
MultiPDENet: PDE-embedded Learning with Multi-time-stepping
for Accelerated Flow Simulation

Qi Wang 1 Yuan Mi 1 Haoyun Wang 1 Yi Zhang 2 Ruizhi Chengze 2

Hongsheng Liu 2 Ji-Rong Wen 1 Hao Sun 1

Abstract

Solving partial differential equations (PDEs) by
numerical methods meet computational cost chal-
lenge for getting the accurate solution since fine
grids and small time steps are required. Machine
learning can accelerate this process, but strug-
gle with weak generalizability, interpretability,
and data dependency, as well as suffer in long-
term prediction. To this end, we propose a PDE-
embedded network with multiscale time stepping
(MultiPDENet), which fuses the scheme of nu-
merical methods and machine learning, for ac-
celerated simulation of flows. In particular, we
design a convolutional filter based on the structure
of finite difference stencils with a small number of
parameters to optimize, which estimates the equiv-
alent form of spatial derivative on a coarse grid
to minimize the equation’s residual. A Physics
Block with a 4th-order Runge-Kutta integrator
at the fine time scale is established that embeds
the structure of PDEs to guide the prediction. To
alleviate the curse of temporal error accumula-
tion in long-term prediction, we introduce a mul-
tiscale time integration approach, where a neural
network is used to correct the prediction error
at a coarse time scale. Experiments across vari-
ous PDE systems, including the Navier-Stokes
equations, demonstrate that MultiPDENet can
accurately predict long-term spatiotemporal dy-
namics, even given small and incomplete train-
ing data, e.g., spatiotemporally down-sampled
datasets. MultiPDENet achieves the state-of-the-
art performance compared with other neural base-
line models, also with clear speedup compared to
classical numerical methods.

1Gaoling School of Artificial Intelligence, Renmin University
of China, Beijing, China 2Huawei Technologies, Shenzhen, China.
Correspondence to: Hao Sun <haosun@ruc.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Complex spatiotemporal dynamical systems, e.g., climate
system (Schneider et al., 2017) and fluid dynamics (Ferziger
et al., 2019), are fundamentally governed by partial differ-
ential equations (PDEs). To capture the intricate behaviors
of these systems, various numerical methods have been de-
veloped. Direct Numerical Simulation (DNS) is a widely
used method for solving PDEs. It requires specifying initial
conditions (ICs), boundary conditions (BCs), and PDE pa-
rameters, followed by discretizing the equations on a grid
using techniques like finite difference (FD), finite element
(FE), finite volume (FV), or spectral methods. Despite their
accuracy, traditional numerical methods face key challenges
of high computational costs (Goc et al., 2021), when ad-
dressing with high-dimensional problems or necessitating
fine spatial and temporal resolutions.

Recent advances in deep learning have introduced neural-
based approaches (Lu et al., 2021; Li et al., 2021; Gupta
& Brandstetter, 2023) for solving PDEs. These data-driven
methods eliminate the need for explicit theoretical formula-
tions, enabling networks to learn underlying patterns directly
from data through end-to-end training. While promising,
these approaches face notable challenges, including a heavy
dependence on large training datasets and limited generaliza-
tion. For instance, achieving accurate predictions becomes
particularly challenging when models encounter unseen ICs
or scenarios beyond the training distribution.

A notable progress lies in the paradigm of Physics-informed
neural networks (PINNs) (Raissi et al., 2019), which incor-
porates physical prior knowledge (such as PDE residuals
and I/BCs) as constraints within the loss function. This
approach allows the network to fit the data while simultane-
ously maintaining a certain degree of physical consistency.
Variants of PINNs (Raissi et al., 2020; Wang et al., 2020;
Eshkofti & Hosseini, 2023) have shown notable success
across various domains, reducing the dependency on exten-
sive datasets to some degree. However, such methods still
face scalability and generalizability challenges when applied
to complex nonlinear dynamical systems. Additionally, op-
timizing complex loss functions (Rathore et al., 2024) and
ensuring model interpretability remain challenges.

1

PDE-embedded Learning with Multi-time-stepping

A series of approaches have been proposed to integrate
physics into neural networks (NNs) to overcome the above
challenges. For instance, PeRCNN (Rao et al., 2022; 2023),
which uses feature map multiplication to construct polyno-
mial combinations for approximating the underlying PDEs,
can capture the latent spatiotemporal dynamics even with
low-resolution, noisy, and coarse data, demonstrating strong
generalizability. Nevertheless, this method suffers from er-
ror accumulation, degrading its performance in long-term
predictions. Another approach (Kochkov et al., 2021; Sun
et al., 2023), combining NNs with numerical methods, aims
to accelerate the simulation process on coarse grids. These
hybrid methods leverage traditional solvers for stability and
NNs for accuracy. However, they often rely heavily on NN
capabilities and often requires large amounts of data.

To overcome these limitations, we propose MultiPDENet, a
PDE-embedded network that incorporates multiscale time-
stepping (as shown in Figure 1), to efficiently simulate spa-
tiotemporal dynamics, e.g., turbulent fluid flows, on coarse
spatial and temporal grids with limited data. Notably, it
integrates a trainable neural solver for precise predictions at
micro time scales, while employing a NN to correct errors
at macro time steps. Additionally, by embedding PDEs,
MultiPDENet offers enhanced generalizability. The primary
contributions of this work are summarized as follows:

• We developed MultiPDENet, a PDE-embedded net-
work with multiscale time-stepping, for accelerated
flow simulations on spatiotemporal coarse grids. By
integrating neural solver with PDEs, MultiPDENet
achieves great generalizability and efficiency.

• Leveraging the structure of FD stencils, we introduced
a symmetric convolutional filter that approximates the
equivalent form of derivatives on coarse grids, aiming
to reduce the residual error of the governing PDEs.

• Experimental results across various datasets, covering
1D and 2D equations (e.g., reaction-diffusion processes
and turbulent flows), demonstrate the effectiveness of
MultiPDENet in accelerating long-term simulations.

2. Related Work
Related works on numerical, machine learning, physics-
inspired learning, and hybrid learning methods for simula-
tion of PDE systems are given in Appendix A.

3. Methodology
3.1. Problem Description

Let’s consider a general spatiotemporal dynamical system
governed by the following PDE:

ut = F(u,u2, . . . ,∇u,∆u, . . . ;λ) + f , (1)

where u(x, t) ∈ Rn denotes the physical state in the spa-
tiotemporal domain Ω×[0, T]; ut the first-order time deriva-
tive term; F(·) a linear/nonlinear functional parameterized
by PDE parameters λ (e.g., the Reynolds number Re); ∇
the Nabla operator is defined as [∂x, ∂y, ...]T; and f the
source term. Additionally, we define I(u,ut;x ∈ Ω, t =
0) = 0 and B(u,∇u, · · · ;x ∈ ∂Ω) = 0 specified ICs and
BCs, where ∂Ω represents the domain boundary.

We aim to accelerate the simulation of fluid flows by using
a PDE-embedded network with multiscale time stepping
based on a limited training data (coarse in both spatial and
temporal scales). The model is capable of rapid simula-
tion, achieving high solution accuracy while demonstrating
strong generalizability across varying ICs, source terms,
complex domains, and PDE parameters.

3.2. Model Architecture

In this section, we introduce MultiPDENet and show how
our model efficiently captures the underlying spatiotem-
poral dynamics. As illustrated in Figure 1(a), predicting
uk+1 from the input uk involves two main components: the
Physics Block and the MaNN Block.

3.2.1. MULTI-SCALE FORWARD TIME STEPPING SCHEME

While the learnable neural solver can be used independently,
its accuracy for long-term prediction is limited due to error
accumulation. To address this issue, we introduce a multi-
scale time stepping scheme, incorporating micro-scale and
macro-scale steps, to improve predictive accuracy and en-
ables fast prediction of PDE solutions on coarse spatiotem-
poral grids. Specifically, we define two types of time step-
ping: micro-scale step and macro-scale step, to enhance
the performance of spatiotemporal dynamics prediction. At
the macro scale, given the coarse solution uk at time tk,
MultiPDENet is expected to predict the next-step solution
uk+1 at tk+1, which can be expressed as:

uk+1 = uk +

M∑
m=1

δūk
m + MaNN(uk,∆t, dx), (2)

where ∆t is the macro-scale time interval, and dx the spatial
resolution of mesh grid. Here, δūk

m is the incremental up-
date by the Physics Block (see Section 3.2.2) at each micro
step, as shown in Eq. (3), where M denotes the number of
micro-scale time steps in one macro-scale step (e.g., M = 4
herein). The MaNN Block (see Section 3.2.4) refines these
incremental updates generated by the Physics Block on
coarse grids, yielding the final update for the macro step.

3.2.2. PHYSICS BLOCK: LEARNABLE NEURAL SOLVER

To accurately predict at the micro-scale step, we developed a
neural solver, referred to as the Physics Block, as illustrated

2

PDE-embedded Learning with Multi-time-stepping

Physics
Block

Physics
Block

Physics
Block

Micro Step

Macro Step

 Block

a

+

+ + + +
……

……

b
Physics Block

PDE Block

Correction
Block

Block

Poisson
Block

+
+

Correction
Block

Filter
Bank

Poisson
Block

Collect
derivatives

PDE
Residue Block

O

I

c PDE Block

Figure 1. Schematic of MultiPDENet for learning turbulent flows. (a), Model architecture. (b), Physics Block. (c), Learnable PDE block.

in Figure 1(b). This solver is designed to ensure the stability
(Hoffman & Frankel, 2018), accuracy, and efficiency of
its predictions by adhering to the Courant-Friedrichs-Lewy
(CFL) conditions (LeVeque, 2007). The Physics Block
comprises three main components: the Poisson Block, the
PDE Block, and the MiNN Block. The solution update
for each micro-scale time step can be describe as ūk

m+1 =
ūk
m + δūk

m, where

δūk
m =

∫ tk+mδt

tk+(m−1)δt

[
B (ũ(τ),∇ũ(τ), · · · ;λ)+f(τ)

]
dτ

+ MiNN
(
ūk
m,Ξ

k
m

(
p, ∇̂û, ∇̂

2
û, ∇̂p, f , Re

))
. (3)

Here, ūk
m represents the intermediate state at m-th micro-

scale step initialized at time tk (note that ūk
1 = uk). We

denote ũ(τ) ≜ u(x̃, τ), where x̃ depicts the coordinates of
coarse grid. Moreover, λ can be set as trainable if unknown.
B represents the PDE block, used for approximating F in
Eq. (1). To keep the accuracy and ensure the stability, the
PDE block is designed based on the RK4 integrator (see
Appendix B.3) and consists of the Correction Block and a
trainable filter bank. Since the considered micro-scale time
interval is relatively large, the MiNN Block is used as a
corrector to refine the solution. More details can be found
in Appendix B. In fact, the Physics Block can be used for
prediction independently (e.g., the quantitative results for
the NSE dataset predictions using purely the Physics Block
are presented in Table 3, labeled Model C).

