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Abstract

In-context learning (ICL) is a striking behavior seen in pretrained transformers
that allows models to generalize to unseen tasks after seeing only a few examples.
We investigate empirically the conditions necessary on the pretraining distribution
for ICL to emerge. Previous work has focused on the number of distinct tasks
necessary in the pretraining distribution – here, we use a different notion of task
diversity to study the emergence of ICL in transformers trained on linear functions.
We find that as task diversity increases, transformers undergo a transition from a
specialized solution, which exhibits ICL only within the pretraining distribution, to
a solution which generalizes out of distribution to the entire task space. We also
investigate the nature of the solutions learned by the transformer on both sides of
the transition, and observe similar transitions in nonlinear regression problems.

1 Introduction

The ability of transformers [1] to do few-shot learning from examples seen in their context is a
striking phenomenon exhibited by modern machine learning models [2] called in-context learning
(ICL). ICL has been extensively studied [3–6] and enables models to solve certain new tasks without
re-training. Of particular interest is how the ability for transformers to perform ICL arises from
pretraining: What conditions must be met in order for ICL to emerge?

Prior work [3, 4] has focused on understanding how the number of tasks in the pretraining distribution
affects the ability of the model to generalize to new tasks not present during pretraining. Here, we
ask a related but distinct question: If a model is pretrained only on tasks from a subset of the full
task space, what conditions are necessary for it to generalize to the rest of the space? This question
prompts us to consider a more general notion of task diversity – a pretraining distribution with K tasks
that are more different in character should be considered more “diverse” than another distribution
with K tasks that are similar to each other. Sampling a distribution with many similar tasks has the
potential to induce the model towards a more specialized ICL solution that performs well only on
novel tasks within its pretraining distribution. However, we observe that transformers trained to do
ICL of linear functions undergo a transition from a specialized solution to one that generalizes over
the full task space as we increase the degree of task diversity. This phenomenon of out-of-distribution
task generalization sheds new light on in-context learning behavior.
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Contributions:

• We train transformers to exhibit ICL of linear functions with weight vectors drawn from a
subset of the unit hypersphere. As the size of this subset increases, we observe a transition
from specialized models, which perform well only on the training portion of the hypersphere,
to models that generalize out of task distribution to the entire hypersphere.

• We show empirically that label noise shifts the location of this specialization-generalization
transition; the transformer must be trained on tasks from a larger subset of the hypersphere
in order to generalize to the whole sphere.

• We investigate the nature of the solutions found by our transformers, and find that specialized
solutions outperform optimal Bayesian solutions to the regression problem on small numbers
of examples. In contrast, transformers that generalize to the entire hypersphere exhibit
performance similar to known optimal solutions.

• We investigate the ICL performance of models as test tasks move off the unit hypersphere.
We observe good performance for tasks within the hypersphere, but our models fail to
generalize to tasks far outside the hypersphere.

• We show that specialization-generalization transitions also occur in nonlinear regression
problems, suggesting that the phenomenon may be a general feature of ICL in transformers.

2 Training setup and task distribution geometry
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Figure 1: Testing ICL via task similarity. A: The transformer takes as input a sequence of pairs
{xi, yi}ni=1 and is trained to predict yk from a context Ck = {x1, y1, . . . , xk}. The elements xi and
yi are related linearly by a task wT : yi = wTxi + ϵi. B: The training tasks wtrain are drawn from
a hyperspherical cap with half-angle ϕ. Notice that ϕ = 180◦ therefore corresponds to the entire
hypersphere. C: The test tasks wtest are drawn from a hyperspherical band of width ∆ϕ.

ICL of linear functions: We investigate the ability of transformers to perform in-context learning
of linear functions, when tasks are drawn from distributions with varying levels of task diversity, i.e.
from hyperspherical caps of varying half-angles. We define a task to be a vector w ∈ Rd, and the
transformer takes as input a sequence of up to n pairs {x1, y1, . . . , xn}, where yi = wTxi+ ϵi. Here,
xi ∼ N (0, Id) and ϵi ∼ N (0, σ2).

