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Abstract

The diffusion model has gained popularity in vision applications due to its remark-
able generative performance and versatility. However, high storage and computation
demands, resulting from the model size and iterative generation, hinder its use on
mobile devices. Existing quantization techniques struggle to maintain performance
even in 8-bit precision due to the diffusion model’s unique property of temporal
variation in activation. We introduce a novel quantization method that dynamically
adjusts the quantization interval based on time step information, significantly im-
proving output quality. Unlike conventional dynamic quantization techniques, our
approach has no computational overhead during inference and is compatible with
both post-training quantization (PTQ) and quantization-aware training (QAT). Our
extensive experiments demonstrate substantial improvements in output quality with
the quantized diffusion model across various datasets.

1 Introduction

Generative modeling is crucial in machine learning for applications such as image [1, 2, 3, 4, 5, 6, 7, 8],
voice [9, 10], and text synthesis [11, 12, 13]. Diffusion models [3, 2, 4], which progressively refine
input images through a denoising process involving hundreds of iterative inferences, have recently
gained prominence due to their superior performance compared to alternatives like GANs [14].
However, the high cost of diffusion models presents a significant barrier to their widespread adoption.
These models have large sizes, often reaching several gigabytes, and demand enormous computation
of iterative inferences for a single image generation. Consequently, executing diffusion models
on resource-limited mobile devices is practically infeasible, thus most applications are currently
implemented on expensive, high-performance servers.

To fully exploit the potential of diffusion models, several methods to reduce the computational cost
and memory requirement of diffusion models while preserving the generative performance have been
proposed. For example, J. Song et al. [2] and L. Liu et al. [15] proposed a more efficient sampling
scheduler, and T. Salimans & J. Ho proposed to reduce the number of sampling steps using knowledge
distillation technique [16, 17]. As a result, high-fidelity images can be generated with fewer sampling
steps, making the use of diffusion models more affordable and feasible. Despite these advancements,
the denoising process of diffusion models still demands a substantial computational cost, necessitating
further performance enhancements and model compression.

While the majority of previous approaches have focused on reducing the number of sampling steps to
accelerate the denoising process, it is also important to lighten the individual denoising steps. Since the
single denoising step can be regarded as a conventional deep learning model inference, various model
compression techniques can be used. Quantization is a widely used compression technique where
both weights and activations are mapped to the low-precision domain. While advanced quantization
schemes have been extensively studied for conventional Convolution Neural Networks (CNNs) and
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Figure 1: The forward and reverse processes of diffusion models.

language models, their application to diffusion models has shown significant performance degradation.
Due to the unique property of diffusion models, such as the significant changes in the activation
distribution throughout the iterative inferences, the output is heavily distorted as the activation bit-
width decreases [18]. Existing quantization techniques, including both quantization-aware training
(QAT) [19, 20, 21] and Post-training quantization (PTQ) [22, 23, 24, 25], are designed to address a
specific distribution in existing DNNs, therefore cannot deal with time-variant activation distributions
in diffusion models.

To tackle the unique challenges of diffusion model quantization, we introduce a novel design called
Temporal Dynamic Quantization (TDQ) module. The proposed TDQ module generates a time-
dependent optimal quantization configuration that minimizes activation quantization errors. The
strong benefit of the TDQ module is the seamless integration of the existing QAT and PTQ algorithms,
where the TDQ module extends these algorithms to create a time-dependent optimal quantization
configuration that minimizes activation quantization errors. Specifically, the module is designed to
generate no additional computational overhead during inference, making it compatible with existing
acceleration frameworks without requiring modifications. The TDQ module significantly improves
quality over traditional quantization schemes by generating optimal quantization parameters at each
time step while preserving the advantages of quantization.

