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Abstract001

The rapid development of large language and002
multimodal models has sparked significant in-003
terest in using proprietary models, such as GPT-004
4o, to develop autonomous agents capable of005
handling real-world scenarios like web naviga-006
tion. Although recent open-source efforts have007
tried to equip agents with the ability to explore008
environments and continuously improve over009
time, they are building text-only agents in syn-010
thetic environments where the reward signals011
are clearly defined. Such agents struggle to012
generalize to realistic settings that require mul-013
timodal perception abilities and lack ground-014
truth signals. In this paper, we introduce an015
open-source framework designed to facilitate016
the development of multimodal web agent that017
can autonomously conduct real-world explo-018
ration and improve itself. We first train the019
base model with imitation learning to gain the020
basic abilities. We then let the agent explore021
the open web and collect feedback on its trajec-022
tories. After that, it further improves its policy023
by learning from well-performing trajectories024
judged by another general-purpose model. This025
exploration-feedback-optimization cycle can026
continue for several iterations. Experimental027
results show that our web agent successfully im-028
proves itself after each iteration, demonstrating029
strong performance across multiple test sets.030

1 Introduction031

Developing autonomous agents that can complete032

complex tasks such as web navigation has been a033

significant challenge for the AI community (Zhou034

et al., 2023; Gur et al., 2023; Deng et al., 2024; Koh035

et al., 2024). Recent advancements of large lan-036

guage and multimodal models such as Claude (An-037

thropic, 2024) and GPT-4o (OpenAI, 2024) have038

made it possible to build such agents via prompt039

engineering (He et al., 2024; Zheng et al., 2024b;040

Ma et al., 2023). However, these agents struggle041

to improve further due to their reliance on closed-042

source models. Another line of work has explored043

alternative ways to build agents by starting off with 044

weaker open-source models and gradually improv- 045

ing model performance by iteratively exploring the 046

environment, collecting feedback signals, and up- 047

dating the policy model (Xi et al., 2024; Putta et al., 048

2024; Patel et al., 2024). However, existing studies 049

have only focused on building text-only agents in 050

synthetic environments (Song et al., 2024; Murty 051

et al., 2024). The synthetic environments provide 052

the benefit of well-defined reward signals, allowing 053

the agents to effectively differentiate the quality of 054

the trajectories and learn accordingly. However, 055

synthetic environments fail to capture the complex- 056

ity of real-world scenarios, leading to potential 057

generalization issues when applied to real-world 058

tasks. Moreover, real-world environments often 059

lack built-in reward signals, while web elements are 060

becoming increasingly diverse, trajectory sampling 061

more time-consuming and prone to obsolescence, 062

all of which pose other challenges in agent’s learn- 063

ing and improvement process (He et al., 2024; Pan 064

et al., 2024). Additionally, real-world webpages 065

are designed based on human visual preference, ig- 066

noring the visual inputs can cause significant infor- 067

mation loss that impacts the agent’s performance. 068

To address above limitations and explore open- 069

source models in real-world settings, we propose 070

WAVE, an open-source framework for building 071

multimodal web agents via iterative real-world ex- 072

ploration, feedback and optimization. We show 073

that WAVE can learn to perform real-world web 074

navigation tasks through an initial imitation learn- 075

ing (IL) phase followed by multiple exploration- 076

feedback-optimization cycles. To do so, we start 077

by compiling a diverse set of web task queries 078

and collecting corresponding agent trajectories us- 079

ing a state-of-the-art multimodal agent WebVoy- 080

ager (He et al., 2024) based on GPT-4o, which 081

we refer to as WebVoyager-4o. During the imita- 082

tion learning phase, we train WAVE on trajectories 083

where WebVoyager-4o successfully completes the 084
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Figure 1: The overall process of WAVE, including the Imitation Learning phase and the exploration-feedback-
optimization cycles. The agent learns basic multimodal web navigation skills through Imitation Learning and
continues to explore real-world web environments. GPT-4o provides feedback on explored multimodal trajectories,
leaving successful trajectories for the agent to improve.

task to teach the agent basic skills to perform web085

navigation. Subsequently, within the exploration-086

feedback-optimization cycle, we continue to syn-087

thesize new web tasks, allowing our agent to ex-088

plore and gather more trajectories. During this089

stage, we follow He et al. (2024) and leverage GPT-090

4o to automatically evaluate the correctness of the091

trajectories produced by WAVE. After gathering092

feedbacks, we retain successful trajectories and093

merge them with the data from IL phase to conduct094

the next round of training to improve WAVE. The095

improved agent is then used to sample new trajec-096

tories in the next iteration. This streamlined and097

effective design frees us from the limitations and098

obsolescence of manually collected trajectories, re-099

lying more on GPT-4o’s supervision, thus bringing100

the feasibility of continuous optimization.101

In our experiments, we employ idefics2-8b-102

instruct (Laurençon et al., 2024) as our backbone103

model and select 48 common websites from the104

WebVoyager and Mind2Web datasets (Deng et al.,105

2024) to gather trajectories. The overall process106

includes one imitation learning phase and three107

exploration-feedback-optimization cycles. For108

each phase, we leverage self-instruct (Wang et al.,109

2022) to generate new web queries. We assess the110

agent’s performance using the Task Success Rate111

on the WebVoyager and Mind2Web test sets. Re-112

sults indicate a gradual increase in task success rate113

across the four phases on the WebVoyager test set114

from 19.9% to 25.8% and on the Mind2Web cross115

task set from 6.3% to 19.6%, demonstrating the116

potential for iterative optimization in multimodal117

web agents. Additionally, a slight improvement118

is observed on the Mind2Web cross-web (unseen 119

web) set from 6.6% to 10.4%, suggesting that the 120

exploration-feedback-optimization cycle can, to 121

some extent, generalize to unseen websites. 122

2 Related Work 123

2.1 Multimodal Web Agents 124

Recently, there has been a growing interest in 125

building multimodal web agents, particularly those 126

that combine visual and textual understanding ca- 127

pabilities. Unlike traditional HTML-dependent 128

LLM-based agents (Lutz et al., 2024; Zhou et al., 129

2023; Gur et al., 2023; Nakano et al., 2021; Ma 130

et al., 2023), Large Multimodal Model (LMM)- 131

based agents can perform a wider variety of web 132

tasks and adapt to more complex web environ- 133

ments. The main difference lies in the observa- 134

tion space. To acquire multimodal input signals, 135

SeeAct (Zheng et al., 2024a) focuses on annotat- 136

ing images of web pages using bounding boxes 137

and index labels of candidate web elements. We- 138

bVoyager (He et al., 2024) and VisualWebArena 139

(Koh et al., 2024) both use a JavaScript tool to 140

extract web elements and annotate them on screen- 141

shots in a Set-of-Mark (Yang et al., 2023) for- 142

mat. DUAL-VCR (Kil et al., 2024) contextualizes 143

each web element with its neighbors in the screen- 144

shot. SCAFFOLD (Lei et al., 2024) introduces dot 145

matrices and coordinates on images to enhance 146

visual grounding. Most of the aforementioned 147

multimodal web agents rely on prompting closed- 148

source multimodal models such as GPT-4V (Ope- 149

nAI, 2023), Claude (Anthropic, 2024), and Gemini 150
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(Team et al., 2023). These models’ strong visual151

