Under review as a conference paper at ICLR 2025

FORMAL THEOREM PROVING BY REWARDING LLMS
TO DECOMPOSE PROOFS HIERARCHICALLY

Anonymous authors
Paper under double-blind review

ABSTRACT

>

Mathematical theorem proving is an important testbed for large language models
deep and abstract reasoning capability. This paper focuses on improving LLMs
ability to write proofs in formal languages that permit automated proof verification/
evaluation. Most previous results provide human-written lemmas to the theorem
prover, which is an arguably oversimplified setting that does not sufficiently test
the provers’ planning and decomposition capabilities. Instead, we work in a more
natural setup where the lemmas that are directly relevant to the theorem are not
given to the theorem prover at test time. We design an RL-based training algorithm
that encourages the model to decompose a theorem into lemmas, prove the lemmas,
and then prove the theorem by using the lemmas. Our reward mechanism is inspired
by how mathematicians train themselves: even if a theorem is too challenging to be
proved by the current model, a reward is still given to the model for any correct and
novel lemmas that are proposed and proved in this process. During training, our
model proves 37.7% lemmas that are not in the training dataset. When tested on a
set of holdout theorems, our model improves the pass rate from 40.8% to 45.5%
compared with the supervised fine-tuned (SFT) model.

s

1 INTRODUCTION

The reasoning abilities of large language models (LLMs) are a significant marker of artificial intelli-
gence and critical for complex and safety-sensitive applications, e.g., medical diagnosis (Fleming
et al.,|2023; Singhal et al., [2023)), legal document review (Guha et al.,|2024),online tutoring (Ruan
et al., [2024}; [Wang & Demszky| 2023)). Yet recent studies highlight the limited performance of LLMs
on reasoning tasks (e.g., Miundler et al.|(2023)); |Valmeekam et al.|(2023)) and references therein).

Automated theorem proving by LLMs is an excellent reasoning task that abstracts away the need
for numerical manipulation or tool use (e.g., using a calculator) and allows for precise evaluation of
correctness with an automatic verifier (such as Isabelle (Nipkow et al.| 2002) and Lean (De Moura
et al., 2015)) even without ground truth. Thanks to tools such as Sledgehammer (Paulsson &
Blanchette, [2012) that can automatically complete low-level details, the granularity of formal proofs
is similar to natural language proofs (see Fig.[I| (Left) for an illustrative example). Note that verifying
a proof is fundamentally much easier than generating the proofﬂ Thus, learning to prove theorems
from verifiers’ supervision is reminiscent of weak-to-strong generalization (Burns et al.,[2023)).

Previous results in this area largely focus on the setting where the theorem prover can use all the
lemmas in the formal proof library, including those particularly written to decompose a specific
theorem’s proof (Jiang et al., [2021} [Polu & Sutskever,2020). This setting arguably oversimplifies the
problem and doesn’t sufficiently test the models’ planning and decomposition capabilities, and it is
unclear whether the resulting models can be used to prove new theorems from scratch when such
lemmas are not available at test time. Instead, we work in a more natural setup where the theorem
prover needs to propose and prove lemmas to decompose the proof hierarchically itself (see Section 2]
for more details). In Section[d.2] we demonstrate that this task is much more challenging.

In addition, most existing proof-generation algorithms leverage the formal verifier by (a) providing
the verifier’s current proof state to the LLMs step-by-step, and (b) using best-first search algorithms
such as A* to build a multi-step proof from many LLM-generated steps (Han et al., [2021} Jiang et al.|

"The former is in P whereas the latter is undecidable in the worst case (Church (1936); Turing et al.[(1936)).

Under review as a conference paper at ICLR 2025

Fixann, we have S(n + 1) = S(n) + 2(n + 1)
by the definition of §

lemma sum_of_ints:
"2 * (Siznat=1.n.i)=n* (n +1)"

lemma diff_mod_equiv:
"(a-b)modp=0=3I m:int.a=p*m+b”

'
'
By induction hypothesis, we assume that S(n) = n(n + 1). !
Wealsohaven(n+1) +2(n+1) = (n + D(n + 2). !
'
'
'

Finally, we canshow S(n+1) = (n+ 1)(n+2)//In
Isabelle, Suc n is another way to represent n + 1

| proof [...] l ‘ sledgehammer |

' '
! lemma sum_of_ints: H
' "2 * (Siznat=1.n.i)=n*(n+1)" H
'
' '
! proof - H
1 define "S" where S_def: "An. S n =2 * (Siznat=1..n. i)" 1 theorem mathd_numbertheory_257: Th ifanint tisfi
P | showsnzn®ins1y : fces -t corem: fan nteger x stisfes
! proof (induct n) ' assumes h0: "1 <x A x < 100" (Zioxo i x) ;:gd 77=0
! show S 0= 0* (0 +1)" unfolding S_def by auto : and hi: (5iz:nat=1..100.) -x) mod 77 = 0" sl .
! i H shows "x = 45'
! fixnhave"S (n+1)=Sn+2*(n+1)" H proof - proof - 100

5 q H " S
; G T o i have h2: "2 * (5izinat=1..100. i) = 100 * 101" First, weshow 2+ i=f [=100+ 101
! also assun:e n=n*(n+1) i ! <invoke> lemma sum_of_ints: y mvS ing the following lemma [withn =]:
H alsohave"n* (n+1)+2* (n+1)=(n+1) * (n+2) H "2 % (Siznat=L.n.1) = n * (n + 1)" </invoke> 23 i=nn+1)
! by simp ' using sum_of_ints[of "100"] by force . 5 -
E finally show "S (Suc n) = (Suc n) * (Suc n +1)" ' have h3: "(iz:nat=1..100.) = 5050" Therefore, $1% i = 5050 by algebraic manipulation
i by simp i using h2 by linarith . B _
' qed ! obtain m::int where hd: "5050 = 77 * m + x" ;hen thkere |shanilnHteger W‘L wher? 5050 = 77m + x
N = . invoke> lemma diff.mod_equiv: y invoking the ollowing lemma:
' ! "a-b) mod p=0=>3 mint.a = p* m+b" </invoke (a—b)modp = OimpliesIm,a =p-m +

. H o : o q
| Lemma2 I i=n(n+1). ' sxgl‘zg.,:{ Izgndlff_mod_equlv (S e e Finally, we can show x = 45 by combining equations
H § = "
| Proof: | using hé h0 by (smt (verit) above and the assumption 1 < x < 100.
| Wefirst define S(n) = 2 37, i. ' qed
! Then we prove S(n) = n(n + 1) by induction on n: \
R . '

| Base case: S(0) = 0(0 + 1) by unfolding the definition of § | invoke invoke
: Next, we deal with induction: \
'
'
'
'
'
'
'
'
'
'
'
1

Figure 1: Left: in the dashed callout block, we show an example of an Isabelle proof and its
explanation in natural language. Right: an example of a proof tree. The two child nodes correspond
to the two new lemmas proposed in the proof of the root node.