2 Backgrounds and Related Works

2.1 Diffusion Model

Diffusion models have been first introduced in 2015 [26] and revolutionized image generation
by characterizing it as a sequential denoising process. As shown in Fig. 1, the forward diffusion
process gradually transforms the image(x0) into a random data(xT ) which follows standard normal
distribution by adding small Gaussian noise at each time step. The reverse diffusion process generates
a clean image(x0) from a random data(xT ) by gradually removing noise from the data through
iterative denoising steps. Therefore, a diffusion model learns the reverse process which is estimating
the noise amount on a given noisy data at each time step(xt). The forward(q) and reverse(pθ) processes
can be described as

q(xt|xt−1) = N(xt;
√

1− βtxt−1, βtI), (1)

pθ(xt−1|xt) = N(xt−1;µθ(xt, t), σ
2
t I), (2)

where βt denotes the magnitude of Gaussian noise.

[3] introduced a reparameterization trick for µθ and the corresponding loss function, which facilitates
the training of diffusion models.

µθ(xt, t) =
1

√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)) (3)

Lsimple = Et,x0,ϵ[||ϵ− ϵθ(xt, t)||] (4)

While diffusion models can produce high-quality images, the iterative denoising process makes
diffusion models difficult to be used for real-world scenarios. The early works on diffusion models
such as DDPM [3] required hundreds to thousands of iterative inferences to generate single image,
resulting extremely slow sampling speed. Therefore, numerous studies have been investigating
algorithmic enhancements and various optimizations to boost performance, aiming to make diffusion
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models more efficient and suitable for real-world applications. DDIM [2] introduced an implicit
probabilistic model that reinterprets the Markov process of the DDPM method achieving competitive
image quality with one-tenth of denoising stpes. Distillation-based methods [16, 17] proposed to
reduce the number of denoising steps using knowledge distillation techniques.

On the other hand, to address the significant computational overhead associated with generating
high-resolution images, [4] proposed a Latent Diffusion Model (LDM) where the diffusion model
takes latent variables instead of images. Especially, the large-scale diffusion model (e.g., Stable
Diffusion [4]) has leveraged LDM and learned from a large-scale dataset (LAION-Dataset [27]),
enabling the creation of high-quality, high-resolution images conditioned on textual input.

2.2 Quantization

Quantization is a prominent neural network optimization technique that reduces storage requirements
with low-precision representation and performance improvement when the corresponding low-
precision acceleration is available. With b−bit precision, only 2b quantization levels are accessible,
which considerably limits the degree of freedom of the quantized model compared to floating-point
representation. Therefore, the final quality significantly varies depending on the tuning of quantization
hyperparameters, such as the quantization interval or zero offset. To preserve the quality of output in
low-precision, it is crucial to update the quantization parameters as well as the model parameters,
taking into account the specific features and requirements of the target task.

2.3 Quantization-aware Training and Post-training Quantization

Quantization algorithms can be broadly categorized into two types: Quantization-Aware Training
(QAT) [19, 28, 29, 20, 30] and Post-Training Quantization (PTQ) [23, 24, 25]. QAT applies additional
training after introducing quantization operators, allowing the update of network parameters toward
minimizing the final loss value considering the effect of the quantization operators. On the other hand,
PTQ does not apply end-to-end forward/backward propagation after quantization. Instead, it focuses
on reducing block-wise reconstruction errors induced by quantization. QAT typically outperforms
PTQ in low-precision scenarios, but it may not always be applicable due to limitations such as the
deficiencies of datasets, training pipelines, and resource constraints. Due to its practical usefulness,
PTQ has been actively researched recently. In the literature of diffusion models, [18] introduced
a dedicated 8-bit post-training quantization method, demonstrating high-fidelity image generation
performance.

On the other hand, while most QAT and PTQ algorithms focus on static quantization, recent research
has highlighted the benefits of input-dependent dynamic quantization [31, 32, 33, 34]. Dynamic
quantization enables the adjustment of quantization intervals based on the varying input-dependent
distribution of activations, which has the potential to reduce quantization error. However, implement-
ing these dynamic approaches often incur additional costs for extracting statistical information from
activations, making it challenging to achieve performance improvements in practice. For instance,
[35] pointed out that input-dependent activation functions can cause significant latency increases
despite having relatively little computation.