grounding and understanding capabilities enable152

them to correctly interpret webpage screenshots153

and engage in proper planning using paradigms154

like ReAct (Yao et al., 2022) or Chain-of-Thought155

(Wei et al., 2022). While some previous works at-156

tempted to leverage open-source vision-language157

models to build web agents (Zheng et al., 2024a;158

Koh et al., 2024), they found that models such as159

BLIP-2-T5 (Jian et al., 2024), LLaVA (Liu et al.,160

2024), and Idefics (Laurençon et al., 2023) can161

hardly achieve satisfactory performance. The main162

reason is that the pretraining of those open-source163

vision-language models mostly focuses on aligning164

image-text features and visual question answering165

instead of image-text interleaved agent trajectories.166

In this work, we propose an agent built upon an167

open-source model that can automatically collect168

trajectories to continuously improve itself, leading169

to salient gains in performance.170

2.2 Self-Improving Web Agents171

Researchers also have attempted to boost agents172

and adapt them to complex environments through173

exploration and self-improvement (Yu et al., 2024;174

Zhang et al., 2024b). AgentGYM (Xi et al.,175

2024) proposes a framework that unifies a wide176

range of environments for real-time exploration177

and evolution of LLM-based agents. AgentQ (Putta178

et al., 2024) integrates Monte Carlo Tree Search179

(MCTS) and Direct Preference Optimization (DPO;180

Rafailov et al., 2024) algorithms to iteratively up-181

date the policy of LLM-based web agents based182

on successful and failed web trajectories. Patel183

et al. (2024) suggests improvement by utilizing web184

agents to collect and filter in-domain trajectories,185

plus out-of-domain tasks along with hypothetical186

solution trajectories. However, there is still a lack187

of exploration on how to leverage multimodal web188

signals to achieve self-improvement. We aim to189

enable multimodal web agents to adapt to complex190

and dynamic online environments, enhancing their191

generality and ability to operate across numerous192

online websites.193

3 Method194

In this section, we introduce WAVE, an innovative195

web agent that outlines a path of iterative optimiza-196

tion for LMM-based Web Agents to handle intri-197

cate online web tasks. Firstly, we enable the agent198

to learn web navigation trajectories of WebVoyager-199

4o in the first stage to gain basic web knowledge 200

and navigation skills, namely Imitation Learning 201

(IL). Subsequently, the agent iteratively explores 202

and improves with the feedback from GPT-4o. 203

3.1 Task Formulation 204

In the web browsing environment E , consider the 205

web navigation process as a Partially Observable 206

Markov Decision Process (POMDP). The setup 207

is defined by the tuple (S,O,A, T , R), where S 208

denotes the state space, O represents the observa- 209

tion space, and A is the action space. T is the 210

deterministic transition function that performs web 211

operations in the browser to promote the process. 212

The reward R in this environment is typically a 213

sparse signal indicating success or failure, with 214

values of 1 or 0, respectively. 215

Given a task query q and its corresponding web- 216

site w, we can initialize the web environment E 217

by setting the state s1 to this web page, and obtain 218

the first step observation o1 ∈ O. In this work, 219

we adopt the vision-language setting that the ob- 220

servation in each step will include an accessibility 221

tree and a screenshot, i.e., o1 = (oa1, o
s
1). Let θ 222

represents the parameters of the Large Multimodal 223

Models (LMMs). Following the ReAct paradigm, 224

we derive thoughts and actions using LMMs: 225

(h1, a1) ∼ πθ(·|I, q, o1) = πθ(·|I, q, oa1, os1), 226

where I denotes the system prompt, including an- 227

swer formats, the introduction of web operations 228

and some guidelines. The transition function T is 229

then applied to parse the action and execute it on 230

the web page, obtaining the next state s2. There- 231

fore, at time step t, we have: 232

(ht, at) ∼ πθ(·|I, q, oa1, os1, h1, a1, ..., oat , ost ) (1) 233

234

st+1 = T (st, at; E). (2) 235

The full trajectory can be represented as τ = 236

(oa1, o
s
1, h1, a1, ..., o

a
T , o

s
T , hT , aT ), where T is the 237

number of iterations in web navigation, i.e., the 238

length of the trajectory. 239

3.2 WAVE Overview 240

Environment We adopt the Selenium-based on- 241

line web navigation environment provided by Web- 242

Voyager (He et al., 2024). In contrast to WebVoy- 243

ager, we do not employ the Set-of-Mark approach 244

to mark elements on screenshots because open- 245

source LMMs face significant visual grounding 246

issues in identifying numerical tags on screenshots. 247
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Figure 2: The model architecture of our multimodal web agent. We use the most recent 3 web screenshots to
demonstrate the page changes after performing web actions and label the web elements in the accessibility tree to
facilitate the agent in selection and response. Considering the limitation of sequence length and to avoid confusion,
we only retain the most recent accessibility tree.

