform multiple tasks would require multiple specialized copies of the same model.
Moreover, it was also demonstrated that fine-tuning these large vision models could distort the pre-
trained features (Kumar et al.| 2022)) and lead to poor generalization. This has inspired a few works
to use a vanilla ViT architecture (Dosovitskiy et al., |2021)) and adapt it to various vision tasks (L1
et al., 2021} 2022). Along these lines, Chen et al.| (2023) have introduced the ViT-Adapter, which
integrates vision-specific inductive biases into the plain ViT, reaching comparable performance to
recent vision-specific transformer variants on several tasks, but in a parameter-efficient way.

Unlike the general-purpose ViT-Adapter (Chen et al.,, 2023), which is designed for multi-
ple vision tasks, we introduce an adapter specifically for anomaly segmentation. Since the
anomaly segmentation problem requires the classifier to identify ‘none-of-the-above’ scenarios, our
Dual-Stream Adapter is built to reinforce the separation between in-distribution features and com-
plementary features that represent unfamiliar or anomalous objects. To the best of our knowledge,
this is the first adapter explicitly tailored for anomaly segmentation.

3 PRELIMINARIES

3.1 PROBLEM SETTING

Anomaly segmentation aims to identify within an image those pixels containing objects not en-
countered during the model’s training. To formalize the task, let us consider a training dataset
D = {(mz,yl)}il where z; € X represents an RGB image from the set X C R3*#*W "and
yi € Y C NIZIXHXW i the corresponding ground truth, assigning a semantic label from a pre-
defined set of categories Z to each pixel. Here, H and W denote the height and width, respectively,
of each sample of X and .

Traditionally, anomaly segmentation has been approached as a per-pixel classification task (Grcié
et al.,[2022; Tian et al.,|[2022)). This involves first learning a function fy : X — RIZIXHXW hat maps
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an image to pixel-wise class scores from the pre-defined set Z, and then applying a non-parametric
scoring function s : RIZXHXW [0 1]H*W "t5 convert these class scores into anomaly scores.
Recent state-of-the-art approaches (Nayal et al., 2023; |/Ackermann et al., 2023} Rai et al., [2023b;
Grei€ et al}, [2023; Ra1 et al., [2023a; | Yu et al.l |2023)) have reconsidered this pipeline, by leveraging
the Mask2Former architecture (Cheng et al.|[2022)). These methods shift from per-pixel classification
to mask-based classification. We briefly summarize this reformulation in the next paragraph, as it
forms the foundation of our solution.

3.2 MASK2FORMER-BASED ANOMALY SEGMENTATION

Mask2Former (Cheng et al., 2022)) is a universal architecture that approaches segmentation as a di-
rect set prediction problem. It groups pixels into N segments by predicting [V binary masks and their
corresponding category labels (where NN is a hyper-parameter). The architecture consists of three
main components: (i) an encoder that extracts the features from the input image, (ii) a pixel-decoder
that generates high-resolution per-pixel embeddings from the encoder’s low-resolution features, and
(iii) a transformer-decoder that operates on image features to process object queries. For brevity, we
do not delve into a detailed description of these components. Interested readers can refer to |Cheng
et al.| (2022) for a comprehensive explanation of the Mask2Former architecture. Additionally, for
the sake of compactness and readability, we henceforth refer to the pixel decoder and transformer
decoder collectively as the decoder (see Fig. [THeft).

Given this architecture, our aim is to learn the parameters 6 of a function fy, composed of an encod-
ing function hy_ and a decoding function gy, with 6 = [0, 04], that maps an image to a set of binary

masks M € RV*XHXW) ‘and category labels C' € RY*IZl, Formally, we have
fg:X-)(RNX(HXW) RNX‘ZI)
’ ey
x> gg, o hy, (z) = (M,C)

The anomaly scores are finally obtained through a non-parametric scoring function s
(RNX(HXW) - RNXIZ]y _, REXW that takes as inputs the binary masks M and class scores C.
Following Rai et al.| (2023b), we implement the scoring function s by applying MSP (Hendrycks &
Gimpel, 2017) on the decoder outputs M and C, i.e.,

s(M,C)=1- max (softmax(C)" - sigmoid(M)) 2)

Without loss of generality, other scoring functions may be used, e.g., [Nayal et al.| (2023); |Grcic
et al.[(2023)).

