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Abstract

We propose PTTSD, a Probabilistic Tex-
tual Time Series Depression Detection frame-
work for predicting PHQ-8 depression severity
scores from utterance-level clinical interviews.
PTTSD models both predictive means and
calibrated uncertainty over time using Gaus-
sian and Student’s-¢ distributions, trained via
negative log-likelihood losses. Our architec-
ture combines bidirectional LSTMs with self-
attention and residual connections to model
textual sequences, and employs uncertainty-
aware output heads for calibrated probabilistic
predictions. On the E-DAIC dataset, PTTSD
achieves state-of-the-art performance among
text-only systems (MAE = 3.85, RMSE =
4.52), outperforming recent baselines. Exten-
sive ablation and sensitivity studies underscore
the value of self-attention, probabilistic mod-
eling, and calibrated uncertainty, establishing
PTTSD as a robust and interpretable framework
for uncertainty-aware depression forecasting in
clinical NLP.

1 Introduction

Depression remains one of the leading causes of
global disability, affecting over 300 million indi-
viduals worldwide (WHO, 2017, 2022). Scalable,
automated tools for assessing depressive symptom
severity can complement traditional screening, es-
pecially in digital therapy and remote care contexts.
Text-based systems that model clinical interviews
have shown promise for predicting standardized
scores such as the PHQ-8.

Recent work on textual depression detection has
focused on deterministic models—LSTMs, Trans-
formers, or large language models (LLMs) (Man-
dal et al., 2025; Fang et al., 2023; Nykoniuk et al.,
2025; Sadeghi et al., 2024)—that output scalar
severity estimates from utterance sequences. While
effective at sequence modeling, these approaches
provide point predictions without quantifying un-

certainty, limiting their interpretability and reliabil-
ity in sensitive domains like mental health care.

We introduce PTTSD, a Probabilistic Textual
Time Series Depression Detection framework that
addresses this limitation. PTTSD models utterance-
level textual sequences using a probabilistic LSTM
with self-attention and residual connections, and
produces calibrated uncertainty estimates via Gaus-
sian or Student’s-¢ output distributions. It is trained
with negative log-likelihood losses, enabling distri-
butional predictions rather than point estimates.

We evaluate PTTSD on the E-DAIC dataset and
demonstrate strong results across PHQ-8 prediction
metrics (MAE, RMSE), outperforming recent text-
based systems requiring no handcrafted features or
prompt engineering. In-depth ablation studies and
calibration analysis reveal the model’s sensitivity to
loss design and architectural components. PTTSD
combines strong empirical performance with uncer-
tainty awareness, offering a robust building block
for mental health NLP applications.

While prior work has made substantial progress
in text-based depression detection, several key limi-
tations remain. First, most existing approaches rely
on deterministic models that provide point predic-
tions without expressing confidence or uncertainty,
making them ill-suited for risk-sensitive clinical
settings. Second, prompt-based systems such as
those proposed by Sadeghi et al. (2024) require
extensive experimentation with prompt variants
and post hoc selection, increasing complexity and
reducing reproducibility. Third, several models
process only a subset of the available interview
utterances (e.g., question-response pairs), poten-
tially discarding valuable temporal information dis-
tributed across the full conversation.

Our contributions are as follows:

* We propose PTTSD, a fully probabilistic
sequence model that jointly predicts PHQ-
8 scores and calibrated uncertainty from



utterance-level text sequences using Gaussian
and Student’s-¢ output distributions.

* We train and evaluate PTTSD end-to-end on
all available utterances without handcrafted
prompt design or selection, providing a simple
and reproducible modeling pipeline.

* We demonstrate state-of-the-art results on the
E-DAIC benchmark among fully automatic,
text-only systems, and conduct extensive ab-
lations, sensitivity analysis, and calibration
evaluations to understand uncertainty quality
and model robustness.

