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Abstract— The core of Multi-View Stereo (MVS) is to find
corresponding pixels in neighboring images. However, due to
challenging regions in input images such as untextured areas,
repetitive patterns, or reflective surfaces, existing methods
struggle to find precise pixel correspondence therein, resulting
in inferior reconstruction quality. In this paper, we present an
efficient context-perception MVS network, termed ACP-MVS.
The ACP-MVS constructs a context-aware cost volume that can
enhance pixels containing essential context information while
suppressing irrelevant or noisy information via our proposed
Context-stimulated Weighting Fusion module. Furthermore, we
introduce a new Context-Guided Global Aggregation module,
based on the insight that similar-looking pixels tend to have
similar depths, which exploits global contextual cues to im-
plicitly guide depth detail propagation from high-confidence
regions to low-confidence ones. These two modules work in
synergy to substantially improve reconstruction quality of ACP-
MVS without incurring significant additional computational
and time cost. Extensive experiments demonstrate that our
approach not only achieves state-of-the-art performance but
also offers the fastest inference speed and minimal GPU mem-
ory usage, providing practical value for practitioners working
with high-resolution MVS image sets. Notably, our method
ranks 2nd on the challenging Tanks and Temples advanced
benchmark among all published methods. Code is available at
https://github.com/HaoJia-mongh/ACP-MVS.

I. INTRODUCTION

Multi-View Stereo (MVS) is one of the core branches

of three-dimensional (3D) computer vision, which aims to

reconstruct the 3D geometry of a scene from a collection of

2D overlapping images with known camera parameters. Over

the past few years, this task has been extensively studied due

to its widespread applications in areas such as autonomous

driving, robot navigation and augmented reality. Traditional

MVS methods [1], [2], [3] have delivered exceptional results

in terms of reconstruction quality. Recently, with advances in

deep learning, learning-based MVS methods have emerged

and demonstrated superior performance and robustness, es-

pecially when dealing with challenging regions such as tex-

tureless areas or reflective surfaces. These methods have set

new standards and are gradually evolving into the dominant

force in the field.
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Fig. 1. (a) Run-time vs GPU Mem. on DTU [4] (1600×1152 images, 5
views). (b) Quantitative comparison on Tanks and Temples benchmark [5]
(higher is better). (c) Qualitative comparison of estimated depth maps with
state-of-the-art efficient methods [6], [7]. ACP-MVS handles challenging
regions well, recovering complete depth maps with distinct edges.

The essence of MVS is addressing a densely pixel-wise

matching problem which entails locating the corresponding

pixel in the reference image along the epipolar line in all

neighboring images. Learning-based methods [8], [9] typi-

cally extract image features from input images and construct

a cost volume encoding matching costs across different depth

hypotheses via the plane sweep algorithm [10]. Subsequently,

this volume is subject to regularization to produce the

final depth estimation. However, challenging regions such as

untextured areas, repetitive patterns, or inconsistent illumina-

tion, make it difficult to correctly identify the corresponding

pixels between the reference image and all source images.

Currently, several learning-based MVS methods have

made some progress in solving the aforementioned prob-

lem. [11] introduce deformable convolutions to expand the

receptive field, and [12] leverage extra CNN networks to

learn per-pixel weights as fusing guidance. However, limited

by CNN’s local receptive fields, these methods still have

difficulties in handling large-scale repetitive patterns or tex-

tureless regions. Inspired by Transformers’ ability to model

long-range dependencies, TransMVSNet [13] and MVS-

Former [14] introduce feature matching transformers to ex-

tract dense features aggregating long-range context informa-

tion. Additionally, WT-MVSNet [15] and CostFormer [16]

propose innovative Transformer-based cost aggregation to

refine depth estimation by replacing 3D CNN networks.

However, using stacked attention modules significantly in-

creases memory usage and inference time, which poses
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challenges for networks processing high-resolution image

datasets on mainstream GPU devices. Consequently, a critical

question arises: How might we efficiently utilize context

information to alleviate pixel-wise mismatching problems

without incurring substantial additional costs?

In this paper, we present an efficient MVS network with

attention-based context perception, named ACP-MVS, which

leverages a Context-Stimulated Weighting Fusion (CWF)

module to construct a context-perception cost volume. CWF

assigns larger weights to pixels with critical context infor-

mation and smaller weights to those likely to cause matching

ambiguity. Specifically, the CWF module first processes

the two-view cost volume through a lightweight 3D CNN

network to generate adaptive per-view initial weights and

then stimulates these weights using attention maps derived

from reference-image context features. Per-view weights

encode similarity information, while context features pro-

vide geometric and texture cues, enabling the weights to

better capture the reference image’s geometry information.