PDE Block. The PDE block computes the residual of the
governing PDEs. It incorporates a learnable filter bank with

symmetry constraints, which calculates derivative terms
based on the corrected solution produced by a Correction
Block. These terms are then combined into the governing
PDEs, a learnable form of F in Eq. (1). This process is
incorporated into the RK4 integrator (see Appendix B.3) for
solution update which can be expressed as

F
(
ūk
m, · · · , ∇̂ˆ̄uk

m, ∇̂
2 ˆ̄uk

m, · · · ;λ
)

approx.←−−−−− B
(
ūk
m, · · · ,∇ūk

m,∇
2ūk

m, · · · ;λ
)
,

(4)

where B denotes the PDE block, and ūk
m the coarse solution

(aka, solution on coarse grids) at micro-scale time tk +mδt.
Here, ˆ̄uk

m refers to the neural-corrected state of the coarse
solution, which is obtained through the Correction Block
(see Appendix B.1 for details). This corrected state ˆ̄uk

m is
used to estimate spatial derivatives, namely, ˆ̄uk

m = NN(ūk
m).

Note that ∇̂ and ∇̂
2

represent trainable Nabla and Laplace
operators, respectively, each consisting of a symmetrically
constrained convolution filter, e.g., an enhanced FD kernel
to approximate spatial equivalent derivatives. By utilizing
the RK4 integrator, we can project the coarse solution to the
subsequent micro-scale time step. Despite the reduced res-
olution causing some information loss, this learnable PDE
block enables a closer approximation of the equivalent form
of the derivatives on coarse grids. This addition serves as a
fully interpretable “white box” element within the overall
network structure.

Poisson Block. In solving incompressible NSE, the pres-
sure term, p, is obtained by solving an associated Pois-
son equation. To compute the pressure field, we imple-

3

PDE-embedded Learning with Multi-time-stepping

Table 1. Overview of datasets and training configurations. Note that “→” denotes the downsampling process from the high resolution
(simulation) to the low resolution (training and testing).

Dataset Numerical Spatial Time Steps # of Training # of Testing Macro-step Micro-step
Method Grid (Temporal Grid) Trajectories Trajectories Rollout Rollout

KdV Spectral 256 → 64 10000 → 2000 3 10 10 4
Burgers FD 1002 → 252 2000 → 200 5 10 10 4
GS FD 1282 → 322 4000 → 200 3 10 1 4
NSE FV 20482 → 642 153600 → 1200 5 10 1 4

mented a pressure-solving module shown in Figure S1(a),
which solves the Poisson equation, ∆p = ψ(u), where
ψ(u) = 2 (uxvy − uyvx) for 2D problems (the subscripts
indicate the spatial derivatives along x or y directions). To
compute the pressure, we employ a spectral method (Pois-
son solver) based on ψ(ūk

m) to calculate p̄km. As shown
in Figure S1(b), this approach dynamically estimates the
pressure field from the velocity inputs, removing the need
for labeled pressure data.

3.2.3. ADAPTIVE FILTER WITH CONSTRAINT

Traditional FD methods often yield inaccurate derivatives on
coarse grids. To address this, we propose a learnable filter
with constraints that approximates equivalent derivatives on
coarse grids, minimizing the PDE residuals during training
and thereby improving the model’s predictive accuracy. By
leveraging the symmetry of central difference stencils, our
filter maintains structural integrity while enhancing network
flexibility. As shown in Figure 2, we construct two 5 ×
5 symmetric matrices, each requiring only six learnable
parameters due to symmetry constraints. These matrices
are designed to compute the first-order (g′) and second-
order (g′′) derivatives, respectively. In the matrix of g′′, s =
4×(a3+a4+a5+a6)+2×(a1+a2). This design leverages
the structural properties of central difference methods. By
satisfying the Order of Sum Rules (Long et al., 2018), this
filter can achieve up to 4th-order accuracy in approximating
the derivatives via optimization of trainable parameters.

3.2.4. NN BLOCK

To alleviate the error accumulation during long-term predic-
tions on coarse grids, we introduce the MiNN and MaNN
Blocks, operating at micro- and macro-scales, respectively.
The MiNN Block employs a lightweight model (e.g., FNO,
DenseCNN (Liu et al., 2024a)) for efficient micro-step pre-
dictions, whereas the MaNN Block delivers more accurate
predictions at larger steps (Gupta & Brandstetter, 2023). In
this study, we utilized FNO as the MiNN Block and UNet
as the MaNN Block. The significance of these blocks is
evident from the ablation studies presented in Table 3.

MiNN Block. The MiNN block is designed to rectify error
accumulation during micro-scale time step predictions. As

0

0

0

0

0

0

0

0

0

1st-order
derivative filter

2nd-order
derivative filter

Figure 2. Symmetric filter

shown in Figure 1(b) in the upper path, ūk
m is first corrected

by the Correction Block, and p̄km is computed by the Poisson
Block. Inputs, including solution states {ūk

m, p̄
k
m} and their

derivative terms, forcing term, and Reynolds number, are
fed into the MiNN Block (see Figure S1(d)). The MiNN
Block continuously refines the PDE block’s outputs on the
fly. For detailed information of the MiNN Block settings,
please refer to Appendix Table S5.

MaNN Block. Although the Physics Block offers real-time
corrections for the MiNN outputs, errors still accumulate
in long-term predictions. To mitigate error accumulation in
long-term predictions given training data sampled at large
time steps (e.g., 128∆t for the NSE dataset), we introduce
the MaNN Block. As depicted in Figure 1(a), the MaNN
Block takes the current velocity field uk as input, and up-
dates the solution uk+1 which is obtained by integrating
the outputs from both the upper and lower paths. During
the backpropagation, the MaNN Block learns to correct the
coarse solution output of the Physics Block in real time,
ensuring that their combined results more closely align with
the ground truth. The configuration details for this block are
found in Appendix Table S6.

4. Experiment
We validate the performance of our method against baseline
models on various PDE datasets. We then perform general-
ization tests across different external forces (f), Reynolds
numbers (Re), and domain sizes on the Kolmogorov flow
(KF) dataset. Finally, we present ablation studies to demon-
strate the contributions of each component in our model.

4

PDE-embedded Learning with Multi-time-stepping

Table 2. Results of MultiPDENet and baselines. For KdV, Burgers,
and GS, we inferred upper time limits of 50 s, 1.4 s, and 1200
s, for the test set as the system dynamics stabilized within these
trajectories. These time limits were used to calculate HCT.

Case Model RMSE (↓) MAE (↓) MNAD (↓) HCT (s)

KdV

FNO 0.9541 0.4607 0.3469 10.0833
PINO 0.4120 0.3022 0.2139 13.90
UNet 1.9887 1.5722 1.6158 3.1250

DeepONet NaN NaN NaN 0.1500

MultiPDENet 0.1536 0.1110 0.0833 39.8
Improvement (↑) 62.7% 63.3% 61.1% 186.3%

Burgers

FNO 0.0980 0.0762 0.0620 0.3000
PINO 0.0832 0.0749 0.0599 0.5546
UNet 0.3316 0.2942 0.2556 0.0990

DeepONet 0.2522 0.2106 0.1692 0.0020
PeRCNN 0.0967 0.1828 0.1875 0.4492

MultiPDENet 0.0057 0.0037 0.0031 1.4000
Improvement (↑) 93.1% 95.1% 94.8% 152.4%

GS

FNO 8774 1303 1303 270
PINO 0.5721 0.3579 0.3520 510
UNet NaN NaN NaN 20

DeepONet 0.4113 0.2961 0.2898 568
PeRCNN 0.1763 0.1198 0.1198 640

MultiPDENet 0.0573 0.0294 0.0298 1400.0
Improvement (↑) 67.5% 75.5% 75.1% 118.8%

NSE

FNO 1.0100 0.7319 0.0887 2.5749
UNet 0.8224 0.5209 0.0627 3.9627

LI NaN NaN NaN 3.5000
TSM NaN NaN NaN 3.7531

DeepONet 2.1849 1.0227 0.1074 0.1126

MultiPDENet 0.1379 0.0648 0.0077 8.3566
Improvement (↑) 83.2% 87.6% 87.7% 110.9%

4.1. Setup
Dataset. We generate the data using high-order FD/FV
methods with high resolution under periodic boundary con-
ditions and then downsample it spatially and temporally to
a coarse grid. The low-resolution dataset is used for both
training and testing. We consider four distinct dynamical
systems: Korteweg-de Vries (KdV), Burgers, Gray-Scott
(GS), and Navier-Stokes equations (NSE). Each dataset is
divided into 90% for training and 10% for validation. We
segment trajectories into data series, where each sample in-
cludes multi snapshots (e.g., for the KdV dataset, the sample
length is set to 10, as detailed in Table 1) separated by a time
step ∆t, the 2nd to the last snapshot serves as the training
labels. During training, we use only 3–5 trajectories for
each system, and evaluate them on 10 distinct trajectories.
For further details, please refer to Appendix C.

Model training. Our objective is to accelerate flow sim-
ulations with all computations anchored to coarse grids.
During training, the model solely predicts the solutions
for subsequent time steps, employing Mean Squared Error
(MSE) as the loss metric. Unlike PINNs, our MultiPDENet
directly embeds PDEs into its architecture, resulting in a
loss function that exclusively comprises data loss, given by:
J (λ) = 1

BN

∑B
i=1

∑N
j=1MSE

(
Ȟij ,Hij

)
, where Ȟij

denotes the coarse solution predicted by model rollout for
the j-th sample in the i-th batch, and Hij is the correspond-

ing ground truth. Here, N denotes the number of batches,
B the batch size, and λ the trainable PDE parameters.

