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Abstract— The core of Multi-View Stereo (MVS) is to find
corresponding pixels in neighboring images. However, due to
challenging regions in input images such as untextured areas,
repetitive patterns, or reflective surfaces, existing methods
struggle to find precise pixel correspondence therein, resulting
in inferior reconstruction quality. In this paper, we present an
efficient context-perception MVS network, termed ACP-MVS.
The ACP-MVS constructs a context-aware cost volume that can
enhance pixels containing essential context information while
suppressing irrelevant or noisy information via our proposed
Context-stimulated Weighting Fusion module. Furthermore, we
introduce a new Context-Guided Global Aggregation module,
based on the insight that similar-looking pixels tend to have
similar depths, which exploits global contextual cues to im-
plicitly guide depth detail propagation from high-confidence
regions to low-confidence ones. These two modules work in
synergy to substantially improve reconstruction quality of ACP-
MYVS without incurring significant additional computational
and time cost. Extensive experiments demonstrate that our
approach not only achieves state-of-the-art performance but
also offers the fastest inference speed and minimal GPU mem-
ory usage, providing practical value for practitioners working
with high-resolution MVS image sets. Notably, our method
ranks 2nd on the challenging Tanks and Temples advanced
benchmark among all published methods. Code is available at
https://github.com/HaoJia-mongh/ACP-MVS.

I. INTRODUCTION

Multi-View Stereo (MVS) is one of the core branches
of three-dimensional (3D) computer vision, which aims to
reconstruct the 3D geometry of a scene from a collection of
2D overlapping images with known camera parameters. Over
the past few years, this task has been extensively studied due
to its widespread applications in areas such as autonomous
driving, robot navigation and augmented reality. Traditional
MVS methods [1], [2], [3] have delivered exceptional results
in terms of reconstruction quality. Recently, with advances in
deep learning, learning-based MVS methods have emerged
and demonstrated superior performance and robustness, es-
pecially when dealing with challenging regions such as tex-
tureless areas or reflective surfaces. These methods have set
new standards and are gradually evolving into the dominant
force in the field.
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Fig. 1. (a) Run-time vs GPU Mem. on DTU [4] (1600x1152 images, 5
views). (b) Quantitative comparison on Tanks and Temples benchmark [5]
(higher is better). (c) Qualitative comparison of estimated depth maps with
state-of-the-art efficient methods [6], [7]. ACP-MVS handles challenging
regions well, recovering complete depth maps with distinct edges.

The essence of MVS is addressing a densely pixel-wise
matching problem which entails locating the corresponding
pixel in the reference image along the epipolar line in all
neighboring images. Learning-based methods [8], [9] typi-
cally extract image features from input images and construct
a cost volume encoding matching costs across different depth
hypotheses via the plane sweep algorithm [10]. Subsequently,
this volume is subject to regularization to produce the
final depth estimation. However, challenging regions such as
untextured areas, repetitive patterns, or inconsistent illumina-
tion, make it difficult to correctly identify the corresponding
pixels between the reference image and all source images.

Currently, several learning-based MVS methods have
made some progress in solving the aforementioned prob-
lem. [11] introduce deformable convolutions to expand the
receptive field, and [12] leverage extra CNN networks to
learn per-pixel weights as fusing guidance. However, limited
by CNN’s local receptive fields, these methods still have
difficulties in handling large-scale repetitive patterns or tex-
tureless regions. Inspired by Transformers’ ability to model
long-range dependencies, TransMVSNet [13] and MVS-
Former [14] introduce feature matching transformers to ex-
tract dense features aggregating long-range context informa-
tion. Additionally, WT-MVSNet [15] and CostFormer [16]
propose innovative Transformer-based cost aggregation to
refine depth estimation by replacing 3D CNN networks.
However, using stacked attention modules significantly in-
creases memory usage and inference time, which poses

4323



challenges for networks processing high-resolution image
datasets on mainstream GPU devices. Consequently, a critical
question arises: How might we efficiently utilize context
information to alleviate pixel-wise mismatching problems
without incurring substantial additional costs?