Attention maps are shared across depth hypotheses, ensuring

comprehensive geometric understanding while maintaining

computational efficiency. These context-stimulated weights

not only capture the varying importance within each view-

wise volume and between different view-wise volumes, but

also incorporate pixel similarities across all depth hypotheses

and geometric cues from the reference-image context feature.

As a result, they can effectively guide the fusion of two-view

volumes into a multi-view cost volume.

In addition, we propose a Context-Guided Global Ag-

gregation (CGA) module. Based on the insight that pix-

els with similar appearances tend to have similar depths,

this module implicitly propagates depth information from

high-confidence to low-confidence regions through global

context cues. Specifically, this module employs linear at-

tention [17] to compute attention maps based on the self-

similarities of reference-image context features, to guide and

enhance volume aggregation with global awareness. Due

to its lightweight nature, linear attention enables efficient

processing of high-resolution images at a negligible cost.

CWF and CGA cooperate synergistically: CWF constructs

a context-stimulated cost volume to enhance matching ac-

curacy. Following this, CGA propagates this enhanced in-

formation using attention-based context, effectively address-

ing matching ambiguity. This is validated by experimental

results. These modules significantly improve reconstruction

quality with minimal computational and time overhead.

Our method achieves state-of-the-art performance in terms

of accuracy, inference speed, and memory efficiency, as

illustrated in Figure 1. Compared to MVSFormer [14], our

method achieves a remarkable 66.9% reduction in GPU

memory usage and an impressive 59.2% reduction in in-

ference time, while maintaining comparable reconstruction

quality. Among all published methods, ACP-MVS ranks

second on the advanced sequences of the Tanks and Temples

benchmark [5]. Notably, ACP-MVS is the most efficient

among the top 10 methods on DTU [4] and Tanks and

Temples in terms of speed and GPU memory. Our networks

are simple, accurate, and efficient, offering valuable utility

for practitioners working with high-resolution MVS image

sets.

II. RELATED WORK

A. Learning-based Multi-View Stereo

Driven by the success of deep learning, MVS has achieved

significant progress over traditional methods. Yao et al.

[8] pioneer a widely recognized end-to-end MVS pipeline

that constructs the cost volume by encoding deep features

and camera parameters. They further regularize the cost

volume using 3D CNNs to infer depth maps. To reduce the

computational cost of the 3D U-Net architecture, subsequent

studies have proposed various methods, including coarse-to-

fine depth optimization methods [9], [18], recurrent meth-

ods [19], [11] based on RNNs, and patch-matching-based

methods [20], depending on different regularization patterns.

Despite their success, these methods encounter difficulties in

challenges such as low-texture and untextured regions.

B. Attention-based Multi-View Stereo

Attention mechanism [21], which was initially designed

for natural language processing, has been extensively ex-

plored in the visual community as well [22]. Due to its

natural superiority to capture long-range dependencies, at-

tention has been widely adopted in MVS. EPP-MVSNet [23]

employs epipolar transformers to model spatial relationships.

TransMVSNet [13] and MVSFormer [14] introduce feature

matching transformers and pre-trained vision transformers,

respectively, achieving remarkable results. CostFormer [16]

proposes Transformer-based cost aggregation methods to

improve accuracy. However, attention-based methods are

computationally expensive, limiting their applicability to

high-resolution images on mainstream GPU devices.

C. Efficient Multi-View Stereo

To enhance efficiency, several methods adopt a coarse-

to-fine strategy, reducing the number of depth hypotheses

as resolution increases. Specifically, CVP-MVSNet [9] and

CasMVSNet [18] utilize cascading cost volumes. Patch-

matchNet [20] introduces the concept of Patchmatch, sig-

nificantly reducing runtime and memory costs. GBiNet [24]

proposes a generalized binary search network to minimize

depth hypotheses per stage. Effi-MVS [7] and IterMVS [25]

introduce GRU-based iterative architectures for improved

efficiency. However, cascade methods struggle to mitigate

cumulative errors from coarser resolutions.