This approach has been proven crucial for achieving new state-of-the-art results, especially when
using large pre-trained encoders (Nayal et al.l 2023} |Ackermann et al., 2023} [Ra1 et al., [2023b;
Grcic et al., [2023; Rai et al.| 2023a; [Yu et al., 2023)). Despite their flexibility, fine-tuning these large
vision encoders is generally a delicate process as it could distort the pre-trained features (Kumar
et al., [2022), making them less general and ineffective for other downstream tasks. To alleviate this
issue, while maintaining state-of-the-art performance, we propose freezing the pre-trained encoder
and inserting an adapter module (Rebuffi et al.| 2018;|Houlsby et al.,2019) with learnable parameters
0, such that [|0,|| << ||0.|| (see Fig.[[Heft). Namely, we now seek a map

f9 X (RNX(HXW)’ RNX|Z|)
= o, © hg,p,(x) = (M, C)

where . denotes the frozen parameters. We model this adapter after the ViT-Adapter (Chen et al.,
2023)), as explained in the next section.

3)

4 DUAL STREAM ADAPTER

The Dual-Stream Adapter (DSA) architecture is based upon the ViT-Adapter structure (Fig. [2)). It
incorporates an anomaly prior module to capture initial ID and OOD features and dual-stream fea-
ture refinement modules that refine these features through interaction with frozen ViT features. We
guide the separation of ID and OOD features by training them with a novel hyperbolic loss function.
In the following subsections, we discuss these technical novelties in detail. For clarity, we omit the
dependency of the adapter modules from the parameters 6,,.
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Figure 2: Dual-Stream Adapter: Our model consists of a frozen ViT backbone, a decoder, and
a dual-stream adapter that extracts two complementary features referring to the in-distribution ob-
jects and to the rest of the objects, respectively. The dual-stream adapter consists of two components:
anomaly prior module (APM) (Sec. @ and a dual-stream feature refinement module (Sec. @

4.1 ANOMALY PRIOR MODULE

The first part of the DSA is the anomaly prior module (see Fig. BHeft). Our module shares a
similar foundation with the ViT-Adapter’s Spatial Prior Module, leveraging a ResNet convolu-
tional stem (He et al.| 2016)) to extract D-dimensional feature maps at different spatial resolutions:
(Fs € RPX§ X5 Fig € RPX16% 15 and Fy, € RPX32%37). The intuition of this design choice is
that convolutional operations improve the ability to extract spatial information in vision transform-
ers by capturing local context and providing translation equivariance (Wang et al., 2021). Each of
the three feature tensors is further augmented with an additive and learnable level encoding. For-
mally, for a generic feature scale F;, it is given as F; = F; + &;. Where, §; € RP* Fx s the
corresponding level encoding. All these features are finally flattened and concatenated together.

We diverge from ViT-Adapter by introducing an explicit specialization mechanism. Features are
processed in two separate streams with distinct level encodings, enabling them to specialize on
either ID or foreign object characteristics (see Fig. [BHeft). Formally, for a generic feature scale F;,
we have

Fiid=Fi+6iia

_ 4)
-Fi,ood = ‘F:L + 5i,00d

where §; id, 6,001 € RP* > are the corresponding level encodings, each of them obtained as a

distinct D-dimensional learnable vector broadcasted along the spatial coordinates. Importantly, the
level encoding here acts as a channel-wise bias individually learned for in-distribution and out-of-
distribution features, that are added into the features to retain information on their resolution level
within the feature tokens.

The feature tensors of the two streams are finally flattened and concatenated separately, yielding two
arrays of D-dimensional feature tokens, i.e.,

— _ — HW HW H
Hy  Hw | HW)xp
Faid, Fre.ids Fazia — Fiy € Rl z)x

T T - HW | HW
f-i-j-&-j xD
Fs,00ds Fi16,000: F2,00 = Faog € RIS 527 )

(&)

With the anomaly prior module, the architecture can learn strong prior knowledge about the ID and
OOD features evident from Tab. [3] (a).

4.2 DUAL STREAM FEATURE REFINEMENT

The original ViT-Adapter (Chen et al.l [2023) uses an interaction module consisting of cross-
attentions to combine the spatial information from the prior module and the features from the frozen
ViT. For our problem, we want to combine the frozen ViT features with the spatial in-distribution
(ID) and out-of-distribution (OOD) information, while at the same time disentagling them. There-
fore, we design a module based on cross-attention with a symmetric structure to handle the dual
streams information.
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Figure 3: Above: Shows the spatial prior module and adapter architecture present in the exist-
ing vision adapters architecture (Chen et al) 2023). Below: We present novel components of
our dual-stream adapter. (a)Anomaly Prior Module (Sec. -) learn to extract the initial ID and
OOD features from the input image. (b)Dual-Stream Feature Refinement (Sec. d.2): takes in the
initial ID and OOD features from the anomaly prior module. The features are refined by passing it
through a set of anomaly adapters and augmenting it with the ViT backbone features.

