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Abstract

In the field of scene text spotting, previous OCR methods pri-
marily relied on image encoders and pre-trained text infor-
mation, but they often overlooked the advantages of incorpo-
rating human language instructions. To address this gap, we
propose InstructOCR, an innovative instruction-based scene
text spotting model that leverages human language instruc-
tions to enhance the understanding of text within images.
Our framework employs both text and image encoders dur-
ing training and inference, along with instructions meticu-
lously designed based on text attributes. This approach en-
ables the model to interpret text more accurately and flexi-
bly. Extensive experiments demonstrate the effectiveness of
our model and we achieve state-of-the-art results on widely
used benchmarks. Furthermore, the proposed framework can
be seamlessly applied to scene text VQA tasks. By leveraging
instruction strategies during pre-training, the performance on
downstream VQA tasks can be significantly improved, with
a 2.6% increase on the TextVQA dataset and a 2.1% increase
on the ST-VQA dataset. These experimental results provide
insights into the benefits of incorporating human language in-
structions for OCR-related tasks.

Code — https://github.com/ChenD-VL/InstructOCR

Introduction

Scene text spotting technology aims to detect and recog-
nize characters directly within natural scene images. Re-
cently, significant advancements in integrating vision and
text have been made across various visual-language tasks,
leading to the emergence of innovative instruction-based
models. Some studies (Liu, Zeng et al. 2023; Geng et al.
2023; Brooks, Holynski, and Efros 2023; Kirillov, Mintun
et al. 2023) have validated that incorporating human lan-
guage instructions can enable models to comprehend the
content of images more accurately. Drawing on the insights
gained from these studies, we pose the following question:
For scene text images, which inherently involve visual
text, wouldn’t the incorporation of human language in-
structions be more beneficial?
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Insturction: Recognize text that begins with the character 'A’

Figure 1: Examples of text recognition results generated us-
ing various instructions. This illustrates how different in-
structions can influence the output of the text recognition
process.

In OCR tasks, several works, including oCLIP (Xue,
Zhang et al. 2022) and ODM (Duan, Fu et al. 2024), have
validated the effectiveness of pretraining the image encoder
with relevant text information. However, these methods only
employ the image encoder for text spotting tasks without
utilizing the text encoder. TCM (Yu, Liu et al. 2023) and
FastTCM (Yu, Liu et al. 2024) extract image and text-based
prior knowledge through visual prompt learning and cross-
attention within CLIP (Radford et al. 2021). Nonetheless,
the text encoder used in their works is from CLIP and is
frozen during their training process. STEP(Garcia-Bordils,
Karatzas et al. 2024) attempts to control recognition through
regular expressions. However, this method can only process
numbers or letters.

We believe that aligning human language instructions
with visual text will undoubtedly be advantageous for scene
text spotting tasks. To substantiate this point, we propose a
novel framework named InstructOCR, an instruction-based
scene text spotting model that facilitates interaction through
human language. Our objective is to leverage both text and
image encoders during training and inference via instruc-



Condition Templates

Recognition of all text

in the image Recognize all text

Text of more than {N} characters

Recognition of text by

specific length Text of less than {N} characters

Text of {N} characters

Recognition of

specific text Text consisting of {Word}

Text starts with the character {C}

Recognition of text
containing specific
characters

Text ends with the character {C}

Text contains the character {C}

Recognition of

numbers in the image Numerical text

Recognition of
alphabetic text in the

Alphabetical text
image

Table 1: Different templates used in InstructOCR for scene
text spotting allow IV to be any integer, C' to be any letter,
and Word to be either a single word or multiple words in
the image, resulting in highly diverse instructions.

tions. To this end, we design a text encoder that extracts
linguistic features from instructions to enhance the model’s
understanding of text within images. Figure 1 illustrates the
flexibility of InstructOCR in producing distinct detection
and recognition results corresponding to varying input in-
structions.

The foundation of InstructOCR is built upon a series of
instructions derived from annotated information in existing
datasets, which are related to text attributes. This is because
text attributes, such as text length, are crucial for enhancing
the performance of models in scene text recognition tasks
(Xie, Huang et al. 2019; Du, Chen et al. 2023). Building on
this insight, we have designed ten templates based on these
text attributes. As shown in Table 1, these templates can be
used to randomly generate a wide variety of training instruc-
tions. This diversity is vital as it provides clear semantic di-
rectives, enabling the model to perform tasks aligned with
human intent. Moreover, this approach fully leverages exist-
ing annotated information, thereby eliminating the need for
additional annotation costs.