Model generalization. The generalization of MultiPDENet
is evaluated across ICs, PDE parameters (e.g., Re), force
terms, and computational domain sizes (e.g., different mesh
grids). The model integrates ICs through its time-marching
mechanism, ensuring robust generalization when trained
effectively. The Reynolds number (Re) is represented via
a two-dimensional embedding, Reembb = 1

Re · (a ⊗ b),
using trainable vectors a and b. This embedding, applied
in both the PDE and MiNN blocks, reduces error propaga-
tion from the diffusion term on coarse grids and enhances
generalization across Re values. The force term is incor-
porated into the learnable PDE block and the MiNN block,
where it serves as both a PDE feature and an input feature
map as shown in Figure S1, enabling joint learning of force
variations for better generalization.

Evaluation metrics. We evaluate the performance of our
model using four metrics: Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), Mean Normalized Abso-
lute Difference (MNAD), and High Correlation Time (HCT).
For detailed definitions, please refer to Appendix E.

Baseline models. To ensure a comprehensive comparison,
we selected several baseline models, including FNO (Li
et al., 2021), PINO (Li et al., 2024c), UNet (Gupta & Brand-
stetter, 2023), TSM (Sun et al., 2023), LI (Kochkov et al.,
2021), DeepONet (Lu et al., 2021), and PeRCNN (Rao et al.,
2023). Details are found in Appendix F.

4.2. Solving PDE Systems

KdV. The primary challenge of this dataset lies in accu-
rately capturing the complex interplay between nonlinearity
and dispersion, leading to phenomena like soliton formation
(Gardner et al., 1967). As shown in Figure 3(a), each base-
line model struggles to produce accurate predictions, with
DeepONet exhibiting significant divergence. In contrast,
MultiPDENet demonstrates superior accurate predictions
for ICs outside the training range. The correlation curve
in Figure 3(b) highlights the significantly higher correla-
tion of MultiPDENet compared to the baselines. The error
distribution in Figure 3(c) confirms its lower error levels. Ta-
ble 2 shows our model’s generalizability, with performance
improvements ranging from 61.1% to 186.3%.

Burgers. As shown in Figure 3(d), the solution snapshots
predicted by MultiPDENet are significantly more accurate
than those of the baseline models. The baseline models,
limited by the coarse training data, produce incorrect pre-
dictions. The correlation curve in Figure 3(e) shows that
MultiPDENet maintains a high correlation with the ground
truth throughout the prediction, while other baseline models
diverge. This is further evidenced by the error distribution
in Figure 3(f), demonstrating that MultiPDENet’s error is

5

PDE-embedded Learning with Multi-time-stepping

UNetRef.
a Simulation time

Time steps

Error distribution

Ti
m

e
[s

]

b c

UNetRef. FNO DeepONet

Snapshots at timestep = 140

d MultiPDENet PeRCNN

C
or

re
la

tio
n

Time steps

Error distribution

 0.09

 0.18

 0.00

e f

UNetRef. FNO DeepONet

Snapshots at timestep = 120

g
MultiPDENet PeRCNN

Time steps

Error distribution

 0.60

 1.03

 0.17

 0.29

 0.61

-0.04

h i

M
N

A
D

Models

 -0.11

 0.03

-0.25

DeepONetFNO

Spatial [m]

PINO

Simulation time

Simulation time

Models

Models

 0.05

 0.36

 -0.25

MultiPDENet

C
or

re
la

tio
n

C
or

re
la

tio
n

M
N

A
D

M
N

A
D

NaN

Figure 3. An overview of the comparison between our MultiPDENet and baselines, including predicted solutions (left), correlation curve
(middle), and error distributions (right). (a)-(c) show the qualitative results on KdV. (d)-(f) show the qualitative results on Burgers. (g)-(i)
show the qualitative results on GS. These PDE systems are trained with grid sizes of 64, 25×25, 32×32, respectively.

over an order of magnitude lower than that of the baselines.
Table 2 confirms these findings with MultiPDENet’s im-
provements exceeding 94.1% across all evaluation metrics.

GS. This reaction-diffusion system is nonlinear, making it
challenging to capture its complex patterns (see Figure 3(g)).
Only MultiPDENet accurately predicts the trajectory evolu-
tion. The baseline models struggle to learn the spatiotem-
poral dynamics, and even PeRCNN, despite its embedded
physics, produces inaccurate predictions due to the limited
and coarse training data. Figure 3(h) demonstrates the su-
perior correlation of MultiPDENet’s predictions with the
ground truth. The error analysis in Figure 3(i) reveals signif-
icantly lower error levels for MultiPDENet, often by 1 to 2
orders of magnitude smaller compared to the baselines. Ta-
ble 2 further validates this observation, with MultiPDENet’s
improvements of 67.5% to 118.8% over the best baseline.

NSE. We evaluate a KF with Re = 1000 across different
ICs, governed by the NSE. Figure 4(a) shows the trajectory
snapshots predicted by MultiPDENet and the baseline mod-
els over 10 s. Our model outperforms DNS 512, accurately
capturing both global and local correction patterns. The
neural methods, particularly FNO, exhibit poor generaliza-
tion, producing granular and erroneous solutions. Among
the Physics + ML baselines, TSM performs the best, but

starts to produce incorrect patterns at t = 5 s due to error
accumulation. The correlation curve in Figure 4(b) supports
these findings. Our model also achieves a spectrum energy
distribution closely matching the ground truth (see Figure
4(c)). Table 2 highlights a performance improvement of
over 83.2%. Even with 20% less training data, our model
maintains strong generalizability (see Appendix Table S3).

4.3. Model Generalization

We conducted generalization tests on the KF flow dataset to
assess our model’s ability to capture the underlying dynam-
ics. The model was initially trained on 5 sets of trajectories,
where the forcing term is defined as f = sin(4y)ηx − 0.1u
withRe = 1000 and ηx = [1, 0]T . After training, we tested
MultiPDENet on 10 different sets of trajectories, each with
varying Reynolds numbers (Re) and forcing terms (f), to
evaluate its performance across a range of different ICs.

Test on various Reynolds numbers. Firstly, we evaluate
the generalizability of MultiPDENet across four different
Reynolds numbers: Re = 500, 800, 1600, 2000. The vary-
ing Re values result in trajectories with differing levels of
complexity. Figure 5(a) displays the accurate predictions
made by our model at time step 300 for different Re. Fig-
ure 5(b) shows the correlation curves between the predicted

6

PDE-embedded Learning with Multi-time-stepping

M
ul

tiP
D

E
N

et
T = 0 T = 2.5 s T = 5 s T = 7.5 sa

TS
M

D
N

S
 2

04
8

LI
FN

O
U

N
et

N
um

er
ic

al
 S

ol
ve

r
D

N
S

 5
12

D
N

S
 6

4
D

ee
pO

N
et

Ph
y

+
M

L
D

at
a

dr
iv

en
T = 10 s

10

C
or

re
la

tio
n

b Simulation time

-10

-

-

-

-5

-

0

Vo
rti

ci
ty

5

- Time steps
c

Wavenumber k

S
ca

le
d

en
er

gy
 s

pe
ct

ru
m

 E
(k

) k
5

Figure 4. Comparison of MultiPDENet and baseline models on Kolmogorov flow with Re = 1000. (a) shows the evolution of predicted
vorticity fields for reference, MultiPDENet and baselines, starting from the same initial velocities. (b) shows the correlation curve across
500 time steps. (c) shows the scaled energy spectrum scaled by k5 averaged between time steps 100 and 500.

and ground truth trajectories, while Figure 5(c) highlights
the error distributions, which remain consistently below 0.1,
indicating a low error level.

Test on external forces. Next, we performed the generaliza-
tion test using 4 distinct f . As shown in Figure 5(d), Mul-
tiPDENet accurately predicts the trajectories for all forces.
Notably, the downward trend in the correlation curve (in
Figure 5 (e)) for f2 parallels the behavior observed in Fig-
ure 4(b), likely because f alters only the periodic function
without changing the wave number. The error analysis in
Figure 5(f) confirms that the error levels remain below 0.1.

Test on flow with Re = 4000. Turbulence at high Re’s
presents significant challenges for prediction due to its non-
linearity and complex vortex structures. To further demon-
strate the superior capability of our model, we conducted an
additional experiment with a high Re = 4000 (see details in
Table S2) with the experimental setup in Section 4.1. After

training, the model was tested on 10 trajectories with new
ICs. Appendix Figure 6(a) illustrates the snapshots pre-
dicted by MultiPDENet over 600 timesteps, demonstrating
sustained accuracy even at time step 450. The correlation
curve in Appendix Figure 6(b) highlights the superiority of
our model compared to DNS 1024. The error analysis in
Appendix Figure 6(c) confirms this performance, with er-
rors consistently below 0.01. These results demonstrate the
effectiveness of MultiPDENet for higher Reynolds number,
e.g., Re = 4000, within domain (0, 2π)2.

Test on flow within larger domains. We extended the spa-
tial domain from (0, 2π)2 to (0, 4π)2 to further evaluate our
model’s generalizability over larger mesh grids in a more
complex scenario. Larger domains introduce diverse physi-
cal phenomena, challenging the model to capture global and
local dynamics on coarse grids. Using the same 64 × 64
grid, we tested our trained model on 10 unseen trajectories

7

PDE-embedded Learning with Multi-time-stepping

Time steps

Error distributionb cSimulation time

Reynolds numbers

C
or

re
la

tio
n

M
N

A
D

R
ef

.
M

ul
tiP

D
E

N
et

Re = 2000Re = 500 Re = 1600Re = 800

Snapshots at timestep = 300

10

0

-10
-

-

a

Time steps

Error distributione fSimulation time

External forcings
C

or
re

la
tio

n

M
N

A
D

R
ef

.
M

ul
tiP

D
E

N
et

Snapshots at timestep = 300

10

0

-10
-

-

d

-

-

Figure 5. MultiPDENet can generalize to simulate different Reynolds numbers and external forcings without retraining. Vorticity snapshots
predicted by MultiPDENet and ground truth at timestep = 300 (left), correlation curve over 600 timesteps (middle), error distribution
(right). (a-c) display results for different Reynolds numbers, (d-f) show results for varying external forcings.