In this paper, we present an efficient MVS network with
attention-based context perception, named ACP-MVS, which
leverages a Context-Stimulated Weighting Fusion (CWF)
module to construct a context-perception cost volume. CWF
assigns larger weights to pixels with critical context infor-
mation and smaller weights to those likely to cause matching
ambiguity. Specifically, the CWF module first processes
the two-view cost volume through a lightweight 3D CNN
network to generate adaptive per-view initial weights and
then stimulates these weights using attention maps derived
from reference-image context features. Per-view weights
encode similarity information, while context features pro-
vide geometric and texture cues, enabling the weights to
better capture the reference image’s geometry information.
Attention maps are shared across depth hypotheses, ensuring
comprehensive geometric understanding while maintaining
computational efficiency. These context-stimulated weights
not only capture the varying importance within each view-
wise volume and between different view-wise volumes, but
also incorporate pixel similarities across all depth hypotheses
and geometric cues from the reference-image context feature.
As a result, they can effectively guide the fusion of two-view
volumes into a multi-view cost volume.

In addition, we propose a Context-Guided Global Ag-
gregation (CGA) module. Based on the insight that pix-
els with similar appearances tend to have similar depths,
this module implicitly propagates depth information from
high-confidence to low-confidence regions through global
context cues. Specifically, this module employs linear at-
tention [17] to compute attention maps based on the self-
similarities of reference-image context features, to guide and
enhance volume aggregation with global awareness. Due
to its lightweight nature, linear attention enables efficient
processing of high-resolution images at a negligible cost.
CWF and CGA cooperate synergistically: CWF constructs
a context-stimulated cost volume to enhance matching ac-
curacy. Following this, CGA propagates this enhanced in-
formation using attention-based context, effectively address-
ing matching ambiguity. This is validated by experimental
results. These modules significantly improve reconstruction
quality with minimal computational and time overhead.

Our method achieves state-of-the-art performance in terms
of accuracy, inference speed, and memory efficiency, as
illustrated in Figure 1. Compared to MVSFormer [14], our
method achieves a remarkable 66.9% reduction in GPU
memory usage and an impressive 59.2% reduction in in-
ference time, while maintaining comparable reconstruction
quality. Among all published methods, ACP-MVS ranks
second on the advanced sequences of the Tanks and Temples
benchmark [5]. Notably, ACP-MVS is the most efficient
among the top 10 methods on DTU [4] and Tanks and
Temples in terms of speed and GPU memory. Our networks

are simple, accurate, and efficient, offering valuable utility
for practitioners working with high-resolution MVS image
sets.

II. RELATED WORK
A. Learning-based Multi-View Stereo

Driven by the success of deep learning, MVS has achieved
significant progress over traditional methods. Yao et al.
[8] pioneer a widely recognized end-to-end MVS pipeline
that constructs the cost volume by encoding deep features
and camera parameters. They further regularize the cost
volume using 3D CNNs to infer depth maps. To reduce the
computational cost of the 3D U-Net architecture, subsequent
studies have proposed various methods, including coarse-to-
fine depth optimization methods [9], [18], recurrent meth-
ods [19], [11] based on RNNs, and patch-matching-based
methods [20], depending on different regularization patterns.
Despite their success, these methods encounter difficulties in
challenges such as low-texture and untextured regions.

B. Attention-based Multi-View Stereo

Attention mechanism [21], which was initially designed
for natural language processing, has been extensively ex-
plored in the visual community as well [22]. Due to its
natural superiority to capture long-range dependencies, at-
tention has been widely adopted in MVS. EPP-MVSNet [23]
employs epipolar transformers to model spatial relationships.
TransMVSNet [13] and MVSFormer [14] introduce feature
matching transformers and pre-trained vision transformers,
respectively, achieving remarkable results. CostFormer [16]
proposes Transformer-based cost aggregation methods to
improve accuracy. However, attention-based methods are
computationally expensive, limiting their applicability to
high-resolution images on mainstream GPU devices.

C. Efficient Multi-View Stereo

To enhance efficiency, several methods adopt a coarse-
to-fine strategy, reducing the number of depth hypotheses
as resolution increases. Specifically, CVP-MVSNet [9] and
CasMVSNet [18] utilize cascading cost volumes. Patch-
matchNet [20] introduces the concept of Patchmatch, sig-
nificantly reducing runtime and memory costs. GBiNet [24]
proposes a generalized binary search network to minimize
depth hypotheses per stage. Effi-MVS [7] and IterMVS [25]
introduce GRU-based iterative architectures for improved
efficiency. However, cascade methods struggle to mitigate
cumulative errors from coarser resolutions.