We modify the observation of the web page to in-248

clude the accessibility tree and its corresponding249

unmarked screenshot. Figure 4 in Appendix A250

shows a specific example of the observation space.251

Model and Learning We adopt Idefics2 (Lau-252

rençon et al., 2024) as the backbone LMM for253

building WAVE. Idefics2 is well-suited for our task254

as it incorporates interleaved image-text documents255

during training, boosting the model’s multi-image256

reasoning and long-context comprehension capabil-257

ities. Additionally, Idefics2 supports encoding high-258

resolution images up to 980x980 pixels, which is259

necessary for preserving the fine-grained visual de-260

tails on the webpage screenshots. In Figure 2, we261

elaborate on how we adapt the Idefics2 architecture262

to build WAVE. Similar to the messages fed into263

GPT-4o, we embed the <image> token at the cor-264

responding position in the context, aligning it with265

the accessibility tree. The Idefics2-based agent will266

make a decision based on the observation contain-267

ing multimodal information. Figure 1 illustrates268

the full process of IL and exploration-feedback-269

optimization cycle: collecting trajectories for Im-270

itation Learning via WebVoyager-4o, training the271

base agent, and then continuously exploring new272

trajectories. Based on feedback from GPT-4o, suc-273

cessful trajectories are leveraged for optimization.274

3.3 Web Task Queries Collection275

Queries for the Imitation Learning The IL276

phase is crucial as it forms the foundation for subse-277

quent improvements. We aim to gather a diverse set278

of web tasks of varying difficulty, enabling GPT-4o279

to collect diverse trajectories. We choose 48 popu-280

lar websites, then select and synthesize queries QIL281

from multiple perspectives before IL. The details 282

of QIL are shown in Appendix D. 283

Queries for Real-World Exploration We con- 284

tinue to use the self-instruct (Wang et al., 2022) 285

approach to generate new queries that are similar 286

but not duplicated based on existing queries. In 287

each exploration-feedback-optimization cycle, we 288

automatically generate 480 queries for 48 websites, 289

with 10 queries for each website. The agent then 290

conducts web exploration based on these tasks. 291

3.4 Imitation Learning 292

Trajectories Collection We utilize GPT-4o 293

along with the WebVoyager paradigm (He et al., 294

2024) to generate web navigation trajectories corre- 295

sponding to the above queries. The agent is named 296

WebVoyager-4o and configured to receive obser- 297

vations consisting of the latest k steps, including 298

accessibility trees and screenshots. i.e., for each 299

qi ∈ QIL, τi ∼ πθg(τ |I, qi), we clip long context 300

ct to avoid performance degeneration when t > k: 301

c
clip
t = (h1, a1, h2, a2, ..., ht−k, at−k, 302

ot−k+1, ht−k+1, at−k+1, ..., ot), (3) 303
304

(ht, at) ∼ πθg(·|I, q, c
clip
t ). (4) 305

It is worth noting that we preserve the thought and 306

action of each step to maintain the full reasoning 307

process without occupying excessive context. The 308

collected trajectories fall into three pre-defined cat- 309

egories: unfinished (exceeding the maximum it- 310

eration of Navigation), finished & unsuccessful, 311

and finished & successful. In this stage, to better 312

distill knowledge from GPT-4o, we filter out un- 313

finished trajectories, retaining only the other ones 314
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for training in Imitation Learning. Meanwhile, we315

resample the unfinished tasks once to improve the316

utilization of queries and reduce the problem of317

navigation failure due to sampling randomness.318

Learning We adopt Idefics2 (Laurençon et al.,319

2024) to learn trajectories collected through320

WebVoyager-4o. In Idefics2, screenshots are en-321

coded as 64 visual tokens. However, the length322

of each accessibility tree is much longer than 64323

tokens. Considering the sequence length issue, we324

further truncate the context and the number of im-325

ages, retaining the latest k images while keeping326

only one accessibility tree of the current page. That327

is, we remove k − 1 accessibility trees in Eq. 3:328

c
clip′
t = (h1, a1, ..., ht−k, at−k,329

ost−k+1, ht−k+1, at−k+1, ..., o
s
t , o

a
t ). (5)330

Let DIL represents the collected trajectories, and θ331

denote the parameters of the Idefics2 model. We332

aim to maximize the following objective function:333

JIL(θ) = E(q,τ)∼DIL

T∑
t=1

[
log πθ(at|q, cclip′

t , ht)334

+ log πθ(ht|q, cclip′
t )

]
, (6)335

where the system prompt I is no longer provided336

because of its considerable length. Through Imi-337

tation Learning, the agent has already learned the338

basic operation logic and response format, so there339

is no need for the system prompt.340

3.5 Iterative Optimization341

After the Imitation Learning phase, the trained342

agent πθb will proceed to explore websites and343

undergo multiple cycles of exploration-feedback-344

optimization. We continue to generate more345

queries using self-instruct. Instead of relying on346

WebVoyager-4o to collect trajectories, the agent347

collects trajectories on its own. At each exploration-348

feedback-optimization cycle, we employ trajectory-349

level rejection sampling via GPT-4o. An LMM350

capable of evaluating multimodal web trajectories351

is indispensable to ensure the quality of the tra-352

jectories and automate the process. GPT-4o is a353

natural choice for this task, as its capabilities are354

comparable to those of humans, and its stability is355

even slightly higher than that of humans. We dis-356

cuss more reasons for choosing GPT-4o to provide357

feedback in Appendix C. Let Qj
SI be the query set358

for j-th optimization, for every q ∈ Qj
SI, we sam- 359

ple several trajectories from the model πθj−1
, with 360

GPT-4o acting as the Auto Evaluator, accepting 361

only trajectories that GPT-4o deems as success- 362

fully navigated. We consider this auto evaluation 363

method reliable because assessing the correctness 364

of a trajectory is much easier than obtaining a cor- 365

rect trajectory. He et al. (2024) also demonstrates a 366

high level of evaluation consistency between GPT- 367

4o and humans. 368

Let Dj
SI represent the set of trajectories collected 369

after rejection sampling in the j-th optimization. 370

We mix the collected trajectory sets with DIL and 371

continue fine-tuning πθj−1
by maximizing the fol- 372

lowing objective: 373

J j
SI(θ) = E(q,τ)∼DSI

T∑
t=1

[
log πθ( 374

at|q, cclip′
t , ht) + log πθ(ht|q, cclip′

t )
]
, (7) 375

where j = 1, ...,m denotes the times of optimiza- 376

tion, DSI = DIL∪Dj
ev denotes the mixed trajectory 377

set and πθ0 is set to πθb . The complete procedure 378

is shown in Algorithm 1 in Appendix B. 379

4 Experiment 380

4.1 Dataset and Metric 381

Training Dataset In §3.4, we have outlined the 382

composition of the query set QIL during the Imi- 383

tation Learning stage, which includes 48 websites 384

mentioned in Mind2Web (Deng et al., 2024) and 385

WebVoyager (He et al., 2024), along with 1516 rel- 386

evant task queries collected. We use WebVoyager- 387

4o to gather corresponding trajectories for them, 388

with each query having a maximum of 2 trajec- 389

tories. Then we retain 1165 finished (including 390

both successful and unsuccessful) trajectories, with 391

a total of 7253 interaction turns. During the j-th 392

exploration-feedback-optimization cycle, we ex- 393

pend 480 queries for 48 selected websites. The 394

trajectories are sampled via πθj−1
and the maxi- 395

mum resampling count is set to 5. 396

Evaluation Dataset To evaluate the performance 397

of our agent, we use the following datasets: 1) We- 398

bVoyager (He et al., 2024) test set, comprising 15 399

websites seen during training and 643 queries; 2) 400

Mind2Web (Deng et al., 2024) cross-task test set, 401

which includes 33 websites seen during training 402

and a total of 112 queries. 3) Mind2Web cross- 403

website test set, we select 2 websites each from “En- 404
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Allrecipes Amazon Apple ArXiv GitHub Booking ESPN Coursera