Time steps

Error distribution
b cSimulation time

Models

C
or

re
la

tio
n

M
N

A
DD

N
S

 4
09

6
M

ul
tiP

D
E

N
et

Time step = 450Time step = 0 Time step = 300Time step = 150

Vorticity snapshots over 600 timesteps

10

0

-10-

-

a

-

Time step = 600

Figure 6. MultiPDENet is applicable to high Reynolds number turbulence. (a) Trajectories predicted by MultiPDENet at Re = 4000. (b-c)
Correlation and error distribution comparison between MultiPDENet and numerical method.

(details in Appendix C). As shown in Appendix Figure 7(a),
the snapshots over 300 time steps remain accurate. The cor-
relation curve in Appendix Figure 7(b) depicts our model’s
performance closely matches or exceeds DNS 1024. The
error distribution in Appendix Figure 7(c) shows error levels
comparable to DNS 1024. Notably, our model achieves a
speedup of 6× compared to the FV DNS method.

In summary, MultiPDENet demonstrates remarkable gener-
alizability, showcasing its ability to capture the underlying
dynamics across multiple temporal scales. The embedded
learnable PDE module within our model is crucial for en-
abling robust and accurate predictions.

4.4. Ablation Study

To quantify the contribution of each module, we conducted
ablation experiments on the KF dataset. Specifically, we
compared the following model variations: (1) Model A (no

Poisson Block); (2) Model B (no filter structure constraint);
(3) Model C (only Physics Block for prediction); (4) Model
D (FD convolution instead of symmetric filter); (5) Model
E (no Correction Block); (6) Model F (no MiNN Block);
(7) Model G (no MaNN Block); (8) Model H (no Physics
Block); (9) Model I (forward Euler); and (10) MultiPDENet
(the full model). The results are shown in Table 3.

Removing the Poisson Block impairs our model’s perfor-
mance, confirming p-u decoupling necessity in the NSE.
Relaxing the filter structure constraint degrades the result,
validating our proposed kernel’s efficacy. The Physics Block
alone yields worse prediction compared to the full model.
Replacing the Conv kernel with FD stencils results in poorer
performance, indicating that fixed-value FD kernels are un-
suitable for coarse grids. Omitting the Correction Block also
degrades the model prediction, highlighting the necessity of
field correction. While the model can still accurately predict
up to 5.9 s without the MiNN Block, the error increases by

8

PDE-embedded Learning with Multi-time-stepping

Time steps

Error distribution
b cSimulation time

Models

C
or

re
la

tio
n

M
N

A
DD

N
S

 4
09

6
M

ul
tiP

D
E

N
et

Time step = 250Time step = 100 Time step = 200Time step = 150

Vorticity snapshots over 300 timesteps

15

0

-15-

-

a

-

Time step = 300

Figure 7. MultiPDENet applied to a larger domain. (a) Predicted trajectories within 4π × 4π. (b-c) Correlation and error distribution
comparison with the numerical method.

Table 3. Results of the ablation study.

Ablated Model RMSE (↓) MAE (↓) MNAD (↓) HCT (↑)
Model A 0.1601 0.0711 0.0085 7.904
Model B 0.2432 0.1156 0.0137 7.8633
Model C 0.2632 0.1402 0.0186 7.3146
Model D 0.2503 0.1410 0.0145 7.0783
Model E 0.2958 0.1453 0.0180 6.6856
Model F 0.4338 0.2401 0.0285 5.9768
Model G NaN NaN NaN 1.4193
Model H 1.2023 0.9256 0.1122 0.6227
Model I 0.4357 0.2321 0.0278 6.2481

MultiPDENet 0.1379 0.0648 0.0077 8.3566

4×, suggesting the need for the MiNN Block.

Removing the MaNN Block restricts the micro-scale accu-
racy and causes macro-scale instability due to error accu-
mulation. This underscores the importance of the MaNN
Block for long-term stability. The omission of the Physics
Block (e.g., solely U-Net) cripples the prediction with lim-
ited coarse training data,, proving its critical role. Moreover,
the use of RK4 outperforms forward Euler in terms of sta-
bility and accuracy. Hence, all the components are essential
and contribute meaningfully to the MultiPDENet model.

5. Conclusion
We introduce an end-to-end physics-encoded network (aka,
MultiPDENet) with multi-scale time stepping for acceler-
ated simulation of spatiotemporal dynamics such as turbu-
lent flows. MultiPDENet consists of a multi-scale temporal
learning architecture, a learnable Physics Block for solution
prediction at the fine time scale, where trainable symmetric
filters are designed for improved derivative approximation
on coarse spatial grids. Such a method is capable of long-
term prediction on coarse grids given very limited training
data (see the data size scaling test in Appendix D.4). Mul-
tiPDENet outperforms other baselines through extensive
tests on fluid dynamics and reaction-diffusion equations.
In particular, such a model excels in generalizability over
ICs, Reynolds numbers, and external forces in the turbulent
flow experiments. MultiPDENet also exhibits strong stabil-

ity in long-term prediction of turbulent flows, effectively
capturing both global and local patterns in larger domains.

We also tested the computational efficiency of trained Multi-
PDENet for accelerated flow prediction (more details shown
in Appendix G.2). For a certain given accuracy (e.g., corre-
lation ≥ 0.8), MultiPDENet achieves ≥ 5× speedup com-
pared with GPU-accelerated DNS (Appendix Table S8), e.g.,
JAX-CFD, where all the tests were performed on a single
Nvidia A100 80G GPU. However, MultiPDENet still faces
some unresolved challenges. Firstly, the model currently
only handles regular grids, due to the limitation of convolu-
tion operation used in the model. In the future, we aim to
address this issue by incorporating graph neural networks to
manage irregular grids. Secondly, the model has only been
currently tested on 1D and 2D problems. We will extend it
to 3D systems in our future work.

Acknowledgment
The work is supported by the National Science and
Technology Major Project (No. 2022ZD0117804), the
National Natural Science Foundation of China (No.
62276269 and No. 92270118), the Beijing Natural Sci-
ence Foundation (No. 1232009), and the Fundamen-
tal Research Funds for the Central Universities (No.
202230265). Our source codes are available in the fol-
lowing GitHub repository: https://github.com/
intell-sci-comput/MultiPDENet.

Impact statement
This work aims to develop a PDE-embedded network with
multiscale time stepping, integrating numerical schemes
and machine learning to accelerate flow simulations. This
approach has the potential to benefit various fields, including
weather forecasting and turbulent flow prediction. This
research is solely intended for scientific purposes and does
not present any foreseeable ethical risks.

9

https://github.com/intell-sci-comput/MultiPDENet
https://github.com/intell-sci-comput/MultiPDENet

PDE-embedded Learning with Multi-time-stepping

References
Arcomano, T., Szunyogh, I., Wikner, A., Pathak, J., Hunt,

B. R., and Ott, E. A hybrid approach to atmospheric
modeling that combines machine learning with a physics-
based numerical model. Journal of Advances in Modeling
Earth Systems, 14(3):e2021MS002712, 2022.

Azizzadenesheli, K., Kovachki, N., Li, Z., Liu-Schiaffini,
M., Kossaifi, J., and Anandkumar, A. Neural operators
for accelerating scientific simulations and design. Nature
Reviews Physics, pp. 1–9, 2024.

Bhatnagar, S., Afshar, Y., Pan, S., Duraisamy, K., and
Kaushik, S. Prediction of aerodynamic flow fields using
convolutional neural networks. Computational Mechan-
ics, 64:525–545, 2019.

Bonev, B., Kurth, T., Hundt, C., Pathak, J., Baust, M.,
Kashinath, K., and Anandkumar, A. Spherical fourier
neural operators: Learning stable dynamics on the sphere.
In International Conference on Machine Learning, pp.
2806–2823. PMLR, 2023.

Brandstetter, J., Welling, M., and Worrall, D. E. Lie point
symmetry data augmentation for neural pde solvers. pp.
2241–2256, 2022a.

Brandstetter, J., Worrall, D. E., and Welling, M. Message
passing neural pde solvers. In International Conference
on Learning Representations, 2022b.

Cao, S. Choose a transformer: Fourier or galerkin. Advances
in Neural Information Processing Systems, 34:24924–
24940, 2021.

Chen, H., Liu, Y., and Sun, H. PINP: Physics-informed
neural predictor with latent estimation of fluid flows. In
International Conference on Learning Representations,
2025.

Dresdner, G., Kochkov, D., Norgaard, P. C., Zepeda-Nunez,
L., Smith, J., Brenner, M., and Hoyer, S. Learning to
correct spectral methods for simulating turbulent flows.
Transactions on Machine Learning Research, 2023.

Eshkofti, K. and Hosseini, S. M. A gradient-
enhanced physics-informed neural network (gpinn)
scheme for the coupled non-fickian/non-fourierian
diffusion-thermoelasticity analysis: A novel gpinn struc-
ture. Engineering Applications of Artificial Intelligence,
126:106908, 2023.

Ferziger, J. H., Perić, M., and Street, R. L. Computational
methods for fluid dynamics. springer, 2019.

Gardner, C. S., Greene, J. M., Kruskal, M. D., and Miura,
R. M. Method for solving the korteweg-devries equation.
Physical Review Letters, 19(19):1095, 1967.

Geneva, N. and Zabaras, N. Transformers for modeling
physical systems. Neural Networks, 146:272–289, 2022.

Goc, K. A., Lehmkuhl, O., Park, G. I., Bose, S. T., and
Moin, P. Large eddy simulation of aircraft at affordable
cost: a milestone in computational fluid dynamics. Flow,
1:E14, 2021.

Gupta, J. K. and Brandstetter, J. Towards multi-
spatiotemporal-scale generalized PDE modeling. Trans-
actions on Machine Learning Research, 2023.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Hernández, Q., Badı́as, A., Chinesta, F., and Cueto, E.
Thermodynamics-informed neural networks for physi-
cally realistic mixed reality. Computer Methods in Ap-
plied Mechanics and Engineering, 407:115912, 2023.
ISSN 0045-7825.

Hoffman, J. D. and Frankel, S. Numerical methods for
engineers and scientists. CRC press, 2018.

Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Brenner,
M. P., and Hoyer, S. Machine learning–accelerated com-
putational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21):e2101784118, 2021.

Kossaczká, T., Ehrhardt, M., and Günther, M. Enhanced
fifth order weno shock-capturing schemes with deep
learning. Results in Applied Mathematics, 12:100201,
2021.