The remainder of this paper is structured as fol-
lows. In Section 2, we review prior work on de-
pression detection from text and highlight the gap
in probabilistic modeling. Section 3 introduces
the PTTSD architecture, including model compo-
nents, probabilistic loss functions, and training pro-
cedures. Section 4 presents our experimental setup
and main results, including comparisons to base-
lines, ablation studies, and uncertainty calibration
analysis. Finally, Section 5 concludes with a discus-
sion of limitations and directions for future work.

2 Related Work

Textual time series modeling has been central to
recent efforts in automatic depression detection,
especially within clinical interviews and therapy
sessions. Prior work has predominantly relied on
deterministic neural methods such as LSTMs and
attention-based transformers to model temporal de-
pendencies in textual data (Mandal et al., 2025;
Fang et al., 2023; Nykoniuk et al., 2025). These
models capture sequential patterns but lack mech-
anisms to quantify uncertainty over time. While
LLMs extract richer textual features (Sadeghi et al.,
2024; Chen et al., 2024), most systems remain
heuristic or deterministic, focusing on structural or
multimodal fusion rather than probabilistic reason-
ing. In contrast, our fully probabilistic, end-to-end
model captures uncertainty directly from raw utter-
ances without handcrafted prompts, emphasizing
simplicity and efficiency.

Notably, Qureshi et al. (2019) use multitask
learning with attention mechanisms for joint re-
gression and classification, but do not incorporate
uncertainty modeling. Similarly, prompt-based
methods such as those of Zhang and Guo (2024)
transform depression detection into a few-shot clas-
sification task via language model prompting, but

still yield single-point predictions. Graph-based ar-
chitectures (Burdisso et al., 2023; Chen et al., 2024)
model discourse-level context across utterances and
questions, offering enhanced interpretability and
structural awareness, though they too typically omit
calibrated uncertainty.

A rare exception is Dia et al. (2024), who pro-
pose a stochastic transformer for post-traumatic
stress disorder detection, introducing probabilis-
tic components such as stochastic activations to
model uncertainty across modalities. However,
their work focuses on visual signals and does not
address textual time series or PHQ-8 regression.
More recently, Zhang et al. (2025) apply a multi-
instance learning (MIL) framework to estimate de-
pression severity from long transcripts, assigning
confidence scores to depressive cues at the sen-
tence level. While this provides instance-level in-
terpretability, the underlying model is not explicitly
probabilistic in the Bayesian sense.

Several recent works have explored fair or cali-
brated uncertainty estimation. Li and Zhou (2025)
propose Fair Uncertainty Quantification (FUQ) for
PHQ regression, producing conformal prediction
intervals with coverage guarantees across demo-
graphic groups. While effective for fairness, FUQ
operates at the distributional output level and does
not model temporal evolution within interviews.
Other systems, such as Mao et al. (2022) and Guo
et al. (2022), employ BiLSTMs or Transformers
with textual features, sometimes augmented by
topic signals, but focus solely on deterministic loss
objectives.

3 Probabilistic Textual Time Series
Depression Detection

3.1 Data and Preprocessing

We utilize the Extended Distress Analysis Interview
Corpus (E-DAIC) (Gratch et al., 2014), which con-
tains anonymized semi-structured interview tran-
scripts and associated PHQ-8 (Kroenke et al., 2009)
depression scores. Each participant’s data consists
of a sequence of utterances extracted from tran-
script files, along with a PHQ-8 score indicating
depression severity. The PHQ-8 (Patient Health
Questionnaire-8) is a standardized self-report in-
strument with scores ranging from 0 to 24, used
to assess depressive symptom severity. More de-
tails on the PHQ-8 and E-DAIC in Appendix A and
Appendix B, respectively.