The main contributions of this work can be summarized
as follows:

* We propose InstructOCR, an end-to-end instruction-
based scene text spotting model that significantly en-
hances the model’s understanding of visual text through
the use of instructions. To the best of our knowledge,
this is the first work that innovatively integrates human
language instructions into the domain of scene text spot-
ting. Additionally, with the introduction of instructions,
the framework can also be seamlessly extended to VQA
tasks.

* We have meticulously designed a range of instructions
specifically tailored for scene text domain, which can

leverage existing publicly available scene text datasets
at no additional cost. By providing precise and diverse
textual annotations, our instructions enhance the model’s
ability to accurately and efficiently interpret the complex
variations of text in images, thereby further improving
performance metrics in both scene text spotting and VQA
tasks.

* We conduct extensive experiments to evaluate the effec-
tiveness of our proposed method, and the results show
that InstructOCR provides excellent performance on a
range of scene text spotting datasets, achieves state-of-
the-art (SOTA).

Related Work
None Sequence-based Method

Most previous scene text spotting methods have treated de-
tection and recognition as two separate tasks (Borisyuk,
Gordo et al. 2018; Liao, Shi et al. 2017; Huang, Liu et al.
2022; Liu, Shen et al. 2021). MANGO (Qiao, Chen et al.
2021) proposes a one-stage text spotting framework with
Mask Attention Guidance, allowing for the direct recog-
nition without the need for Rol operations. The Mask
TextSpotter series (Lyu, Liao et al. 2018, 2021; Liao, Pang
et al. 2020) leverages the advantages of character-level an-
notations to achieve character segmentation and can recog-
nize scene text of arbitrary shapes. PGNet (Wang, Zhang
et al. 2021) introduces a graph refinement module to op-
timize coarse recognition and enhance end-to-end perfor-
mance. Additionally, there is also a parallel mode of detec-
tion and recognition. TTS (Kittenplon, Lavi et al. 2022) pro-
poses a weakly supervised learning method and employs a
shared query mechanism for its detector and recognizer. Es-
textspotter (Huang, Zhang et al. 2023) and SRSTS (Wu, Lyu
et al. 2022) process text detection and recognition in par-
allel, thereby decoupling text recognition from dependency
on detection. Inspired by the DETR (Carion, Massa et al.
2020) family models. TESTR (Zhang, Su et al. 2022) pro-
poses a framework free from Region-of-Interest operations
and heuristics-driven post-processing procedures. DeepSolo
(Ye, Zhang et al. 2023) is a DETR-like model that employs
a query form with explicit points sampled from the Bezier
center curve of text instance lines to efficiently encode the
text’s position, shape, and semantics.

Similar to scene text spotting methods, early VQA ap-
proaches also followed a two-stage task solutions (Singh,
Natarajan et al. 2019; Hu, Singh et al. 2020; Yang, Lu et al.
2021), OCR results and pre-computed features are fed into a
vision-and-language model. These approaches lack an inter-
action between text being recognized and the representation
of its context.

Sequence-based Method

Inspired by the immense success in natural language pro-
cessing, computer vision tasks are converging to Transform-
ers. These approaches extract the image feature along with
the transformer decoder to handle various tasks by predict-
ing sequence. Pix2seq V1 and V2 (Chen, Saxena et al. 2021,
2022) show that it is possible to output boxes and labels as a
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Figure 2: Main framework of InstructOCR. InstructOCR is an encoder-decoder architecture, with input branches consisting of
an image encoder and a text encoder that handle visual and textual features separately.

sequence of discrete tokens, allowing them to have a similar
training and decoding interface as language models. (Kim,
Hong et al. 2021) pioneered in employing a prompt-based
sequence generation framework for document understand-
ing.