Kumar, N. K. A review on burgers’ equations and it’s appli-
cations. Journal of Institute of Science and Technology,
28(2):49–52, 2023.

LeVeque, R. J. Finite difference methods for ordinary
and partial differential equations: steady-state and time-
dependent problems. SIAM, 2007.

Li, Z., Kovachki, N. B., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier neu-
ral operator for parametric partial differential equations.
In International Conference on Learning Representations,
2021.

Li, Z., Han, W., Zhang, Y., Fu, Q., Li, J., Qin, L., Dong, R.,
Sun, H., Deng, Y., and Yang, L. Learning spatiotemporal
dynamics with a pretrained generative model. Nature
Machine Intelligence, 6(12):1566–1579, 2024a.

Li, Z., Shu, D., and Barati Farimani, A. Scalable trans-
former for pde surrogate modeling. Advances in Neural
Information Processing Systems, 36, 2024b.

10

PDE-embedded Learning with Multi-time-stepping

Li, Z., Zheng, H., Kovachki, N., Jin, D., Chen, H., Liu,
B., Azizzadenesheli, K., and Anandkumar, A. Physics-
informed neural operator for learning partial differential
equations. ACM/JMS Journal of Data Science, 1(3):1–27,
2024c.

Liu, X.-Y., Zhu, M., Lu, L., Sun, H., and Wang, J.-X. Multi-
resolution partial differential equations preserved learning
framework for spatiotemporal dynamics. Communica-
tions Physics, 7(1):31, 2024a.

Liu, Y., Hu, T., Zhang, H., Wu, H., Wang, S., Ma, L., and
Long, M. itransformer: Inverted transformers are effec-
tive for time series forecasting. International conference
on machine learning, 2024b.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin,
S., and Guo, B. Swin transformer: Hierarchical vision
transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 10012–10022, 2021.

Long, Z., Lu, Y., Ma, X., and Dong, B. Pde-net: Learning
pdes from data. In International Conference on Machine
Learning, pp. 3208–3216, 2018.

Long, Z., Lu, Y., and Dong, B. Pde-net 2.0: Learning pdes
from data with a numeric-symbolic hybrid deep network.
Journal of Computational Physics, 399:108925, 2019.

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E.
Learning nonlinear operators via DeepONet based on the
universal approximation theorem of operators. Nature
Machine Intelligence, 3(3):218–229, 2021.

Lu, Y., Zhong, A., Li, Q., and Dong, B. Beyond finite layer
neural networks: Bridging deep architectures and numer-
ical differential equations. In International Conference
on Machine Learning, pp. 3276–3285, 2018.

Mi, Y., Ren, P., Xu, H., Liu, H., Wang, Z., Guo, Y., Wen,
J.-R., Sun, H., and Liu, Y. Conservation-informed graph
learning for spatiotemporal dynamics prediction. In Pro-
ceedings of the 31st ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining V.1, pp. 1056–1067,
2025.

Moukalled, F., Mangani, L., Darwish, M., Moukalled, F.,
Mangani, L., and Darwish, M. The finite volume method.
Springer, 2016.

Rahman, M. A., Ross, Z. E., and Azizzadenesheli, K. U-
NO: U-shaped neural operators. Transactions on Machine
Learning Research, 2023. ISSN 2835-8856.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear

partial differential equations. Journal of Computational
Physics, 378:686–707, 2019.

Raissi, M., Yazdani, A., and Karniadakis, G. E. Hidden
fluid mechanics: Learning velocity and pressure fields
from flow visualizations. Science, 367(6481):1026–1030,
2020.

Rao, C., Ren, P., Liu, Y., and Sun, H. Discovering nonlinear
pdes from scarce data with physics-encoded learning. In
International Conference on Learning Representations,
2022.

Rao, C., Ren, P., Wang, Q., Buyukozturk, O., Sun, H., and
Liu, Y. Encoding physics to learn reaction–diffusion
processes. Nature Machine Intelligence, 5(7):765–779,
2023.

Rathore, P., Lei, W., Frangella, Z., Lu, L., and Udell, M.
Challenges in training pinns: A loss landscape perspec-
tive. CoRR, 2024.

Ren, P., Rao, C., Liu, Y., Ma, Z., Wang, Q., Wang, J.-
X., and Sun, H. Physr: Physics-informed deep super-
resolution for spatiotemporal data. Journal of Computa-
tional Physics, 492:112438, 2023.

Ren, P., Song, J., Rao, C., Wang, Q., Guo, Y., Sun, H., and
Liu, Y. Learning spatiotemporal dynamics from sparse
data via a high-order physics-encoded network. Computer
Physics Communications, 312:109582, 2025.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolu-
tional networks for biomedical image segmentation. In
Proceedings of the 18th International Conference Medi-
cal Image Computing and Computer-Assisted Interven-
tion, part III 18, pp. 234–241, 2015.

Schneider, T., Teixeira, J., Bretherton, C. S., Brient, F.,
Pressel, K. G., Schär, C., and Siebesma, A. P. Climate
goals and computing the future of clouds. Nature Climate
Change, 7(1):3–5, 2017.

So, C. C., Li, T. O., Wu, C., and Yung, S. P. Differen-
tial spectral normalization (dsn) for PDE discovery. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, pp. 9675–9684, 2021.

Stachenfeld, K., Fielding, D. B., Kochkov, D., Cranmer, M.,
Pfaff, T., Godwin, J., Cui, C., Ho, S., Battaglia, P., and
Sanchez-Gonzalez, A. Learned coarse models for effi-
cient turbulence simulation. In International Conference
on Learning Representations, 2022.

Sun, Z., Yang, Y., and Yoo, S. A neural PDE solver with
temporal stencil modeling. In International Conference
on Machine Learning, pp. 33135–33155, 2023.

11

PDE-embedded Learning with Multi-time-stepping

Takamoto, M., Praditia, T., Leiteritz, R., MacKinlay, D.,
Alesiani, F., Pflüger, D., and Niepert, M. Pdebench:
An extensive benchmark for scientific machine learning.
Advances in Neural Information Processing Systems, 35:
1596–1611, 2022.

Tang, K., Zhai, J., Wan, X., and Yang, C. Adversarial
adaptive sampling: Unify pinn and optimal transport for
the approximation of pdes. In International Conference
on Learning Representations, 2024.

Thomas, J. W. Numerical partial differential equations:
finite difference methods, volume 22. Springer Science &
Business Media, 2013.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. Advances in Neural Information
Processing Systems, 2017.

Wang, Q., Ren, P., Zhou, H., Liu, X.-Y., Deng, Z., Zhang,
Y., Chengze, R., Liu, H., Wang, Z., Wang, J.-X., et al.
P2C2 Net: PDE-Preserved Coarse Correction Network
for Efficient Prediction of Spatiotemporal Dynamics. Ad-
vances in Neural Information Processing Systems, 37:
68897–68925, 2024.

Wang, R., Kashinath, K., Mustafa, M., Albert, A., and Yu,
R. Towards physics-informed deep learning for turbulent
flow prediction. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pp. 1457–1466, 2020.

Wang, R., Walters, R., and Yu, R. Incorporating symmetry
into deep dynamics models for improved generalization.
In International Conference on Learning Representations,
2021.

Wu, H., Luo, H., Ma, Y., Wang, J., and Long, M. Ropinn:
Region optimized physics-informed neural networks. Ad-
vances in Neural Information Processing Systems, 2024.

Wu, T., Wang, Q., Zhang, Y., Ying, R., Cao, K., Sosic,
R., Jalali, R., Hamam, H., Maucec, M., and Leskovec, J.
Learning large-scale subsurface simulations with a hybrid
graph network simulator. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining, pp. 4184–4194, 2022.

Xing, L., Wu, H., Ma, Y., Wang, J., and Long, M. Helmfluid:
Learning helmholtz dynamics for interpretable fluid pre-
diction. International Conference on Machine Learning,
2024.

Zeng, B., Wang, Q., Yan, M., Liu, Y., Chengze, R., Zhang,
Y., Liu, H., Wang, Z., and Sun, H. PhyMPGN: Physics-
encoded message passing graph network for spatiotempo-
ral PDE systems. In International Conference on Learn-
ing Representations, 2025.

Zeng, D., Liu, W., Chen, W., Zhou, L., Zhang, M., and
Qu, H. Substructure aware graph neural networks. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 37, pp. 11129–11137, 2023.

Zhuang, J., Kochkov, D., Bar-Sinai, Y., Brenner, M. P.,
and Hoyer, S. Learned discretizations for passive scalar
advection in a two-dimensional turbulent flow. Physical
Review Fluids, 6(6):064605, 2021.

Zienkiewicz, O. C., Taylor, R. L., and Zhu, J. Z. The finite
element method: its basis and fundamentals. Elsevier,
2005.

12

PDE-embedded Learning with Multi-time-stepping

APPENDIX

A. Related work
Numerical Methods. Numerical methods have been extensively applied to solve PDEs. Approaches such as FD (Thomas,
2013), FE (Zienkiewicz et al., 2005), and FV methods (Moukalled et al., 2016) discretize the continuous domain into
mesh grids, transforming PDEs into algebraic equations that can be solved with high accuracy. However, these methods
often require fine spatiotemporal grids and substantial computational resources to achieve accurate solutions, particularly
in high-dimensional spaces. This leads to two main challenges: (1) the need for repeated computations when conditions
change (e.g., ICs); (2) the demand for fast simulations in many industrial applications.

Machine Learning Methods. Building on the success of machine learning in fields like natural language processing
(Vaswani et al., 2017) and computer vision (He et al., 2016), these techniques have also been applied to solving PDEs.
With abundant labeled data, it is possible to train end-to-end models to predict solutions. Representative works include
ResNet (Lu et al., 2018), CNN-based models (Bhatnagar et al., 2019; Stachenfeld et al., 2022; Gupta & Brandstetter, 2023),
Transformer-based models (Cao, 2021; Geneva & Zabaras, 2022; Liu et al., 2024b; Li et al., 2024b), Graph-based models
(Brandstetter et al., 2022b; Wu et al., 2022; Zeng et al., 2023), and pretrained diffusion models (Li et al., 2024a). Many
notable neural operators (Lu et al., 2021; Li et al., 2021; Rahman et al., 2023; Bonev et al., 2023; Azizzadenesheli et al.,
2024), which learn a mapping between functional spaces, enable the approximation of complex relationships in PDEs. While
these methods show promise in learning complex dynamics and approximating solutions, they often require substantial
amounts of labeled data.