While a number of previous works proposed different methods to accelerate sampling process of
diffusion models, there have been limited works tried to exploit dynamic nature of diffusion models. In
this paper, we propose a novel quantization scheme for diffusion models which minimizes activation
quantization errors by enabling the generation of suitable quantization interval based on the time step
information, all without incurring additional inference costs.

3 Temporal Dynamic Quantization

3.1 Quantization Methods

Before elaborating the proposed method, we define the quantization function used in our work. In
this study, we focus on b−bit linear quantization, where the 2b possible quantization levels are evenly
spaced. Linear quantization involves two key hyperparameters: the quantization interval s and the
zero offset z. Given the full-precision data x, the quantized data x̂ can be calculated as follows:

x̄ = clip(⌊x/s⌉+ z, n, p), x̂ = s · (x̄− z), (5)
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Figure 2: Evolution of Activation Distribution of Diffusion Model over Time Steps. Boxplot
depicting the maximum and minimum values of activation for the DDIM model trained on the
CIFAR-10 dataset across different time steps.
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Figure 3: Limitation of Static Quantization for Diffusion Models. Assume that the activation
distribution enlarges as time step progresses. (a) Large truncation error due to small quantization
interval and (b) Large rounding error due to large quantization interval.

where n(p) is the smallest(largest) quantization index, clip(·) is a clipping function and ⌊·⌉ is a
rounding function. For practical acceleration purposes, we utilize symmetric quantization for weights,
where z = 0 and p = −n = 2(b−1) − 1. On the other hand, for activation quantization, we assume
asymmetric quantization with z ̸= 0, n = 0, and p = 2b − 1, which is a commonly adopted
approach [36].

3.2 Challenges of Diffusion Model Quantization

The biggest challenge of quantizing diffusion models is to find optimal quantization parameters (s
and z) for activation that minimize the quantization error. As shown in Fig. 2, activation distribution
of diffusion models have a unique property due to the iterative denoising process, whose distribution
highly varies depending on the time step (t) regardless of the layer index.

Therefore, using static values for quantization parameters causes significant quantization error for
different time steps, as shown in Fig. 3. Previous studies [37, 18] has also reported the dynamic
property of activations in diffusion models and attempted to address it by sampling the calibration
dataset across overall time frames. However, despite these efforts, these studies still relied on static
parameters, resulting in sub-optimal convergence of minimizing quantization error. To tackle this
problem fundamentally, it is crucial to enable the update of quantization parameters considering the
dynamics in the input activation distribution.

3.3 Implementation of TDQ Module

To address the rapid changes in input activation, one easy way of think is input-dependent dynamic
quantization. Previous studies have demonstrated that incorporating a quantization module that
generates the quantization parameters based on input features such as minimum, maximum, and
average values can lead to significant improvements in accuracy for specific applications [38, 32].
According to our observation, as will be presented in the Appendix, our own implementation of
input-dependent dynamic quantization offers notable quality improvement. However, the process of
gathering statistics on the given activation introduces complex implementation and notable overhead
[35]. Despite the potential of quality improvement, this approach may not be an attractive solution in
practice.
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Figure 4: Overview of TDQ module. Comparison between (a) Input-dependent dynamic quantization,
which requires activation statistics during both training and inference, and (b) the proposed TDQ
module that enables cost-free inference based on pre-computed intervals.