In the end-to-end scene text spotting methods, the SPTS
series (Peng, Wang et al. 2022; Liu, Zhang et al. 2023) use
the central point of text regions to represent the location and
auto-regressively predict coordinate tokens and word tran-
scription tokens. Instead of using separate losses for detec-
tion and recognition, (Kil, Kim et al. 2023) unifies various
detection formats, including single point, quadrilaterals, and
polygons to a sequence generation paradigm. OmniParser
(Wan, Song et al. 2024) sets itself apart from other text spot-
ting methods by employing a unified architecture capable of
simultaneously addressing text spotting, key information ex-
traction, and table recognition using a single model. These
methods either only utilize image features or do not provide
an explicit learnable text encoder, resulting in a lack of un-
derstanding of human language instructions and failing to
fully leverage human language instructions to enhance the
model’s understanding of text within images.

Similar to the prevailing trend in scene text spotting tasks,
current VQA tasks also primarily utilize sequence-based
methods. Particularly, extremely large OCR-free image-text
models have shown promising results on VQA tasks (e.g.,
InternVL (Chen, Wu et al. 2024), Monkey (Li et al. 2024)
and Flamingo (Alayrac, Donahue et al. 2022)).

Method

We introduce InstructOCR, an end-to-end scene text spot-
ting method that leverages instructions to guide the model’s
output and enhance its understanding of the text. This en-
ables the model to generate recognition results based on the
provided instructions. The complete process is illustrated in
Figure 2, the instructions are input into the model alongside
the image. In the following sections, we will detail the struc-
ture of our model.

InstructOCR Architecture

InstructOCR is an encoder-decoder architecture that encom-
passes a text encoder, an image encoder, and a decoder, de-
signed to synergistically process and interpret textual infor-
mation within visual contexts.

Image Encoder. The image encoder utilizes the
ResNet50 architecture (He, Zhang et al. 2016) to extract fea-
tures from the input image.

Text Encoder. The text encoder adopts BERT (Devlin,
Chang et al. 2018), a 12-layer transformer specifically de-
signed to extract features from instructions. By applying
cross-attention between the extracted visual and textual fea-
tures, we obtain instruction-based encoded features. These
features are further processed by the decoder to generate the
output sequence.

Decoder. The decoder of InstructOCR following the ap-
proach of SPTS (Peng, Wang et al. 2022), utilizes an auto-
regressive Transformer to generate long sequences for all
text instances. Each text instance is represented by a se-
quence composed of three parts: [z, y, t], where (z, y) repre-
sents the center point coordinates and ¢ represents the tran-
scription text. To simplify the representation, the coordi-
nates are uniformly discretized into integers ranging from
1 to 1000. The text is either padded or truncated to a fixed
length of 25, and the maximum number of text instances in
an image is set to 60. In the sequence representation, the
< PAD > token is used to fill in the gaps for shorter text
instances. Additionally, < SOS > and < FEOS > tokens
are inserted at the beginning and end of the sequence, re-
spectively, to indicate the start and end of the sequence.

For the VQA task, the question is encoded by the text
encoder, while the answer is treated as a direct sequence, as
illustrated in Figure 3. The entire sequence length is set to
256.

Instructions Generation

Existing OCR annotations typically consist of locations
and recognition results. To eliminate the need for human-
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Figure 3: Examples of decoder output for scene text spotting
and VQA tasks.

annotated instructions, we have developed an automated
data processing method for generating instructions. Each
word can be divided into different attributes, such as whether
the initial character is capitalized, whether it contains a cer-
tain character, etc. We have designed ten types of templates,
as detailed in Table 1, each of which can generate the final
instruction through random conditions.

It should be noted that, unlike some methods that use indi-
cators (Kil, Kim et al. 2023; Peng, Yang et al. 2023) or spe-
cific task prompts (Lv, Huang et al. 2023; Kim, Kim et al.
2023; Ye, Hu et al. 2023) to define different downstream
tasks, we use human language as instructions. There are
three reasons for this: (1) Our instructions incorporate ran-
dom numbers and letters, making it impossible to enumerate
the types of tasks. (2) Using human language allows us to
better leverage the BERT weights pre-trained on large-scale
corpora, thereby enabling the model to better understand the
semantics of instructions. (3) Pre-training scene text spotting
with human language instructions makes it easier to extend
its use to other downstream tasks, such as Visual Question
Answering (VQA).