2022b)). The major challenge of these methods is the high computation cost incurred in both (a) and
(b) because (a) requires re-running LLMs on a different context that consists of a verifier’s (long)
proof state at every step, and (b) requires generating many proof steps first and then select the best
ones. Consequently, the best method along this line of research requires more than 1k GPU days with
A100s to train a model with 600M parameters (Lample et al., 2022), whereas our method only takes
less than 36 GPU days to train a 7B parameter model.

To address these issues, we design a method, Proof Decomposer (ProD), which uses LLMs to
hierarchically propose and prove new lemmas and generate complete proofs directly without searching.
We augment the formal proofs syntax so that the model can propose new lemmas by including their
statements during the proof, and prove these lemmas separately. Hence, a complete proof of a theorem
forms a tree structure where the child nodes are the lemmas proposed in the proof of the parent node
(Fig.[T] (Right)), and the theorem is considered proven only if all the proofs in the tree are correct.

Generated proofs

Training dataset Theorem 1 Theorem 2
| Theorem 1 Theorem 2 ---| RIoGHI FETED
I — 7~ T
I Lemma 1 I I Lemma 2 I I Lemma 3 I
[Proof .1 |||[Proofr.d || || Proofi.] ||

| Step 1: Sampling proof trees !

[step 3: LLM update (REINFORCE) |

Step 2b: assign reward r based on

the correctness of proof sub-trees Step 2a: verify proofs
v r=0 X r=0
r = 1 : globally correct [Theorem1 || Theorem 2 +/ :locally correct
. Proof [..] Proof [..] .
r = 0 : globally incorrect I/ \I T - X :locally incorrect
[Lemma1 |||[temma2 | [Lemma3 |
[“Proof (] ||| Proof .1 [[ProofL.”|

X r=0 v r=1 v r=1

Figure 2: Illustration of our algorithm Proof Decomposer, ProD-RL. In step 2b, the statement is
locally correct if it is proved correctly using the proposed lemmas, and it is globally correct if all
the proposed lemmas are also proved correctly. As an important feature of our algorithm, even if a
theorem (Theorem 1) is not proved by the model because some lemmas (Lemmas 1) are not proved,
we still train on the correct lemma (Lemma 2) by setting its reward r» = 1.

Under review as a conference paper at ICLR 2025

We train our models with reinforcement learning (RL) in a way that somewhat imitates a mathemati-
cian’s process: we reward correct partial proofs (i.e., proof sub-trees) even if the original theorem
(i.e., the root node) is not proved entirely. Since our model can generate and prove novel lemmas
during training, it can still make progress even if the theorem is too challenging. This is reminiscent
of how mathematicians prove standalone lemmas which make progress towards solving an open
problem. We illustrate our algorithm in Fig. 2] and defer the details to Section[3.2]

We test our model ProD-RL by generating proof trees on holdout theorems that the model is never
trained on, and we show that our model ProD-RL outperforms several other baselines. Compared
with the supervised fine-tuned (SFT) model on the same training set , our model improves the pass
rate from 40.8% to 45.5% on the holdout test set, whereas vanilla reinforcement learning without
lemma proposals during training does not improve the corresponding SFT model (see Section[d.3).
This is partly because our method encourages the model to propose and prove additional lemmas —
in fact, 37.7% of the lemmas proved during training are not in the dataset. As a result, the model still
improves even if it is already fine-tuned on the same dataset with human-written ground-truth proofs.

2 SETUP

Conditional proofs. We use the term conditional proof to denote a proof that, in addition to the
standard formal proof syntax, can propose new lemmas by enclosing their statements by <invoke>
and </invoke> tokens (examples shown in the blue boxes of Fig.[I). In particular, a conditional proof
has the following format:

t; <invoke> l; </invoke> to <invoke> [y </invoke> - - - t; <invoke> [}, </invoke> tj 1

where 1, - - - , 41 denote proof segments in the original formal proof syntax (see e.g., Fig.[I] proof
texts in black), and Iy, - - - ,[; denote proposed lemma statements (see e.g. Fig. |1} proof texts in red)E]

Proof tree nodes. With the proposed lemmas, a complete proof forms a tree structure (as shown in
Fig.[I). A node in a proof tree is a tuple of premises, context, a theorem statement, and a conditional
proof. Premises represent the lemmas that are treated as common knowledge, which are typically not
directly relevant to the proof. We allow the model to directly use them in the proof so that it does not
have to repetitively prove all the fundamental facts, such as properties of continuous functions and
natural numbers. Context represents the necessary contents to prepare the theorem statement, such as
the definition of specific objects/functions. We use the context as part of the prompt for the LLMs to
generate proofs, and to configure the proof verifier to check the generated proofs.

Correctness of conditional proofs and proof trees. A proof tree node n with conditional proof
t1 <invoke> [; </invoke> to <invoke> ls </invoke> - -- tj <invoke> [j </invoke> ty. 1 is locally
correct if, after adding 1, . .., [to the set of premises, ¢;...%¢;+1, is a proof to the statement of n
that is accepted by the formal verifier under the context of n.

We consider a proof tree valid if, for every node, each of its child nodes corresponds to one proposed
lemma and shares the same premises and context with its parent node. A tree node n is globally
correct with respect to a given set of tree nodes N if we can construct a valid proof tree with root n
using the locally correct tree nodes in IN. We use this more flexible definition of global correctness
since if we generate more than one proof tree per theorem, we may mix their locally correct nodes to
form a globally correct proof.

Global correctness corresponds to the standard notion of correctness (i.e., whether the theorem is
proved), and local correctness is a weaker concept, referring to the correctness of conditional proofs
assuming the proposed lemmas. When a tree node is globally correct, we can construct a complete
proof to its statement that is acceptable by the formal proof verifier — first, we build a valid proof
tree from the locally correct subset of NV, and then list all the statements and their corresponding
conditional proofs in a child-first order and remove all the lemma proposal steps (since the proposed
lemmas and their proofs will be already listed in the proof text according to child-first order).

*In this paper, we use the terms ‘lemma’ and ‘theorem’ relatively — theorem refers to the statement that we
are currently focusing on, and lemma refers to the statement proposed during the proof. In other words, there is
no fundamental difference between a lemma and a theorem.

Under review as a conference paper at ICLR 2025

Dataset construction. We construct the datasets by parsing raw proof-library files into tuples of
the form (premises, context, statement, conditional proof).