WAVEIL 17.8% 12.2% 20.9% 14.0% 14.6% 9.1% 9.1% 31.0%
WAVEiter-1 35.2% 26.8% 11.6% 18.6% 24.4% 6.8% 2.3% 28.6%
WAVEiter-2 22.2% 36.6% 27.9% 20.9% 19.5% 6.8% 6.8% 33.3%
WAVEiter-3 24.4% 24.4% 20.9% 18.6% 31.7% 18.2% 11.4% 42.9%
WAVEiter-3-dgs 20.0% 31.7% 18.6% 23.3% 24.4% 13.6% 25.0% 42.9%
WAVEiter-3-dgs-g 22.2% 29.3% 32.6% 20.9% 26.8% 11.4% 11.4% 42.9%

Cambridge BBC Google Google Google
Huggingface

Wolfram
Overall

Dictionary News Flights Map Search Alpha

WAVEIL 37.2% 9.5% 9.5% 22.0% 44.2% 20.9% 26.1% 19.9%
WAVEiter-1 25.6% 9.5% 19.0% 26.8% 44.2% 25.6% 32.6% 22.6%
WAVEiter-2 23.3% 14.3% 19.0% 22.0% 41.9% 11.6% 34.8% 22.7%
WAVEiter-3 37.2% 11.9% 11.9% 26.8% 39.5% 30.2% 37.0% 25.8%
WAVEiter-3-dgs 30.2% 11.9% 21.4% 22.0% 39.5% 23.3% 34.8% 25.5%
WAVEiter-3-dgs-g 34.9% 14.3% 21.4% 29.3% 44.2% 32.6% 37.0% 27.4%

Table 1: Task success rate on WebVoyager test set (643 queries). All websites are seen during training. ‘IL’, ‘iter-1’,
‘iter-2’, and ‘iter-3’ represent agents after IL, 1st, 2nd, and 3rd optimization, respectively. ‘dgs’ and ‘dgs-g’ denote
difficulty-guided sampling, i.e., sample more trajectories for webs with low sampling accuracy, the former by adding
trajectories sampled by the agent itself and the latter by adding trajectories sampled by GPT-4o.

Agents
Mind2Web cross-task (unseen task) Mind2Web cross-web (unseen web)

Entertainment Shopping Travel Overall Entertainment Shopping Travel Overall

WAVEIL 8.2% 5.9% 4.3% 6.3% 3.0% 13.3% 4.7% 6.6%
WAVEiter-1 12.2% 0.0% 4.3% 7.1% 6.1% 6.7% 9.3% 7.5%
WAVEiter-2 24.5% 5.9% 6.5% 14.3% 15.2% 10.0% 7.0% 10.4%
WAVEiter-3 26.5% 23.5% 10.9% 19.6% 6.1% 20% 7.0% 10.4%
WAVEiter-3-dgs 18.4% 23.5% 10.9% 16.1% 9.1% 16.7% 25.6% 17.9%
WAVEiter-3-dgs-g 22.4% 29.4% 15.2% 20.5% 3.0% 20.0% 23.3% 16.0%

Table 2: Task success rate on Mind2Web cross-task and cross-web test set. In cross-task set, the queries from the
same websites are seen during training. In cross-website set, the websites are not seen during training but still
belong to the Entertainment, Shopping, and Travel Domain.

tertainment”, “Shopping”, and “Travel” domains;405

the websites are unseen during training but have the406

same domains, amounting to a total of 106 queries.407

Metric Following WebVoyager, we adopt Task408

Success Rate automatically evaluated by GPT-4o409

as the primary metric. To view the exploration ef-410

ficiency in the exploration-feedback-optimization411

cycle, we define Success@K (S@K) as the ratio412

of tasks that get success within K samples. Addi-413

tionally, we pay attention to the finish rate (F@1),414

where a task is considered finished as long as the415

agent selects ‘ANSWER’ within the maximum nav-416

igation steps. Table 3 shows the details of the417

query set and collected trajectories in exploration-418

feedback-optimization cycles.419

4.2 Experimental Details420

To collect data for imitation learning phase, we421

adopt the state-of-the-art model GPT-4o with We-422

bVoyager framework (WebVoyager-4o) to sample 423

web navigation trajectories. We set k = 3, i.e., 424

the context contains at most 3 screenshots and 425

corresponding accessibility trees but retains the 426

thoughts and actions generated by GPT-4o in each 427

step. Our agent builds upon Idefics2-8b-instruct 428

with outstanding vision-language capabilities to 429

complete the imitation learning and exploration- 430

feedback-optimization cycles. During fine-tuning, 431

the max sequence length is set to 8192. We no 432

longer use system prompts and further clip the con- 433

text to accept a maximum of 3 screenshots and 1 434

accessibility tree. The original resolution of the 435

screenshots is 1024*768 and the screenshots are 436

resized such that the longer length is no larger than 437

980, before feeding into Idefics2. We set the batch 438

size to 64 and train for 300 iterations in each phase, 439

approximately 2 - 3 epochs. In the exploration- 440

feedback-optimization phase, we iteratively train 441

our agent with a total of m = 3 iterations. When 442
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Figure 3: Performance growth of WAVE on WebVoy-
ager and Mind2Web test set from Imitation Learning
phase to 3rd exploration-feedback-optimization cycle.