During the training process, instructions are selected ran-
domly. The training set is denoted as {x; }, where each train-
ing datum x; can be represented in the form of {c¢;, s;,t;}.
Here, c; denotes the control instruction, s; represents the
source image, and ¢; represents the target text sequence. For
a given image, we have a set of annotated text instances
denoted as t' = {t{,t,...,t,,_;}. Based on different in-
structions, we filter out qualifying annotated text instances,
resulting in a set denoted as t = {¢o, t1, ..., tm—1}. The ob-
jective of our method is to generate the target text sequence
t; given an input source image s; and the corresponding in-
struction ¢;. For the prediction phase, the instruction is set to
“<Recognize all text>".

Loss Function

In InstructOCR, the training objective is to predict tokens,
and we utilize the standard cross-entropy loss for model
training. This loss function aims to maximize the likelihood
of the correct tokens during training. The mathematical ex-
pression of the cross-entropy loss is as follows:

L
Lgeg = maximizeZwi log P(5;|1, $1.1) (1
i=1

where [ is the input image, s is the input sequence, § is the
output sequence, L is the length of the sequence, and w; is
the weight of the likelihood of the ¢ — th token, which is
empirically set to 1.

Experiments
Datasets

Scene Text Spotting. In our experiments, we eval-
uate our method on Total-Text (Ch’ng and Chan
2017), ICDAR2015 (Karatzas et al. 2015), and IC-
DAR2013 (Karatzas, Shafait et al. 2013). Total-Text is an
arbitrarily shaped word-level scene text benchmark, with
1,255 training images and 300 testing images. ICDAR2015
contains 1,000 training images and 500 testing images for
quadrilateral scene text. ICDAR2013 contains 229 training
images and 233 testing images with horizontal text.

VQA for Scene Text. Scene text VQA involves answer-
ing questions about the natural scene images or reasoning
about the scene text. TextVQA (Singh, Natarajan et al. 2019)
contains 45,336 questions on 28,408 images that require rea-
soning about text to answer. ST-VQA comprises 23, 038 im-
ages sourced from a combination of public datasets (Biten,
Tito et al. 2019)

Implementation Details

The Transformer encoder and decoder consist of 6 layers
with 8 heads. The max length of recognition queries is 25
and the maximum number of objects is 60. The entire model
is distributively trained on 32 NVIDIA A100-80G GPUs.
We pretrain the model on a combination dataset that in-
cludes ICDAR2013, ICDAR2015, Total-Text, Curved Syn-
thetic Dataset 150k (Liu, Chen et al. 2020), and ICDAR2017
MLT (Nayef, Yin et al. 2017). And the input for the text en-
coder is a fixed instruction: “<Recognize all text>".

We use a batch size of 320, and the pretrain model is
trained for 200 epochs, with an initial 5-epoch warm-up
phase. We use AdamW optimizer with a learning rate of
4 x 10~%. The input image’s short size is randomly resized
to a range from 704 to 1024 (intervals of 32), the maximum
length of image is set as 1024. Subsequently, the model is
trained for another 40 epochs, with a fixed learning rate of
1 x 10~%, and the maximum length of image is set as 1920.
Then, instructions are added, and the model is further trained
for another 50 epochs. For the scene text spotting task, the
model is fine-tuned on the corresponding real datasets for
another 140 epochs, with a fixed learning rate of 1 x 1075,
For the scene text VQA task, the model is fine-tuned on the
TextVQA and ST-VQA datasets for another 120 epochs. At
the inference stage, we resize the image’s maximum length
shorter than 1920 pixels.

Comparison with Scene Text Spotting Methods

We evaluate the model using the point-based metric pro-
posed in SPTS (Peng, Wang et al. 2022). Notably, our model
adeptly outputs the coordinates of single-point and has been
compared with other point-based methods. We have also
listed methods based on bounding boxes for comparison.
However, some of these methods use additional datasets,



Total-Text ICDAR2015 ICDAR2013
Methods
None Full S \ G S \ G
Bounding Box-based methods