III. METHOD

Given the limited local receptive field of CNN and the
memory burden of the Transformer, there has been limited
research on effectively and affordably leveraging context
information to deal with pixel-wise challenging regions. In
this paper, we propose a lightweight attention-based method
to adequately utilize reference-image context information,
globally guiding cost volume construction and aggregation.
Specifically, we introduce the Context-Stimulated Weighting
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Fig. 2. Overview of the ACP-MVS. Our network uses two feature extractors to extract multi-scale image and context features. CWF and CGA integrate
context information into the context-perception cost volume construction and aggregation at the coarsest level. A multi-stage GRU-based regularization

iteratively updates depth maps.

Fusion (CWF) module (Sec III-A) and the Context-Guided
Global Aggregation (CGA) module (Sec III-B). These mod-
ules significantly enhance the reconstruction quality of ACP-
MVS(Sec 1I-C).

A. Context-Stimulated Weighting Fusion

Two-view cost volume construction. We construct two-
view volumes by warping source-image features into the ref-
erence image’s camera coordinates based on sampled depth
hypotheses. Specifically, for each pixel p in the reference-
image feature F,..r, we use differentiable homography to
warp source-image feature maps F; and compute p; ;:

Pig =K (Reepi (Ko opody) #tress) . (D)

where K,y and K; are the intrinsic matrices of F,.; and
F;, respectively. R,..;; and t,.f; represent the relative ro-
tation and translation matrices, and d; is the j-th depth
hypothesis. Given p, ; and F;, we use differential bilinear
interpolation [26] to reconstruct the warped feature map
F,. Subsequently, the warped feature maps for all depth
hypotheses are concatenated together as the feature volume
V;, € ROEXDxHXW  where H, W and C represent the
height, width and channel dimension of the feature map,
respectively, and D is the number of depth hypotheses.
Finally, the two-view cost volume C,.s; is computed as
the squared difference between V; and the reference feature
volume V,..r, representing the matching information between
the two features, as follows:

(Vref (2)

Context-stimulated weighting volume fusion. After con-
structing two-view cost volumes, the next step is to fuse them
into a unified multi-view cost volume for regularization. Con-
ventional methods typically create an indiscriminate multi-
view cost volume. However, treating all views equally can
make the matching process vulnerable to issues like inconsis-
tent illumination due to varying camera positions. Therefore,
we propose the Context-Stimulated Weighting Fusion (CWF)
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Fig. 3.  Context-Stimulated Weighting Fusion Module. This module
uses attention maps computed from context features to stimulate two-view
volume information, serving as context-stimulated weights to guide volume
construction. The figure shows the two-view volume construction process.

module to learn the importance of volumes from different
views, as illustrated in Figure 3. First, a context extractor ex-
tracts the context feature F., € RE*H*W from the reference
image. Simultaneously, a lightweight 3D CNN processes the
two-view cost volume C,.f; € REXDXHXW 5 adaptively
generate the initial weight w; € R1*P>*HXW gubsequently,
F. is passed through a lightweight sub-network to produce
an attention map a € R™IXHXW for ), The context-
stimulated weight is computed as follows:

wi = [*P(Crey,i), 3)
a=f*P(F,), 4)
wy = a X w;, 5)

where x denotes broadcasted multiplication, f32 and f2P
denote 3D and 2D point-wise CNNs, respectively. The at-
tention map is shared along the depth channel. w{ encodes
similarity information derived from the cost volume, while
the attention map stimulates geometric and textural features
by sharing « exclusively along the depth channel, thereby
enabling wy to comprehensively capture geometric cues from
the reference image. Consequently, the context-stimulated
weight enhance pixels containing critical context information
while suppressing low-confidence regions during matching.
The final fused volume is defined as follows:
N—1

Z wf © Cre fris
i=1

(6)

Cowr = N7
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where ® denotes Hadamard multiplication. This module is
simple to implement, requiring minimal additional operations
while significantly improving performance.