III. METHOD

Given the limited local receptive field of CNN and the

memory burden of the Transformer, there has been limited

research on effectively and affordably leveraging context

information to deal with pixel-wise challenging regions. In

this paper, we propose a lightweight attention-based method

to adequately utilize reference-image context information,

globally guiding cost volume construction and aggregation.

Specifically, we introduce the Context-Stimulated Weighting
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Fig. 2. Overview of the ACP-MVS. Our network uses two feature extractors to extract multi-scale image and context features. CWF and CGA integrate
context information into the context-perception cost volume construction and aggregation at the coarsest level. A multi-stage GRU-based regularization
iteratively updates depth maps.

Fusion (CWF) module (Sec III-A) and the Context-Guided

Global Aggregation (CGA) module (Sec III-B). These mod-

ules significantly enhance the reconstruction quality of ACP-

MVS(Sec III-C).

A. Context-Stimulated Weighting Fusion

Two-view cost volume construction. We construct two-

view volumes by warping source-image features into the ref-

erence image’s camera coordinates based on sampled depth

hypotheses. Specifically, for each pixel p in the reference-

image feature Fref , we use differentiable homography to

warp source-image feature maps Fi and compute pi,j :

pi,j = Ki ·
(

Rref,i ·
(

K−1

ref · p · dj

)

+ tref,i

)

, (1)

where Kref and Ki are the intrinsic matrices of Fref and

Fi, respectively. Rref,i and tref,i represent the relative ro-

tation and translation matrices, and dj is the j-th depth

hypothesis. Given pi,j and Fi, we use differential bilinear

interpolation [26] to reconstruct the warped feature map

F′

i. Subsequently, the warped feature maps for all depth

hypotheses are concatenated together as the feature volume

Vi ∈ R
C×D×H×W , where H, W and C represent the

height, width and channel dimension of the feature map,

respectively, and D is the number of depth hypotheses.

Finally, the two-view cost volume Cref,i is computed as

the squared difference between Vi and the reference feature

volume Vref , representing the matching information between

the two features, as follows:

Cref,i = (Vref − Vi)
2. (2)

Context-stimulated weighting volume fusion. After con-

structing two-view cost volumes, the next step is to fuse them

into a unified multi-view cost volume for regularization. Con-

ventional methods typically create an indiscriminate multi-

view cost volume. However, treating all views equally can

make the matching process vulnerable to issues like inconsis-

tent illumination due to varying camera positions. Therefore,

we propose the Context-Stimulated Weighting Fusion (CWF)

Two-view Cost Volume

Reference Features

Source Features
Initial Weight

Context Features

Context-Stimulated

Weight

Context-Stimulated

Cost Volume

W 3D

2D

⊙
W Warping Broadcasted multiplication

3D 3D CNN

2D 2D CNN

⊗
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⊗⊙
Fig. 3. Context-Stimulated Weighting Fusion Module. This module
uses attention maps computed from context features to stimulate two-view
volume information, serving as context-stimulated weights to guide volume
construction. The figure shows the two-view volume construction process.

module to learn the importance of volumes from different

views, as illustrated in Figure 3. First, a context extractor ex-

tracts the context feature Fc ∈ R
C×H×W from the reference

image. Simultaneously, a lightweight 3D CNN processes the

two-view cost volume Cref,i ∈ R
C×D×H×W to adaptively

generate the initial weight ωi ∈ R
1×D×H×W . Subsequently,

Fc is passed through a lightweight sub-network to produce

an attention map α ∈ R
1×1×H×W for ωi. The context-

stimulated weight is computed as follows:

ωi = f3D(Cref,i), (3)

α = f2D(Fc), (4)

ωc
i = α× ωi, (5)

where × denotes broadcasted multiplication, f3D and f2D

denote 3D and 2D point-wise CNNs, respectively. The at-

tention map is shared along the depth channel. ωc
i encodes

similarity information derived from the cost volume, while

the attention map stimulates geometric and textural features

by sharing α exclusively along the depth channel, thereby

enabling ωc
i to comprehensively capture geometric cues from

the reference image. Consequently, the context-stimulated

weight enhance pixels containing critical context information

while suppressing low-confidence regions during matching.

The final fused volume is defined as follows:

CCWF =
1

N − 1

N−1
∑

i=1

ωc
i ⊙ Cref,i, (6)
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Fig. 4. Context-Guided Global Aggregation Module. This module
encodes reference-image context features into query and key features,
respectively. It computes the dot product between the encoded volume and
these two features individually, sums the final results with the encoded
volume, and generates the context-guided global aggregated volume.

where ⊙ denotes Hadamard multiplication. This module is

simple to implement, requiring minimal additional operations

while significantly improving performance.