To improve interview transcription fidelity, we
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Figure 1: Probabilistic Textual Time Series Depression Detection

reprocessed the original E-DAIC audio using Whis-
perX (Bain et al., 2023), which provides more ac-
curate word-level alignment and robust speaker di-
arization compared to the baseline Whisper model
(Radford et al., 2023) employed in (Sadeghi et al.,
2024). We organize utterances into temporal se-
quences and split the data into training, validation,
and test sets using the predefined partitions. During
batching, utterances are padded to the batch’s max-
imum length, and an attention mask is constructed
to differentiate padded from valid tokens.

3.2 Generating Utterance Embeddings

We represent each utterance using the
all-MinilM-L6-v2'  Sentence Transformer
(Reimers and Gurevych, 2019), which we found
to outperform other tested embedding models
(e.g., standard BERT) in preliminary experiments.
Each utterance is independently encoded into
a fixed-dimensional vector (e; € RP using
a pretrained language model. The resulting
embedding sequence is (ej,e2,...,er), where
T is the utterance sequence length. These
embeddings form the input to the model M.
Utterance embeddings are stacked into a tensor
X € RBXTXD where B denotes the batch size,
T the number of utterances per sequence, and D
the dimensionality of each embedding. Attention
masks are propagated throughout the pipeline to
mask out padded positions during modeling, loss
computation, and evaluation.

lhttps://huggingface.co/sentence—transformers/
all-MinilM-L6-v2

3.3 Probabilistic LSTM
Sequence-to-Sequence

Inspired by the architecture of Mandal et al. (2025),
we first encode X using a multi-layer bidirec-
tional LSTM. The resulting hidden sequence H €
RBXTXH is passed through a multi-head self-
attention layer (Vaswani et al., 2017) to capture
long-range dependencies. A residual connection is
applied between the LSTM and attention outputs.
Two feedforward networks then predict the mean
[t and standard deviation 6 at each time step:

,at = fmean(et)a O = SOftplus(fstd(et)> +e€

Dropout is applied after the LSTM and within the
MLPs. All predictions and ground truth values are
masked to select only valid, non-padded positions.
An overview of this architecture is illustrated in
Figure 1.

3.4 Sequence Modeling and Predictive
Distributions

We model the PHQ-8 score as a time series where
the label at time step ¢ is predicted as:

p(ye | e<t; 0)

where 6 denotes the model parameters, and e<;
are the utterance embeddings up to time ¢. The
model is trained in parallel across all time steps
(i.e., non-autoregressively), and does not receive
ground truth labels y.; or past predictions.

We explore two probabilistic output distribu-
tions:

Gaussian distribution. The model predicts a
mean [i; and standard deviation &; at each time
step, defining the conditional distribution as:

p(ye | e<e;0) = Ny | fu, 67)
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Student’s ¢-distribution. Alternatively, the
model may output a location fi;, scale 4, and
degrees of freedom 14, defining:

p(ye | e<e;0) = StudentT (yy | fur, Ot t)

The corresponding probability density function is:

_v+1
1 (y—pu 2 2
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with normalization constant:
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3.5 Loss Functions

The total sequence loss is the negative log-
likelihood of all valid time steps:

T
['seq = - ZIng(yt ‘ €<t 9)
t=1

The batch loss is normalized across participants:

B
Lo = = > L)
atc B < - T, seq
1=

where T; is the valid sequence length for participant
7. When using Gaussian outputs, the loss becomes:

N N
1 ~2 Yi — Wi
LNLL = N ; [log(27r0i) + <(3i
We optionally use MSE or MAE as auxiliary losses
for ablation.

3.6 Training Procedure

PTTSD is trained for 50 epochs using the Adam
optimizer with a constant learning rate (2e-4). We
batch at the participant level, with each batch con-
taining all utterances from a subset of participants.
Early stopping with a patience of 15 epochs is ap-
plied based on Dev MAE, and the best-performing
model checkpoint is restored. To address label
imbalance, we apply a log transformation to the
targets during training, with outputs transformed
back to the original scale for evaluation.