Instead, we propose a novel dynamic quantization that utilizes temporal information rather than input
activation. One important observation we made is that when we measured the Pearson correlation
between time steps and per-tensor activation variation, 62.1% of the layers exhibited moderate
temporal dependence (|r| > 0.5), and 38.8% exhibited strong temporal dependence (|r| > 0.7). This
implies that many layers in diffusion models indeed possess strong temporal dependence. Although
the activation distribution might change based on the input data, the overall trends remain similar
within the same time frame (see Fig 2). Therefore, we can determine the optimal interval based on
the differences in time steps, leading to more reliable and robust quantization results

Intuitively, we can employ a scalar quantization interval for each time step. However, this strategy
falls short in capturing inter-temporal relationships and cannot be applied to scenarios where different
time steps are used between training and inference. Instead, we propose using a learnable small
network that predicts quantization interval by taking time step information. This strategy can evaluate
activation alterations collectively across multiple timesteps, thereby making the learning process
more stable and improving performance, as will be shown in Table 3.

Fig. 4 (b) presents the overview of our idea, called TDQ module. In the TDQ module, the dynamic
interval s̃ is generated based on the provided time step t as follows:

I = enc(t), s̃ = f(I), (6)

where enc(·) represents the encoding function of the time step, which will be described in Section
3.4. Here, I is the encoded feature, and f(·) signifies the generator module function.

In our approach, the TDQ module is attached to each quantization operator, and the independent
dynamic quantization interval is generated based on the given time step. As illustrated in the Fig.
4, the generator is implemented by simply stacking multiple linear layers with a softplus function
to constrain the data range to non-negative value. Please note that all components of the generator
are differentiable. As a result, during the PTQ or QAT process, the interval can be updated toward
minimizing quantization error using gradient descent.

For instance, when employing a well-known QAT algorithm such as LSQ [29], the static interval
can be substituted by the output of the TDQ module. The quantization function from Eq. 5 is then
modified as follows:

x̄ = clip(⌊x/s̃⌉+ z, n, p), x̂ = s̃ · (x̄− z). (7)

When we use a straight-through estimator [39], the gradient can propagate through the learnable
parameters of the generator. These parameters are then updated via iterative gradient descent, with
the goal of minimizing the final task loss. The same pipeline can be applied to PTQ algorithms that
utilize local gradient of minimizing reconstruction error [23, 24]. Consequently, the TDQ module is
easily applicable to both QAT and PTQ schemes.

However, unlike input-dependent dynamic quantization, the TDQ module enables cost-free inference.
After the PTQ or QAT process, the time-dependent interval can be pre-computed offline, and during
inference, we can utilize the pre-computed value. In addition, the pre-computed interval provides
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a strong advantage by enabling the seamless integration of TDQ module on existing frameworks
without modifications.

3.4 Engineering Details

We conducted a series of experiments to enhance the stability and effectiveness of the TDQ mod-
ule, and figured out that several engineering improvements play a key role in achieving reliable
results. This section provides a detailed description of these improvements and their impact on the
performance of the TDQ module.

Frequency Encoding of Time Step Feeding the time step directly to the generator results in
inferior convergence quality. This is primarily due to the well-known low-frequency inductive bias
of neural networks [40, 41]. If the time step is directly input to the generator, it tends to produce an
interval that barely changes regardless of the time step. To mitigate this low-frequency bias, we use
geometric Fourier encoding for time step [42, 43], as described in Eq. 6.

I = enc(t) = (sin(
t

t
0/d
max

), cos(
t

t
0/d
max

), sin(
t

t
2/d
max

), cos(
t

t
2/d
max

), ..., sin(
t

t
d/d
max

), cos(
t

t
d/d
max

)), (8)

where t is the current time step, d is the dimension of encoding vector, and I is the encoded vector.
This encoding approach allows the TDQ module to accommodate high-frequency dynamics of time
step. In this paper, we set tmax as 10000, empirically.

Initialization of TDQ Module Proper initialization of quantization interval is crucial, as incorrect
initialization can lead to instability in QAT or PTQ processes. Existing quantization techniques only
need to initialize the static step value, but we need to initialize the TDQ module’s output to the
desired value. To achieve this, we utilize He initialization [44] for the weights and set the bias of
the TDQ module (MLP)’s last linear layer to the desired value. Given that the input to the MLP
(geometric Fourier encoding) can be treated as a random variable with a mean of zero, the output of
the He-initialized MLP will also have a mean of zero. Thus, we can control the mean of the MLP
output to a desired value via bias adjustment. After extracting 1000 samples for the entire time step,
we initialized the quantization interval to minimize the overall error and then conducted an update to
allow adaptation to each time step.