B. Context-Guided Global Aggregation

Based on the observation that pixels with similar appear-
ance in the reference view share similar depth, we use the
same context feature F, to serve as context-guided infor-
mation for implicitly propagating depth details from high-
confidence to low-confidence regions via attention mech-
anism. To mitigate the computational burden arising from
attention weights based on the dot product of query Q and
key K, which grows quadratically with input image resolu-
tion, we adopt linear attention [17] and propose the Context-
Guided Global Aggregation (CGA) module to propagate
depth information, as shown in Figure 4. In this module,
we apply 2D absolute positional embedding to F., enabling
attention weights to capture self-similarity and absolute posi-
tion of the context feature, and then reshape and project them
into query Q € RV*¢ and key K € RV*® matrices (N =
H x W) using a fully connected layer. Concurrently, we
reshape and project the encoded cost volume C € RE*HxW
which has three channels mentioned in Sec III-C, into a
value matrix V € RVXC (N = H x W) with another
fully connected layer. The context-guided global aggregated
volume is defined as follows:

CL =a®(Q)(®(K")V)+V, (7)

where « is a learned scalar parameter initialized to zero,
®(-) = elu(-) + 1, and elu(-) is the exponential linear unit
activation function, which avoids zero gradients for negative
inputs, unlike relu(-). The dimension of Cj is reshaped
to [C,H,W]. Linear computational complexity makes it
feasible to process high-resolution images on mainstream
GPU devices.

C. Network Architecture

We integrate the CWF and CGA modules into Effi-
MVS [7], proposing a new network named ACP-MVS, as
shown in Figure 2.

Feature Extraction. Similar to [27], we employ a Feature
Pyramid Network to extract multi-scale features from the
reference image and N — 1 source images with resolution

3 x H x W at three scale stages (k = 0,1,2), producing
features of size 2@% X WL,M Similarly, we use the context
extractor which is constructed in the same way as the feature
extractor to extract multi-scale context features from the
reference image for the proposed modules and GRU-based
regularization.

CWF and CGA Module. Accurate depth maps at the
coarse stage are crucial for reducing cumulative errors in the
cascade framework. To address this, we use CWF and CGA
to refine the coarse-stage depth map. First, CWF constructs
a context-stimulated cost volume by sparsely sampling depth
hypotheses over a wide inverse depth range. A lightweight
3D regularization network aggregates this cost volume into
a probability volume, and D;,,;; is regressed via soft-argmin.
Next, a compact cost volume is constructed for CGA to
minimize memory usage. Specifically, we first sample a
limited number of depth hypotheses within a narrow inverse
depth range based on D;,,;;. Details on the number of depth
hypotheses and depth hypothesis intervals are provided in
Sec IV-B. Based on the latest depth hypotheses, we construct
a cost volume:

1 N-1
C= N_1 ; (Vref V’L) 3 (8)

where V,.; and V; denote the reference volume and the
source volume of view i, respectively.

Following [7], C is fused with D;,;; by a 2D CNN to
produce the encoded volume C, € REXP*XHXW 'CGA pro-
cesses C. to generate the context-guided global aggregated
volume Cj,. Details are as follows:

C. = concat[Conv(C, Djpit), Dinit] 9)
CL = CGA(Ce; Fcontext) (10)

Finally, Cr, C. and reference-image context features are
concatenated along the channel dimension as input to the
GRU-based iterative regularization. The concatenation op-
eration enables the network to adaptively choose or merge
local matching information and context-guided global details,
enhancing the decoding of more accurate depth maps from
the coarse-stage cost volume.

GRU-based Regularization. We employ a multi-stage
GRU-based iterative architecture to leverage multi-scale in-
formation. The GRU-based regularization module updates
the depth map 7' times at each stage k. In each iteration t,
this module takes reference-image context features and the
current estimated depth, and outputs a delta depth Ad, which
is added to the current depth map to obtain an updated depth
map used as the input for the next iteration ¢+ 1. The depth
map in the final iteration of each stage is upsampled via a
convex upsampler [28]. The upsampled depth map serves as
the initial map for the next stage. Subsequently, the network
resamples depth hypotheses based on the upsampled depth
and constructs a new cost volume until the final depth map
matches the input image resolution.