Mask TextSpotter (Lyu, Liao et al. 2018) 65.3 77.4 83.0 77.7 73.5 93.3 91.3 88.2
FOTS(Liu et al. 2018) - - 83.6 79.1 65.3 92.0 90.1 84.8
Boundary TextSpotter (Wang, Lu et al. 2020) 65.0 76.1 79.7 75.2 64.1 88.2 87.7 84.1

PGNet (Wang, Zhang et al. 2021) 63.1 - 83.3 78.3 63.5 - - -
MANGO (Qiao, Chen et al. 2021) 72.9 83.6 81.8 78.9 67.3 92.9 92.7 88.3

ABCNet v2 (Liu, Shen et al. 2021) 70.4 78.1 82.7 78.5 73.0 - - -

SwinTextSpotter(Huang, Liu et al. 2022) 74.3 84.1 83.9 77.3 70.5 - - -

SRSTS(Wu, Lyu et al. 2022) 78.8 86.3 85.6 81.7 74.5 - - -

GLASS(Ronen, Tsiper et al. 2022) 79.9 86.2 84.7 80.1 76.3 - - -

TESTR(Zhang, Su et al. 2022) 73.3 83.9 85.2 79.4 73.6 - - -

TTS(Kittenplon, Lavi et al. 2022) 78.2 86.3 85.2 81.7 774 - - -

DeepSolo(Ye, Zhang et al. 2023) 82.5 88.7 88.0 83.5 79.1 - - -

ESTextSpotter(Huang, Zhang et al. 2023) 80.8 87.1 87.5 83.0 78.1 - - -

UNITS swin(Kil, Kim et al. 2023) 78.7 86.0 89.0 84.1 80.3 - - -

DNTextSpotter(Qiao, Xie et al. 2024) 84.5 89.8 88.7 84.3 79.9 - - -

Point-based methods

TOSS(Tang, Qiao et al. 2022) 65.1 74.8 65.9 59.6 52.4 - - -
SPTS(Peng, Wang et al. 2022) 74.2 82.4 77.5 70.2 65.8 93.3 91.7 88.5
SPTS-v2(Liu, Zhang et al. 2023) 75.5 84.0 82.3 71.7 72.6 93.9 91.8 88.6
InstructOCR 77.1 84.1 82.5 77.1 72.1 93.3 92.4 88.8
InstructOCRt 83.4 88.3 87.5 84.2 80.6 94.9 94.1 91.7

Table 2: Scene text spotting results on Total-Text, ICDAR2015, and ICDAR2013. ‘None’ means lexicon-free. ‘Full’ indicates
that we use all the words that appeared in the test set. ‘S’, “W’, and ‘G’ represent recognition with ‘Strong’, ‘Weak’, and
‘Generic’ lexicons, respectively. T denotes the incorporation of TextOCR and HierText datasets in the training data.

such as UNITS (Kil, Kim et al. 2023), which additionally
utilizes the TextOCR (Singh, Pang et al. 2021) and Hier-
Text (Long, Qin et al. 2022) datasets. To ensure a fair per-
formance comparison, we have augmented the pre-training
with these two additional datasets. Subsequent ablation stud-
ies also include these two datasets. Figure 4 displays some
exemplary visualization results for scene text spotting.

Total-Text: Arbitrarily-Shaped Text. To validate the
generalization ability of our method for arbitrarily shaped
scene text spotting, we tested our approach on Total-Text.
The scene text spotting results are shown in Table 2, where
InstructOCR significantly surpasses SPTS-V2 on Total Text,
by 1.6% without a dictionary and by 0.1% with a “full” dic-
tionary.

ICDAR2015: Multi-oriented Text. To evaluate the ro-
bustness of our method for multi-oriented text, we conduct
experiments on ICDAR2015, with the results shown in Table
2. Our method outperforms the previous single-point meth-
ods across all dictionary settings. Notably, in the strong dic-
tionary setting, InstructOCR achieves an Hmean of 82.5%,
and after adding more training data, it reaches 87.5%.

ICDAR2013: Horizontal text. To further compare with
point-based methods, we conduct experimental comparisons
on ICDAR2013, which already has high baseline metrics, re-
sulting in relatively smaller improvements. In the weak dic-
tionary setting, InstructOCR achieves an Hmean of 92.4%,

which is 0.6% higher than SPTS-v2.