Each of this modules, which we call dual-stream feature refinement, consists of two symmetric
streams: one for the ID features and the other for the OOD features. Without loss of generality,
let us consider the ID stream for the ¢-th dual-stream feature refinement module. To combine the
spatial ID prior with the ViT features, we use a cross-attention layer, where the keys and values are
given from features produced by the (i + 1)-th ViT block, i.e., Fi ' The spatial features JF}; are
used as queries to reintegrate relevant multi-scale features from ]-"\’,;'{1 into the tokens of .7-"1’;]"’1. The
same sequence of operations is implemented for the OOD stream. Formally, the whole process is
summarized as:

i1 it it
Fq =Fd +FEN(F)
i.d. extractor ]—"i’d“ = Fii+ Attention( Fj 7]—“@;;1’}‘\"/#) (6)
Q K \%

Fil = Fitl L peN(FiAD

o ood ood

o0.0.d. extractor ]—‘lill = god + Attention( OO&]—'@TTHI\Z,#) @)

O

Q K V

where Attent ion denotes the cross-attention block and FFN is a feed-forward network as in the
original ViT-Adapter (Chen et al., [2023)).

Besides its dual structure, our module differs from ViT-Adapter’s interaction module also for its
lack of an injector cross-attention (see Fig. [3) module. This design choice is empirically motivated,
as we found that the anomaly segmentation results are similar with and without the injector (cf.
Tab. |§| ). However, removing the injector cross-attention results in a more streamlined module, with
fewer training parameters. In summary, dual-stream feature refinement helps to refine and special-
ize the features obtained from anomaly prior to improve anomaly segmentation while retaining a
good performance on the in-distribution samples.

4.3 UNCERTAINTY BASED HYPERBOLIC LOSS

Although the adapter architecture described so far is designed to generate two streams of features,
we need a way to guide the learning process so that these two streams capture characteristics of the
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in-distribution and out-of-distribution pixels, respectively. To provide this guidance without relying
on extra data, we leverage the void/background class, considering those pixels as OOD whereas the
labeled objects are ID, and we design a loss in hyperbolic space.

The hyperbolic space formulation was demonstrated to be effective in a plethora of visual
tasks (Atigh et al., 2022} |[Liu et al., [2020) over Euclidean space. Moreover, it was shown that it en-
ables the use of low-dimensional embeddings without compromising representation power (Nickel
& Kielal 2017), which is particularly well-suited for adapters. Most importantly, |Atigh et al.|(2022)
demonstrated that with hyperbolic embeddings in a Poincaré ball the pixel uncertainty can be ob-
tained by taking the L2 norm to the origin of the ball itself. We use this property to design a new
loss function termed as uncertainty-based hyperbolic loss (L,;), that maximizes the uncertainty
for OOD pixels and minimizes uncertainty for ID pixels. In the following, we discuss L,pp; in
detail.

To define this loss, we first take the final ID (Fjq) and OOD (F,.q) features and project them to the
Hyperoblic space using an exponential map (Atigh et al., [2022), i.e.,

Eo(7) = tanh(v/el|z|[)(

T

NETET ®

Then, we calculate uncertainty by taking L2 norm to the origin of the Poincaré ball of projected
features. Finally, L,y for a feature point Z; can be formulated as:

7 ||d(j170)||2 it z; € Food
L, i) = . : 9
ohi (%) {—|d(xi, 0)|]2 otherwise, ©)
d(z;,0) is the L2 norm distance to the origin of the Poincaré ball. Intuitively, this loss pushes the ID
features away from the origin of the ball, whereas the OOD features are pulled towards the origin.
We add L.pp; to the total training loss (that is the same as Mask2Former (Cheng et al., 2022))
formulated as:

Ltotal = )\ubhlLubhl + Lmask + Aclaschlass (10)

Here, L, 45 1s the mask loss which is a combination of the binary cross entropy loss and dice loss,
and L ;.55 is the classification loss weighted by Ajqss = 2. Aupni is the weight of Ly, which is set
to 0.1.

Road Anomaly SMIYC RA-21 SMIYC RO-21 FS L&F FS Static Average
Methods AuPRC 1 | FPRgs | | AuPRC 1 | FPRgs | | AuPRC 1 | FPRgs | | AuPRC 1 | FPRgs | | AuPRC 1 | FPRys | | AuPRC 1 [ FPR; |
Fine-Tuned 28.4 85.4 574 82.2 63.6 2.6 44.1 33.1 295 88.6 44.6 58.3
Side Adapters (Xu et al.[2023] 23.1 85.2 60.3 71.3 293 12.1 45.1 23.6 252 88.3 36.6 573
ViT Adapters (Chen et al.[2023} | 26.0 88.3 57.1 90.7 60.3 7.5 25 27.0 31.5 33.1 434 493
DSA-Tiny (Ours) 36.7 713 583 80.4 59.6 3.0 44.0 20.0 40.1 19.9 417 40.1

Table 1: Quantitative comparison of adapters: We present the performance comparison of the
baseline vision adapters (Side Adapters (Xu et al.} 2023), ViT Adapters (Chen et al.,|2023))) versus
our proposed adapters DSA-Tiny. Best results are in bold.