4 Experiments

4.1 Experimental Setup

Implementation. All models are implemented in
PyTorch (Paszke et al., 2017). Padding, batching,
and masking ensure that variable-length sequences
do not affect loss or metric computations.

Hardware. Training is performed on a single
NVIDIA A100-SXM4-80GB GPU with 80GB of
GDDR6 VRAM, using CUDA version 12.2.

Runtime. Training PTTSD for 50 epochs on a
single NVIDIA A100-80 GB takes ~2h 23min in
wall-clock time (=172 s per epoch). The model
has a total 2,703,403 trainable parameters.

Data Splits. We follow the official training, val-
idation, and test splits (163, 56, and 56 samples,
respectively) provided in the E-DAIC dataset. As
described in Section 3.1, all audio is re-transcribed
using WhisperX to improve transcription quality
and alignment over the original transcripts.

Evaluation Metrics. We evaluate models on
both the validation and held-out test sets using
mean squared error (MSE) and root mean squared
error (RMSE). These metrics quantify average pre-
diction error, with RMSE placing greater emphasis
on larger errors due to its squaring operation. This
makes RMSE particularly useful for identifying
models that minimize not just average error, but
also variance in error magnitude. When model-
ing predictive uncertainty, we additionally report
negative log-likelihood (NLL). All metrics are com-
puted over valid (non-padded) utterances only.

Reproducibility. All preprocessing steps, model
configurations, and training scripts are made pub-
licly available on GitHub.? To account for variabil-
ity due to random initialization, we report average
performance over three runs with different seeds.

4.2 Main Results

Table 1 reports the performance of our proposed
model PTTSD alongside a range of text-only base-
lines for PHQ-8 prediction on the E-DAIC dataset.
PTTSD achieves the lowest test MAE (3.85) and
RMSE (4.52), setting a new state of the art among
fully automated, text-based systems.

Early approaches such as the LSTM-based multi-
level attention network from Ray et al. (2019) and
the CNN-LSTM variants by Rodrigues Makiuchi
et al. (2019) demonstrate competitive but overall
lower performance, with test RMSEs of 4.73 and
6.88, respectively. While Rodrigues Makiuchi et al.
(2019) reports a stronger dev RMSE (4.22) using 8
CNN blocks, no corresponding test results are pro-
vided for that setting, limiting direct comparability.

20 https://github.com/someonedoing-research/
PTTSD
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Method MAE (Dev) RMSE (Dev) MAE (Test) RMSE (Test)
Ray et al. (2019) - 4.37 4.02 4.73
Rodrigues Makiuchi et al. (2019) - LSTM - 4.97 - 6.88
Rodrigues Makiuchi et al. (2019) — 8 CNN blocks-LSTM - 4.22 - -
Sadeghi et al. (2023) 3.65 5.27 4.26 5.37
Sadeghi et al. (2024) — Pr3+Whisper 3.17 4.51 4.22 5.07
Sadeghi et al. (2024) — Pr3+Whisper+AudioQual 2.85 4.02 3.86 4.66
3.47 4.57 3.85 4.52
PTTSD (ours) (£0.017) (£0.041) (£0.041) (£0.38)

Table 1: Evaluation of PHQ-8 regression performance across text-only models on the E-DAIC dataset. Results for
related work are taken from Sadeghi et al. (2024). Bold results indicate best performance.

Recent works by Sadeghi et al. (2023, 2024)
leverage prompt-based large language models and
Whisper-based transcriptions. Among these, the
Pr3+Whisper variant performs best (test MAE 4.22,
RMSE 5.07), while the top dev results are achieved
by Pr3+Whisper+AudioQual (MAE 2.85, RMSE
4.02). However, this latter model involves audio-
based quality filtering and is not strictly text-only,
making PTTSD the best-performing model under
the text-only constraint.