Discussion. InstructOCR endows the model with the abil-
ity to recognize scene text and seamlessly integrate it with
the visual context. It is evident that the incorporation of
human language instructions indeed significantly aids the
model’s understanding of text within images. As a result,
compared to the SPTS-V1, there has been a substantial im-
provement in metrics without a dictionary. Specifically, the
improvements are: +2.9% on the Total-Text dataset, +0.3%
on the ICDAR2013 dataset, and +6.3% on the ICDAR2015
dataset. This also validates our hypothesis that aligning hu-
man language instructions with visual text enhances accu-
racy.

Applicability to Scene-Text VQA

In this section, we further explore other scene-text related
domains (Table 3). We show that InstructOCR is also ap-
plicable on VQA tasks with a considerable accuracy of
42.0% on TextVQA and 45.8% on ST-VQA. While apples-
to-apples comparison is difficult due to different data and
parameter sizes, we emphasize the applicability to the VQA
task. Specifically, most of the recent works utilize strong
backbones such as ViT (Dosovitskiy, Beyer et al. 2020) and
large language models such as T5;4,4. (Raffel, Shazeer et al.
2020), while ours adopt ResNet-50 and BERT. Our model
has, to the best of our knowledge, the least number of param-
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Figure 4: Visual results on Total-Text, ICDAR2015 and ICDAR2013. Our model can effectively handle curved, distorted, and

blurred scene text.

Methods Param  Data TextVQA ST-VQA

TAP 160M 1.5M 54.7 59.8
GIT arge 347TM  20M 375 44.6
PreSTU 278M  13M 54.5 62.6
WSCOB 202M  12M 56.2 62.6
LLaVAL1.5 7B 1.2M 38.7 38.1
InternVL 8B 4.98B 59.8 62.2
Monkey 8B 1.44M 64.3 54.7
Qwen-VL 8B 1.4B 63.8 55.9
InstructOCR ~ 78M  0.2M 42.0 45.8

Table 3: The public benchmark of TAP (Yang, Lu
et al. 2021), GITrqrge (Wang, Yang et al. 2022),
PreSTU (Kil et al. 2023) WSCOB (Kim, Kim et al. 2023),
LLaVA1.5 (Liu, Li et al. 2023),InternVL (Chen, Wu et al.
2024), Monkey (Li et al. 2024) and Qwen-VL (Bai, Bai
et al. 2023) on TextVQA (acc) (Singh, Natarajan et al. 2019)
and ST-VQA (ANLS) (Biten, Tito et al. 2019) for scene text
VQA.

eters (78 M) among the similar levels of VQA performance,
whereas other approaches range from hundreds of millions
to even billions of parameters. It is well known that the
VQA performance goes up as more pre-training data is in-
cluded. The aforementioned methods employ up to millions
of text-image pairs, not to mention the multimodal large lan-
guage models that utilize various forms of large-scale data.
Our model is not specifically tailored for VQA tasks and
is trained only on 0.2M scene text images. These promis-
ing results show the utility and applicability of InstructOCR
on image understanding. Our research further extends the
boundaries of small-scale models in the VQA task beyond
previous limits.

Ablation Studies

We conduct a thorough analysis to understand the individual
contributions of each component in our framework, with a
particular focus on the effectiveness of the VQA tasks.

Impact of Module Integration In this section, we per-
form a comparative analysis to evaluate the effects of several
proposed modules. Prior to validating the effectiveness of
instructions, we assess the impact of incorporating a text en-

Text Encoder INS ICDAR2015
T S \\% G None

X 8.5 8.7 791 771
X 8.9 828 792 773
X 871 834 806 788
v/ 875 842 806 789

(+1.0) (+1.5) (+1.5) (+1.8)