B. Context-Guided Global Aggregation

Based on the observation that pixels with similar appear-

ance in the reference view share similar depth, we use the

same context feature Fc to serve as context-guided infor-

mation for implicitly propagating depth details from high-

confidence to low-confidence regions via attention mech-

anism. To mitigate the computational burden arising from

attention weights based on the dot product of query Q and

key K, which grows quadratically with input image resolu-

tion, we adopt linear attention [17] and propose the Context-

Guided Global Aggregation (CGA) module to propagate

depth information, as shown in Figure 4. In this module,

we apply 2D absolute positional embedding to Fc, enabling

attention weights to capture self-similarity and absolute posi-

tion of the context feature, and then reshape and project them

into query Q ∈ R
N×C and key K ∈ R

N×C matrices (N =
H × W ) using a fully connected layer. Concurrently, we

reshape and project the encoded cost volume C ∈ R
C×H×W ,

which has three channels mentioned in Sec III-C, into a

value matrix V ∈ R
N×C (N = H × W ) with another

fully connected layer. The context-guided global aggregated

volume is defined as follows:

CL = αΦ(Q)(Φ(K⊤)V) + V, (7)

where α is a learned scalar parameter initialized to zero,

Φ(·) = elu(·) + 1, and elu(·) is the exponential linear unit

activation function, which avoids zero gradients for negative

inputs, unlike relu(·). The dimension of CL is reshaped

to [C,H,W ]. Linear computational complexity makes it

feasible to process high-resolution images on mainstream

GPU devices.

C. Network Architecture

We integrate the CWF and CGA modules into Effi-

MVS [7], proposing a new network named ACP-MVS, as

shown in Figure 2.

Feature Extraction. Similar to [27], we employ a Feature

Pyramid Network to extract multi-scale features from the

reference image and N − 1 source images with resolution

3 × H × W at three scale stages (k = 0, 1, 2), producing

features of size H
2(3−k) ×

W
2(3−k) . Similarly, we use the context

extractor which is constructed in the same way as the feature

extractor to extract multi-scale context features from the

reference image for the proposed modules and GRU-based

regularization.

CWF and CGA Module. Accurate depth maps at the

coarse stage are crucial for reducing cumulative errors in the

cascade framework. To address this, we use CWF and CGA

to refine the coarse-stage depth map. First, CWF constructs

a context-stimulated cost volume by sparsely sampling depth

hypotheses over a wide inverse depth range. A lightweight

3D regularization network aggregates this cost volume into

a probability volume, and Dinit is regressed via soft-argmin.

Next, a compact cost volume is constructed for CGA to

minimize memory usage. Specifically, we first sample a

limited number of depth hypotheses within a narrow inverse

depth range based on Dinit. Details on the number of depth

hypotheses and depth hypothesis intervals are provided in

Sec IV-B. Based on the latest depth hypotheses, we construct

a cost volume:

C =
1

N − 1

N−1
∑

i=1

(Vref − Vi)
2, (8)

where Vref and Vi denote the reference volume and the

source volume of view i, respectively.

Following [7], C is fused with Dinit by a 2D CNN to

produce the encoded volume Ce ∈ R
C×D×H×W . CGA pro-

cesses Ce to generate the context-guided global aggregated

volume CL. Details are as follows:

Ce = concat[Conv(C,Dinit),Dinit] (9)

CL = CGA(Ce, Fcontext) (10)

Finally, CL, Ce and reference-image context features are

concatenated along the channel dimension as input to the

GRU-based iterative regularization. The concatenation op-

eration enables the network to adaptively choose or merge

local matching information and context-guided global details,

enhancing the decoding of more accurate depth maps from

the coarse-stage cost volume.

GRU-based Regularization. We employ a multi-stage

GRU-based iterative architecture to leverage multi-scale in-

formation. The GRU-based regularization module updates

the depth map T times at each stage k. In each iteration t,
this module takes reference-image context features and the

current estimated depth, and outputs a delta depth ∆d, which

is added to the current depth map to obtain an updated depth

map used as the input for the next iteration t+1. The depth

map in the final iteration of each stage is upsampled via a

convex upsampler [28]. The upsampled depth map serves as

the initial map for the next stage. Subsequently, the network

resamples depth hypotheses based on the upsampled depth

and constructs a new cost volume until the final depth map

matches the input image resolution.