The strength of PTTSD lies not only in its em-
pirical performance but also in its simplicity and
generalizability. Unlike prior work such as Sadeghi
et al. (2024), which evaluates multiple prompt vari-
ants and selects the best-performing configuration
post hoc, PTTSD trains and evaluates a single, uni-
fied model architecture end-to-end. This eliminates
the need for prompt engineering.

4.3 Ablation Studies

Loss Dev Test
MAE RMSE | MAE RMSE
Gaussian NLL  3.4440 4.5293 | 3.8603 5.0219
Student-t NLL  3.6637 4.9328 | 3.9294 5.1488
MAE 3.6427 4.8091 | 4.1885 5.4407
MSE 3.6398 4.9845 | 3.6694 4.8760

Table 2: Comparison of loss functions on development
and test sets.

Effect of Loss Function. Table 2 compares the
impact of different loss functions on validation and
test performance. Gaussian NLL yields the best
overall balance, achieving low MAE and RMSE
across both splits, with particularly strong test
MAE (3.86). Student’s-t NLL performs compa-
rably but with slightly worse calibration and higher
RMSE, likely due to the added complexity of esti-
mating the degrees of freedom.

MAE and MSE losses exhibit inconsistent be-

havior: while MSE achieves the lowest test MAE
(3.67), it performs worse on the dev set and yields
the highest test RMSE among all probabilistic
losses. The MAE loss underperforms across all
metrics, suggesting it is less effective for learning
stable sequence-level representations in this setting.

These results highlight that Gaussian NLL offers
the most reliable and generalizable performance
when modeling uncertainty in PHQ-8 prediction
from textual time series.

Effect of the model architecture. We conduct an
ablation study to assess the contribution of individ-
ual architectural components in our probabilistic
LSTM sequence-to-sequence model. Each ablation
variant disables a specific component—attention,
residual connections, or the variance prediction
head—while all other settings are held constant.
Models are trained for 20 epochs (rather than the
full 50 used in main experiments) to accelerate
comparison. Evaluation is performed on the test
set using mean absolute error (MAE) and root mean
squared error (RMSE). Full experimental details
are included in Appendix C.

Variant MAE A MAE (%) RMSE A RMSE (%)
Full Model 6.32 - 8.10 -

- w/o Attention 7.74 +22.48 9.74 +20.24

- w/o Residual 7.19 +13.78 8.96 +10.53

- w/o Variance Head ~ 5.98 —5.37 7.21 —10.99

Table 3: Ablation of architectural components (Gaus-
sian NLL on test set). Absolute scores and percentage
change relative to the full model.

Table 3 and Figure 2 illustrate the effects of
disabling different components. Removing self-
attention yields the largest degradation in perfor-
mance, increasing MAE by 22.5% and RMSE by
20.2%, confirming its importance for modeling
long-range dependencies across utterances.

Omitting residual connections also leads to no-
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Figure 2: Ablation results

ticeable performance drops (MAE +13.8%, RMSE
+10.5%), suggesting that residual pathways con-
tribute to stable training and effective information
flow across layers.

Interestingly, removing the variance prediction
head results in better MAE and RMSE (-5.4%
and —11.0%, respectively), likely due to the sim-
pler deterministic regression objective. However,
this simplification eliminates the model’s ability
to quantify uncertainty—an essential capability in
risk-sensitive applications like mental health pre-
diction.

Overall, the full model offers the best trade-off
between predictive accuracy and uncertainty mod-
eling, with ablations confirming the value of self-
attention, residuals, and probabilistic output heads.

4.4 Hyperparameter Sensitivity

a f v  NLL (Dev) NLL (Test) Comments

1 1 1 1.3129 1.1934 standard NLL

1 2 1 1.7854 1.4865 uncertainty-averse
1 1 2 1.2777 1.3189 error-focused

1 1 05 2.2163 2.0316 calibration-first

Table 4: Sensitivity analysis of Gaussian NLL loss
weighting parameters «, 3, and .