Pretraining task distribution: We define a family of task distributions parameterized by ϕ ∈ [0, π]
(See Fig 1B). We take Sd−1(ϕ) to be a section of the surface of the hypersphere in d dimensions,
i.e. Sd−1(ϕ) = {w ∈ Sd−1 | angle(w, v) ≤ ϕ}, with v ∈ Rd a fixed vector. We then define the task
distribution family pϕ(w) ≡ Unif(Sd−1(ϕ)).

Pretraining: During pretraining, the transformer Tθ is optimized to minimize the mean squared
error (MSE) between a context of data Ck ≡ {x1, y1, . . . , xk} and the target yk. During pretraining,
the tasks w are drawn i.i.d. for each context from pϕ(w). We use AdamW [7] to optimize the MSE,

Ltrain(θ) = Ew∼pϕ

[
1

n

∑n

k=1
(Tθ(Ck)− yk)

2

]
. (1)
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Test task distribution: We evaluate the performance of the transformer over a family of task
distributions parameterized by ϕ,∆ϕ ∈ [0, π] (See Fig 1C). We define the hyperspherical band starting
at angle ϕ with width ∆ϕ to be the set Bd−1(ϕ,∆ϕ) = {w ∈ Sd−1 | ϕ ≤ angle(w, v) ≤ ϕ+∆ϕ},
with v some fixed vector. The test task distribution is then uniform over this set: pϕ,∆ϕ(w) =
Unif(Bd−1(ϕ,∆ϕ)).

Evaluation: We evaluate models by computing the MSE between the full context Cn and the final
target yn. During test time, we draw w i.i.d. for each context from pϕ,∆ϕ:

Ltest(θ) = Ew∼pϕ,∆ϕ

[
(Tθ(Cn)− yn)

2
]

(2)

3 Experimental Results

In all experiments, we study d = 10 dimensional regression with n = 50 examples in each context.
We use a GPT-2 style transformer [8] with learned positional embeddings, a hidden dimension of
dh = 128, 10 layers, and 8 attention heads. We use a learned linear embedding to map xi and yi to
the hidden dimension dh = 128. The target values yi are padded with d− 1 zeroes.

During pretraining, we train 12 models over pretraining distributions pϕ(w) for ϕ ∈ [15◦, 180◦] in
15◦ increments. We observe that repeated runs, with different initializations and trained on data
generated from different sampled tasks w ∼ pϕ, yield consistent results (see Fig 5).

3.1 Observation of a specialization-generalization transition

We show the results from evaluating the 12 models on the test task distributions pϕ,∆ϕ(w) in Fig 2A.
We pick ∆ϕ = 5◦ and ϕ ∈ [0◦, 5◦, . . . 175◦]. For models with a pretraining task distribution with
ϕ < 90◦, we observe good test performance only within the portion of the hypersphere covered by the
pretraining distribution, and performance degrades outside of this range. However, for models trained
over pϕ(w) with ϕ > 90◦, we see essentially perfect performance across the entire hypersphere. This
occurs despite the fact that these models were trained using only data generated from a subset of the
full task space. Note that even before the transition, models trained on a cap with ϕ ≥ 45◦ exhibit
out-of-distribution task generalization – they outperform simply picking the weight vector in the
training distribution closest to the test weight vector (see dashed lines in 2A).

One may think that this transition arises solely from geometric considerations owing to the high-
dimensional nature of the task hypersphere (since ϕ = 90◦ corresponds to half the hypersphere,
where most of its volume concentrates as d becomes large). However, in Fig 2B, we see that this
cannot be the only cause of the transition. For noisy regression with σ2 = 0.25, we see that the
transition now occurs around ϕ = 120◦, which plays no special role in high dimensional geometry.

Comparison to ordinary least squares We now investigate the solutions learned by the transformer
on both sides of the transition. In Fig 2C, we compare the performance of the transformer and ordinary
least squares (OLS), solid and dashed curves, respectively. For short contexts, the specialized solution
which is learned for ϕ < 90◦ outperforms OLS within the task distribution. For ϕ > 90◦, the
performance of the transformer is similar to OLS.