Physics-inspired Learning Methods. Recently, physics-inspired learning methods have demonstrated impressive ca-
pabilities in solving PDEs, which can be classified into two categories according to the way of adding prior knowledge:
physics-informed and physics-encoded. The physics-informed methods take PDEs and I/BCs as a part of the loss functions
(e.g., the family of PINN (Raissi et al., 2019; 2020; Wang et al., 2020; Tang et al., 2024; Wu et al., 2024; Chen et al., 2025),
PhySR (Ren et al., 2023)). On the other hand, the physics-encoded methods employ a different approach that preserves the
structure of PDEs, ensuring that the model adheres to the given equations to capture the underlying dynamics, e.g., EquNN
(Wang et al., 2021), TiGNN (Hernández et al., 2023), PeRCNN (Rao et al., 2022; 2023; Ren et al., 2025), PhyMPGN (Zeng
et al., 2025), CiGNN (Mi et al., 2025), and HelmFluid (Xing et al., 2024). In addition, other related studies (Long et al.,
2018; 2019; Kossaczká et al., 2021; So et al., 2021) have explored the use of CNN as alternative spatial derivative operators
for approximating derivatives and capturing the dynamics of interest.

Hybrid Learning Methods. Hybrid learning methods combine the strengths of numerical approaches and NNs to improve
prediction accuracy. For efficient modeling of spatiotemporal dynamics, these methods can be trained on coarse grids.
Representative methods include FV-based neural methods (Kochkov et al., 2021; Sun et al., 2023), FD-based neural methods
(Zhuang et al., 2021; Liu et al., 2024a; Wang et al., 2024), and spectral-based neural methods (Dresdner et al., 2023;
Arcomano et al., 2022). While these approaches show efficacy in modeling spatiotemporal dynamics, their representation
capacities are often limited by the fixed structure of their numerical components. As a result, most of these models still
require sufficiently large amounts of training data.

B. The Details of MultiPDENet
B.1. Correction Block

The Correction Block leverages a neural network to refine the coarse solution, with the Fourier Neural Operator (FNO) (Li
et al., 2021) as the correction mechanism within this block. FNO functions by decomposing the input field into frequency
components, processing each frequency individually, and reconstructing the modified spectral information back into the
physical domain via the Fourier transform. This layer-wise update process is expressed as:

vl+1(x̃) = σ
(
Wlvl(x̃) +

(
K (ϕ)vl

)
(x̃)

)
, (S1)

where vl(x̃) denotes the latent feature map at the l-th layer, defined on the coarse grid x̃. The initial feature map is
v0(x̃) = P(ūk

m), where P is a local mapping function that projects ūk
m into a higher-dimensional space. The kernel

integral transformation is defined as K (ϕ)(z) = iFFT(Rϕ · FFT(z)), which applies the Fourier transform, spectral

13

PDE-embedded Learning with Multi-time-stepping

filtering via Rϕ, convolution in the frequency domain, and the inverse Fourier transform to the latent feature map z. Here, ϕ
represents the trainable parameters, σ(·) is the GELU activation function, and Wl denotes the weights of the linear layer.
After passing through an L-layer FNO, the refined coarse solution is computed as ˆ̄uk

m = Q(vL(x̃)), where Q projects the
latent representation of the final layer back into the original solution space.

In the Correction Block, we set L = 2. For the Burgers equation, we configure the model with modes = 12, width = 12, and
a projection from 12 channels to 50 channels. For the GS case, we use the same configuration: modes = 12, width = 20, with
a projection from 20 channels to 50 channels. For the KdV equation, the setup is defined as modes = 32 and width = 64,
with a projection from 64 channels to 128 channels. The NSE case, however, requires a different setup: modes = 25, width =
20, with a projection from channel = 20 to channel = 128.

B.2. Physics Block

To accurately predict at the micro-scale step, we developed a neural solver called the Physics Block, ensuring stability,
accuracy, and efficiency through adherence to the Courant-Friedrichs-Lewy (CFL) conditions (LeVeque, 2007). The Physics
Block comprises three key components: the Poisson Block (Figure S1(a)-b)), the PDE Block (Figure 1(c)), and the MiNN
Block (Figure S1(c)).

Poisson Solver. The pressure field is computed using the spectral method, which involves solving the Poisson equation:

∆p = ψ(u). (S2)

Here, ψ(u) = 2 (uxvy − uyvx) represents the source term for the pressure.

Applying the Fast Fourier Transform (FFT) to Eq. (S2), we obtain:

−(φ2
x + φ2

y)p
∗ = ψ∗(u), (S3)

where φx and φy are the wavenumbers in the x and y directions, respectively. Assuming φ2
x + φ2

y ̸= 0, we can solve for the
pressure in the frequency domain:

p∗ =
ψ∗(u)

−(φ2
x + φ2

y)
. (S4)

Finally, the pressure field is recovered in the spatial domain using the inverse FFT (iFFT):

p = iFFT [p∗] . (S5)

This spectral method offers an efficient approach to calculating the pressure field without the need for labeled data or
training.

BC encoding. To ensure that the solution obeys the given periodic boundary conditions and that the feature map shape
remains unchanged after differentiation, we employ periodic BC padding (see Figure S2) in our architecture. This method
of hard encoding padding not only guarantees that the boundary conditions are periodic, but also improves accuracy.

a

Construct Poisson
Solver

b

Filter
Bank

Poisson Block

I FFT IFFT

FFT - Fast Fourier Transform
IFFT - Inverse Fast Fourier Transform

- Wavenumbers in the and direction

Poisson Solver c

Gather feature terms

Neural
Network

Filter
Bank

 Block

O

I

Figure S1. Components of Physics Block. (a), Poisson block. (b), Poisson solver. (c), MiNN block.

14

PDE-embedded Learning with Multi-time-stepping

25 26 27 28 29 30

31 32 33 34 35 36

1 2 3 4 5 6

7 8 9 10 11 12

25 26 27 28 29 30

31 32 33 34 35 36

1 2 3 4 5 6

7 8 9 10 11 12

29 30

35 36

5 6

11 12

29 30

35 36

5 6

11 12

25 26

31 32

1 2

7 8

25 26

31 32

1 2

7 8

Symtric Filter Padding Nodes Internal Nodes

Figure S2. Periodic BC padding.

B.3. RK4 Integration Scheme

RK4 is a widely used numerical integration method for solving ordinary differential equations (ODEs) and PDEs, commonly
employed as a time integration solver. It provides a balance between computational efficiency and accuracy by calculating
intermediate slopes at various points within each time step. The general numerical integration method for time marching
from utj to utj+1

can be written as:

uj+1 = uj +

∫ tj+1

tj

B(uj(x̃, τ))dτ. (S6)

Among them, uj+1 and uj are solutions at time j + 1 and j. RK4 is a high-order integration scheme, which divides the
time interval into multiple equally spaced small time steps to approximate the integral. The final update of the above state
change can be written as:

r1 = B (uj , tj) ,

r2 = B
(
uj +

δt

2
× r1, tj +

δt

2

)
,

r3 = B
(
uj +

δt

2
× r2, tj +

δt

2

)
,

r4 = B (uj + δt× r3, tj + δt) ,

uj+1 = uj +
1

6
δt(r1 + 2r2 + 2r3 + r4),

(S7)

where δt denotes the step size and r1, r2, r3, r4 represent four intermediate variables (slopes). The global error is proportional
to the step size to the fourth power, i.e., O(δt4).

C. Data Details
KdV. The Korteweg-de Vries (KdV) equation is a well-known nonlinear PDE used to describe the movement of shallow
water waves with small amplitude in a channel. It models the dynamics of these waves and is particularly noted for its ability
to represent solitary waves, or solutons, given by:

∂u

∂t
+ u

∂u

∂x
+
∂3u

∂x3
= 0, (S8)

15

PDE-embedded Learning with Multi-time-stepping

Table S1. Settings for generating datasets.

Parameters / Case KdV Burgers GS NSE
DNS Method Spectral FD FD FV
Spatial Domain [0, 64] [0, 1]2 [0, 1]2 [0, 2π]2

Calculate Grid 256 1002 1282 20482

Training Grid 64 252 322 642

Simulation dt (s) 1.00× 10−2 1.00× 10−3 2.00× 10−3 2.19× 10−4

Warmup (s) 0 0.1 0 40
Training data group 3 5 3 5
Testing data group 10 10 10 10
Spatial downsample 4× 16× 16× 1024×
Temporal downsample 5× 10× 20× 128×

where u = u(x, t) represents the wave amplitude as a function of position x and time t. u∂u
∂x accounts for the nonlinear

effects, while ∂3u
∂x3 captures the dispersive effects in the system. The equation illustrates how a balance between these two

effects leads to the formation of solitary waves, or solitons, that maintain their shape over long distances.

To generate the dataset, we employ the method of lines (MOL) using pseudospectral methods to compute the spatial
derivatives (Brandstetter et al., 2022a). The dataset is initially generated on a grid of 256 points and then downsampled
to a grid of 64 points for numerical experiments. The simulation timestep is set to dt = 1× 10−2 seconds, with the total
simulation duration set to 100 seconds. For training, we use 3 sets of data, each comprising 1000 timesteps over ∆t = 5dt,
along with ten additional testing sets with different ICs.

Burgers. This equation models the behavior of a viscous fluid (Kumar, 2023), incorporating both nonlinear dynamics and
diffusion effects. It finds extensive applications across various scientific disciplines, including fluid mechanics, materials
science, applied mathematics and engineering. The equation is expressed as follows:

∂u

∂t
= ν∇2u− u ·∇u, t ∈ [0, T], (S9)

where u = {u, v} ∈ R2 represents the fluid velocities, ν is the viscosity coefficient set to 0.002, and ∆ is the Laplacian
operator.

As shown in Table S1, we generate the dataset using the finite difference method with a 4th-order Runge–Kutta time
integration (Rao et al., 2023) and periodic boundary conditions over the spatial domain x ∈ [0, 1]. The data is initially
generated on a 1002 grid and subsequently downsampled to a 252 grid for use in numerical experiments. The simulation
timestep is set to dt = 1× 10−3 seconds, with a total duration of T = 1.4 seconds. During the training stage, we employ
five trajectories with ∆t = 10δt, each consisting of 140 snapshots. In the testing stage, we use ten different trajectories, each
containing 140 snapshots.