In particular, we first segment each of the files into blocks ¢ s; p1 --- ¢; s; p; where the s; are
theorem statements, the p; are the corresponding proofs, and the c¢; are the file contents between
proofs, such as object definitions and local assumptions. Next, we build proof trees from each
segmented file by iteratively removing (s;, p;) pairs from the file if the theorem s; is not referred to
in the remaining file contents (in other words, in the first iteration we peel off the root nodes of the
proof trees from the file, and then the nodes in the next level, etc.). Note that some theorems cannot
be peeled off by this process because they are referred to in some file content c; (e.g., lemmas used to
instantiate local objects). We use 7. to denote the subset of theorems peeled off during the process.

For every theorem s;, we construct an example where the context is the concatenation of {c; : j < i}
and {s; : j < ,8; & Tee} in the order they appear in the file. That is, we exclude all the lemmas
that are ever peeled off — the remaining lemmas are included in the context.

To construct the conditional proof of theorem s;, we add the proposed lemma statements to
the original proof p;. In particular, we split the proof p; into steps ti,--- ,t; using the for-
mal language parser. Then for every step ¢; that uses lemmas [; 1, ... ,Zj,nj from Tigee, WE in-
sert the statements of these lemmas enclosed by the <invoke> and </invoke> tokens, denoted by
(¢; = <invoke> [; 1 </invoke> - -- <invoke> [; ., </invoke>, into the proof right before ¢;. In other
words, the conditional proof is the concatenation (7 t1 --- (i tx. Similar to Jiang et al.|(2022b)), we
use Sledgehammer, a premise selection tool that automatically searches for proofs to the current goal,
to replace proof steps that are originally generated by it (see Section [A.3]for more details) so that the
mode can focus less on the tedious low-level details.

The premises are all the theorems from predecessor files, which are typically not directly relevant
to the theorem (otherwise they will be stated in the same file). Theorems in the premise set can be
used directly in the proof, or they can be selected by Sledgehammer to search for proof steps. In our
implementation, the premises are implicitly defined by the dependency graphs of the files.

We split the training and test set (AFP test) based on the dependency of the files in the proof library
so that the examples in the training set never refer to any files in the test set (see Section 4.2] for
details). We also construct an additional test set, AFP 2023, by parsing AFP files submitted after the
knowledge cutoff date of the Llemma model (April 2023) to eliminate potential data leakage issues.
Compared with prior works (First et al., 2023; Jiang et al.| 2021), the two major differences in our
setup are the availability of lemmas from the same file and the training/test split. In Section[4.2] we
discuss and test their effects in detail.

Finally, to construct the SFT dataset, for each example in the training set, if its conditional proof
proposes at least one lemma, we create an augmented example by moving the proposed lemmas from
the conditional proof into the context — this augmented example does not propose new lemmas and
is always locally correct.

3 METHODS

In this section, we first describe how to use LLMs to generate proof trees, and then introduce our
reinforcement learning method (ProD-RL) that rewards the model to decompose proofs hierarchically.

3.1 GENERATING PROOF-TREES USING LLMS

To generate proof trees using an autoregressive model 7wy, we need to first fine-tune the model to
follow a specific format:

(a) the input z to the model 7y is the concatenation of a context and a theorem statement, and

(b) the expected output y of the model is a special token ¢(followed by a conditional proof, where
tp is either <use_invoke> or <no_invoke>, denoting whether the following conditional proof
should propose new lemmas.

We introduce the special token ¢ before a conditional proof so that we can increase the probability of
the <use_invoke> token during RL to let the model propose more lemmas for better exploration.

Under review as a conference paper at ICLR 2025

We summarize our proof-tree generation algorithm in Alg.[I] Given a theorem statement s and the
corresponding context ¢, we first sample from 7y autoregressively starting with the prompt x = ¢ s,
and ideally the model outputs a special token ¢, followed by a conditional proof p (Line [3). Next,
we parse the conditional proof p and collect the proposed lemmas [y, - - - , [for the next round of
generation (Line [5). We force the model to generate conditional proofs without proposing new
lemmas at a certain depth so that the proof tree doesn’t grow indefinitely, which can be implemented
easily by replacing the prompt with 2’ = ¢ s <no_invoke> (Line [6).

Algorithm 1 Generate proof trees (test time)

1: Inputs: Model 7y, a set of contexts and statements Go = {(¢;, $;) }+, maximum depth d.
2: for. < 0,1,--- ;,d—1do
3: Sample proofs (to; pi) ~ mo(- | ¢ s;) for lemmas (¢;, s;) in G,, where ¢ ; is the token
representing whether the proof should use invoke and p; is the conditional proof.
4: R — {(Ci,Si,pi) | V(Ci,Si) € G,}
5: Collect proposed lemmas (a conditional proof p; might propose more than one lemma [;):
G411 + {(ci,15) | (ci, 84, pi) € P, and [is proposed in p; }.

6: Sample proofs p; ~ my(- | ¢; s; <no_invoke>) for (¢;, s;) in Gg. (>) Truncate at depth d.
Pd < {(Ciasivpi) | v(Cia Si) S Gd}
8: Return UL P,.

~

3.2 REINFORCEMENT LEARNING WITH LEMMA PROPOSAL

Our reinforcement learning method is illustrated in Fig. [2] We start with a supervised fine-tuned
model so that it can generate conditional proofs in the desired format. Then at every round, we
randomly sample a batch of examples D from the training dataset and perform the following steps.

Step 1: Generate proofs. We first generate proof trees for every theorem in D. For better
exploration, we use a modified version of Alg. [I] (shown in Alg. 2] of Appendix [A.T) with the
following differences:

(a) for the theorems where the probability 7y (<use_invoke> | x) is among the top 50% in the batch,
we will force the model to generate conditional proofs with ¢y = <use_invoke>. Otherwise, we
sample to according to the probability of my(- | x), and

(b) for every theorem where the model generates a conditional proof with new lemmas, we also let
the model generate another conditional proof without proposing lemmas. If any of these two
conditional proofs is globally correct, it can be used to construct proof trees for other theorems.

Step 2: Determine the reward of an example. In this step, we first check the local correctness of
each conditional proof using the formal verifier (Step 2a in Fig. 2).

In addition to the verifiers’ output, we apply two filters to help train the model: (a) we filter out
trivial lemma proposals — if a proposed lemma directly implies the theorem (e.g., if the proposed
lemma has exactly the same statement as the theorem), we simply discard this example, and (b) we
remove unnecessary lemma proposals — if the conditional proof is still correct after removing all the
references to a proposed lemma, we remove this lemma from the conditional proof.

We then determine the global correctness of the generated proofs. Finally, we assign a binary reward
r(e, s, p) to each tree node with context ¢, statement s, and conditional proof p based on its global
correctness (Step 2b in Fig. [2).