5 EXPERIMENTS

Dataset and Evaluation Metrics: We train all the models on Cityscapes (Cordts et al.,[2016)) as an
inlier dataset and evaluate its performance on: a) Road Anomaly (Lis et al.| 2019), b) Fishyscapes
(FS) (Blum et al., 2021)) benchmark having FS Lost and Found (FS L&F) and FS Static datasets,
and c) Segment Me If You Can (SMIYC) benchmark (Chan et al.,|2021a) containing SMIYC Road
Anomaly 21 (SMIYC RA-21) and SMIYC Road Obstacle 21 (SMIYC RO-21) datasets. We employ
AuPRC and FPRgs as evaluation metrics. Please refer to appendix [A.2] for further details.

Implementation Details: Our implementation details of adapters are mainly derived from [Cheng
et al.| (2022); |Chen et al.| (2023). We introduced two configurations of adapters: Dual-Stream
Adapter Tiny (DSA-Tiny) and Dual-Stream Adapter Large (DSA-Large), consisting of ViT-Tiny
and ViT-Large backbones, respectively. Please refer to the appendix [A.T]for further details.



Under review as a conference paper at ICLR 2025

Road Anomaly SMIYC RA-21 SMIYC RO-21 FS L&F FS Static Average
Methods AuPRC 1 [ FPRos | | AuPRC T [ FPRg; | | AuPRC 1 | FPRos | | AuPRC 1 | FPRos | | AUPRC T [ FPRgs | | AuPRC 1 | FPRs |
Fine-Tuned 39.1 76.4 67.2 50.8 10.7 298 66.2 283 89.1 123 544 395
Side Adapters (Xu et al.|2023 44.8 62.1 61.1 459 538 416 472 40.9 88.9 159 59.1 412
ViT Adapters 375 785 607 249 795 16.0 449 2.6 80.6 273 60.6 3738
DSA-Tiny (Ours) 523 65.6 72.1 35.0 779 2.6 49.5 17.4 80.3 8.6 66.4 258

Table 2: Quantitative comparison of adapters with outlier exposure: Shows the performance
comparison among the baseline adapter methods and our proposed adapter DSA-Tiny in an outlier
supervision setting. Best results are in bold.

U

‘ Input Image Vision Adapter DSA-Tiny (Ours) Ground Trut
Figure 4: Qualitative comparison of adapters: We observe that our proposed DSA-Tiny produces
better anomaly segmentation with minimal false positive rates than other vision adapters. Anomalies
are represented in white.

SMIYC RA-21 SMIYC RO-21 FS L&F ES Static Road Anomaly Average

Methods AUPRC 1 | FPRgs | | AuPRC 1 [ FPRg; | | AuPRC 1 | FPRgs | | AuPRC 1 [ FPRy; | | AUPRC 1 | FPRgs | | AuPRC 1 [ FPR; |
Max Softmax {Hendrycks & Gimpel [2017] [ 27.9 720 157 16.6 4.5 405 19.0 23.9 157 713 16.6 44.9
Mahanalobis {Lee et al.| 2018} 20.0 86.9 209 13.0 56.3 1.2 273 117 143 81.0 27.8 40.8
Image Resynthesis (Lis et al.|[2019] 522 259 377 4.7 57 477 8.0 62.7 - - 259 353
MC Dropout ( 2018 28.8 69.4 4.8 50.3 122 328 42.1 132 - - 22,0 414
Learning Embedding (Blum et al.|202 375 70.7 0.8 46.3 4.1 223 435 16.8 - - 53.1 426
SML ( 46.8 39.5 3.4 36.8 36.5 145 48.6 16.7 17.5 70.7 22,0 414
#SynBoost 56.4 61.8 81.7 4.6 409 34.4 48.4 417 38.2 64.7 215 39.0
Maximized Entropy { 85.4 150 85.0 0.7 40.8 37.2 72.4 129 48.8 317 66.5 19.5
#JSRNet ( 2021 33.6 438 28.0 185 0.2 69.3 1.4 60.4 94.4 9.2 315 402
#Dense Hybrid 779 9.8 87.0 02 63.8 6.1 60.0 49 313 63.9 64.0 17.0
APEBEL (Tian et al.}2022] 49.1 40.8 49 12,6 59.8 6.4 82.7 6.8 45.1 445 483 222
##EAM {Greic et al. 2023 76.3 93.9 66.9 17.9 52.0 20.5 873 21 298 549 62.5 379
*Maskomaly (Ackermann et al.l 2023' 93.4 6.9 - - - - 69.5 14.4 16.3 73.1 59.7 31.5
ATTA (Gao et al.| 2024 67.0 315 76.4 28 65.5 44 93.6 11 59.0 334 723 14.6
FlowEneDet (Gudovskiy et al. 36.7 77.8 737 0.9 56.1 38 66.6 8.9 - - 583 229
*#4Mask2Anomaly (Rai et al.|2023b] 905 9.8 726 8.0 66.8 46 91.2 6.0 754 9.8 793 11
*ARBA 2023] 923 72 924 0.3 504 10.8 69.5 6.0 83.5 18.7 776 8.6
V&&DSALarge (Ours) 86.1 77 74.1 05 710 9.4 85.4 10.6 89.1 9.8 813 7.6