Loss Function. Following previous work [1], [8], [9], we

use ℓ1 loss for depth regression between predictions and
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Fig. 5. Comparison of reconstruction results with state-of-the-art attention-based methods [13], [15], [6] on the Tanks and Temples benchmark.

τ denotes the officially determined scene-relevant distance threshold, and darker regions correspond to higher errors. The first and the second rows show
the Recall for the advanced scene of the Auditorium (τ = 10mm) and Temple (τ = 15mm).

ground truth. Our network produces depth maps from the

CWF module and multi-stage GRU-based regularization, so

the final loss is defined as:

Loss = LCWF +
2

∑

k=0

Tk+1
∑

i=1

γk
i L

k
i , (11)

where LCWF is the loss from the CWF module. Tk is the

number of iterations at stage k. {Lk
i | i = 1 . . . Tk+1} include

the loss of Tk iterations and an upsampled depth map at stage

k, and γk
i is the corresponding weight.

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

Datasets. DTU [4] is a substantial indoor MVS dataset

with over 100 scenes under seven different lighting con-

ditions. It is split into training, validation, and evaluation

sets. BlendedMVS [29] is a large-scale dataset with 17,000

samples from 113 scenes, split into training and validation

sets. Tanks and Temples [5] includes a range of realistic

outdoor and indoor scenes, divided into intermediate and

advanced subsets.

Evaluation Metrics. To evaluate point cloud quality, we

use distance-based accuracy and completeness for DTU and

the accuracy and completeness of the percentage metric for

Tanks and Temples. For overall evaluation, we calculate the

average of the accuracy and completeness for DTU and the

F1 score for Tanks and Temples.

B. Implementation Details

Following the common practice, we train ACP-MVS on

DTU and fine-tune on BlendedMVS. During training, we

set the number of input images N = 5 with a resolution

of 640 × 512 for DTU and N = 7 with a resolution of

768 × 576 for BlendedMVS. For the CWF module, we set

the number of depth hypotheses at 48 for DTU and 96 for

BlendedMVS. For the CGA and GRU-based regularization

module, we keep the number of depth hypotheses at 4 for

all stages. The inverse depth interval Im is defined as:

Im = (
1

dmin

−
1

dmax

)/Z (12)

We set Z as 384 for DTU and 768 for BlendedMVS,

along with depth hypothesis intervals at stages k = 0, 1, 2
set to 4Im, 2Im, and Im, respectively. For GRU-based

regularization, the iteration number Tk is set to 3 for all

stages. ACP-MVS is implemented in PyTorch and trained

with AdamW under the OneCycleLR for 20 epochs with a

learning rate of 0.001 and a batch size of 12 on two NVIDIA

GeForce RTX 3090 GPUs. For depth filtering and fusion,

we use the improved filtering algorithm proposed in [7] for

DTU, and adopt the dynamic checking fusion strategy [34]

for Tanks and Temples.

C. Time, Memory and Reconstruction Quality

To demonstrate the high efficiency of our method, we pro-

vide a comparative assessment of ACP-MVS alongside open-

source learning-based MVS methods [6], [13], [14], [18],

[20], [25] on the DTU and Tanks and Temples benchmark, as

shown in Table I. For fair comparisons, we use a fixed input

size of 1600× 1152 to evaluate memory and inference time

on a single NVIDIA GeForce RTX 3090 GPU. ACP-MVS’s

GPU memory usage and inference time are normalized to

100% as the baseline.

Comparison with attention-based methods. Since ACP-

MVS employs the attention mechanism, we compare our

approach with attention-based methods. Compared to Trans-

MVSNet [13], ACP-MVS reduces GPU memory by 73.47%

and runtime by 83.73%, while exhibiting significantly en-

hanced reconstruction performance on DTU and Tanks and

Temples. Compared to efficient MVSTER [6], ACP-MVS

improves by 11.16% and 6.20% on the Tanks and Tem-

ples advanced and intermediate subsets respectively, while

reducing memory by 46.52% and runtime by 14.53%. When

compared to MVSFormer [14], ACP-MVS reduces memory

by 66.89% and runtime by 59.18% respectively, with compa-

rable performance. Notably, MVSFormer employs a sophis-

ticated pre-trained strategy involving vision transformer fine-

tuning on 2 V100 GPUs and requires 20 views for testing to

achieve the current performance. In contrast, our network

is device-friendly, avoids complex training strategies, and

delivers remarkable results cost-effectively.
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TABLE I