Step 3: Update the model by REINFORCE. In this step, we first construct a training dataset
consisting of examples with format (prompt, target, weight) from the conditional proofs collected in
Step 1, and then update the model 7y using the weighted cross-entropy loss.

For each generated conditional proof, we add one example to the training dataset where the prompt is
the context concatenated with the theorem statement, and the target is the conditional proof prepended
by the <use_invoke> or <no_invoke> token. Note that the reward of a conditional proof depends not
only on the correctness of the conditional proof, but also on the correctness of the proposed lemmas.

Under review as a conference paper at ICLR 2025

To reduce the variance of our gradient updates, we train a value function V4 that predicts the expected
reward of the current policy on a given proof tree node (i.e., Vo = E,wr(.|c,s)[7(c; 5, p)]). The weight
of an example is the product of the value function’s outputs on invoked lemmas multiplied with a
length penalty to incentivize shorter proofs — for a proof tree node with conditional proof length i
and proposed lemmas 1, - - - , I, the weight w of this example is w = " Hle Vg (1;) with discount
factor v € (0,1), or w = 0 if the proof tree node is not locally correct.

To simplify the implementation, we train the value function to predict two special tokens, <true> and
<false>, conditioned on the context and theorem statement. Let p, be the probability of the <true>
token conditioned on the context and theorem statement, and pr the probability of the <false> token.
The output of the value function is then p/(p, + pr).

As done for the SFT dataset, we add one augmented example by moving the proposed lemma from
the conditional proof to the context for any locally correct conditional proof with new lemmas. We
also add examples constructed from the human-written conditional proofs (i.e., the ground-truth
proofs) of theorems in the batch D. In addition, we use a replay buffer to stabilize the training.

Remarks. Note that we update the model using partial proofs (i.e., proof sub-trees) even if the
original theorem from the dataset (i.e, the root of the proof tree) is not proved. Hence, our method
can also be viewed as an instantiation of hindsight experience replay (Andrychowicz et al., [2017)),
where the hindsight trajectories are correct proof sub-trees.

Our algorithm is also closely related to expert iteration. In our notation, expert iteration is equivalent
to using a binary weight w = I [the proof tree node is globally correct] .

4 EXPERIMENTS

This section presents our experimental results. We first list additional experiment details (Section {.T))
and then compare our setup with prior works (Section .2)). Finally, we show our main results in
Section[4.3]and examples of proposed lemmas in Section4.4]

4.1 EXPERIMENT DETAILS

Proof verification software. We use Isabelle (Nipkow et al., [2002)) as our proof verification
software since the proofs are declarative and human-readable without knowing the verifier’s proof
state, and we use PISA (Portal to ISAbelle, Jiang et al.|(2021)) to interact with Isabelle. To check
whether a proof tree node is locally correct, we import all the theorems from its premises, move each
of the proposed lemmas from the conditional proof to the context, and then add a fake proof indicated
by the keyword ‘sorry’ to every lemma statement in the context (In Isabelle, ‘sorry’ will register the
statement as a fact even without any actual proof.) The remaining proof steps will follow the original
Isabelle syntax, and we can check their correctness directly. We set a 10s timeout for each proof step.

Datasets. Our SFT dataset consists of theorems from Archive of Formal Prooff’| (AFP, retrieved on
2022-12-06) and Isabelle built-in files (such as HOL which contains the theorems that define natural
numbers, etc.). The resulting dataset contains 312k examples.

For the test datasets AFP test and AFP 2023, we only keep the theorems in Tye.. To construct the test
set AFP 2023, we parse the AFP files submitted after the knowledge cutoff date of our pretrained
model (April 2023) to eliminate possible data leakagesf_r] The AFP test set contains 4.3k theorems
and the AFP 2023 test set 2k theorems.

Testing setup. To measure the performance of the models, we sample k proof trees per theorem
independently on the test set and report the pass @k performance (that is, a theorem is proved if at
least one of the conditional proofs is globally correct with respect to all the generated tree nodes).
When generating proofs, we use temperature 0.7 and truncate the context to only include the last 1k
tokens. The proof trees are truncated at depth 2.

*https://www.isa-afp.org/
“Here we use the archive of AFP retrieved on 2023-11-22.

https://www.isa-afp.org/

Under review as a conference paper at ICLR 2025

Supervised fine-tuning. We start from the Llemma 7b model (Azerbayev et al.,[2023) and fine-tune
the model for 2 epochs with the standard cross entropy lossE] On theorems from AFP, we compute
the loss only on the special token and the proof, but not on the context and statement. On Isabelle
built-in theorems, we compute the loss on the statement to help the model internalize basic facts. We
use the AdamW optimizer (Loshchilov & Hutter, [2018)) with linear warmup, constant learning rate,
peak learning rate le-5, macro batch size 128, and context window 2048.

Reinforcement learning. The dataset we use for the reinforcement learning stage is Tiee, the set
of theorems that are iteratively peeled off when parsing AFP files — T contains 104k examples.
We first train the model with 1 epoch of supervised fine-tuning, and then run RL for 20 rounds with
a batch of 5k random examples per round. We truncate the proof tree at depth 3 and sample with
temperature 0.7 during training for better exploration. We use the same hyperparameters as the SFT
stage to update the policy 79, We initialize the value function V5 with a Llemma 7b model fine-tuned
on our SFT dataset.

4.2 COMPARISON OF OUR NEW SETUP WITH PRIOR WORKS

In this section, we concretely compare our new setup with prior works (First et al., 2023} Jiang et al.,
2021). Recall that there are two main differences in how we process our dataset:

(a) we split the train/test set based on file dependencies so that no theorems in the test set are referred
to in the training set, whereas PISA splits theorems randomly, and

(b) when testing a proof, we remove certain lemmas from the context.

To show that our setup is indeed more challenging, we first construct datasets formatted similarly
to those in (First et al., [2023)). Specifically, we parse the AFP files into examples using the method
described in Section [2] with the only exception being that all human-written lemmas are kept in

the context. Then we select a subset of theorems as the test set D}/! based on the dependencies of

the AFP files, so that the examples in the test set are never used by the remaining theorems (see
Section for more details). Then we split the remaining examples randomly into training and

validation datasets, denoted by D! and D¥/! respectively. We use D¥°! to denote the test dataset of

our setup where the lemmas are removed from the context. The validation dataset D¥¥|! mimics prior

works’ setup (First et al., [2023; Jiang et al.,|2021)), and D{Zétl is an interpolation between prior works’

setup and our setup. Table[I]shows the performance of the model with supervised fine-tuning on

Dyl and all Isabelle built-in theorems. The results suggest that both features of our setup, removing

the lemmas and splitting the training/test set by file dependencies, increase the difficulty of the task.