Table 3: Quantitative Results: We observe that on average our DSA-Large model obtains the
best results among the baseline anomaly segmentation methods. The best and second best results
are bold and underlined, respectively. & shows the methods that are retrained. # represents the
methods using outlier exposure. V method requires void labels while training.

5.1 MAIN RESULTS

We organize our results into two parts: (a) a comparative analysis of anomaly segmentation results
between existing vision adapters and our dual-stream adapter, and (b) an evaluation that presents
the efficacy of the dual-stream adapter by comparing it with all existing anomaly segmentation
techniques.

Adapter Comparison

Baseline setting: Each adapter model consists of ViT-Tiny as backbone and mask-decoder. During
the outlier supervision stage, we train all the adapter models with mask-contrastive loss
[2023b). We keep all the other implementation details the same as DSA-Tiny. More details about
outlier supervision can be found in appendix [A.]
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without Outlier supervision with Outlier supervision
Method mloU mloU
Mask2Former (Cheng et al. 2022 83.37 -
ViT-Adapter 'mﬁu(ﬁj 83.30 -
RbA dNayal et al.)2023 82.85 82.25
EAM 1Grcic' et al.;2023 83.27 82.16
DSA-Large (Ours) 83.71 82.58

Table 4: In-distribution performance: In-distribution results on the Cityscapes validation set, for
the vanilla Mask2Former and the recent anomaly segmentation SOTA based on it. DSA-Large
retains the best in-distribution performance among these models. Best results are in bold.

Input Image Mask2Anomaly RbA DSA-Large (Ours) Ground Truth
Figure 5: Qualitative Results: DSA-Large provide better and crisper anomaly masks w.r.t. other
baselined methods. Anomalies are represented in white. The samples are shown for SMIYC RA-21
and SMIYC RO-21. Please refer to the appendix Fig. |§|f0r more results.

Results discussion: Table [T] and Table [2] display the performance of existing vision adapters and
DSA-Tiny, with and without the outlier exposure setting, respectively. On average, DSA-Tiny shows
significant performance improvement over existing vision transformer adapters by providing higher
AuPRC values and lower FPRgs scores, highlighting the effectiveness of the anomaly prior and the
dual stream refinement. In the qualitative comparison shown in Fig. ] we note that the vision trans-
former adapters struggle to segment anomalies, whereas DSA-Tiny demonstrates strong anomaly
segmentation performance with minimal false positive rate. Additionally, it is worth noting that
fine-tuning the entire architecture resulted in lower performance compared to our approach. This is
in line with the findings of [Kumar et al.| (2022)), who noted that fine-tuning leads to distorting the
pre-trained features, thus, reducing anomaly detection performance.

Evaluation with Anomaly Segmentation Methods

Baseline setting: We establish consistency and fairness among all the anomaly segmentation meth-
ods by training them on Cityscapes (Cordts et al [2016) as inlier dataset. For all the mask-
transformer based anomaly segmentation methods (Rai et al.|[2023b} [Nayal et al.| 2023} [Ackermann
et al] 2023} [Greid et all, [2023), we train them on Swin-L (Liu et al} 2021) without any additional

inlier data as used in (GreiC et al.l [2023).

Results discussion: Anomaly Segmentation Performance: Table [3] displays the performance
of per-pixel and masked-based anomaly segmentation methods. We observe that in average
DSA-Large obtains the best results among the recent SOTA mask-based architectures such as

Mask2Anomaly 2023b) and RbA (Nayal et al., [2023)), although it appears that the re-

sults of the various methods vary depending on the datasets. Visually, from Fig. |5l we notice that
mask-based methods RbA (Nayal et al., 2023) and Mask2Anomaly struggle to
segment the anomalies.