COMPARISON OF PERFORMANCE, GPU MEMORY USAGE, AND INFERENCE TIME WITH ATTENTION-BASED AND EFFICIENT METHODS ON DTU AND

TANKS AND TEMPLES(TAT). ‘∗’ DENOTES METHODS TRAINED SOLELY ON DTU. ‘ITERS’ REPRESENTS THE NUMBER OF GRU ITERATIONS AT EACH

STAGE. MEMORY AND RUNTIME OF ACP-MVS (ITERS: 3 3 3) ARE NORMALIZED TO 100% AS THE BASELINE. BOLD REPRESENTS THE BEST AND

UNDERLINED REPRESENTS THE SECOND-BEST.

Method Memory (%) Time (%) DTU (mm) TAT (Advanced) TAT (Intermediate)
A

tt
. TransMVSNet [13] 377% 615% 0.305 37.00 63.52

MVSTER [6] 187% 117% 0.303 37.53 60.92
MVSFormer [14] 302% 245% 0.289 40.87 66.37

E
ffi

. CasMVSNet* [18] 399% 230% 0.355 31.12 56.84
Patchmatchnet* [20] 145% 130% 0.352 32.31 53.15

IterMVS [25] 73% 95% 0.363 34.17 56.94

Ours* (Iters: 3 3 3) 100% 100% 0.300 37.41 59.81
Ours (Iters: 1 1 1) 100% 68% 0.306 40.38 63.48
Ours (Iters: 3 3 3) 100% 100% 0.300 41.72 64.70

TABLE II

QUANTITATIVE RESULTS ON TANKS AND TEMPLES. METHODS ARE CATEGORIZED INTO THREE GROUPS: TRADITIONAL METHODS, METHODS

TRAINED ON DTU, AND FINE-TUNED ON BLENDEDMVS. BOLD REPRESENTS THE BEST AND UNDERLINED REPRESENTS THE SECOND-BEST.

Method
Advanced Intermediate

Mean↑ Aud. Bal. Cou. Mus. Pal. Tem. Mean↑ Fam. Fra. Hor. Lig. M60. Pan. Pla. Tra.

T
ra

.

COLMAP [2] 27.24 16.02 25.23 34.70 41.51 18.05 27.94 42.14 50.41 22.25 25.63 56.43 44.83 46.97 48.53 42.04
ACMM [30] 34.02 23.41 32.91 41.17 48.13 23.87 34.60 57.27 69.24 51.45 46.97 63.2 55.07 57.64 60.08 54.48

D
T

U

CasMVSNet [18] 31.12 19.81 38.46 29.10 43.87 27.36 28.11 56.42 76.36 58.45 46.20 55.53 56.11 54.02 58.17 46.56
PatchmatchNet [20] 32.31 23.69 37.73 30.04 41.80 28.31 32.29 53.15 66.99 52.64 43.24 54.87 52.87 49.54 54.21 50.81

Effi-MVS [7] 34.39 20.22 42.39 33.73 45.08 29.81 35.09 56.88 72.21 51.02 51.78 58.63 58.71 56.21 57.07 49.38
ACP-MVS (Ours) 37.41 23.29 43.84 37.48 48.39 32.44 39.05 59.81 76.24 55.69 53.01 62.49 60.32 56.79 58.25 55.70

B
le

n
d

ed
M

V
S

IterMVS [25] 34.17 25.90 38.41 31.16 44.83 29.59 35.15 56.94 76.12 55.8 50.53 56.05 57.68 52.62 55.70 50.99
TransMVSNet [13] 37.00 24.84 44.59 34.77 46.49 34.69 36.62 63.52 80.92 65.83 56.94 62.54 63.06 60.00 60.20 58.67

GBi-Net [24] 37.32 29.77 42.12 36.3 47.69 31.11 36.93 61.42 79.77 67.69 51.81 61.25 60.37 55.87 60.67 53.89
MVSTER [6] 37.53 26.68 42.14 35.65 49.37 32.16 39.19 60.92 80.21 63.51 52.30 61.38 61.47 58.16 58.98 51.38