Table 1: Pass rate on different dataset formats and partitions of the SFT model trained on the D}/! .

The validation dataset D¥¥)! mimics the test setup of prior works, and our setup is Dy ! where the

same model performs much worse. The results suggest that our setup is indeed more challenging.

Test setu DYl w/lemmas DYl w/lemmas D¥°!: w/o lemmas
P split randomly split by dependency ~ split by dependency

pass@4 45.7 39.7 35.7

4.3 MAIN RESULTS

This section reports the models’ pass @k performance on AFP test and AFP 2023 test datasets. Recall
that the theorems in the AFP 2023 test set were submitted after we retrieved the training set, and
theorems in AFP test are selected based on the dependencies of the AFP files. Hence, theorems in the
test sets are not used in any proofs from the training set. In other words, we do not train the model
on test datasets using reinforcement learning. Instead, we test whether ProD-RL is a fundamentally
better model when tested on new theorems.

As a baseline method, we train a model on a variant of the SFT dataset where all lemmas are kept in
the context. It can be seen as a reproduction of |First et al.|(2023)) with a slightly different way to obtain

>In our preliminary experiments, we observe that the model overfits after 2 epoch

Under review as a conference paper at ICLR 2025

the context — |[First et al.| (2023)) includes all the file content before the statement of the theorem,
whereas we only keep the statement of previous lemmas. We also run reinforcement learning on the
same RL dataset as our method (see Section for more details).

Table 2: Pass@16 of different models on AFP test sets. Our model with reinforcement learning
(ProD-RL) improves upon the SFT model and outperforms baseline methods.

SFT w/o RL w/o
Test set lemma proposal lemma proposal ProD-SFT ProD-RL
AFP test | 434 42.4 40.8 45.5
AFP 2023 | 394 37.7 36.5 39.5

Table [2) shows the performance of our model on the AFP test sets. For a fair comparison, the baseline
models are tested in our new setup without human-written lemmas. Note that the SFT model without
lemma proposal outperforms the SFT model with lemma proposal. We hypothesize that it is because
proposing correct lemmas itself is challenging, which distracts the model from learning to generate
direct proofs. However, RL with lemma proposal improves the SFT model and outperforms others
because the model proposes and proves additional lemmas that are not in the training dataset, whereas
RL without lemma proposal yields no improvement.

In Fig.[3] we plot the pass rates with different numbers of samples per theorem on both AFP test and
AFP 2023. Fig. [3|shows that on AFP test, the ProD-RL model significantly improves upon baseline
methods as well as the ProD-SFT. However, on AFP 2023, the improvement is minor over SFT w/o
lemma proposal, while ProD-RL still outperforms ProD-SFT. The results suggest that the baseline
methods are more robust to heavier distribution shifts, while our method has a larger improvement
when the test distribution is closer to the training distribution.

Pass rate on AFP test Pass rate on AFP 2023

25

40 1

Pass rate
w
w
1
Pass rate

30

—— SFT w/o lemma proposal —— SFT w/o lemma proposal

RL w/o lemma proposal 26 RL w/o lemma proposal
—— ProD-SFT —— ProD-SFT
257 —— ProD-RL 24 4 —— ProD-RL
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Samples per theorem Samples per theorem

Figure 3: The pass rate of different models on AFP test (Left) and AFP 2023 (Right) test sets. Our
RL model improves upon the SFT model whereas without proposing new lemmas (RL w/o lemma
proposal), we do not observe any improvement.

In Fig.] we decompose the proved theorems by the depth of their ground-truth proofs (shown on the
z-axis) and the depth of generated proof trees (indicated by color). When there are multiple correct
proof trees, we plot the one with the maximum depth. As a comparison, we also plot the success
rates of the proofs generated by the RL model trained w/o lemma proposal. Fig.] shows that the
improvement of ProD-RL mostly comes from proving theorems with low-to-medium difficulty where
the depth of the ground-truth proof is at most 2. For more complex theorems, both models’ pass rates
are low and the improvement of our method is not significant, meaning that they are currently beyond
the models’ capability.

4.4 CASE STUDY OF PROPOSED LEMMAS

In this section, we manually examine the new lemmas proposed during RL and list the typical cases
where new lemmas are proposed. We emphasize that many AFP files focus on complex concepts

AW -

FNERREEN

W =

Under review as a conference paper at ICLR 2025

07 Statistics of correct proofs

- BN succ rate depth 1
succ rate depth 2
B succ rate depth >=3
succ rate w/o lemma proposal

0.6

Pass rate

1 2 3 4 >=5
Depth of the ground-truth proof

Figure 4: The pass rate of theorems in AFP test grouped by the depth of their ground-truth proof.
Grey bars represent the proof generated by the model SFT w/o lemma proposal, and the colored bars
represent the proof trees generated by ProD-RL with various depths.

and results in mathematics or computer science, making manual examination challenging. Therefore,
examples in this section are biased toward easier theorems.

Case 1: Model decomposes theorems into lemmas. In this case, the model correctly decom-
poses the proof of a theorem into several lemmas. The following example belongs to the AFP file
List-Infinite, which focuses on lists and sets with infinite size. The theorem (Line 1) states
that the cardinality of the set A U {x} equals |A| if z € A, or the successor integer of | A| otherwise
(i.e., |A] + 1 for finite A and co otherwise). During the proof (Lines 2-4), our model proposes two
lemmas in Lines 2 and 3 to deal with the two possible cases (z & A or x € A) respectively. Finally,
Line 4 proves the original theorem using the two proposed lemmas.

theorem icard_insert_if: "icard (insert x A) = (if x € A then icard A else eSuc (icard A))"
<invoke> lemma icard_insert_disjoint: "x € A — icard (insert x A) = eSuc (icard A)" </invoke>
<invoke> lemma icard_insert_eq: "x € A —> icard (insert x A) = icard A" </invoke>

by (simp add: icard_insert_eq icard_insert_disjoint)

Case 2: The proposed lemma is a rephrase of an existing lemma. We also find that some
proposed lemmas are rephrases of existing lemmas in the training dataset. Although in this case the
proposed lemma is not fundamentally useful for proving new theorems, they can be viewed as data
augmentation to enhance the models’ performance. In the following example, the model produces a
lemma equivalent to one in an AFP file. Line 1 shows the original form of the lemma stated in the
AFP file, while Lines 2-4 show an equivalent lemma proposed by our model during RL.

lemma icard_mono: "A C B = icard A < icard B"
lemma icard_mono:

assumes "A C B"
shows "icard A < icard B"

Case 3: The proposed lemma is novel but not useful to the original proof. We also observe
cases where the proposed lemma is novel, but the conditional proof of the theorem is incorrect. In
following example, the proposed lemma states that the shortest path between vertices u, v is a lower
bound for the length of any path that connects u, v (in an unweighted and undirected graph):

lemma shortest_path_lower_bound:
assumes "p € connecting_paths u v"
shows "shortest_path u v < enat (walk_length p)"

This lemma is proposed to prove that the shortest path between the vertex u and itself has length O
(which is a theorem in the AFP file). However, the conditional proof of the theorem contains a few
mistakes while the proposed lemma is proved separately. In this case, we still train on the correct
lemma even though it might not be directly useful to the theorem in the training set.