the agent performs exploration, we set the tem-443

perature to 1.2 to improve the randomness. The444

agent samples up to 5 trajectories for each given445

task query. We still select GPT-4o as the feedback446

model and trajectories with positive feedback are447

gathered for further optimizations.448

4.3 Main Results449

Throughout the entire process of Imitation Learn-450

ing and exploration-feedback-optimization cycles,451

we trained four models: WAVEIL, WAVEiter-1,452

WAVEiter-2, and WAVEiter-3. Table 1 shows the453

performance of these models on the WebVoyager454

test set. Table 2 presents the results of these models455

on the Mind2Web cross-task and cross-website test456

set. We show the performance changes of our agent457

on these datasets from imitation learning phase to458

the third optimization cycle in Figure 3.459

From the results in Table 1 and Table 2, we ob-460

serve a general improvement in task success rates461

in both WebVoyager and Mind2Web cross-task test462

set as optimization progressed. This indicates the463

effectiveness of our method when the webs in the464

test set have been trained on or explored during465

the training phase. In the Mind2Web cross-web466

test set, the optimization cycle also provides some467

enhancement in agent’s performance, although not468

as prominently as in the cross-task set. Also, the469

improvement is unstable on these unexplored web-470

sites, agent suffers from sampling randomness and471

is more likely to get stuck during web navigation.472

Table 3 shows the results of GPT-4o’s feed-473

back on the trajectories sampled by the agent dur-474

ing the exploration phase. We find that despite475

having 5 chances for resampling, The agent still476

performs poorly on many websites. Therefore,477

we consider increasing the number of trajectories478

specifically for these “difficult” websites during479

exploration-feedback-optimization phase. To in- 480

vestigate the effectiveness of this difficulty-guided 481

sampling (DGS) strategy, we train WAVEiter-3-dgs-g 482

and WAVEiter-3-dgs. The former involves adding 483

some trajectories sampled by WebVoyager-4o for 484

webs with S@5 below 40% during the third itera- 485

tion, while the latter adds some trajectories sampled 486

by the agent itself. Compared to WAVEiter-3, adding 487

exploration trajectories to the “difficult” websites 488

can improve performance for certain websites like 489

Google Flights. However, influenced by the sam- 490

pling randomness, the optimization is not stable, as 491

seen in Booking, GitHub, and others. We believe 492

the potential reason why DGS failed to consistently 493

enhance performance lies in the fact that, although 494

DGS increases trajectory sampling for these web- 495

sites, only a small fraction of simple tasks suc- 496

ceeded, which does not provide more diversity. 497

So, incorporating WebVoyager-4o’s sampling of 498

more diverse trajectories during exploration has led 499

to some overall performance improvements. 500

4.4 Discussion 501

The average length of trajectories. During in- 502

ference, we record the length of trajectories when 503

they are finished (the agent provides answers) and 504

successful. The variation of the average length of 505

web navigation trajectories is shown in Table 4. 506

In our experiments, we observe that as iterative 507

optimization progresses, agents tend to complete 508

tasks in fewer interaction steps and navigate more 509

quickly on familiar websites. This phenomenon 510

creates a cycle where trajectories obtained dur- 511

ing the exploration-feedback phase become shorter, 512

leading the model to increase its focus on learning 513

from shorter trajectories during optimization. 514

Hallucination limits performance. We find that 515

agents often directly hallucinate answers that do 516

not appear during the navigation. The decrease 517

in trajectory length might have increased the fre- 518

quency of this issue. The agent tends to terminate 519

navigation directly instead of continuing the search 520

after a certain length of the trajectory. As shown 521

in Table 3, we can also observe that the results for 522

F@1 are high, but S@1 are relatively low. This 523

indicates that agent believes it has finished the task 524

but is actually unsuccessful. While the finish rate 525

and success rate in GPT-4o-sampled trajectories 526

are close. This insight suggests that in future explo- 527

ration, we can increase the diversity of sampling 528

by varying the task difficulty and trajectory length. 529
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Improvement
Iteration

Query
Traj.
From

Success
Traj.

Turns F@1 S@1 S@2 S@3 S@4 S@5

iter-1 480 πθb 152 943 74.6% 10.4% 19.6% 24.4% 27.5% 31.7%
iter-2 480 πθ1 205 1324 87.1% 16.0% 24.0% 30.2% 36.9% 42.7%
iter-3 480 πθ2 207 1333 91.5% 18.8% 27.9% 35.2% 41.0% 43.1%

Table 3: Details of query set and trajectory set during the exploration-feedback-optimization cycle. The feedback on
task success or not is provided by GPT-4o. F@1 indicates the finish rate of the first exploration. S@K represents the
task success rate within K explorations. Each task will sample the trajectory up to 5 times until it succeeds or fails
all 5 times, successful trajectories will be retained to improve our agent.

Agent
WebVoyager

Mind2Web
cross-task

Mind2Web
cross-website

Finish Success Finish Success Finish Success

WAVEIL 6.47 5.26 8.77 7.00 9.28 9.29
WAVEiter-1 6.17 5.02 7.58 5.00 7.98 9.63
WAVEiter-2 5.89 5.04 7.33 6.31 7.13 7.45
WAVEiter-3 5.47 5.07 7.67 7.59 6.16 6.91

Table 4: The average length of trajectories across differ-
ent optimization cycles on various test sets. ‘Finish’ and
‘Success’ indicates that we calculate the average length
for finished or successful trajectories, respectively.

Agent
WebVoyager (643 tasks)

R RS S RS / R RS / S

WAVEIL 61 8 128 13.1% 6.3%
WAVEiter-1 75 16 145 21.3% 11.0%
WAVEiter-2 88 22 146 25.0% 15.1%
WAVEiter-3 142 40 166 28.2% 24.1%

Table 5: The frequency of the agent using the restart
action: Let R denote the number of trajectories with
restart, RS the number of successful trajectories with
restart, and S the total number of successful trajectories.

Restart to the search engine and solve tasks. In530

WebVoyager’s paradigm, an important web action531

is to restart navigation from the search engine when532

encountering difficulties. In this paper, the ‘Restart’533

action is also provided in the data for training dur-534

ing the Imitation Learning phase. We observe the535

frequency of our agent using restart action, calcu-536

late their success rates, and the ratio of successful537

tasks using restart to the total successful tasks, as538

shown in Table 5. We can infer from the results539

in the WebVoyager test set that as agents undergo540

iterative optimization, they increasingly prefer to541

use the search engine. The proportion of successful542

trajectories achieved by using the search engine is543

rising among all successful trajectories, addressing544

some of the navigation failure issues.545

Other settings and parameters. Trajectory col-546

lection is time-consuming, especially in the explo-547

ration phase where each query requires up to 5548

resampled trajectories to tackle relatively difficult549

Training
Trajectories

Result

DIL ∪Diter-1 ∪Diter-2 20.8%
DIL ∪Diter-2 23.3%

Table 6: Study on whether to use a mixture of data from
previous phases in exploration-feedback-optimization
cycle (WAVEiter-1 → WAVEiter-2).

navigation tasks. So we primarily adjust hyper- 550

parameters such as learning rate and global batch 551

size during the IL phase. However, we ultimately 552

find that this has little significance, as the error is 553

much smaller compared to the challenges posed by 554

webpage navigation and sampling randomness. 555

In optimization cycles, we also try to mix all tra- 556

jectories that considered success through GPT-4o’s 557

feedback, for example, using DIL ∪Diter-1 ∪Diter-2 558

to improve WAVEiter-1. We select 120 WebVoyager 559

queries and compare task success rate in Table 6. 560

Other discussions are shown in Appendix C. 561

5 Conclusion 562

In this paper, we explore how to construct a multi- 563

modal web agent via iterative exploration, feedback 564

and optimization. We adopt idefics2-8b-instruct as 565

the backbone LMM model and collect web task 566

queries from numerous websites. Initially, our 567

agent learns the web operation logic of GPT-4o 568

through Imitation Learning. Then it enters the 569

exploration-feedback-optimization cycles, explor- 570

ing and collecting trajectories based on new web 571

tasks, retaining the trajectories that GPT-4o con- 572

siders correct for further learning, updating, and 573

optimization. We focus on building an LMM-based 574

iterative optimization web agent with multi-image 575

understanding capabilities, enabling it to adapt to 576

complex and dynamic online web environments. 577

The entire process primarily involves the agent’s 578

self-exploration and GPT-4o’s supervision, reduc- 579

ing human intervention and allowing continuous 580

expansion to ensure the agent’s generality. 581
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Limitations582