UniMVSNet [31] 38.96 28.33 44.36 39.74 52.89 33.80 34.63 64.36 81.20 66.43 53.11 63.46 66.09 64.84 62.23 57.53
MVSFormer [14] 40.87 28.22 46.75 39.30 52.88 35.16 42.95 66.37 82.06 69.34 60.49 68.61 65.67 64.08 61.23 59.53
GeoMVSNet [32] 41.52 30.23 46.53 39.98 53.05 35.98 43.34 65.89 81.64 67.53 55.78 68.02 65.49 67.19 63.27 58.22

GoMVS [33] 43.07 35.52 47.15 42.52 52.08 36.34 44.82 66.44 82.68 69.23 69.19 63.56 65.13 62.10 58.81 60.80
ACP-MVS (Ours) 41.72 32.30 46.53 39.35 51.23 35.81 45.09 64.70 80.89 68.73 55.97 66.16 63.45 61.84 61.91 58.65

s
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PatchmatchNet MVSTERIterMVS ACP-MVS (Ours) 

Fig. 6. Comparison of reconstruction results with state-of-the-art

efficient methods [20], [25], [6] on the DTU evaluation set. Our method
performs well in untextured and low-texture regions.

Comparison with efficient methods. We also compare

with multistage methods tailored for both memory and in-

ference efficiency. Compared to Patchmatchnet [20] and Cas-

MVSNet [18], ACP-MVS has achieved a significant increase

in reconstruction performance while maintaining high mem-

ory and runtime efficiency. In particular, our method with

fewer GRU iterations outperforms IterMVS [25], while main-

taining comparable efficiency, demonstrating strong general-

ization. ACP-MVS adjusts the number of iterations based on

the actual application needs flexibly.

D. Benchmark Performance

Results on Tanks and Temples. To evaluate gener-

alization, we test ACP-MVS on the Tanks and Temples

benchmark. We utilize 11 views at 1920× 1024 resolution.

For a fair comparison, we test two models: one trained

solely on DTU and another fine-tuned on BlendedMVS.

Quantitative results for intermediate and advanced datasets

are shown in Table II. ACP-MVS achieves state-of-the-art

performance. Specifically, our DTU-trained model outper-

forms all learning-based methods trained only on DTU. We

rank second in the advanced subset among all published

works. Compared to the intermediate subset, the advanced

subset presents more challenges, such as weaker illumina-

tion, numerous surfaces with nearly uniform appearances,

and other complicating factors. This demonstrates the ro-

bustness and generalization capabilities of ACP-MVS un-

der extensive and challenging scenarios. Furthermore, our

method achieves higher F1 scores compared to state-of-the-

art efficient methods [25], [7], [20], [6], further confirming

its superiority. Figure 5 illustrates point cloud error compar-

isons, highlighting ACP-MVS’s enhanced recall.

Results on DTU. We evaluate ACP-MVS on the evalua-

tion set of the DTU dataset using the model only trained on

the DTU training set. We use 5 views at 1600×1152 resolu-

tion. Qualitative results are shown in Figure 6. We compare
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TABLE III

QUANTITATIVE RESULTS ON DTU. THE METHODS ARE CATEGORIZED

INTO THREE GROUPS: TRADITIONAL METHODS, CONVOLUTION-BASED

METHODS, AND ATTENTION-BASED METHODS.

Method
Acc.

(mm)

Comp.

(mm)

Overall

(mm)

Mem.

(MB)

Time

(s)

T
ra

.

COLMAP [2] 0.411 0.657 0.534 - -
Gipuma [1] 0.283 0.873 0.578 - -

C
o
n

.

Vis-MVSNet [35] 0.369 0.361 0.365 4775 1.121
IterMVS [25] 0.373 0.354 0.363 845 0.189

CasMVSNet [18] 0.325 0.385 0.355 4586 0.456
PatchmatchNet [20] 0.427 0.277 0.352 1670 0.258

IGEV-MVS [36] 0.331 0.316 0.324 6895 3.130
Effi-MVS [7] 0.321 0.313 0.317 1001 0.185

UniMVSNet [31] 0.352 0.278 0.315 6120 0.648
GBiNet [24] 0.312 0.293 0.303 2130 0.671

GeoMVSNet [32] 0.331 0.259 0.295 4734 0.344
GoMVS [33] 0.347 0.227 0.287 - -

A
tt

.