AN N
SNAX %

Table 4: Ablation study of our proposed components on IC-
DAR2015, “W”, “T”, and “INS” refer to including a text en-
coder in end-to-end training, training the text encoder specif-
ically for end-to-end training, and incorporating instructions
into the end-to-end training, respectively. ‘S’, ‘W’, ‘G’, and
‘None’ represent recognition with ‘Strong’, ‘Weak’, and
‘Generic’ lexicons and without lexicons, respectively

coder into the model. We compare the model’s performance
without a text encoder to its performance with an included
and frozen text encoder. We then evaluate the performance
metrics when the text encoder is integrated and trained
throughout the entire process. The results indicate that the
inclusion and active training of the text encoder significantly
enhance the capabilities of InstructOCR. Finally, we incor-
porate instructions, observing further improvements in per-
formance metrics. As shown in Table 4, in the strong dictio-
nary setting, the inclusion of text encoder results in a 1.0%
improvement, while the addition of instructions leads to a
further increase of 0.4%. The experimental results demon-
strate that incorporating a text encoder enables the model
to more effectively comprehend text within images, and the
addition of instructions can further facilitate this. Figure 5
presents some examples where the results became correct
after incorporating human language instructions.

The performance of InstructOCR on the VQA task In
this section, we conduct experiments to verify the effective-
ness of our model in VQA tasks. Since our model is pre-
trained for scene text spotting, we choose the ST-VQA and
TextVQA datasets, which relate to natural scene images. We
hypothesize that our framework can be transferred to VQA
tasks and that pretraining on text spotting is beneficial for
downstream VQA tasks. Table 5 supports this argument.



Result(w/0): CROCS,sale,50%,Dor
Result(w/): CROCS,sale,50%, Dior

Result(w/o0):Health baked
Result(w/): freshly baked

Result(w/o0):Deaigual, Further,tions, Deaigual
Result(w/): Desigual, Further,tions, Desigual

Question:

what is the website on the black sign?
Answer(w/0): macysoom
Answer(w/): macys.com

Question:

what time does the sales meeting start?
Answer(w/o): 12:11
Answer(w/): 11:00 am

Question:

What word is at the bottom of the sign?
Answer(w/0): thru

Answer(w/): STREET

Figure 5: Visualization of correct recognition results on the scene text spotting and VQA datasets after incorporating instruc-
tions. The first row corresponds to the scene text spotting dataset, while the second row corresponds to the VQA dataset. “W/”
and “W/QO” indicate whether OCR training was conducted with or without instructions, respectively.

Exp W/O W INS ST-VQA TextVQA

1 v 6.7 5.6
2 v 43.7 394
3 v / 45.8 42.0

(+2.1) (+2.6)

Table 5: Test results for different methods on ST-VQA
(ANLS) and TextVQA (Acc.) datasets. “W/O”, “W”, and
“INS” refer to training the model without 0.2M OCR data
pre-training, training the model with 0.2M OCR data pre-
training, training the model with instructions, respectively.

Significant improvements are generally observed in VQA
tasks when pretraining on text spotting is applied. This is
likely because accurate character recognition is a prerequi-
site for better text understanding, and VQA is closely re-
lated to OCR as most answers exist in images containing
text. Moreover, the integration of our proposed instructions
leads to enhanced image and text understanding, resulting
in an improvement of 2.1% on ST-VQA datasets and 2.6%
on TextVQA datasets. We think that human language in-
structions during the pre-training stage are beneficial to un-
derstanding capability, thereby enabling it to better adapt to
more complex understanding tasks in downstream applica-
tions. Figure 5 demonstrates the impact of with instructions
and without instructions on the output results.

Limitation

Owing to the VQA task requiring a large amount of data for
pre-training and instruction fine-tuning, and different meth-
ods using inconsistent data amounts that make it impossible
to align data volume. We only use data from the scene text
spotting task for pre-training and only use the ST-VQA and
TextVQA datasets for instruction fine-tuning. We do not add
a large amount of data to demonstrate the best performance
of InstructOCR on the VQA task.

Conclusion

In this paper, we propose InstructOCR, a novel instruction-
based scene text spotting model that leverages instructions
to enhance the understanding of text within images. The
model integrates a text encoder that processes instructions
and a visual-text fusion module that combines image fea-
tures with these instructions to guide the decoding process.
With the introduction of human language instructions and
our meticulously designed instruction set based on text at-
tributes, InstructOCR demonstrates an extraordinary ability
to comprehend and process textual information within nat-
ural scenes, indicating the benefits of aligning human lan-
guage instructions with visual text for OCR tasks. Future re-
search will explore increasing training data and incorporat-
ing more instructions, thereby enabling the model to achieve
higher metrics in VQA tasks and address a broader range of
OCR challenges.
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