Under review as a conference paper at ICLR 2025

Remarks. We observe that the lemmas proposed by the model typically do not involve complex
ideas. We attribute this to two main factors: (a) the limited size of our model and formal proof dataset,
and (b) the fact that many human-written lemmas in the AFP file are indeed about basic facts and
basic properties (which are often used to prove more complex theorems later). Nevertheless, our
model still proposes and proves reasonable lemmas that are not present in the training dataset, and
our experiments demonstrate that with these proposed lemmas, ProD-RL outperforms ProD-SFT on
holdout test sets. We leave it to future work to scale up our method and force the model to focus on
more challenging theorems.

5 RELATED WORKS

To generate formal proofs with language models, most prior methods provide the verifier’s state to
the model to sample the proofs step-by-step, and use algorithms like MCTS to search for a correct
complete proof (Han et al 2021} Jiang et al., 2021; 2022b; Lample et al.| 2022} |Polu & Sutskever,
2020; [Polu et al., [2022)). The major drawback of these methods is their high computation cost at test
time. Recent works (First et al.,|2023) train a large language model to generate a whole proof directly
without the verifier’s state. Our baseline, the SFT model without lemma proposal, can be viewed as a
reproduction of their methods with a slightly different way of computing the context.

Prior works also use reinforcement learning or expert iteration to improve the models’ performance
on writing formal proofs, where the training datasets contain formal synthetic inequalities (Polu et al.|
2022) or statements translated from natural language mathematical problems (Wu et al., 2022} | Xin
et al., | 2024ajjazb). In contrast, we aim to improve the models’ performance without any additional
(even unlabeled) data. As future works, we could run ProD-RL with additional datasets.

Another line of research aims to translate natural language proofs into formal proofs (Jiang et al.
2022a;|Zheng et al.,|2023)). Xin et al.|(2023)) build a library of useful lemmas by decomposing natural
language proofs into lemmas with an LLM and then formalizing the decomposed proofs. In contrast,
we propose new lemmas entirely in formal language.

Automated theorem provers (ATPs) have been extensively studied, with various learning- or search-
based methods developed to generate tactics for a given proof state (e.g.,|Gauthier et al.|(2021)); Schulz
et al.| (2019) and references therein). In comparison, our method focuses on generating multi-step
proofs with LLMs while using existing ATP tools to complete low-level details. Orthogonally, a
recent method (Mikuta et al.| [2023)) improves existing provers with a transformer-based retrieval
model as the premise-selection tool, and could potentially be combined with our methods.

In general, mathematical question-answering tasks (such as GSMS8K (Cobbe et al., 2021) and MATH
(Hendrycks et al.,|2021))) and theorem-proving tasks (such as|Welleck et al.|(2021)) are well-accepted
benchmarks for the reasoning capability of large language models. Prior works show that instruction
tuning or RL can significantly improve the models’ performance (Shao et al.l 2024). However,
evaluation on these tasks is either performed by another language model (which is prone to errors)
(Lightman et al.l 2023)), or requires ground-truth answers that are hard to acquire at scale.

6 CONCLUSION

In this paper, we design a reinforcement learning algorithm that encourages LLMs to write formal
proofs by decomposing them hierarchically. We also design a more natural testing setup by removing
the directly relevant lemmas from the context. We show that, by proposing and proving new lemmas
that are not present in the training dataset, the resulting model ProD-RL outperforms baselines trained
on the same dataset.

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In
Proceedings of the 31st International Conference on Neural Information Processing Systems, pp.
5055-5065, 2017.

10

Under review as a conference paper at ICLR 2025

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Albert
Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model for
mathematics. In The 3rd Workshop on Mathematical Reasoning and Al at NeurlPS’23, 2023.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbrenner,
Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, et al. Weak-to-strong generalization:
Eliciting strong capabilities with weak supervision. arXiv preprint arXiv:2312.09390, 2023.

Alonzo Church. A note on the entscheidungsproblem. The journal of symbolic logic, 1(1):40-41,
1936.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Leonardo De Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The
lean theorem prover (system description). In Automated Deduction-CADE-25: 25th International
Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings 25, pp.
378-388. Springer, 2015.

Emily First, Markus Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-proof generation and repair
with large language models. In Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pp. 1229-1241, 2023.

Scott L Fleming, Alejandro Lozano, William J Haberkorn, Jenelle A Jindal, Eduardo P Reis, Rahul
Thapa, Louis Blankemeier, Julian Z Genkins, Ethan Steinberg, Ashwin Nayak, et al. Medalign:
A clinician-generated dataset for instruction following with electronic medical records. arXiv
preprint arXiv:2308.14089, 2023.

Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ramana Kumar, and Michael Norrish. Tactictoe:
learning to prove with tactics. Journal of Automated Reasoning, 65(2):257-286, 2021.

Neel Guha, Julian Nyarko, Daniel Ho, Christopher Ré, Adam Chilton, Alex Chohlas-Wood, Austin
Peters, Brandon Waldon, Daniel Rockmore, Diego Zambrano, et al. Legalbench: A collaboratively
built benchmark for measuring legal reasoning in large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward Ayers, and Stanislas Polu. Proof artifact co-
training for theorem proving with language models. In International Conference on Learning
Representations, 2021.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021.

Albert Q Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée
Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal theorem
provers with informal proofs. arXiv preprint arXiv:2210.12283, 2022a.

Albert Qiaochu Jiang, Wenda Li, Jesse Michael Han, and Yuhuai Wu. Lisa: Language models of
isabelle proofs. In 6th Conference on Artificial Intelligence and Theorem Proving, pp. 378-392,
2021.

Albert Qiaochu Jiang, Wenda Li, Szymon Tworkowski, Konrad Czechowski, Tomasz Odrzygézdz,
Piotr Mito$, Yuhuai Wu, and Mateja Jamnik. Thor: Wielding hammers to integrate language
models and automated theorem provers. Advances in Neural Information Processing Systems, 35:
8360-8373, 2022b.

Guillaume Lample, Timothee Lacroix, Marie-Anne Lachaux, Aurelien Rodriguez, Amaury Hayat,
Thibaut Lavril, Gabriel Ebner, and Xavier Martinet. Hypertree proof search for neural theorem
proving. Advances in neural information processing systems, 35:26337-26349, 2022.