Loss Function. Following previous work [1], [8], [9], we
use ¢ loss for depth regression between predictions and
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ground truth. Our network produces depth maps from the
CWF module and multi-stage GRU-based regularization, so
the final loss is defined as:
2 Th+1
Loss = Lewr + Z Z %ka,
k=0 i=1
where Lcewg is the loss from the CWF module. T} is the
number of iterations at stage k. {L¥|i = 1... T +1} include
the loss of T}, iterations and an upsampled depth map at stage
k, and ~¥ is the corresponding weight.

(1)

IV. EXPERIMENTS
A. Datasets and Evaluation Metrics

Datasets. DTU [4] is a substantial indoor MVS dataset
with over 100 scenes under seven different lighting con-
ditions. It is split into training, validation, and evaluation
sets. BlendedMVS [29] is a large-scale dataset with 17,000
samples from 113 scenes, split into training and validation
sets. Tanks and Temples [5] includes a range of realistic
outdoor and indoor scenes, divided into intermediate and
advanced subsets.

Evaluation Metrics. To evaluate point cloud quality, we
use distance-based accuracy and completeness for DTU and
the accuracy and completeness of the percentage metric for
Tanks and Temples. For overall evaluation, we calculate the
average of the accuracy and completeness for DTU and the
F1 score for Tanks and Temples.

B. Implementation Details

Following the common practice, we train ACP-MVS on
DTU and fine-tune on BlendedMVS. During training, we
set the number of input images N = 5 with a resolution
of 640 x 512 for DTU and N = 7 with a resolution of
768 x 576 for BlendedMVS. For the CWF module, we set
the number of depth hypotheses at 48 for DTU and 96 for
BlendedMVS. For the CGA and GRU-based regularization
module, we keep the number of depth hypotheses at 4 for
all stages. The inverse depth interval I, is defined as:

12)

We set Z as 384 for DTU and 768 for BlendedMVS,
along with depth hypothesis intervals at stages k = 0,1,2
set to 41,,, 2I,,, and I,,, respectively. For GRU-based
regularization, the iteration number 7T} is set to 3 for all
stages. ACP-MVS is implemented in PyTorch and trained
with AdamW under the OneCycleLR for 20 epochs with a
learning rate of 0.001 and a batch size of 12 on two NVIDIA
GeForce RTX 3090 GPUs. For depth filtering and fusion,
we use the improved filtering algorithm proposed in [7] for
DTU, and adopt the dynamic checking fusion strategy [34]
for Tanks and Temples.

C. Time, Memory and Reconstruction Quality

To demonstrate the high efficiency of our method, we pro-
vide a comparative assessment of ACP-MVS alongside open-
source learning-based MVS methods [6], [13], [14], [18],
[20], [25] on the DTU and Tanks and Temples benchmark, as
shown in Table I. For fair comparisons, we use a fixed input
size of 1600 x 1152 to evaluate memory and inference time
on a single NVIDIA GeForce RTX 3090 GPU. ACP-MVS’s
GPU memory usage and inference time are normalized to
100% as the baseline.

Comparison with attention-based methods. Since ACP-
MVS employs the attention mechanism, we compare our
approach with attention-based methods. Compared to Trans-
MYVSNet [13], ACP-MVS reduces GPU memory by 73.47%
and runtime by 83.73%, while exhibiting significantly en-
hanced reconstruction performance on DTU and Tanks and
Temples. Compared to efficient MVSTER [6], ACP-MVS
improves by 11.16% and 6.20% on the Tanks and Tem-
ples advanced and intermediate subsets respectively, while
reducing memory by 46.52% and runtime by 14.53%. When
compared to MVSFormer [14], ACP-MVS reduces memory
by 66.89% and runtime by 59.18% respectively, with compa-
rable performance. Notably, MVSFormer employs a sophis-
ticated pre-trained strategy involving vision transformer fine-
tuning on 2 V100 GPUs and requires 20 views for testing to
achieve the current performance. In contrast, our network
is device-friendly, avoids complex training strategies, and
delivers remarkable results cost-effectively.
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TABLE I
COMPARISON OF PERFORMANCE, GPU MEMORY USAGE, AND INFERENCE TIME WITH ATTENTION-BASED AND EFFICIENT METHODS ON DTU AND
TANKS AND TEMPLES(TAT). ‘«’ DENOTES METHODS TRAINED SOLELY ON DTU. ‘ITERS’ REPRESENTS THE NUMBER OF GRU ITERATIONS AT EACH
STAGE. MEMORY AND RUNTIME OF ACP-MVS (ITERS: 3 3 3) ARE NORMALIZED TO 100% AS THE BASELINE. BOLD REPRESENTS THE BEST AND

UNDERLINED REPRESENTS THE SECOND-BEST.