Semantic Segmentation Performance: We also look at the performance of anomaly segmentation
models on the in-distribution data. This is crucial, since some design choices made to boost the out-
of-distribution detection may reduce the performance on the original semantic segmentation task,
which may be a tradeoff not acceptable in practice (it is not practical to have two specialized mod-
els, one for ID and one for OOD). Table ] reports the results on the Cityscapes validation dataset
of the vanilla Mask2Former, as well as, anomaly segmentation methods based upon it. Notably,
DSA-Large is able to achieve the best in-distribution accuracy, both when trained with and without
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Figure 6: (a) Demonstrate the anomaly segmentation performance on different curvature values
c. (b) Anomaly segmentation performances obtained by training DSA-Tiny on different loss func-
tions. BCE, CL, and Ours refers to Binary Cross Entropy, Contrastive Loss, and L,p;, respectively.

Anomaly Prior Module  Dual-Stream Feature Refinement L5 ‘ AuPRCT FPRy;zl| Number of Dual-Stream Adapter ‘ AuPRCT  FPRgs)
X v 12.0 13.2 1 51.2 4.8
v X v 18.5 7.7 2 55.7 39
v v X 50.2 53 4 59.6 3.0
v v v 59.6 3.0 6 46.3 29
(a) (b)

Table 5: (a) Component wise ablation: We test the importance of each component by removing
one at a time. We observe that presence of all components gives the best performance. (b) Number
of dual-stream adapter: We observe that having number of dual-stream adapter as 4 and 6 gives
the best AuUPRC and FPRgs, respectively. All the results in bold are best.

outlier supervision, confirming that our dual-stream adapter design strikes a good tradeoff between
the two tasks of semantic segmentation and anomaly segmentation.

5.2 ABLATION STUDY

We conduct all ablation experiments on the DSA-Tiny architecture.

Component-wise ablation: Table [5[a) presents the component-wise ablation of the novel parts
present in the dual-stream adapteron SMIYC RO-21. We find that removing the anomaly prior
and dual-stream feature refinement modules shows a significant performance drop in anomaly seg-
mentation. This is due to the reason that the network is not able to separate well ID and OOD
features in the absence of the aforementioned components. Finally, using L,,;p; further reduces the
false positive rate and improves the AuPRC score.

Number of dual-stream feature refinement: In Tab. b), we present the effect of the number
of dual-stream feature refinement on anomaly segmentation performance on SMIYC RO-21. As
observed from the table, setting the number of dual-stream feature refinement modules as 4 and 6
gives the best AuPRC and FPR95 scores, respectively. We opt for 4 modules to have fewer trainable
parameters.

Curvature size: In Fig. [f[a), we discuss the anomaly segmentation performance with varying cur-
vature size of the Poincaré ball. Results shown are the average performance taken on all the datasets.
We empirically find that setting the curvature to 0.01 yields overall better performance compared to
other values.

Loss comparison: Figure[6[b) shows the anomaly segmentation performance comparison when us-
ing our proposed loss L.pni, and when replacing it with a binary cross-entropy loss or contrastive
loss. The results are the average performance given by all datasets. We find that L,;p; yields the best
performance among all the losses, confirming the advantage of using the hyperbolic representation
to separate the features.

6 CONCLUSION

In this work, we introduce a novel adapter architecture for anomaly segmentation.
Our architecture incorporates two key architectural components: anomaly prior modules
and dual-stream feature refinement tailored to improve anomaly segmentation. The anomaly prior
module learns to extract the initial ID and OOD features that are refined and improved by passing
through a set of dual-stream feature refinement blocks. We introduce an uncertainty-based hyper-
bolic loss to explicitly learn the ID and OOD features. We hope that our dual-stream adapter will
pave new ways for developing efficient anomaly segmentation methods based on vision adapters.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

DSA-Tiny: The model architecture consists of a ViT-Tiny the backbone and a Mask2Former
decoder, which includes 9 mask attention layers. The ViT backbone is pre-trained on ImageNet-1K.
The number of dual-stream adapter blocks are kept 4. The FFN consists of two MLP layers
having a GELU activation layer between them. We used deformable attention architecture as a
cross-attention in our architecture. We used the AdamW optimizer with an initial learning rate
of 12 x 1075, a batch size of 32, and a weight decay of 0.01. Layer-wise learning rate decay of
0.95 is used during training. The DSA-Tiny model was trained for 46000 iterations on Cityscapes,
utilizing a batch size of 32 and an image crop size of 512 x 512. The model contains a total of
28.5M parameters, with 5.5M from the frozen ViT backbone. Of the remaining 23M trainable
parameters dual-stream adapter has 2.4M parameters.