Table 4 presents the effect of varying the NLL
weighting parameters /3 (log-variance term) and
(normalized squared error term), with a held con-
stant as it weights the constant term in the NLL
and hence does not influence the model’s gradi-
ents or learning dynamics. The standard setting
(B = v = 1) yields the best overall performance
on the test set (NLL = 1.1934), indicating a bal-
anced trade-off between data fit and uncertainty
modeling. Increasing 3 to 2 (“uncertainty-averse”)
substantially increases NLL on both development
and test sets, suggesting that heavily penalizing
predicted variance harms calibration and leads to
underconfident predictions. Conversely, increasing
v to 2 (“error-focused”) improves the development

NLL slightly but increases test NLL, indicating
overfitting to the training signal. Reducing ~y to 0.5
(“calibration-first”) degrades both development and
test NLLs, likely due to underemphasis on predic-
tion accuracy. The results suggest that aggressive
reweighting of either term destabilizes the trade-off
between sharpness and calibration, and that the de-
fault Gaussian NLL (8 = v = 1) remains the most
reliable setting across validation and test sets.

4.5 Uncertainty Analysis

Calibration Analysis. To evaluate the quality of
our model’s uncertainty estimates, we conduct a
three-part calibration analysis shown in Figure 3.
First, the binned calibration plot (left) groups pre-
dictions by predicted uncertainty and compares the
mean predicted standard deviation (x-axis) with the
mean absolute error (y-axis) in each bin. Perfect
calibration lies on the red diagonal, with devia-
tions quantified by the Expected Calibration Error
(ECE). Next, the individual calibration plot (mid-
dle) displays each test prediction as a scatter point,
with predicted uncertainty on the x-axis and the
observed absolute error on the y-axis. This view
provides fine-grained insight into the relationship
between uncertainty and error across instances. Fi-
nally, the coverage plot (right) evaluates the pro-
portion of ground truth values falling within the
model’s prediction intervals at various confidence
levels. Ideal calibration lies on the red diagonal;
deviations above or below reflect under- or over-
confident interval estimates, respectively.

We visualize calibration results for Gaussian
NLL under two hyperparameter settings. The first
uses the standard configurationx = 1,8 =1,y =
1, which achieved the best overall performance (Ta-
ble 1) and is shown in Figure 3a. The second set-
ting, shown in Figure 3b, prioritizes calibration by
reducing «y to 0.5. As discussed earlier, this leads
to worse NLL on the development and test sets,
but improves calibration—evident in the left and
middle plots of Figure 3, as well as in the lower
Expected Calibration Error (2.1121 vs. 1.7651).
However, the model becomes overconfident, as in-
dicated by the coverage plot falling below the ideal
diagonal, meaning it underestimates its predictive
uncertainty.

Sharpness Calibration Tradeoff. To further an-
alyze the quality of our uncertainty estimates, we
examine the sharpness—calibration tradeoff. Sharp-
ness refers to the concentration or narrowness of
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Figure 3: Calibration analysis of the predicted uncertainties for Gaussian NLL on the test set

the model’s predictive distributions, with sharper
(lower variance) predictions indicating higher con-
fidence. However, sharpness must be balanced with
calibration: a model that is too sharp may be over-
confident, while a model that is too broad may be
underconfident. Figure 4 visualizes the distribution
of predictive standard deviations across the test set
and assesses the relationship between predicted un-
certainty and actual error. This analysis reveals
whether the model’s most confident predictions are
indeed more accurate, and whether improvements
in sharpness come at the expense of calibration.