4 Experimental Setup

In order to demonstrate the superior performance of TDQ, we conducted tests using two different
models: DDIM [2], a pixel space diffusion model, and LDM [4], a latent space diffusion model.
For the DDIM experiments, we utilized the CIFAR-10 dataset [45] (32x32), while for the LDM
experiments, we employed the LSUN Churches dataset [46] (256x256). This allowed us to showcase
the effectiveness of the proposed method in both low and high-resolution image generation scenarios.
We applied PTQ and QAT to both models. However, it is important to note that while the latent
diffusion model consists of a VAE and a diffusion model, we focused on quantizing the diffusion
model and did not perform quantization on the VAE component.

In the absence of prior QAT studies for the diffusion model, we experimented with well-known
static quantization methods, i.e., PACT [19], LSQ [29], and NIPQ [30] as baselines. Our idea is
integrated on top of LSQ, by replacing the static interval as an output of TDQ module. We also
provide additional experiments of TDQ integration with other methods in the Appendix. Per-layer
quantization was applied to activations and weights of all convolutional and linear layers, including
the activation of the attention layer. The models were trained for 200K iterations on CIFAR-10 and
LSUN-churches, with respective batch sizes of 128 and 32. The learning rate schedule was consistent
with the full precision model.

In PTQ, we used PTQ4DM [18], a state-of-the-art study, as a baseline for extensive analysis. For a
fair comparison, we mirrored the experimental settings of PTQ4DM but modified the activation quan-
tization operator with a TDQ module for dynamic quantization interval generation. Like PTQ4DM,
we used per-channel asymmetric quantization for weight and per-tensor asymmetric quantization
for activation. The weight quantization range was determined by per-channel minimum/maximum
values, and the activation quantization range was trained via gradient descent to minimize blockwise
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Table 1: QAT results of diffusion models. N/A represents the failure of convergence.
FID ↓ / IS ↑

(CIFAR-10) Methods W8A8 W4A8 W8A4 W4A4 W3A3

DDIM [2]

PACT [19] 18.43 / 7.62 22.09 / 7.55 68.58 / 5.93 51.92 / 6.41 N/A / N/A
LSQ [29] 3.87 / 9.62 4.53 / 9.38 6.2 / 9.56 7.3 / 9.45 7.63 / 9.38
NIPQ [30] 3.91 / 9.49 13.08 / 9.7 6.36 / 9.59 30.73 / 8.94 N/A / N/A

Ours 3.77 / 9.58 4.13 / 9.59 4.56 / 9.64 4.48 / 9.76 6.48 / 9.26

FID ↓
(Churches) Methods W8A8 W4A8 W8A4 W4A4 W3A3

LDM [4]

PACT [19] 9.20 9.94 8.59 10.35 12.95
LSQ [29] N/A 4.92 5.08 5.06 7.21
NIPQ [30] 4.12 7.22 4.68 9.13 N/A

Ours 3.87 4.04 4.86 4.64 6.57

Table 2: PTQ results of diffusion models. FP represents the output of the full-precision checkpoint.
FID ↓ / IS ↑

(CIFAR-10) Methods W8A8 W8A7 W8A6 FP

DDIM [2]
Min-Max 8.73 / 9 34.61 / 8.28 332.15 / 1.47

5.59 / 8.94PTQ4DM [18] 6.15 / 8.84 6.2 / 8.83 22.43 / 8.77
Ours 5.99 / 8.85 5.8 / 8.82 5.71 / 8.84

FID ↓
(Churches) Methods W8A8 W8A6 W8A5 FP

LDM [4]
Min-Max 4.34 103.15 269.05

4.04PTQ4DM [18] 3.97 4.26 7.06
Ours 3.89 4.24 4.85

reconstruction loss, as in methods like BRECQ [24]. Quantization was applied to all layers, but
in the LDM PTQ experiment, the activation of the attention matrix was not quantized. Following
PTQ4DM’s approach, we used a calibration set of 5120 samples for PTQ, consisting of 256 images
with 20 random time steps selected per image.