CostFormer [16] 0.301 0.322 0.312 - -
TransMVSNet [13] 0.321 0.289 0.305 4337 1.218

MVSTER [6] 0.340 0.266 0.303 2152 0.232
WT-MVSNet [15] 0.309 0.281 0.295 - -
MVSFormer [14] 0.327 0.251 0.289 3471 0.486

ACP-MVS (Ours) 0.315 0.285 0.300 1149 0.198

Reference Image w/o CWF & CGA w/ CWF & CGA

F
a
m

il
y

T
em

p
le

Fig. 7. Qualitative comparisons of estimated depth maps on the

Tanks and Temples benchmark. CWF and CGA significantly improve
performance in both distant and close-range scenarios.

ACP-MVS with state-of-the-art efficient methods, focusing

on the point clouds for scan48 and scan75, which have

reflections and low-texture regions. As depicted, our method

excels in accurately recovering point clouds in challenging

regions. Detailed quantitative results on DTU are presented

in Table III. Our method achieves state-of-the-art results and

is the most efficient among methods whose Overall metric is

less than 0.315 mm, in terms of runtime and memory usage.

E. Ablation Study

We conduct ablation studies to assess the impact of CWF

and CGA, as shown in Table IV and Figure 8. All models

in this experiment are trained and tested on DTU. We set

Effi-MVS [7] as the baseline method. Qualitative results in

Figure 7 further validate the effectiveness of CWF and CGA.

Context-stimulated weight fusion. In Table IV, ‘CON’

denotes per-view weights generated by employing a 3D con-

volution followed by a batch normalization to two-view cost

volumes. Both weight generation methods show advantages

on DTU, but CWF notably delivers superior results with

minimal time and memory overhead. The context-stimulated

weights effectively capture geometric information of the

reference image. This helps the network mitigate the impact

of invalid pixels while enhancing pixels with crucial context.

TABLE IV

ABLATION RESULTS ON THE DTU EVALUATION SET. THE SETTINGS

EMPLOYED IN ACP-MVS ARE INDICATED BY UNDERLINED.

Experiment Variations Overall (mm) Mem. (MB) Time (s)

baseline - 0.317 1001 0.185

Fusion
CON 0.314 1055 0.191
CWF 0.309 1060 0.192

Aggregation
MA 0.305 7075 0.227
CGA 0.307 1040 0.189

ACP-MVS (Ours) CWF + CGA 0.300 1149 0.198

Fig. 8. Comparison of reconstruction results from different models with
varying input numbers.

Context-guided global aggregation. In Table IV, ‘MA’

denotes that the baseline method only employs multi-head

self-attention to compute context-guided information for

global aggregation without additional setups. Both methods

improve the reconstruction performance, highlighting the sig-

nificance of our propagation approach. Multi-head attention

improves results slightly, but significantly increases memory

overhead. Consequently, we select CGA with minimal mem-

ory overhead as the final configuration.

varying input numbers. Current datasets lack masks

for challenging regions, hindering quantitative evaluation of

these areas. To address this, we increase the number of input

images and validate our proposed modules by tackling the

challenges from perspective changes. For a fair comparison,

we train models using only the two best adjacent views.

As depicted in Figure 8, the performance of our baseline

deteriorates significantly with more input views. This is

because the original training strategy focuses on the two best

adjacent views, which typically have high pixel-wise visibil-

ity probability. Consequently, the trained network tends to

overfit matching regions, leading to poor discrimination of

ill-posed areas. Ignoring pixel-wise mismatches introduces

noise as the number of views increases, severely degrading

performance. However, CWF enhances reliable pixels with

larger weights and suppresses irrelevant or noisy informa-

tion, mitigating issues from increased views. Even with

12 input views, the network’s performance remains stable.

Furthermore, CGA uses attention-based context to propagate

enhanced information, further improving performance.

V. CONCLUSIONS

In this paper, we introduce an efficient context-perception

network known as ACP-MVS, which adaptively incorporates
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context information via lightweight attention mechanism.

Specifically, ACP-MVS utilizes the CWF module to gen-

erate context-stimulated weights for cost volume fusion.

Additionally, we introduce the CGA module to propagate

enhanced matching information. These two collaborating

modules enhance the performance of ACP-MVS without

significantly increasing computational and time costs. Our

approach achieves state-of-the-art performance efficiently on

both DTU and Tanks and Temples benchmark, providing

practical benefits for high-resolution MVS applications.
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