Method Memory (%) | Time (%) | DTU (mm) | TAT (Advanced) | TAT (Intermediate)
. | TransMVSNet [13] 377% 615% 0.305 37.00 63.52
5 MVSTER [6] 187% 117% 0.303 37.53 60.92
MVSFormer [14] 302% 245% 0.289 40.87 66.37
. CasMVSNet* [18] 399% 230% 0.355 31.12 56.84
E Patchmatchnet® [20] 145% 130% 0.352 32.31 53.15
IterMVS [25] 73% 95% 0.363 34.17 56.94
Ours* (Iters: 3 3 3) 100% 100% 0.300 37.41 59.81
Ours (Iters: 1 1 1) 100% 68 % 0.306 40.38 63.48
Ours (Iters: 3 3 3) 100% 100% 0.300 41.72 64.70

TABLE II

QUANTITATIVE RESULTS ON TANKS AND TEMPLES. METHODS ARE CATEGORIZED INTO THREE GROUPS: TRADITIONAL METHODS, METHODS
TRAINED ON DTU, AND FINE-TUNED ON BLENDEDMVS. BOLD REPRESENTS THE BEST AND UNDERLINED REPRESENTS THE SECOND-BEST.

Method Advanced Intermediate
MeanT Aud. Bal. Cou. Mus. Pal. Tem.|MeanT Fam. Fra. Hor. Lig. M60. Pan. Pla. Tra.
< COLMAP [2] 2724 16.02 25.23 34770 41.51 18.05 27.94| 42.14 5041 2225 25.63 56.43 44.83 4697 48.53 42.04
& ACMM [30] 34.02 2341 3291 41.17 48.13 23.87 34.60| 57.27 69.24 5145 4697 632 55.07 57.64 60.08 54.48
CasMVSNet [18] | 31.12 19.81 38.46 29.10 43.87 2736 28.11| 5642 7636 5845 4620 55.53 56.11 54.02 58.17 46.56
E PatchmatchNet [20] | 32.31 23.69 37.73 30.04 41.80 28.31 32.29| 53.15 66.99 52.64 4324 5487 52.87 49.54 5421 50.81
a Effi-MVS [7] 3439 20.22 4239 3373 45.08 29.81 35.09| 56.88 72.21 51.02 51.78 58.63 58.71 56.21 57.07 49.38
ACP-MVS (Ours) | 3741 2329 43.84 37.48 4839 3244 39.05| 59.81 76.24 55.69 53.01 6249 60.32 56.79 58.25 55.70
IterMVS [25] 3417 2590 38.41 31.16 4483 29.59 35.15| 56.94 76.12 55.8 50.53 56.05 57.68 52.62 55.70 50.99
TransMVSNet [13] | 37.00 24.84 44.59 34.77 4649 34.69 36.62| 63.52 80.92 6583 56.94 62.54 63.06 60.00 60.20 58.67
% GBi-Net [24] 3732 29.77 42.12 363 47.69 31.11 3693 | 6142 79.77 67.69 51.81 6125 60.37 55.87 60.67 53.89
= MVSTER [6] 37.53 26.68 42.14 35.65 49.37 32.16 39.19| 60.92 8021 63.51 5230 61.38 61.47 58.16 58.98 51.38
E UniMVSNet [31] | 38.96 28.33 44.36 39.74 52.89 33.80 34.63| 64.36 8120 6643 53.11 63.46 66.09 64.84 62.23 57.53
g | MVSFormer [14] | 40.87 2822 46.75 3930 52.88 35.16 42.95| 66.37 82.06 69.34 60.49 68.61 6567 64.08 61.23 59.53
22 | GeoMVSNet [32] | 41.52 30.23 46.53 39.98 53.05 3598 4334 | 65.89 81.64 67.53 5578 68.02 6549 67.19 63.27 58.22
GoMVS [33] 43.07 3552 47.15 42.52 52.08 36.34 44.82| 66.44 82.68 69.23 69.19 63.56 65.13 62.10 58.81 60.80
ACP-MVS (Ours) | 41.72 3230 46.53 39.35 51.23 35.81 45.09| 64.70 80.89 68.73 5597 66.16 63.45 61.84 6191 58.65

scan75

scan48

ACP-MVS (Ours)