GS. The Gray-Scott (GS) reaction-diffusion model is a system of PDEs that describes the interaction and diffusion of
two reacting chemicals. It is known for its ability to produce intricate and evolving patterns, making it a popular model for
studying pattern formation. It is widely used in fields such as chemistry, biology, and physics to simulate processes like
chemical reactions and biological morphogenesis. The equation is expressed by:

∂u

∂t
= Du∆u− uv2 + α(1− u),

∂v

∂t
= Dv∆v + uv2 − (α+ κ)v,

(S10)

where u and v denote the concentrations of two distinct chemical species, with Du and Dv indicating their respective
diffusion coefficients. The first equation models the change in the concentration of u over time. The term Du∆u represents
the diffusion of u, −uv2 describes the reaction between u and v, and α(1− u) represents the replenishment of u based on
the feed rate α. The second equation models the evolution of v, where Dv∆v accounts for diffusion, uv2 represents the
creation of v from the reaction with u, and −(α+ κ)v describes the decay of v, with κ as the decay rates.

16

PDE-embedded Learning with Multi-time-stepping

Table S2. Settings for generating the NSE datasets.

Dataset Grid Spatial Domain Re Warmup time dt Innerstep

f1 ∼ f4 20482→ 642 (0, 2π)2 1000 40 2.1914×10−4 32
Re = 500 20482→ 642 (0, 2π)2 500 40 2.1914×10−4 32
Re = 800 20482→ 642 (0, 2π)2 800 40 2.1914×10−4 32
Re = 1000 20482→ 642 (0, 2π)2 1000 40 2.1914×10−4 32
Re = 1600 20482→ 642 (0, 2π)2 1600 40 2.1914×10−4 32
Re = 2000 20482→ 642 (0, 2π)2 2000 40 2.1914×10−4 32
Re = 4000 40962→ 642 (0, 2π)2 4000 40 1.0957×10−4 32
Re = 1000 40962→ 642 (0, 4π)2 1000 40 1.0957×10−4 32

We also utilize the RK4 time integration method for dataset generation. In this case, we assign the values Du = 2.0× 10−5,
Dv = 5.0× 10−6, α = 0.04, and κ = 0.06. The dataset is generated using the finite difference method on a 1282 grid with
periodic boundary conditions, spanning the spatial domain x ∈ [0, 1]2. To generate different ICs, we first define a grid based
on the spatiotemporal resolution and initialize the concentrations of two chemicals. By setting different random seeds and
adding varied random noise, we create unique ICs. The simulation uses a timestep of dt = 0.5 s over a total duration of T =
1400 seconds. The data is then downsampled to a 322 grid, and the timestep is increased to 10 seconds (∆t = 20dt) for
ground truth creation. We utilize three training trajectories, each with 180 snapshots, and ten additional testing sets with
varying ICs.

NSE. The Navier-Stokes equations (NSE) are fundamental to the study of fluid dynamics, governing the behavior of fluid
motion. In this paper, we focus on a two-dimensional, incompressible Kolmogorov flow with periodic boundary conditions,
expressed in velocity-pressure form as:

∂u

∂t
+ (u ·∇)u =

1

Re
∇2u−∇p+ f , t ∈ [0, T],

∇ · u = 0,
(S11)

where u = {u, v} ∈ R2 denotes the fluid velocity vector, p ∈ R represents the pressure, and Re is the Reynolds number
that characterizes the flow regime. The Reynolds number serves as a scaling factor in the NSE, balancing the inertial forces,
represented by the advection term (u ·∇)u, with the viscous forces, captured by the Laplacian term ∆u. When Re is
low, the flow remains predominantly laminar and smooth due to the dominance of the viscous forces. Conversely, at high
Reynolds numbers, the inertial forces take precedence, leading to a more chaotic and turbulent flow behavior.

To create the dataset, we follow the approach outlined in JAX-CFD (Kochkov et al., 2021). We simulate data using the Finite
Volume Method (FVM) on a fine grid with a time step of dt (e.g., Re = 1000, 2048 × 2048). This data is then downsampled
to a coarse grid with ∆t = 128dt (e.g., Re = 1000, 64 × 64) to serve as the ground truth. Different ICs are generated by
introducing random noise into each component of the velocity field and subsequently filtering it to obtain a divergence-free
field with the desired properties. For training, we utilize only five groups of labeled data with 4800 snapshots, while
testing involves ten sets of trajectories. The model performance tests include trajectories with different Reynolds numbers
Re = 500, 800, 1600, 2000, 4000, different external forces f1 = cos(2y)ηx − 0.1u, f2 = 0 f3 = cos(4y)ηx − 0.1u,
f4 = sin(4y)ηx − 0.4u, and a larger computational domain x ∈ (0, 4π)2. The detailed dataset parameters are shown in
Table S2.

D. Additional Experimental Results
D.1. Less Data and Added Noise

To evaluate our model’s robustness against missing data and noise, we conducted experiments on the NSE using five sets of
trajectories (5×1200×2×64×64). We tested two conditions: (1) randomly removing 20% of snapshots and (2) adding 0.1%
Gaussian noise during training. As shown in Table S3, the model’s performance was only slightly impacted in Experiment 1,
with low error rates. In Experiment 2, HCT remained above 8 s. These results highlight the model’s strong generalization
ability even under challenging conditions.

17

PDE-embedded Learning with Multi-time-stepping

Table S3. Performance metrics under different noise levels during training.

Training RMSE MAE MNAD HCT (s)

- 20% data 0.1935 0.0958 0.0113 8.1392
+ 0.1% noise 0.2083 0.1014 0.0123 8.0431

normal 0.1379 0.0648 0.0077 8.3566

Table S4. Performance metrics for different NN blocks.

Model RMSE MAE MNAD HCT

Model-a NaN NaN NaN 0.8846
Model-b NaN NaN NaN 5.2930
Model-c 0.2575 0.1507 0.0191 7.2930
Model-d 0.1564 0.0703 0.0083 8.0525
Model-e 0.2479 0.1242 0.0197 7.6346

MultiPDENet 0.1379 0.0648 0.0077 8.3566

D.2. Parametric Experiments on MiNN Block and MaNN Block

To investigate the role of the NN blocks in our model, we conducted additional comparative experiments with the following
configurations:

• Model-a: the MiNN Block was set to UNet and the MaNN Block to FNO;

• Model-b: both the MiNN Block and the MaNN Block were set to FNO;

• Model-c: both blocks were set to FNO with roll-out training applied at the macro step (with an unrolled step size of 8);

• Model-d: the MiNN Block was set to DenseCNN and the MaNN Block to UNet;

• Model-e: the MiNN Block was set to FNO while the MaNN Block was set to Swin Transformer (Liu et al., 2021).

All other experimental settings were kept consistent, and the results are presented in Table S4. Model-a and Model-b
encountered NaN values, which can be attributed to the MaNN Block requiring a model capable of robust predictions at the
macro step. Without such a model, multi-step roll-out training (as in Model-c) becomes necessary to enhance the model’s
stability in long-term predictions. When a strong predictive module is employed at the macro step (e.g., UNet), the MiNN
Block can be replaced with a more parameter-efficient model, such as DenseCNN (Model-d). Setting the MaNN Block to
Swin Transformer resulted in a slight decrease in accuracy, which can be attributed to the relatively small size of our dataset,
as the Swin Transformer typically excels on larger datasets.

D.3. Generalization Test on flow with Re = 4000.

To further demonstrate the superior capability of our model, we conducted an additional experiment with a high Reynolds
number Re = 4000 (see details in Table S2) maintaining the experimental setup of Section 4.1. The result is shown in Figure
6.

D.4. Scaling against Data Size

As shown in Figure S3, our testing results demonstrate that the model exhibits a scaling law behavior, with the RMSE
gradually decreasing as the amount of training data increases. Our model adheres to this scaling law as well. Moreover,
even in scenarios with limited data regimes (e.g., only five trajectories), the model achieves a low level of error, highlighting
its robustness and ability to learn from limited data.

18

PDE-embedded Learning with Multi-time-stepping

PeRCNN
MultiPDENet

Te
st

in
g

R
M

SE
 (l

og
 1

0)

Data volume

Figure S3. Comparison of PeRCNN and MultiPDENet across various training set sizes on the Burgers equation. The x-axis represents
data volume, defined as the product of trajectory timesteps and the number of trajectories (corresponding to 5, 8, 16, 32, and 64 trajectories,
respectively). Dotted lines denotes the linear interpolation.

E. Evaluation Metrics
We employ several metrics to assess the performance of the tested models, including Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), Mean Normalized Absolute Difference (MNAD), and High Correction Time (HCT) (Sun
et al., 2023). RMSE quantifies the average magnitude of the errors between predicted and actual values, providing insight
into the model’s accuracy. MAE assesses the average absolute deviation between predicted and observed values, thereby
indicating the scale of the errors. MNAD serves as an important metric for evaluating the consistency of model outputs over
time, calculating the average discrepancy across temporal data points and offering a normalized measure of prediction error
relative to the range of actual data. HCT gauges the model’s capability for making reliable long-term predictions. These
metrics are defined as follows:

RMSE =

√√√√ 1

n

n∑
i=1

∥Hi − Ȟi∥2, (S12)

MAE =
1

n

n∑
i=1

∣∣Hi − Ȟi

∣∣ , (S13)

MNAD =
1

n

n∑
i=1

∥Hi − Ȟi∥
∥Hi∥max − ∥Hi∥min

, (S14)

HCT =

N∑
i=1

∆t · [PCC(Hi, Ȟi) > 0.8], (S15)

where

PCC(Hi, Ȟi) =
cov(Hi, Ȟi)

σHi
σȞi

. (S16)

Here, n represents the number of trajectories; Hi denotes the ground truth for each trajectory; Ȟi indicates the spatiotemporal
sequence predicted by the model. The term “cov” refers to the covariance function, while “σ” represents the standard
deviation of the respective sequence. The Iverson bracket returns a value of 1 when the condition (PCC(Hi, Ȟi) > 0.8) is
satisfied and 0 otherwise. The variable N signifies the total number of time steps.