11

Under review as a conference paper at ICLR 2025

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2018.

Maciej Mikuta, Szymon Antoniak, Szymon Tworkowski, Albert Qiaochu Jiang, Jin Peng Zhou,
Christian Szegedy, Lukasz Kucinski, Piotr Mito$, and Yuhuai Wu. Magnushammer: A transformer-
based approach to premise selection. arXiv preprint arXiv:2303.04488, 2023.

Niels Miindler, Jingxuan He, Slobodan Jenko, and Martin Vechev. Self-contradictory hallucinations
of large language models: Evaluation, detection and mitigation. In The Twelfth International
Conference on Learning Representations, 2023.

Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson. Isabelle/HOL: a proof assistant for
higher-order logic. Springer, 2002.

Lawrence C Paulsson and Jasmin C Blanchette. Three years of experience with sledgehammer,
a practical link between automatic and interactive theorem provers. In Proceedings of the 8th
International Workshop on the Implementation of Logics (IWIL-2010), Yogyakarta, Indonesia.
EPiC, volume 2, 2012.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393, 2020.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya
Sutskever. Formal mathematics statement curriculum learning. arXiv preprint arXiv:2202.01344,
2022.

Sherry Ruan, Allen Nie, William Steenbergen, Jiayu He, JQ Zhang, Meng Guo, Yao Liu, Kyle
Dang Nguyen, Catherine Y Wang, Rui Ying, et al. Reinforcement learning tutor better supported
lower performers in a math task. Machine Learning, pp. 1-26, 2024.

Stephan Schulz, Simon Cruanes, and Petar Vukmirovi¢. Faster, higher, stronger: E 2.3. In Pascal
Fontaine (ed.), Proc. of the 27th CADE, Natal, Brasil, number 11716 in LNAI, pp. 495-507.
Springer, 2019.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Y Wu,
and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan
Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, et al. Large language models encode
clinical knowledge. Nature, 620(7972):172—-180, 2023.

Alan Mathison Turing et al. On computable numbers, with an application to the entscheidungsproblem.
J. of Math, 58(345-363):5, 1936.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the
planning abilities of large language models-a critical investigation. Advances in Neural Information
Processing Systems, 36:75993-76005, 2023.

Rose Wang and Dorottya Demszky. Is chatgpt a good teacher coach? measuring zero-shot perfor-
mance for scoring and providing actionable insights on classroom instruction. In The 61st Annual
Meeting Of The Association For Computational Linguistics, 2023.

Sean Welleck, Jiacheng Liu, Ronan Le Bras, Hannaneh Hajishirzi, Yejin Choi, and Kyunghyun Cho.
Naturalproofs: Mathematical theorem proving in natural language. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and
Christian Szegedy. Autoformalization with large language models. Advances in Neural Information
Processing Systems, 35:32353-32368, 2022.

12

Under review as a conference paper at ICLR 2025

Algorithm 2 Generate proof trees (train)

1: Inputs: Model 7, theorems (represented by tuples of context, statement, and condition proof)
G = {(¢4, si, p¥) }4, maximum depth d.

2: forv. <+ 0,1,--- ,ddo
. 79 (<use_invoke>|c;,s;)

3 Compute the invoke probability Vi, p; = o (Suse Tvokes| ey 5,) e (<o ivokeS|ei 57

4 Let x be the 50% quantile of {p;};.

5: if © < d then

6: G = {(¢i, i, pF) | pi > K oru; < p; where u; ~ Unif|0, 1]}.

7: else

8 G=0.

9 Sample proofs p; ~ mg(- | ¢; s; <no_invoke>) for lemmas (c;, s;, pf) in G.

10: Sample proofs p; ~ my(- | ¢; s; <use_invoke>) for lemmas (c;, s;, pF) in G.

11: P, < {(ci, s, pi) | Yist. (¢i,81,0F) € GYU{(ci, 84, pi) | Visit. (¢i,84,0F) € G}

12: if . = 0 then

13: P, +~ P UG. (>) In training, we also complete proof trees for ground-truth proofs.
14: Extract proposed lemmas (note that a condition proof p might propose more than one lemma

1): G+ {(c,,Null) | (¢,s,p) € P, and [is proposed in p}.
15: Return UL, P,.

Huajian Xin, Haiming Wang, Chuanyang Zheng, Lin Li, Zhengying Liu, Qingxing Cao, Yinya Huang,
Jing Xiong, Han Shi, Enze Xie, et al. Lego-prover: Neural theorem proving with growing libraries.
arXiv preprint arXiv:2310.00656, 2023.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li,
and Xiaodan Liang. Deepseek-prover: Advancing theorem proving in llms through large-scale
synthetic data. arXiv preprint arXiv:2405.14333, 2024a.

Huajian Xin, ZZ Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue
Zhang, Xuan Lu, Qiushi Du, et al. Deepseek-prover-v1. 5: Harnessing proof assistant feedback for
reinforcement learning and monte-carlo tree search. arXiv preprint arXiv:2408.08152, 2024b.

Chuanyang Zheng, Haiming Wang, Enze Xie, Zhengying Liu, Jiankai Sun, Huajian Xin, Jianhao
Shen, Zhenguo Li, and Yu Li. Lyra: Orchestrating dual correction in automated theorem proving.
arXiv preprint arXiv:2309.15806, 2023.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. minif2f: a cross-system benchmark for formal
olympiad-level mathematics. In International Conference on Learning Representations, 2021.

A ADDITIONAL EXPERIMENTS DETAILS

A.1 GENERATING PROOF TREES FOR RL

In Alg. 2] we present the algorithm for generating proof trees during RL training. Recall that,
compared with Alg. |1} there are two major differences:

(a) for the theorems where the probability 7y (<use_invoke> | x) is among the top 50% in the batch,
we will force the model to generate conditional proofs with ¢y = <use_invoke> (Line @}{6), and

(b) for every theorem where the model generates a conditional proof with new lemmas, we also let
the model generate another conditional proof without proposing new lemmas (Line TT]).

A.2 TRAINING DETAILS OF BASELINE MODELS

In this section, we describe the additional details for training the baseline models using reinforcement
learning.

Our RL training pipeline for the baseline models is similar to that of ProD-RL, except that the models
only generate proofs without lemma proposal. For RL baselines, we use the same dataset and the same

13

Under review as a conference paper at ICLR 2025

hyperparameters as our method. To mix the ground-truth conditional proofs with generated proofs,
we convert the conditional proofs to proofs without lemma proposal by moving all the proposed
lemma in the conditional proof to the context.

A.3 ADDITIONAL EXPERIMENT DETAILS

Details of using sledgehammer in the proof. Sledgehammer is a premise selection tool that
can automatically generate proofs to solve the current goal. Although sledgehammer is not always
applicable, Jiang et al.| (2022b) shows that letting the model to call sledgehammer whenever it is
applicable greatly improves the model’s performance.