PatchmatchNet IterMVS MVSTER

Fig. 6. Comparison of reconstruction results with state-of-the-art
efficient methods [20], [25], [6] on the DTU evaluation set. Our method
performs well in untextured and low-texture regions.

Comparison with efficient methods. We also compare
with multistage methods tailored for both memory and in-
ference efficiency. Compared to Patchmatchnet [20] and Cas-
MVSNet [18], ACP-MVS has achieved a significant increase
in reconstruction performance while maintaining high mem-
ory and runtime efficiency. In particular, our method with
fewer GRU iterations outperforms IterMVS [25], while main-
taining comparable efficiency, demonstrating strong general-
ization. ACP-MVS adjusts the number of iterations based on
the actual application needs flexibly.

D. Benchmark Performance

Results on Tanks and Temples. To evaluate gener-
alization, we test ACP-MVS on the Tanks and Temples
benchmark. We utilize 11 views at 1920 x 1024 resolution.
For a fair comparison, we test two models: one trained
solely on DTU and another fine-tuned on BlendedMVS.
Quantitative results for intermediate and advanced datasets
are shown in Table II. ACP-MVS achieves state-of-the-art
performance. Specifically, our DTU-trained model outper-
forms all learning-based methods trained only on DTU. We
rank second in the advanced subset among all published
works. Compared to the intermediate subset, the advanced
subset presents more challenges, such as weaker illumina-
tion, numerous surfaces with nearly uniform appearances,
and other complicating factors. This demonstrates the ro-
bustness and generalization capabilities of ACP-MVS un-
der extensive and challenging scenarios. Furthermore, our
method achieves higher F1 scores compared to state-of-the-
art efficient methods [25], [7], [20], [6], further confirming
its superiority. Figure 5 illustrates point cloud error compar-
isons, highlighting ACP-MVS’s enhanced recall.

Results on DTU. We evaluate ACP-MVS on the evalua-
tion set of the DTU dataset using the model only trained on
the DTU training set. We use 5 views at 1600 x 1152 resolu-
tion. Qualitative results are shown in Figure 6. We compare
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TABLE III
QUANTITATIVE RESULTS ON DTU. THE METHODS ARE CATEGORIZED
INTO THREE GROUPS: TRADITIONAL METHODS, CONVOLUTION-BASED
METHODS, AND ATTENTION-BASED METHODS.

Acc. Comp. Overall | Mem. | Time
Method (mm) _(mm)  (mm) | (MB) | ()
] COLMAP [2] 0411  0.657 0.534 - -
= Gipuma [1] 0.283  0.873 0.578 - -
Vis-MVSNet [35] | 0.369  0.361 0.365 4775 | 1.121
IterMVS [25] 0.373 0354 0.363 845 | 0.189
CasMVSNet [18] | 0.325  0.385 0.355 4586 | 0.456
PatchmatchNet [20] | 0.427  0.277 0.352 1670 | 0.258
g' IGEV-MVS [36] 0.331 0316 0.324 6895 | 3.130
&} Effi-MVS [7] 0.321 0313 0.317 1001 | 0.185
UniMVSNet [31] | 0.352  0.278 0.315 6120 | 0.648
GBiNet [24] 0312  0.293 0.303 2130 | 0.671
GeoMVSNet [32] | 0.331  0.259 0.295 4734 | 0.344
GoMVS [33] 0.347  0.227 0.287 - -
CostFormer [16] 0.301  0.322 0.312 - -
TransMVSNet [13] | 0.321  0.289 0.305 4337 | 1.218
s MVSTER [6] 0.340  0.266 0.303 2152 | 0.232
< | WT-MVSNet [15] | 0.309  0.281 0.295 - -
MVSFormer [14] | 0.327  0.251 0.289 3471 | 0.486
ACP-MVS (Ours) | 0.315 0.285 0.300 1149 | 0.198

w/o CWF & CGA

keference Image w/ CWF & CGA

Fig. 7. Qualitative comparisons of estimated depth maps on the
Tanks and Temples benchmark. CWF and CGA significantly improve
performance in both distant and close-range scenarios.