DSA-Large: The architecture of DSA-Large consists of a ViT-Large backbone with BEiT archi-
tecture and a Mask2Former decoder, which includes two mask attention layers. The ViT backbone
is pre-trained on ImageNet-22K dataset. The number of dual-stream adapter blocks is set to 4. We
employed the AdamW optimizer with an initial learning rate of 2 x 10~5 and a weight decay of
0.05. During training, we applied layer-wise learning rate decay of 0.9. The DSA-Large model
was trained for 60, 000 iterations on Cityscapes, with a batch size of 8 and an image crop size of
768 x 768. The model has a total of 435.9M parameters, of which 303.3M are from the frozen
ViT backbone. Out of the remaining 133M trainable parameters, dual-stream adapter accounts for
27.7M parameters.

Qutlier supervision is a widely used technique to improve the performance of anomaly seg-
mentation methods (Rai et al., 2023b}, [Nayal et al., |2023}; (Grci¢ et al., 2022) by training models
with synthetic anomaly images generated on the fly. In our approach, we create these synthetic
images using AnomalyMix (Tian et al.l [2022), which cut objects from the MS-COCO (Lin et al.,
2014) dataset based on ground truth annotations and randomly pasting them onto Cityscapes
images. This produces a binary mask, where the MS-COCO object area is labeled as 1 showing
an anomalous region, and the Cityscapes background area is labeled as 0 for the non-anomalous
region. For training, we employ a mask contrastive loss (Rai et al.l 2023b). During this phase,
only the mask decoder is trained, and the loss term L,;p; is not applied since DSA is frozen. We
train DSA-Tiny and DSA-Large for 2000 iterations, using batch sizes of 8 and 2, respectively.
The probability of selecting an outlier in each training batch is set to 0.2. All other hyperparam-
eters are kept consistent with previous settings. The margin for the mask contrastive loss is set to 1.0.

A.2 DATASETS AND EVALUATION METRICS

We evaluate all anomaly segmentation methods using the Area under the Precision-Recall Curve
(AuPRC), which is well-suited for imbalanced datasets. This makes it particularly suited for
anomaly segmentation, where datasets are highly skewed. Additionally, we use the False Positive
Rate at a True Positive Rate of 95% (FPRys) as a key metric, especially important for safety-critical
applications. Next, we use the Road Anomaly |Lis et al.[|(2019)), Fishyscapes Blum et al.|(2021)), and
Segment Me If You Can (SMIYC) benchmarks (Chan et al.|(2021a)) as evaluation dataset discribed
below.

* Road Anomaly consists of 60 images containing anomalous objects on or near the road that
are taken from the web.

* Fishyscapes (FS) includes two datasets: Fishyscapes Static (FS Static) and Fishyscapes
Lost & Found (FS L&F). FS Static is created by blending Pascal VOC objects into
Cityscapes images and contains 30 validation images. FS L&F is based on a subset of
the Lost and Found dataset with 100 validation images.

e SMIYC consists of two datasets: RoadAnomaly21 (SMIYC-RA21) and RoadObstacle21
(SMIYC-RO21). SMIYC-RA21 has 10 validation images and 100 test images with di-
verse anomalies. SMIYC-RO21 is focused on segmenting road anomalies and contains 30
validation images and 327 test images.
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Figure 7:  Qualitative Ablation: We demonstrate the importance of DSA com-
ponents by individually removing them one at a time. DSFI and APM stand
for dual-stream feature refinement and anomaly prior, respectively. Anomalies are represented in
white.

A.3 ADDITIONAL DETAILS FOR ABLATION STUDY AND RESULTS

SMIYC RA-21 SMIYC RO-21 FS L&F FS Static Road Anomaly
AuPRC 1 | FPRg; | | AuPRC 1 [ FPRgs | | AuPRC 1 [ FPRg5 | | AuPRC 1 | FPRos | | AuPRC { [ FPRgs |
with injector 57.1 90.7 60.3 7.5 425 27.0 315 33.1 26.0 88.3
without injector 62.9 76.4 339 11.2 46.7 21.1 27.1 90.2 253 81.7

Table 6: Anomaly segmentation performance with and without injector. Best performance in bold

Role of injector: The ViT Adapter (Chen et al.| (2023) includes an injector designed to integrate
spatial priors into the ViT blocks. However, as demonstrated empirically in Tab. [§] the removal
of the injector had no significant impact on anomaly segmentation performance. Based on this
observation, we excluded the injector from our architecture, reducing the model’s complexity and
saving parameters. For the experiment, we choose ViT tiny backbone of the adapter.