First, we only consider the most common exe-583

cutable web actions in the simulated environment,584

including clicking, typing, and scrolling, without585

more advanced actions such as dragging and zoom-586

ing. Additionally, our approach is based on a rel-587

atively small LMM Idefics2 with 8B parameters,588

which may limit the agent’s ability to effectively589

navigate websites of unseen domains and respond590

to complex user queries. The low performance on591

complex websites might further affect exploration592

efficiency, leading to minimal improvement and593

time-consuming during the exploration-feedback-594

optimization process. Last, our model still primar-595

ily relies on accessibility trees, we hope to improve596

the visual grounding and multi-image reasoning ca-597

pabilities so that it can directly use web screenshots598

for planning like GPT-4o.599

Ethics Statement600

In light of the potential risks associated with online601

web navigation, all our experiments adhere strictly602

to ethical guidelines. Our approach includes hu-603

man supervision as well as GPT-4’s monitoring604

for content violations. Throughout the sampling605

of all web task trajectories, no violations by the606

agent are detected. A small portion of tasks are607

filtered due to the sensitivity of advertisements or608

content on news websites. None of the tasks in-609

volve private information such as personal names,610

account passwords, etc. The tasks typically include611

information-seeking activities and do not include612

actual bookings or payment transactions. In our613

work, the web agent’s sampled trajectories are in-614

tended solely for research purposes. The agent615

operates in a simulated human-like manner, with a616

slow sampling frequency, ensuring no pressure is617

placed on the explored websites.618
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A Environment and Prompts778

We adopt the framework of WebVoyager for online779

real-world web navigation. The web actions used780

are the most basic clicks, inputs, and scroll oper-781

ations as shown in Table 7. Unlike WebVoyager,782

we do not use the Set-of-Mark approach to label783

screenshots. Instead, we combine screenshots and784

the accessibility tree as observations for the agent785

to make decisions. Figure 4 illustrates an example786

of observation.787

Based on the changes in observations, we788

slightly modify the system prompt of WebVoy-789

ager (He et al., 2024) during the Imitation Learning790

phase to accommodate the paradigm of accessibil-791

ity tree + screenshot. In terms of web operation792

implementation, each element in the accessibil-793

ity tree has pre-saved attribute information, where794

‘union_bound’ labels the position information of795

the element.We use Selenium to locate the element796

that appears in this position and then access it.797

In the WebVoyager framework, in addition to798

the system prompt, the author has designed error799

reflection to ensure effectiveness. When a certain800

action fails, there will be a prompt saying: "The801

action you have chosen cannot be executed.802

Please double-check if you have selected803

the correct element or used the correct804

action format. Then provide the revised805

Thought and Action." This prompt serves to806

remind the agent to correct errors. While training807

our own Agent, although we no longer use the808

system prompt, we still retain the error reflection809

mechanism.810

B Algorithm811

In Algorithm 1, we present the complete algorithm812

of WAVE. It mainly consists of an Imitation Learn-813

ing (IL) phase and multiple exploration-feedback-814

optimization cycles. In the IL phase, GPT-4o (πθg )815

serves as an expert to sample trajectories via Web-816

Voyager framework, requiring a significant number817

of OpenAI API calls. In the exploration-feedback-818

optimization cycle, GPT-4o acts as an expert to819

evaluate trajectories, with only one API call needed820

for each trajectory. Hence, during the execution of821

the algorithm, there is a trade-off. On one hand,822

we aim to increase the sampling in the IL phase823

to enhance the model’s capabilities and obtain a824

strong base model (πθb), which can improve explo-825

ration efficiency. However, if the improvement in826

the IL phase is not obvious, using additional GPT-827

Algorithm 1 WAVE
Input: LMM-based Agent πθ , GPT-4o Agent πθg , GPT-
4o Evaluator Rθg , query set QIL for Imitation Learning,
Q1

SI,..., Q
m
SI for exploration-feedback-optimization stages.

Output: The fine-tuned Agent πθm

procedure IMITATION LEARNING:
DIL =

{
(qi, τi)|qi ∈ QIL, τi ∼ πθg (τ |I, qi)

}|DIL|
i=1

;
Maximize JIL(θ) shown in Equation 6 to get πθb ;

end procedure
procedure EXPLORATION-FEEDBACK-OPTIMIZATION:

πθ0 ← πθb ;
for iteration j = 1, ...,m do

Collect trajectories Dj
SI with rejection sampling:

Dj
SI ← {};

for q ∈ Qj
SI do

while l < max resampling count do
τl ∼ πθj−1(τ |q);
ifRθg (τ

l
i ) = 1 then

Dj
SI ← Dj

SI ∪ {τl};
break;

end if
end while

end for
DSI ← DIL ∪Dj

SI;
Maximize J j

SI(θ) shown in Equation 7 to get πθj ;
end for

end procedure

4o calls for the IL phase might not be cost-effective. 828

In such cases, letting the agent explore on its own 829

with GPT-4o serving as auxiliary supervision might 830

be more beneficial. 831

C Additional Discussion 832

Why Using Iterative Self-Improvement Itera- 833

tive self-improvement through self-play is a well- 834

established technique in adapting to complex and 835

dynamically changing environments, such as real- 836

world websites. While the concept is not novel, 837

its application in our work is driven by practical 838

engineering necessities. Given the periodic up- 839

dates and inherent complexity of websites, itera- 840

tive self-improvement provides a robust framework 841

for continuous exploration and adaptation, mak- 842

ing it a reasonable choice for our multimodal web 843

agent, WAVE. Besides, iterative self-improvement 844

is a more efficient method for distilling GPT-4o, 845

which minimizes resource consumption by reduc- 846

ing the frequency of GPT-4o calls. These advances 847

enhance the practicality and scalability of our ap- 848

proach. 849

Resource and Time Requirements Navigating 850

real-world websites can be time-consuming due to 851

the following reasons: (1) Poor network conditions 852

or slow server responses from the websites. (2) 853

Websites with a large number of elements often 854
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(a) Screenshot of a page from Apple website  (b) Corresponding Accessibility Tree  

[1] RootWebArea 'Apple Events - Apple' focused: True
    [2] navigation 'Global'
        [3] link 'Apple'
        [4] link 'Store'
        [5] button 'Store menu' expanded: False
        [6] link 'Mac'
        [7] button 'Mac menu' expanded: False
        [8] link 'iPad'
        [9] button 'iPad menu' expanded: False
        ...
        [14] link 'Vision'
        [15] button 'Vision menu' expanded: False
        [16] link 'AirPods'
        [17] button 'AirPods menu' expanded: False
        [18] link 'TV and Home'
                [19] StaticText 'TV & Home'
        [20] button 'TV and Home menu' expanded: False
        [21] link 'Entertainment'
        [22] button 'Entertainment menu' expanded: False
        ...
        [27] button 'Search apple.com'
        [28] button 'Shopping Bag'
    [29] navigation 'Local'
        [30] link 'Apple Events'
    [31] image 'The Apple logo, defined by an outline of ...