ACP-MVS with state-of-the-art efficient methods, focusing
on the point clouds for scan48 and scan75, which have
reflections and low-texture regions. As depicted, our method
excels in accurately recovering point clouds in challenging
regions. Detailed quantitative results on DTU are presented
in Table III. Our method achieves state-of-the-art results and
is the most efficient among methods whose Overall metric is
less than 0.315 mm, in terms of runtime and memory usage.

E. Ablation Study

We conduct ablation studies to assess the impact of CWF
and CGA, as shown in Table IV and Figure 8. All models
in this experiment are trained and tested on DTU. We set
Effi-MVS [7] as the baseline method. Qualitative results in
Figure 7 further validate the effectiveness of CWF and CGA.

Context-stimulated weight fusion. In Table IV, ‘CON’
denotes per-view weights generated by employing a 3D con-
volution followed by a batch normalization to two-view cost
volumes. Both weight generation methods show advantages
on DTU, but CWF notably delivers superior results with
minimal time and memory overhead. The context-stimulated
weights effectively capture geometric information of the
reference image. This helps the network mitigate the impact
of invalid pixels while enhancing pixels with crucial context.

TABLE IV
ABLATION RESULTS ON THE DTU EVALUATION SET. THE SETTINGS
EMPLOYED IN ACP-MVS ARE INDICATED BY UNDERLINED.

Experiment Variations |Overall (mm) Mem. (MB)|Time (s)
baseline - 0.317 1001 0.185
Fusion CON 0.314 1055 0.191

CWF 0.309 1060 0.192
Asoregation MA 0.305 7075 0.227
BEres CGA 0307 1040 | 0.189

ACP-MVS (Ours)[CWF + CGA 0.300 1149 0.198

0.38
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Fig. 8. Comparison of reconstruction results from different models with

varying input numbers.

Context-guided global aggregation. In Table IV, ‘MA’
denotes that the baseline method only employs multi-head
self-attention to compute context-guided information for
global aggregation without additional setups. Both methods
improve the reconstruction performance, highlighting the sig-
nificance of our propagation approach. Multi-head attention
improves results slightly, but significantly increases memory
overhead. Consequently, we select CGA with minimal mem-
ory overhead as the final configuration.

varying input numbers. Current datasets lack masks
for challenging regions, hindering quantitative evaluation of
these areas. To address this, we increase the number of input
images and validate our proposed modules by tackling the
challenges from perspective changes. For a fair comparison,
we train models using only the two best adjacent views.
As depicted in Figure 8, the performance of our baseline
deteriorates significantly with more input views. This is
because the original training strategy focuses on the two best
adjacent views, which typically have high pixel-wise visibil-
ity probability. Consequently, the trained network tends to
overfit matching regions, leading to poor discrimination of
ill-posed areas. Ignoring pixel-wise mismatches introduces
noise as the number of views increases, severely degrading
performance. However, CWF enhances reliable pixels with
larger weights and suppresses irrelevant or noisy informa-
tion, mitigating issues from increased views. Even with
12 input views, the network’s performance remains stable.
Furthermore, CGA uses attention-based context to propagate
enhanced information, further improving performance.

V. CONCLUSIONS

In this paper, we introduce an efficient context-perception
network known as ACP-MVS, which adaptively incorporates
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context information via lightweight attention mechanism.
Specifically, ACP-MVS utilizes the CWF module to gen-
erate context-stimulated weights for cost volume fusion.
Additionally, we introduce the CGA module to propagate
enhanced matching information. These two collaborating
modules enhance the performance of ACP-MVS without
significantly increasing computational and time costs. Our
approach achieves state-of-the-art performance efficiently on
both DTU and Tanks and Temples benchmark, providing
practical benefits for high-resolution MVS applications.
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