To let the model use sledgehammer, we replace the actual proof steps in the training dataset by a call
to sledgehammer if the proof step either (a) contains the proof tactics ‘meson, metis, and smt’ (these
tactics are typically generated by sledgehammer), or (b) belongs to a predefined simple set of proof
tactics that can be easily generated. In particular, they are

[by auto, by simp, by blast, by fastforce, by force,
by eval, by presburger, by sos, by arith, by linarith,
by (auto simp: field_simps)]

When testing a generated proof with calls to sledgehammer, we follow the pipeline of (Jiang et al.,
2022a) — first, we try to replace the ‘sledgehammer’ command by one of the predefined tactics. If
all the attempts fail, we call the actual premises selection tool in Isabelle with a 10s timeout. If the
tool does not return a valid proof, we consider this step incorrect.

Note that|Jiang et al.|(2022b)) decide when to replace the actual proof step by a call to sledgehammer
more aggressively. They attempt to call sledgehammer at every proof step, and replace the actual
proof step with sledgehammer if the attempt is successful. In contrast, our decision is made without
interacting with the formal verifier. This is because applying sledgehammer to every proof step
requires a lot of compute, which would significantly slow down the reinforcement learning process.

Dataset split. Here we describe how to split the training and test data based on the dependency
of the AFP files. We first compute the dependency graph by crawling the AFP website https:
//www.isa-afp.org/entries/| which lists the dependency of the AFP entries. Then we find
the set of AFP entries that all other entries do not depend on using the dependency graph, in which
we randomly sample 10% of the entries as the holdout test set. The resulting holdout entries are:

[Verified SAT_Based_ AI_Planning, SIFPL, Khovanskii_Theorem,
Bondy, Rewriting_Z, Decreasing-Diagrams-II, Registers,
Locallexing, FeatherweightJava, FFT, Knot_Theory, Eval_FO,
Saturation_Framework_Extensions, Hales_Jewett, SPARCVS,
CoSMeDis, LP_Duality, PAPP_Impossibility, Groebner_Macaulay,
Abstract-Hoare-Logics, PCF, Jordan_Hoelder, Knights_Tour,
FOL_Seqg Calc3, Cartan_FP, InformationFlowSlicing_Inter, LOFT,
Diophantine_Eqns_Lin_Hom, Dynamic_Tables, Schutz_Spacetime,
Elliptic_Curves_Group_Law, ArrowImpossibilityGsS,
Goodstein_Lambda, XML, GenClock, Topological_Semantics].

Additional training detail. We use the Llemma code base (https://github.com/
EleutherAI/math-1m) for finetuning and updating the model in reinforcement learning. The
discount factor used to compute the weight is v = exp(—0.0005).

A.4 COMPUTE RESOURCES

For supervised finetuning and reinforcement learning, we use a machine with 8 A100-80G GPUs.
It takes approximately 8 GPU days in total (i.e., 1 day wall-clock time on a single machine with 8
GPUs) to finetune a 7B model on 300k examples for 2 epochs. It takes approximately 30 GPU hours
to run a single RL experiment.

14

https://www.isa-afp.org/entries/
https://www.isa-afp.org/entries/
https://github.com/EleutherAI/math-lm
https://github.com/EleutherAI/math-lm

Under review as a conference paper at ICLR 2025

To generate proofs using the trained model, we use a mix of A100-80G and A5000 GPUs. On 8
A5000 GPUs, generating proof trees of depth 2 for 4k test examples takes about 1-2 hours, depending
on the length of the proof and the number of proposed lemmas.

A.5 LICENSES FOR EXISTING ASSETS
In this section, we list the licenses for existing assets used in this paper.

* LLemma (Azerbayev et al.}[2023)): Llama 2 Community License Agreement
¢ Archive of Formal Proofs: GNU LGPL

Portal to ISAbelle (Jiang et al., 2021): BSD 3-Clause License

Isabelle (Nipkow et al.,|2002): BSD licenses

* miniF2F (Zheng et al.,|2021): MIT License

B ADDITIONAL RESULTS

In this section, we present additional experimental results.

B.1 THE EFFECT OF SAMPLING TEMPERATURES

In our preliminary experiments, We tune the sampling temperature using the models trained on the
AFP training sets D}*.1 and D}®! (that is, training sets constructed with and without helper lemmas,
respectively). We test the model on the AFP test set D¥/°! with different temperatures to decide the
best choice for testing our models. Fig. [5]shows the performance of the SFT model without lemma
proposal using different sampling temperatures. We conclude that the temperature 0.7 is best for

testing both models.

Pass rate on AFP test

Pass rate

—— SFT w/fo lemma proposal, temp 1.0
SFT w/o lemma proposal, temp 0.7
—— SFT w/o lemma proposal, temp 0.4

1 2 3 4 5 6 1 8
Samples per theorem

Figure 5: Pass rate of the SFT model without lemma proposal tested with different sampling
temperature. We observe that lower temperature leads to better performance with 1 sample per
theorem, and mildly larger temperature have better performance with more samples.

B.2 VARYING THE SIZE OF THE RL DATASET

In this section we report the performance of the ProD-RL models trained with different rounds. Recall
that in each round we generate proofs to a batch of Sk examples. Therefore equivalently, Figure[6]
shows the performance of ProD-RL with a smaller RL dataset. Note that although the performance is
not monotone with respect to the RL dataset size (e.g., ProD-RL at round 15 is worse than ProD-RL
at round 10), which might due to training instability, all the RL models significantly outperforms the
baseline ProD-SFT.

15

Under review as a conference paper at ICLR 2025

Pass rate on AFP test

45 A
40 A
-1
d
- 351
w
-
30 A
—— ProD-RL, round 10
ProD-RL, round 15
—— ProD-RL, round 20
257 —— ProD-SFT

2 4 6 8 10 12 14 16
Samples per theorem

Figure 6: Pass rate of models trained with different rounds of RL training. Recall that in each round

we generate proofs to a batch of Sk examples. The model trained with 20 rounds of RL achieves the
best performance, and all RL models outperforms the baseline ProD-SFT model.

16

	Introduction
	Setup
	Methods
	Generating proof-trees using LLMs
	Reinforcement learning with lemma proposal

	Experiments
	Experiment details
	Comparison of our new setup with prior works
	Main results
	Case study of proposed lemmas

	Related works
	Conclusion
	Additional experiments details
	Generating proof trees for RL
	Training details of baseline models
	Additional experiment details
	Compute resources
	Licenses for existing assets

	Additional results
	The effect of sampling temperatures
	Varying the size of the RL dataset