Figure 4: An example of observations fed into the agent, where the screenshot is rendered by the browser, and the
accessibility tree is extracted from the HTML and numbered starting from ‘[1]’.

require Selenium to wait for elements to load in the855

simulation environment. (3) The agent may fail to856

find the optimal navigation trajectory.857

In practice, each task query takes approximately858

3 minutes for web interaction (and up to 5 runs or859

15 minutes per task query during the exploration860

phase). To perform large-scale exploration and861

evaluation as presented in this paper, we recom-862

mend using 2–3 Selenium processes per computer863

to make more efficient use of network resources.864

Complex web pages often contain a large num-865

ber of web elements, leading to lengthy accessibil-866

ity trees. Despite only capturing the accessibility867

tree of the current window and applying certain868

simplifications, the model still requires a sequence869

length of 8192. For training the idefics2-8b model,870

we recommend using 8 or more A100 80G GPUs.871

Why using GPT-4o for Feedback during Explo-872

ration The way GPT-4o is used in the exploration873

phase differs from its use in the imitation learning874

phase. During imitation learning, the agent distills875

GPT-4o’s web navigation capabilities. However, in876

the exploration phase, the agent samples its own tra-877

jectories, and GPT-4o only provides a reward signal878

to ensure trajectory quality. The number of GPT-879

4o calls is significantly lower than in the imitation880

learning phase. Therefore, from a cost-efficient881

perspective, it is undesirable to extend the imita-882

tion learning phase for too long. After the agent883

has learned a certain level of web navigation skills,884

transitioning to exploration-feedback-optimization885

becomes a better choice.886

In addition, we select GPT-4o for the follow-887

ing reasons: (1) Currently, there is no available 888

open-source reward model capable of providing 889

feedback to LMM-based web agents, especially 890

for trajectories that include multiple consecutive 891

screenshots. (2) For judging the success of multi- 892

modal web navigation trajectories, GPT-4o exhibits 893

high consistency with human judgments (kappa = 894

0.72). This ensures the accuracy of feedback and 895

the quality of explored trajectories. (3) Automa- 896

tion of the entire process is necessary. Therefore, a 897

tool that can provide feedback for explored trajec- 898

tories is essential. GPT-4o naturally fits this role, 899

and other models with high agreement with human 900

evaluations could also be utilized. 901

Sampling Quality and Efficiency During the 902

exploration phase, the agent samples its own tra- 903

jectories, and the sampling efficiency is influenced 904

by its current web navigation capability. We aim 905

to maintain the diversity of trajectories during the 906

exploration phase to avoid worsening the agent’s 907

hallucination. Therefore, the task queries used in 908

each exploration phase should not be too similar to 909

those used previously. At the same time, we should 910

prioritize selecting longer trajectories to prevent 911

the trajectory length from continuously decreas- 912

ing. In this paper, we also explore: (1) Conducting 913

more exploration on difficult websites to balance 914

capability improvement across different websites. 915

(2) Incorporating a small portion of trajectories 916

sampled by close-sourced models to correct some 917

biases that may arise during the optimization phase. 918
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Web Actions Format Notes

Click Click [Label]
Perform a single Click operation
on an web element.

Input Type [Label]; [Content]
Type something in the text box
and press enter.

Scroll Scroll [WINDOW or Label]; [up or down]

In some web pages where only a
partial area can be scrolled, agent
need to lock an element in that
area first, otherwise scrolls are
performed on the whole page.

Go back GoBack Go back to previous page

Restart Restart
Restart from Google Search
and solve tasks.

Wait Wait Sleep 5 seconds

Answer ANSWER; [content] Provide final answer.

Table 7: Web Actions used in this paper.

D Details of Datasets919

Selected Websites In the Imitation Learning920

phase and exploration-feedback-optimization cy-921

cles, we collect task queries from 48 websites for922

exploration. We utilize all 15 webs from Web-923

Voyager and 37 webs from Mind2Web, totaling924

48 webs (with 4 duplicates). Table 8 displays925

the specific website names used during the train-926

ing phase. During inference, we employ all task927

queries from the WebVoyager test set and select928

some task queries from the Mind2Web cross-task929

and cross-website test setincluding both learned930

and unlearned websites. To facilitate testing, we931

update the time information of some tasks but do932

not change their task expressions. Table 9 presents933

detailed statistics about the test set.934

Queries Preparation for Imitation Learning935

The learning effectiveness during the Imitation936

Learning phase is not only related to the exper-937

tise of GPT-4o but also to the richness of the task938

queries used. To diversify trajectories as much as939

possible during the Imitation Learning phase, we940

collect task queries from the following perspec-941

tives:942

• Queries from Mind2Web Training Data. We943

have chosen 37 available websites along with944

their corresponding queries, updating the date945

information for travel-related tasks, totaling946

516 queries.947

• Synthesised queries via self-instruct. Employ- 948

ing the self-instruct (Wang et al., 2022) based 949

method mentioned in WebVoyager (15 web- 950

sites), we have generated 20 queries for each 951

website, resulting in a total of 300 queries. 952

The sentence-embedding model all-mpnet- 953

base-v21 is used to calculate the query similar- 954

ity and filter out the queries with high similar- 955

ity to ensure task diversity. There are 4 web- 956

sites overlapping between WebVoyager and 957

Mind2Web, making a total of 48 websites. 958

• Human-written queries. Recognizing the ran- 959

domness and complexity of the above tasks, 960

we borrow the idea of Curriculum Learning 961

(Soviany et al., 2022) and manually designed 962

5 easier task queries for each website, which 963

can be completed by humans between 2 - 6 964

steps, amounting to a total of 240 tasks. 965

• General queries from users. To enhance gen- 966

eralization, we gather 460 queries provided 967

by Zhang et al. (2024a), and standardize them 968

to begin navigation from search engines. This 969

approach allows the agent to explore a wider 970

range of websites and helps it recognize that 971

in case of navigation failures, using a search 972

engine could be attempted. 973

1https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

13

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2


From Domain Subdomain Website Name

WebVoyager - -

Allrecipes; Amazon; Apple; ArXiv;
BBC News; Booking; Cambridge Dictionary;

Coursera; ESPN;GitHub; Google Flights;
Google Map; Google Search; Huggingface; Wolfram Alpha

Mind2Web

Entertainment

Event eventbrite; nyc; ticketcenter
Game boardgamegeek; store.steampowered
Movie imdb; rottentomatoes; tvguide
Music discogs; last.fm; soundcloud;
Sports espn; foxsports; sports.yahoo;

Shopping

Digital apple
Fashion uniqlo
General amazon; ebay; target

Speciality cvs; ikea

Travel

Airlines ryanair
Car rental enterprise
General agoda; booking
Ground amtrak; mbta; thetrainline; us.megabus
Hotel airbnb; koa; marriott

Restaurant resy; yelp
Others flightaware; nps.gov; spothero

Table 8: In the Imitation Learning and exploration-feedback-optimization cycles, a total of 48 websites are selected,
including 15 from WebVoyager and 37 from Mind2Web (4 duplicates).