Beyond the unit hypersphere What happens to the generalization ability of the model as the radius
of the task distribution changes? We train several models on data generated from tasks on the surface
of the unit hypersphere, and evaluate them on tasks drawn from spheres of varying radii. Each model
is trained on tasks from pϕ(w) and evaluated on the equivalent distribution (with the same ϕ) on a
hypersphere with a different radius. In Fig 2D, we observe that for ϕ > 45◦ the model is able to
generalize perfectly to tasks with R < 1, despite being trained only on tasks with R = 1.

3.2 Investigating the interplay between the two forms of task diversity

In order to examine the effect of both forms of task diversity (number of tasks & task similar-
ity), we train 120 models with task similarity ϕ and number of tasks N in the set: (ϕ,N) ∈
{15◦, 30◦, . . . , 180◦} × {22, 23, . . . , 211}. In Fig 3A, we plot the resulting in task-distribution loss:
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Figure 2: ICL undergoes a transition between a specialized solution and a general-purpose
solution. A: Test error in ∆ϕ = 5◦ bands (see Fig 1) for transformers pretrained to do in-context
learning of linear functions with pretraining task distributions pϕ(w). For distributions with ϕ < 90◦,
the transformer learns a specialized solution that performs well on unseen tasks drawn from the pϕ(w),
but fails for tasks outside this distribution. However, for pretraining distributions with ϕ > 90◦,
the transformer learns a solution that performs well for all ϕ. Here, the noise σ2 = 0. Dashed
lines show the MSE if the weight vector in pϕ(w) closest to the test weight vector is used as the
predictor. B: With σ2 = 0.25, we still observe a transition from a specialized to a generic solution,
but the transition point has moved to ϕ = 120◦. C: We evaluate the models in task-distribution for
varying context lengths, and plot the performance of the transformer (solid) and ordinary least squares
(dashed) for the same data. For low context length, the specialized solution learned by models with
ϕ < 90◦ outperforms OLS. For ϕ = 15◦, the specialized solution is worse than OLS for large context
length. D: The test error for tasks drawn uniformly from subsets of a hypersphere of radius R, when
a model is pretrained on tasks taken only from subsets of the unit hypersphere. When ϕ > 45◦, the
model generalizes perfectly to tasks with R < 1, despite being pretrained with R = 1.

the loss for a test angle between 0◦ and 5◦ (these test angles are always in the training task distribu-
tion). We see that models with low N and large ϕ perform poorly in-distribution, suggesting that the
density of tasks may be important. See Section A.1 for a partial explanation as to how some models
trained with a small number of tasks (bottom left in Fig 3A) appear to generalize well. In Fig 3B,
we plot the resulting out of task-distribution loss, corresponding to test angles 175◦ to 180◦. We
see that models with small ϕ perform poorly, and observe a diagonal boundary dividing models that
generalize well and those that do not, suggesting interplay between these two forms of task diversity.
In 3C, we summarize these results as a phase diagram, depicting three distinct phases:

1. Good generalization both in- and out-of-task-distribution (top right).

2. Good in-task-distribution generalization, poor out-of-task-distribution generalization (bottom).

3. Poor generalization both in- and out-of-task-distribution (top left); the model exhibits only
in-weights learning (IWL).
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Figure 3: Two-axis phase diagrams. A: Phase diagram for in task-distribution test loss. B: Phase
diagram for out of task-distribution test loss. C: Three phases of in-context learning. In constructing
the phase diagram, we set the threshold for high and low generalization losses to 0.5.