SMIYC RA-21 SMIYC RO-21 FS L&F FS Static Road Anomaly
Curvature (¢) | AuPRC | FPRgs | | AUPRC1 | FPRy; | | AuPRC 1 [ FPRy; | | AuPRC { | FPRgs | | AuPRC 1 | FPRy; |
1.0 54.8 77.4 64.4 2.8 50.6 20.9 25.0 78.1 324 87.1
0.1 555 81.7 44.0 2.9 457 242 32.8 89.6 315 78.4
0.01 58.3 80.4 59.6 3.0 440 20.0 40.1 19.9 36.7 713
0.001 56.8 83.1 484 49 444 19.3 254 67.3 278 90.8

Table 7: Anomaly segmentation performance on varying curvature of poincaré ball. Best perfor-
mance in bold

Curvature of poincaré (c): Table [/| presents the anomaly segmentation performance across
different curvature values of the Poincaré ball. Notably, no single curvature value consistently gives
the best performance across all datasets. However, on average, a curvature of 0.01 yields the most
favorable results. All experiments were conducted on DSA-Tiny, with A,pp; set to 0.1.

SMIYC RA-21 SMIYC RO-21 FS L&F FS Static Road Anomaly
Loss AuPRC 1 | FPRys; | | AuPRC 1 [ FPRgs | | AuPRC 1 [ FPRg; | | AuPRC 1 | FPRg; | | AuPRC | | FPRy; |
Binary Cross Entropy 50.8 85.6 50.2 5.3 39.3 21.0 27.3 214 27.9 88.5
Contrastive Loss 476 84.6 60.4 3.6 435 433 325 327 24.1 89.6
Lubhi 58.3 80.4 59.6 3.0 44.0 20.0 40.1 19.9 36.7 713

Table 8: Loss Comparison among our proposed loss and euclidean losses. Best performance in bold

Loss comparison: In Tab. @ we show that L,;5; achieves the best performance across all datasets.
All experiments were conducted on DSA-Tiny. While using the contrastive loss a margin of 1.0 is
kept. The loss weight in the total loss (10) was set to 0.1 for all comparisons.

16



Under review as a conference paper at ICLR 2025

SMIYC RA-21 SMIYC RO-21 FS L&F FS Static Road Anomaly
Aubhi | AuPRC 1 [ FPRgs | | AuPRC 1 [ FPRgs | | AuPRC 1 [ FPRos | | AuPRC 1 [ FPRos | | AuPRC 1 [ FPRys |
2.0 58.2 81.5 63.5 5.0 434 23.9 252 46.0 33.6 79.2
1.0 50.8 88.8 43.7 7.6 479 25.1 28.8 23.4 29.2 85.1
0.1 54.9 77.4 64.5 29 50.6 20.9 25.1 78.2 324 87.1
0.01 56.1 83.6 423 2.2 46.1 44.1 227 26.0 27.7 78.2

Table 9: Variation in anomaly segmentation performance with different \,;p;. Best performance
in bold.

Variation in \,;;: Table E| shows the anomaly segmentation performance for different values of
Aupbhi as defined in  (10). We observe no single value of \,,; consistently outperforms across all
datasets, but on average, a value of 0.1 yields the best results. All experiments were conducted on
DSA-Tiny.

Qualitative ablation study: In Tab. |5 we present the quantitative results of the component-wise ab-
lation. The quantitative behavior can also be corroborated qualitatively from Fig. [7]where we observe
significant increase in false positives rates when anomaly prior and dual-stream feature refinement
are removed.

Comparision with UNO: UNO |Deli¢ et al.[(2024) uses Mapillary Vistas as additional inlier data
to boost anomaly segmentation performance and ADE-20K as outlier exposure dataset. To en-
sure fairness and consistency, we use the same training protocol as in our draft. We trained UNO
using Cityscapes as the inlier dataset and incorporated MS-COCO image objects during the outlier-
exposure phase. The table below presents the performance comparison across all validation datasets.
We can observe that DSA-Large consistently outperform UNO across all datasets.

SMIYC RA-21 SMIYC RO-21 FS L&F FS Static Road Anomaly
Method AuPRC FPRgs | AuPRC FPRg; | AuPRC FPRgs | AuPRC FPRg; | AuPRC FPRgs
UNO 62.7 33.1 12.5 25.6 35.0 42.8 82.3 12.2 54.1 17.0
DSA-Large 73.3 453 92.6 0.72 71.0 9.4 85.4 10.6 89.1 9.8

Table 10: Performance metrics comparison across different methods and datasets.
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Figure 8: Additional qualitative results: Row I and Row 4: Displays that DSA-large is able to
segment anomalies with minimal false positives. Row 2 and Row 3: shows that anomalies that are
left unsegmented by Mask2Anomaly and RbA are well segmented by DSA-large as shown in red
bounding box.
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