E Example Trajectories974

In Figures 5 and 6, we present two examples of975

successful webpage navigations by WAVEiter-3. As976

shown in Figure 5, agent navigates directly on the977

Google Flights webpage and succeeds. The agent978

makes decisions based on the screenshots and the979

specific text information of web elements in the980

accessibility trees. In Figure 6, the agent mistak-981

enly thinks that logging in is required to search982

on GitHub, then it chooses to restart from Google983

Search and finds the answer.984

We also present an example where an agent hallu-985

cinates an answer when it cannot find one. As Illus-986

trated in Figure 7, while navigating the Allrecipes987

website, the agent fails to locate a chocolate chip988

cookie recipe that meet the task requirements. How-989

ever, it provides an answer titled "Classic Choco-990

late Chip Cookies." This discrepancy may be at-991

tributed to the agent interpreting the word "Classic"992

in the accessibility trees as a recipe and even hallu-993

cinating a cook time, despite the lack of relevance.994
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Test set
Num of
queries

Web seen
in training?

Domain Subdomain
Websites and

num of queries

WebVoyager 643 Yes - -

Allrecipes: 45; Amazon: 41; Apple: 43;
ArXiv: 43; BBC News: 42; Booking: 44;
Cambridge Dictionary: 43; Coursera: 42;

ESPN: 44; GitHub: 41; Google Flights: 42;
Google Map: 41; Google Search: 43;
Huggingface: 43; Wolfram Alpha: 46

Mind2Web
cross-task

112 Yes

Entertainment

Event eventbrite: 6; nyc: 3; ticketcenter: 4
Game boardgamegeek: 1; store.steampowered: 1
Movie imdb: 5; rottentomatoes: 1; tvguide: 3
Music discogs: 6; last.fm: 5; soundcloud: 4
Sports espn: 4; foxsports: 5; sports.yahoo: 1

Shopping

Digital apple: 4
Fashion uniqlo: 3
General amazon: 2; target: 5

Speciality cvs: 1; ikea: 2

Travel

Airlines ryanair: 6
General agoda: 3; booking: 2
Ground amtrak: 6; mbta: 4; us.megabus: 1
Hotel airbnb: 3; koa: 3; marriott: 5

Restaurant resy: 2; yelp: 4
Other flightaware: 4; spothero: 3

Mind2Web
cross-website

106 No

Entertainment
Event stubhub: 16
Sports nba: 17

Shopping
Auto cars: 13

General shopping.google: 17

Travel
Restaurant tripadvisor: 23

Other recreation.gov: 20

Table 9: Detailed statistics of the test dataset. Websites from WebVoyager and Mind2Web cross-task have been seen
during training, while websites from Mind2Web cross-websites have not been encountered.
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                  Step 1: Type [19]; Chicago
([19]  combobox 'Where from? ' autocomplete: inline 
hasPopup: menu required: False expanded: False)

                  Step 2: Type [22]; London
([22]  combobox 'Where to? ' autocomplete: inline 
hasPopup: menu required: False expanded: False)

    Step 3: Type [24]; October 20, 2024
([24] textbox 'Departure' required: False)

 Step 4: Type [25]; October 23, 2024
([25] textbox 'Return' required: False)

                                Step 5: Click [70]
([70] button 'Done. Search for round trip flights, departing 
on October 20, 2024 and returning on October 23, 2024')

  Step 6: Click [28]
([28] button 'Search')

  Step 7: ANSWER

Figure 5: Agent (WAVEiter-3) navigates on the Google Flights and completes the task successfully. TASK: "Find
flights from Chicago to London on 20 October and return on 23 October." REPLY: "Thought: The search results for
flights from Chicago to London on October 20 and October 23, 2024, are displayed. The prices start from $706 and
go up to $834. The average price for the round trip is approximately $750. Action: ANSWER; The average price
for a round trip flight from Chicago to London on October 20 and returning on October 23 is approximately $750."
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        Step 1: Click [16]
([16] button 'Search or jump 
to…' hasPopup: dialog)

                    Step 4: Click [27]
([27] heading 'Web Result with Site Links')

Step 2: Restart      Step 3: Type [8]; electron/electron GitHub releases
([8] combobox 'Search' focused: True autocomplete: 
both hasPopup: listbox required: False expanded: False)

           Step 5: Click [45]
([45] link 'Tag v33.0.0-beta.4')

                   Step 6: ANSWER
([55] generic 'Sep 25, 2024, 2:48 PM PDT'
       [56] StaticText '3 days ago' )

Figure 6: Agent (WAVEiter-3) Restart navigation from Google Search with success after failing to navigate on
GitHub pages. TASK: "Retrieve the latest release from the ’electron/electron’ repository on GitHub and note down
the release version number and date." REPLY: "Thought: I have navigated to the latest tag for the ’electron/electron’
repository. The version number shows 33.0.0-beta.4, and the release date is Sep 25, 2024, as displayed on the right
column. Action: ANSWER; Latest release of the ’electron/electron’ repository is 33.0.0-beta.4 on Sep 25, 2024."

Step 1: Type [5]; five star rated chocolate 
chip cookie recipe
([5] textbox 'Search the site' required: True )

                               Step 2: Click [14]
([14] link 'Five chocolate chip cookies on a marble 
background IN THE KITCHEN I Tested 5 Reader Favorite 
Chocolate Chip Cookie Recipes in Search of the Best' )

Step 3: Scroll [WINDOW]; down

Step 4: Scroll [WINDOW]; down Step 5: ANSWER

Figure 7: Agent (WAVEiter-3) hallucinates an incorrect answer while navigating on Allrecipes. TASK: "Find a
five-star rated chocolate chip cookie recipe that takes less than 1 hour to make on Allrecipes." REPLY: "Thought: I
have found the section listing the main ingredients and the bake time for the "Classic Chocolate Chip Cookies." The
cookies take 15 minutes to make and additional 45 minutes to bake, totaling 1 hour and 10 minutes. I now have all
the necessary information to answer the task. Action: ANSWER; The C̈lassic Chocolate Chip Cookiesr̈ecipe on
Allrecipes has a rating of 4.5 stars with 4,580 reviews. The main ingredients include butter, heavy cream, eggs, all
purpose flour, and unsweetened cocoa powder. The cookies take 15 minutes to make and additional 45 minutes to
bake, totaling 1 hour and 10 minutes."
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