We observe that the model with v = 0.5 pro-
duces a sharper distribution of predictive standard
deviations, reflecting lower predicted uncertainty
overall. This configuration also yields a stronger
negative correlation between predicted standard
deviation and absolute error (r = —0.3466), com-
pared to the default uniform configuration (r =
—0.1557). This indicates that, under v = 0.5,
the model’s uncertainty estimates more effectively
distinguish between high- and low-error predic-
tions. However, as discussed previously, this gain
in sharpness and ranking quality comes at the cost
of calibration: the model systematically underesti-
mates its uncertainty, leading to undercoverage in
the prediction interval analysis.
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5 Conclusion

We introduced PTTSD, a novel probabilistic neural
framework for predicting PHQ-8 depression sever-
ity from utterance-level textual sequences. Un-
like prior work that outputs deterministic point
estimates, PTTSD models calibrated predictive
uncertainty using Gaussian and Student’s-¢ distri-
butions. Our architecture combines bidirectional
LSTMs, self-attention, and residual connections,
and is trained via negative log-likelihood losses.
PTTSD is fully data-driven and requires no manual
feature engineering or prompt-based supervision,
enhancing its applicability in real-world clinical
settings where manual intervention is infeasible.
Empirical evaluation on the E-DAIC dataset shows
that PTTSD achieves state-of-the-art performance
among fully automatic, text-only systems, outper-
forming recent baselines. Ablation studies confirm
the value of attention and probabilistic heads, while
sensitivity analysis highlights the importance of
balanced loss weighting. Calibration analysis fur-
ther supports the reliability of PTTSD’s uncertainty
estimates. The results demonstrate that uncertainty-
aware textual time series modeling is both feasible
and beneficial for clinical NLP. Future work will
extend PTTSD to multimodal inputs and investi-
gate its deployment in real-world digital mental
health tools.

Limitations

While PTTSD offers promising results in predictive
accuracy and uncertainty modeling, several limita-
tions remain. First, the framework relies solely on
textual data. Although effective, it does not lever-
age multimodal cues such as vocal prosody or facial
expressions, which are known to be informative
for assessing mental health. Second, the E-DAIC
dataset contains fewer than 300 participants, and
further reduction due to filtering and partitioning
limits the statistical power and generalizability of
our findings to broader clinical settings. Third, the
interviews in E-DAIC are conducted with a virtual
interviewer ("Ellie") operated in a Wizard-of-Oz
setup rather than a real clinician, which may affect
the ecological validity of the speech data and limit
applicability to authentic client—clinician interac-
tions. In terms of modeling, we encode utterances
independently using pretrained language models
without context-aware finetuning, potentially over-
looking local coherence or discourse-level cues.
Furthermore, while PTTSD provides distributional

predictions, we do not assess its clinical utility
or decision-support value; human-centered eval-
uations with therapists or end users are needed to
determine the interpretability and trustworthiness
of predicted uncertainty. Finally, although we eval-
uate calibration quantitatively, we do not study how
uncertainty scores might be perceived or utilized
by clinicians in real-world settings. Future work
should address these limitations by incorporating
multimodal signals, validating on therapist—client
dialogues, and evaluating the human trust and us-
ability of uncertainty-aware predictions.
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thoughts, making it more suitable for large-scale
screening and automated processing.

Each of the eight items corresponds to a DSM-
IV criterion for depression and asks respondents
to rate how often they have experienced a specific
symptom over the past two weeks. Responses are
scored on a 4-point Likert scale:

* 0—Not at all

* 1 — Several days

* 2 — More than half the days
e 3 — Nearly every day

The total PHQ-8 score ranges from 0 to 24 and
is interpreted as follows:

0—4: None

5-9: Mild depression

10-14: Moderate depression

15-19: Moderately severe depression

20-24: Severe depression

The PHQ-8 has been validated in both clinical
and general populations and is considered a reliable
proxy for identifying depressive symptom severity
in mental health research.

B Extended Distress Analysis Interview
Corpus (E-DAIC)

The Extended Distress Analysis Interview Cor-
pus (E-DAIC) (Gratch et al., 2020) is an en-
riched version of the DAIC-WOZ dataset (Gratch
et al., 2014), designed to facilitate research in au-
tomated depression detection. It comprises semi-
structured interviews conducted by a virtual inter-
viewer named Ellie, controlled by a human oper-
ator in a "Wizard-of-Oz" setup. These interviews
aim to elicit verbal and non-verbal indicators of
psychological distress.