To measure the performance of the models, we used Fréchet Inception Distance (FID) [47] and
Inception Score (IS) [48] for CIFAR-10, and FID for LSUN-churches. For evaluation, we generated
50,000 images using QAT with DDIM 200 step sampling, and 50,000 images using PTQ with DDIM
100 steps. In the case of QAT, we selected 5 checkpoints with the lowest validation loss and reported
the scores from the best performing models.

All of experiments were conducted on the high performance servers having 4xA100 GPUs and
8xRTX3090 GPUs with PyTorch [49] 2.0 framework. The source code is available at https:
//github.com/ECoLab-POSTECH/TDQ_NeurIPS2023. Besides, we use the notation WxAy to rep-
resent x-bit weight & y-bit activation quantization for brevity.

Figure 5: Visualization of W4A4 QAT results, DDIM on CIFAR-10 dataset, (up) Ours (Down) LSQ
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Figure 6: Visualization of W8A6 PTQ results, DDIM on CIFAR-10 dataset, (up) Ours (Down)
PTQ4DM

Figure 7: Visualization of W8A5 PTQ results, LDM on LSUN-churches dataset, (up) Ours (Down)
PTQ4DM

5 Results

5.1 Quality Analysis after QAT and PTQ

Table 1 compares the TDQ module with existing static quantization methods. As the activation bit
decreases, all static quantization methods show inferior quality, while our approach shows consistent
output. TDQ module gives substantial quality improvement even in 8-bit, and the benefit becomes
even large in 4-bit precision, showing negligible quality degradation to full-precision output. TDQ
achieves these benefits by efficiently allocating the limited activation quantization levels.

Besides, NIPQ was introduced to address the instability of the straight-through estimator by applying
pseudo quantization based on artificial noise. However, the noise of NIPQ is indistinguishable from
the input noise, hindering the diffusion model’s convergence. Additional efforts are required to exploit
the benefit of PQN-based QAT for diffusion models.

Table 2 presents PTQ comparison of TDQ module against existing static PTQ schemes. The Min-
Max method represents a naive linear quantization approach where the range is determined by the
minimum and maximum values of the target tensor. The experiments demonstrate that while all
baselines maintain a good level of FID when the activation bit is high, they experience significant
performance degradation as the activation bit decreases. In contrast, TDQ exhibits only a slight level
of FID degradation, indicating that the TDQ module is a robust methodology that performs well in
both QAT and PTQ scenarios.

Fig. 5 to 7 visualize the generated images of quantized diffusion models. Our method consistently
outperforms other quantization techniques in producing images with high-fidelity within the same
bit-width configuration. Figs. 5 and 6 further illustrate this, as conventional QAT and PTQ produce
blurred and unrecognizable images, whereas our method generates realistic images. The integration
of temporal information in activation quantization is shown to be highly effective in maintaining the
perceptual quality of the output.
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Figure 8: Number of sampling step vs FID. Comparison between the proposed method and conven-
tional QAT when reducing the inference time step from 100 to 10.
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Figure 9: Output dynamics of TDQ module. Visualization of the generated interval versus the
variation of input activation.

5.2 Generalization Performance of TDQ Module

This section presents the experimental results on the performance of the TDQ module for fast-forward
inference. Training is carried out to fully encompass all time steps from 1 to 1000, however, inference
can be executed with fewer time steps (between 50 to 100) for enhanced performance. This changes
the distribution of the time steps during training/testing, thus, the TDQ module’s generation requires
good generalization abilities.