3.3 Nonlinear regression

We now change the mapping between input and label for the regression to be a nonlinear function of
the weights. Specifically, we consider yi = wT

2 ReLU(W1xi), with xi, w2 ∈ Rd and W1 ∈ Rd×d.
We choose d = 3 so that the model has 12 parameters. In Fig 4, we see that specialization-
generalization transitions still occur, and investigate two ways of choosing the parameters. In Fig
4A, we pick the full 12-dimensional parameter vector θ = {vec(W1), w2} from the surface of S11.
This choice induces a bias towards ∥w2∥ ≪ 1 for angles ϕ near the ‘poles’ (v = (±1, 0⃗)T ). This
bias is relaxed, however, when ϕ ∼ 90◦, near the equator of the sphere. This leads to nonmonotonic
behavior (Fig 4A) – the tasks near the poles are more similar to each other than to those near the
equator. In contrast, in Fig 4B, we pick from two separate hyperspheres: vec(W1) ∈ S8 and w2 ∈ S2.
This choice leads to a qualitatively similar transition to those we see in the linear case.

(A) (B)

Figure 4: Specialization-generalization transitions in nonlinear regression. A: All parameters in
the nonlinear model (a small one-hidden-layer network) are drawn from the same hypersphere. The
transition occurs at ϕ ≈ 45◦. B: The parameters in the nonlinear model are drawn separately from a
different hypersphere for each layer in the model. The transition occurs at ϕ ≈ 90◦.

4 Discussion and future work

We propose another “axis” to task diversity, distinct from the task diversity measure in [3] (the number
of pretraining tasks). This other axis of task diversity, based on subsets of the task space, accounts
for the similarity present between tasks. Depending on the level of task diversity present during
pretraining, we have shown that transformers learn either a specialized solution that fails to generalize
out-of-task-distribution, or a generic solution with good performance across the entire task space.

Our experiments open a new direction for understanding how general-purpose models are able to
solve unseen tasks using only a few examples in their context: We show empirically that transformers
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can learn to do ICL over much more of the task space than they are trained on. Understanding the
generality of this behavior may help explain why language models are able to perform well on ICL
tasks not present in their pretraining distribution. Although our experiments here are limited by their
focus on relatively simple functions as the ICL task, we believe investigations into specialization-
generalization transitions for more complex tasks are a promising direction for future study. Building
trust in LLMs is an important challenge with positive societal impacts, and understanding the degree
and nature of task generalization via ICL takes a step towards this goal.
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A Appendix / supplemental material

Further training details: All code was written in Python using the PyTorch library [9]. All models
were trained for 58,000 steps using a batch size of 128 and a constant learning rate of 3× 10−4. All
models were converged at the end of training. All models were trained on a single GPU, either a MIG
GPU with 10GB of memory or an A100 with 40GB of memory, and took ∼ 3hrs to train.

A.1 Two stages of specialization

In Fig 6A, we compare the training loss of a transformer trained normally on data with ϕ = 45◦

to a transformer trained on modified data. To modify the data, we zero out all components of xi
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Figure 5: A second run of Fig 2A, with a different initialization and sampling of w ∼ pϕ.

(A) (B)

Figure 6: Transformers undergo two stages of specialization during training: A: For small ϕ, the
transformer quickly learns a solution that only takes into account the component of xi in the direction
of the vector v forming the center of the hyperspherical cap. Blue: A transformer trained normally
on training data with ϕ = 45◦. Orange: A transformer trained on data with the components of xi

perpendicular to v zeroed out. The training loss is smoothed with an exponential moving average for
clarity of visualization. B: For low task number, the in-task distribution loss (orange) tracks the loss
for a regression weight vector w = v (blue).

that are perpendicular to the vector v defining the center of the hyperspherical training cap. We see
that during early stages of training, the transformer trained on unmodified data performs similarly to
the transformer trained on modified data, suggesting that early in training, transformers trained to
do linear regression only take into account the component of xi parallel to v. Later in training, the
unmodified transformer learns to take into account other directions in the training data. This suggests
that there are two distinct specialized solutions learned by transformers when ϕ is small.

In Fig 6B, we compare the in-task-distribution test loss for a model with the regression weight vector
w = v with the in-task distribution loss for models trained on a low number of tasks. We see that
these two quantities closely track each other, suggesting that transformers are able to learn the first
stage of specialized solution even when the number of tasks is low.
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