B.1 Dataset Composition

E-DAIC includes data from 275 participants, with
the following partitioning:

* Training set: 163 participants
* Development set: 56 participants

* Test set: 56 participants
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Each participant’s session contains:
* Audio recordings: Captured in WAV format.

* Transcripts: Annotated with time stamps and
speaker labels.

* Visual features: Extracted using tools like
OpenFace, including facial landmarks and ac-
tion units.

* Acoustic features: Derived using COVAREP,
encompassing prosodic and voice quality met-
rics.

* PHQ-8 scores: Self-reported assessments of
depression severity.

B.2 Data Organization

The dataset is organized into session-specific fold-
ers named with participant IDs (e.g., 300_P). Each
folder contains:

TRANSCRIPT.csv: Dialogue transcripts with
time-aligned annotations.

AUDIO.wav: Raw audio recordings of the in-
terview.

COVAREP. csv: Acoustic feature sets.
FORMANT . csv: Formant frequency features.

CLNF_features. txt: 2D facial landmark po-
sitions.

CLNF_AUs. csv: Facial Action Units data.
CLNF_gaze. txt: Gaze tracking information.
* CLNF_pose. txt: Head pose estimations.

Additionally, the dataset includes metadata files:

e train_split.csv,
test_split.csv:
partitions.

dev_split.csv,
Define the dataset

* PHQ8_scores.csv: Contains individual item
responses and total scores.

B.3 PHQ-8 Score Distribution

The PHQ-8 scores in E-DAIC range from O to 24,
reflecting varying levels of depression severity. The
distribution is skewed towards lower scores, indi-
cating a higher number of participants with mini-
mal depressive symptoms. This imbalance poses
challenges for training models to accurately predict
higher severity levels.



B.4 Usage Considerations

Researchers utilizing E-DAIC should be aware of
certain factors:

* Data Quality: Some sessions may have miss-
ing or incomplete data due to technical issues
during recording.

Ethical Use: As the dataset involves sensitive
mental health information, appropriate ethical
considerations and approvals are necessary for
its use.

Licensing: Access to E-DAIC requires agree-
ment to a specific End User License Agree-
ment (EULA) set by the data providers.

Our use of the E-DAIC dataset is fully consis-
tent with its intended purpose. The corpus was re-
leased to support research on automated detection
of psychological distress and related mental health
conditions. In this work, we focus exclusively on
the prediction of PHQ-8 depression severity from
textual transcripts, a primary task for which the
dataset was designed. The dataset is anonymized at
source, with personally identifiable information re-
moved prior to distribution. We further restrict our
usage to non-commercial, academic settings, oper-
ate solely on de-identified utterance sequences, and
report only aggregate results. No individual-level
data or metadata are released. All use complies
with the dataset’s End User License Agreement
(EULA) and contributes to its intended goal of ad-
vancing computational methods for mental health
assessment.

For detailed information on data preprocessing
and feature extraction methodologies, refer to the
official documentation provided with the dataset.

C Ablation Study Experimental Setup

For each ablation, we use the same data splits,
batch size, optimizer, learning rate schedule, and
early stopping criteria as the main experiments.
The following configurations are evaluated:

* Full Model: All components enabled (atten-
tion, residual, variance).

* No Attention: Attention layer removed.
¢ No Residual: Residual connection removed.

* No Variance: Variance prediction head dis-
abled; model trained with MSE loss.
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Each model is trained for the same number of
epochs with fixed random seeds for reproducibil-
ity. After training, we evaluate on the held-out
test set and report MAE, RMSE, and NLL (where
available). All code, configurations, and results are
available for reproducibility.
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