Fig. 8 displays the FID measurement for the DDIM model quantized by the LSQ algorithm for both
W8A4 and W4A4 configurations. The time step gradually decreases from 100 to 10 during inference.
As depicted, LSQ’s performance significantly deteriorates as the number of time step decreases,
whereas our method’s performance declines similarly to the full-precision baseline. This experiment
demonstrates that the TDQ module functions effectively even when the sampling time step varies.

5.3 Ablation Studies of TDQ module

To investigate the output dynamics of the TDQ module, we visualized the updates of the dynamic
interval in relation to time steps (Fig. 9). The interval, trained using W4A4 LSQ on DDIM, demon-
strates a tendency to change in alignment with activation variations. However, this pattern is not
consistently observed across all layers. The inconsistencies could potentially indicate that the TDQ
module is attempting to generate an interval that minimizes the final loss value, as LSQ adjusts the
quantization interval accordingly.

To offer a more comprehensive analysis of the advantages of the TDQ module, we conducted a
comparison with input-dependent dynamic quantization methods and performed an ablation study on
the TDQ module. As depicted in Table 4, TDQ achieves superior performance compared to dynamic
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Table 3: Learning quantization interval directly for each time step. The notation SN means that
there are total of N learnable quantization interval that cover 1000 / N time steps uniformly.

FID ↓
(QAT) Bit-width Ours LSQ(S1) S10 S50 S100 S1000

DDIM[2]-CIFAR10 W4A4 4.48 7.30 4.75 5.17 4.88 5.53
W3A3 6.48 7.63 8.89 6.92 6.82 9.94

LDM[4]-Churches W4A4 4.64 5.06 5.17 5.07 4.78 5.10
W3A3 6.57 7.21 6.70 6.47 6.64 6.86

quantization, even without directly utilizing the layer’s distribution information. We also investigated
the effect of the number of layers within the TDQ module on performance. The results demonstrate
that the output quality becomes substantially consistent when the number of layers exceeds 4. Based
on these findings, we have empirically selected 4 layers of MLP, considering a balance of performance
and complexity.

Table 4: Ablation on TDQ module

method FID↓
FP32 3.56

Static Quantization(LSQ) 7.3

Dynamic Quantization (max) 6.30

TDQ (2 layer) 5.18
TDQ (4 layer) 4.48
TDQ (8 layer) 4.88

We also conducted experiments to compare the performance
of TDQ with a configuration where the per-time quantization
intervals are directly learned. As presented in Table 3, while
the concept of directly learning the quantization interval for
each time step and using a shared quantization interval across
multiple time steps can enhance output quality compared to
the baseline (S1), TDQ continues to exhibit superior output
quality and offers greater versatility. The success of TDQ lies
in its ability to facilitate continuous and stable learning of the
quantization interval while taking into account the evolution
of the activation distribution over neighboring time steps.

6 Discussion

In this section, we discuss additional intuitions and limitations. While many layers exhibit strong
temporal dependency, approximately 30% of the layers still do not show such correlations. These
layers are primarily located in the middle block of the U-Net and are heavily influenced by their
instance-wise semantic information. Moreover, we observed that the LDM model [4] has fewer
temporal dependencies and thus demonstrates fewer performance improvements. However, it’s
crucial to emphasize that even in these cases, the TDQ module ensures convergence, resulting in
consistent outputs across time steps. This alignment guarantees that the output quality remains
comparable to that of existing PTQ/QAT algorithms, even in scenarios where temporal dependencies
might be less.

7 Conclusion

In this paper, we explore the challenge of activation quantization in the diffusion model, specifically
the dynamics of activation across time steps, and show that existing static quantization methods
fall short of effectively addressing this issue. We introduce the TDQ module, seamlessly integrated
into both QAT and PTQ, while enhancing the output quality significantly based on the dynamic
quantization interval generation. Since our approach can be implemented without any overhead during
inference, we expect our study to help improve performance while preserving quality in low-bit
diffusion models for mobile and edge devices.
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