19

PDE-embedded Learning with Multi-time-stepping

F. Baseline Models
Fourier Neural Operator (FNO). The FNO (Li et al., 2021) combines neural networks with Fourier transforms to
effectively capture both global and local features of system dynamics. The architecture has two key components: First, it
applies Fourier transforms to the system state, performing convolution operations in the frequency domain to capture global
information. This is followed by an inverse Fourier transform which maps the data back to the spatial domain. Secondly,
convolutional layers are employed to extract local features directly from the system state. The outputs from both global
and local components are then integrated through the application of activation functions, which ultimately yield the final
prediction.

PINO. PINO (Li et al., 2024c) shares the same architecture as FNO but incorporates physics-based constraints by embedding
governing equations into the loss function. The loss function can be expressed as: L(λ) = LEq + LData. The first term of
the loss function, LEq, represent an MSE loss computed using the analytical expressions of the dynamics, as defined in
Equation 1. The second term LData is the data loss, which was previously discussed in Section 4.1.

PeRCNN. PeRCNN (Rao et al., 2023) integrates physics-based principles directly into the learning framework by
embedding governing equations into the neural network structure. The architecture features multiple parallel CNNs that
model polynomial relationships via feature map multiplications. This incorporation of physical laws improves the model’s
generalization and extrapolation capabilities, enabling accurate predictions in dynamic systems governed by complex
equations.

UNet. The UNet architecture (Ronneberger et al., 2015) adopts a symmetric encoder-decoder structure originally designed
for computer vision tasks. The encoder compresses the input by applying multiple downsampling layers to capture
hierarchical features at various scales. Conversely, the decoder gradually restores the original spatial resolution using
upsampling operations. Skip connections bridge the encoder and decoder, directly transferring feature maps to retain
fine-grained details. This design allows UNet to merge high-resolution spatial information with deeper, abstract features,
achieving accurate reconstructions of both local and global structures.

DeepONet. DeepONet (Lu et al., 2021) is designed to approximate operators and map inputs directly to outputs by
leveraging neural networks. The architecture consists of two main components: the trunk network, which processes
domain-specific information, and the branch network, which handles the input functions. This dual-structure approach
enables the efficient learning of complex functional relationships and enhances the model’s capability to capture detailed
operator mappings across various applications.

Learned Interpolation (LI). The LI (Kochkov et al., 2021) employs a finite volume approach enhanced with neural
networks as a replacement for conventional polynomial-based interpolation schemes in computing velocity tensor product.
The network adapts to the local flow conditions by learning a dynamic interpolation mechanism that can adjust to the
characteristics of the flow. This enables LI to provide accurate fluid dynamics predictions even on coarse grids, improving
computational efficiency while maintaining prediction fidelity.

Temporal Stencil Modeling (TSM). TSM (Sun et al., 2023) addresses time-dependent partial differential equations
(PDEs) in conservation form by integrating time-series modeling with learnable stencil techniques. It effectively recovers
information lost during downsampling, enabling enhanced predictive accuracy. TSM is particularly advantageous for
machine learning models dealing with coarse-resolution datasets.

G. Computational Details
G.1. Training Details

All experiments (both training and inference) in this study were conducted on a single Nvidia A100 GPU (with 80GB
memory) running on a server with an Intel(R) Xeon(R) Platinum 8380 CPU (2.30GHz, 64 cores). All model training efforts
were performed on coarse grids (see Table 1).

MultiPDENet. The MultiPDENet architecture employs the Adam optimizer with a learning rate of 5× 10−3. The model
is trained over 1000 epochs with a batch size of 90. Detailed settings for the rollout timestep can be found in Table 1.
Additionally, we use the StepLR scheduler to adjust the learning rate by a factor of 0.96 every 200 steps. The model
hyperparameters are listed in Tables S5 and S6.

20

PDE-embedded Learning with Multi-time-stepping

Table S5. Overview of hyperparameters used in the MiNN Block.

Case Hyperparameters Value

NSE

Network FNO (Li et al., 2021)
Layers 6
Modes 30
Width 30
Blocks 1
Padding periodical

σ GELU
Inputs {ūk

m,Ξk
m(p, ∇̂û, ∇̂2

û, ∇̂p, f , Re)}

Burgers

Network FNO (Li et al., 2021)
Layers 4
Modes 12
Width 12
Blocks 1
Padding periodical

σ GELU
Inputs {ūk

m}

GS

Network FNO (Li et al., 2021)
Layers 6
Modes 12
Width 22
Blocks 1
Padding periodical

σ GELU
Inputs {ūk

m}

KdV

Network FNO (Li et al., 2021)
Layers 4
Modes 32
Width 64
Blocks 1
Padding periodical

σ ReLU
Inputs {ūk

m}

FNO. The architecture of the FNO network closely follows that presented in the original study (Li et al., 2021), with the
main adjustment being the adaptation of its training methodology to an autoregressive framework. The training utilizes the
Adam optimizer with a learning rate of 1× 10−3 and a batch size of 20. Training is carried out for 1000 epochs, and the
rollout timestep matches MultiPDENet.

UNet. We implement the modern UNet architecture (Gupta & Brandstetter, 2023) using its default settings, ensuring that
the rollout timestep is consistent with that of the MultiPDENet. The StepLR scheduler is employed with a step size of 100
and a gamma of 0.96. The optimizer is Adam, with a learning rate of 1× 10−3 and a batch size of 10. The model is trained
for 1000 epochs.

DeepONet. We utilize the default configuration of DeepONet (Lu et al., 2021) along with the Adam optimizer. The
learning rate is established at 5× 10−4, with a decay factor of 0.9 applied every 5000 steps. The model is trained using a
batch size of 16 over a total of 20000 epochs.

PeRCNN. We maintain the standard architecture of PeRCNN (Rao et al., 2023). The optimization process is executed
with the Adam optimizer and employs a StepLR scheduler that reduces the learning rate by a factor of 0.96 every 100 steps.
The initial learning rate is set to 0.01, and the training is conducted over 1000 epochs with a batch size of 32.

21

PDE-embedded Learning with Multi-time-stepping

Table S6. Overview of hyperparameters used in the MaNN Block.

Case Hyperparameters Value

NSE

Network U-Net (Gupta & Brandstetter, 2023)
Hidden size [128, 128, 256, 512]

Blocks 2
Padding periodical
Inputs {u,∆t, dx}
σ GELU

Burgers

Network U-Net (Gupta & Brandstetter, 2023)
Hidden size [64, 64, 128, 256]

Blocks 2
Padding periodical
Inputs {u,∆t, dx}
σ GELU

GS

Network U-Net (Gupta & Brandstetter, 2023)
Hidden size [64, 64, 128, 256]

Blocks 2
Padding periodical
Inputs {u,∆t, dx}
σ GELU

KdV

Network U-Net (Gupta & Brandstetter, 2023)
Hidden size [64, 64, 128, 256]

Blocks 2
Padding periodical
Inputs {u,∆t, dx}
σ ReLU

LI. We adopt the default network architecture and parameter settings for LI (Kochkov et al., 2021). The optimizer used is
Adam with β1 = 0.9 and β2 = 0.99. The batch size is configured to 8, along with a global gradient norm clipping threshold
of 0.01. The learning rate is set to 1× 10−3, and weight decay is configured to 1× 10−6.

TSM. We follow the default network architecture and parameter settings for TSM (Sun et al., 2023). The initial learning
rate is set to 1×10−4, with a weight decay of 1×10−4. The gradient clipping norm is configured to be 1×10−2. We use the
Adam optimizer with β2 = 0.98, and the batch size is set to 8.

G.2. Computational Cost (Inference)

Taking NSE as an example, we compared the inference time, RMSE, and HCT of MultiPDENet with the Direct Numerical
Simulation (DNS) method across three cases. The comparison principle is based on the time required to simulate the same
trajectory length (T = 8.4 s) under identical experimental conditions (a single A100 GPU). The inference time is measured
from the moment the initial conditions (IC) are fed into the model until the trajectory of the same length is predicted.

The DNS settings follow JAX-CFD (Kochkov et al., 2021). According to the CFL condition, the simulated time step (dt)
varies with the resolution of the DNS method, resulting in different numbers of timesteps required for calculation. DNS
2048, DNS 4096, and DNS 4096 are used as the ground truth for the three cases, respectively. Detailed comparison results
are presented in Table S7. The computational time for a given accuracy (e.g., correlation ≥ 0.8) on the NSE dataset is
depicted in Table S8.

Nevertheless, we also would like to clarify that the DNS code used above was implemented in JAX, while our model was
programmed in PyTorch. These two platforms have distinct efficiencies even for the same model. Typically, the codes under
JAX environment runs much faster compared with PyTorch (up to 6×) (Takamoto et al., 2022). We anticipate to achieve
much higher speedup of our model if also implemented and optimized in JAX, which is, however, out of the scope of the
present study.

22

PDE-embedded Learning with Multi-time-stepping

Table S7. Performance comparison of different methods on the NSE dataset across various cases.

Case Method Timestep Infer Cost (s) RMSE HCT (s)

Re = 1000 DNS 2048 38400 260 0 8.4
Re = 1000 DNS 1024 19200 135 0.1267 8.4
Re = 1000 DNS 512 9600 52 0.2674 6.5
Re = 1000 DNS 64 1200 18 0.7818 2.7
Re = 1000 MultiPDENet 300 26 0.1379 8.4
Re = 4000 DNS 4096 76800 1400 0 8.4
Re = 4000 DNS 1024 19200 136 0.1463 6.8
Re = 4000 DNS 512 9600 52 0.2860 5.8
Re = 4000 DNS 128 2400 31 0.8658 3.6
Re = 4000 MultiPDENet 300 26 0.1685 6.4
x ∈ (0, 4π)2 DNS 4096 75750 1280 0 8.4
x ∈ (0, 4π)2 DNS 1024 19200 129 0.4638 6.6
x ∈ (0, 4π)2 DNS 512 9600 50 0.6166 5.2
x ∈ (0, 4π)2 DNS 128 2400 30 0.8835 2.3
x ∈ (0, 4π)2 MultiPDENet 300 26 0.4577 6.7

Table S8. Computational time for a given accuracy (e.g., correlation ≥ 0.8) on the NSE dataset.

Iterm Re = 1000 Re = 4000 x ∈[0,4π]2

DNS 1024 135 s 130 s 133 s

MultiPDENet 26 s 19 s 21 s

Speed up 5× 7× 6×

23

