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Abstract001

We propose PTTSD, a Probabilistic Tex-002
tual Time Series Depression Detection frame-003
work for predicting PHQ-8 depression severity004
scores from utterance-level clinical interviews.005
PTTSD models both predictive means and006
calibrated uncertainty over time using Gaus-007
sian and Student’s-t distributions, trained via008
negative log-likelihood losses. Our architec-009
ture combines bidirectional LSTMs with self-010
attention and residual connections to model011
textual sequences, and employs uncertainty-012
aware output heads for calibrated probabilistic013
predictions. On the E-DAIC dataset, PTTSD014
achieves state-of-the-art performance among015
text-only systems (MAE = 3.85, RMSE =016
4.52), outperforming recent baselines. Exten-017
sive ablation and sensitivity studies underscore018
the value of self-attention, probabilistic mod-019
eling, and calibrated uncertainty, establishing020
PTTSD as a robust and interpretable framework021
for uncertainty-aware depression forecasting in022
clinical NLP.023

1 Introduction024

Depression remains one of the leading causes of025

global disability, affecting over 300 million indi-026

viduals worldwide (WHO, 2017, 2022). Scalable,027

automated tools for assessing depressive symptom028

severity can complement traditional screening, es-029

pecially in digital therapy and remote care contexts.030

Text-based systems that model clinical interviews031

have shown promise for predicting standardized032

scores such as the PHQ-8.033

Recent work on textual depression detection has034

focused on deterministic models—LSTMs, Trans-035

formers, or large language models (LLMs) (Man-036

dal et al., 2025; Fang et al., 2023; Nykoniuk et al.,037

2025; Sadeghi et al., 2024)—that output scalar038

severity estimates from utterance sequences. While039

effective at sequence modeling, these approaches040

provide point predictions without quantifying un-041

certainty, limiting their interpretability and reliabil- 042

ity in sensitive domains like mental health care. 043

We introduce PTTSD, a Probabilistic Textual 044

Time Series Depression Detection framework that 045

addresses this limitation. PTTSD models utterance- 046

level textual sequences using a probabilistic LSTM 047

with self-attention and residual connections, and 048

produces calibrated uncertainty estimates via Gaus- 049

sian or Student’s-t output distributions. It is trained 050

with negative log-likelihood losses, enabling distri- 051

butional predictions rather than point estimates. 052

We evaluate PTTSD on the E-DAIC dataset and 053

demonstrate strong results across PHQ-8 prediction 054

metrics (MAE, RMSE), outperforming recent text- 055

based systems requiring no handcrafted features or 056

prompt engineering. In-depth ablation studies and 057

calibration analysis reveal the model’s sensitivity to 058

loss design and architectural components. PTTSD 059

combines strong empirical performance with uncer- 060

tainty awareness, offering a robust building block 061

for mental health NLP applications. 062

While prior work has made substantial progress 063

in text-based depression detection, several key limi- 064

tations remain. First, most existing approaches rely 065

on deterministic models that provide point predic- 066

tions without expressing confidence or uncertainty, 067

making them ill-suited for risk-sensitive clinical 068

settings. Second, prompt-based systems such as 069

those proposed by Sadeghi et al. (2024) require 070

extensive experimentation with prompt variants 071

and post hoc selection, increasing complexity and 072

reducing reproducibility. Third, several models 073

process only a subset of the available interview 074

utterances (e.g., question-response pairs), poten- 075

tially discarding valuable temporal information dis- 076

tributed across the full conversation. 077

Our contributions are as follows: 078

• We propose PTTSD, a fully probabilistic 079

sequence model that jointly predicts PHQ- 080

8 scores and calibrated uncertainty from 081
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utterance-level text sequences using Gaussian082

and Student’s-t output distributions.083

• We train and evaluate PTTSD end-to-end on084

all available utterances without handcrafted085

prompt design or selection, providing a simple086

and reproducible modeling pipeline.087

• We demonstrate state-of-the-art results on the088

E-DAIC benchmark among fully automatic,089

text-only systems, and conduct extensive ab-090

lations, sensitivity analysis, and calibration091

evaluations to understand uncertainty quality092

and model robustness.093

The remainder of this paper is structured as fol-094

lows. In Section 2, we review prior work on de-095

pression detection from text and highlight the gap096

in probabilistic modeling. Section 3 introduces097

the PTTSD architecture, including model compo-098

nents, probabilistic loss functions, and training pro-099

cedures. Section 4 presents our experimental setup100

and main results, including comparisons to base-101

lines, ablation studies, and uncertainty calibration102

analysis. Finally, Section 5 concludes with a discus-103

sion of limitations and directions for future work.104

2 Related Work105

Textual time series modeling has been central to106

recent efforts in automatic depression detection,107

especially within clinical interviews and therapy108

sessions. Prior work has predominantly relied on109

deterministic neural methods such as LSTMs and110

attention-based transformers to model temporal de-111

pendencies in textual data (Mandal et al., 2025;112

Fang et al., 2023; Nykoniuk et al., 2025). These113

models capture sequential patterns but lack mech-114

anisms to quantify uncertainty over time. While115

LLMs extract richer textual features (Sadeghi et al.,116

2024; Chen et al., 2024), most systems remain117

heuristic or deterministic, focusing on structural or118

multimodal fusion rather than probabilistic reason-119

ing. In contrast, our fully probabilistic, end-to-end120

model captures uncertainty directly from raw utter-121

ances without handcrafted prompts, emphasizing122

simplicity and efficiency.123

Notably, Qureshi et al. (2019) use multitask124

learning with attention mechanisms for joint re-125

gression and classification, but do not incorporate126

uncertainty modeling. Similarly, prompt-based127

methods such as those of Zhang and Guo (2024)128

transform depression detection into a few-shot clas-129

sification task via language model prompting, but130

still yield single-point predictions. Graph-based ar- 131

chitectures (Burdisso et al., 2023; Chen et al., 2024) 132

model discourse-level context across utterances and 133

questions, offering enhanced interpretability and 134

structural awareness, though they too typically omit 135

calibrated uncertainty. 136

A rare exception is Dia et al. (2024), who pro- 137

pose a stochastic transformer for post-traumatic 138

stress disorder detection, introducing probabilis- 139

tic components such as stochastic activations to 140

model uncertainty across modalities. However, 141

their work focuses on visual signals and does not 142

address textual time series or PHQ-8 regression. 143

More recently, Zhang et al. (2025) apply a multi- 144

instance learning (MIL) framework to estimate de- 145

pression severity from long transcripts, assigning 146

confidence scores to depressive cues at the sen- 147

tence level. While this provides instance-level in- 148

terpretability, the underlying model is not explicitly 149

probabilistic in the Bayesian sense. 150

Several recent works have explored fair or cali- 151

brated uncertainty estimation. Li and Zhou (2025) 152

propose Fair Uncertainty Quantification (FUQ) for 153

PHQ regression, producing conformal prediction 154

intervals with coverage guarantees across demo- 155

graphic groups. While effective for fairness, FUQ 156

operates at the distributional output level and does 157

not model temporal evolution within interviews. 158

Other systems, such as Mao et al. (2022) and Guo 159

et al. (2022), employ BiLSTMs or Transformers 160

with textual features, sometimes augmented by 161

topic signals, but focus solely on deterministic loss 162

objectives. 163

3 Probabilistic Textual Time Series 164

Depression Detection 165

3.1 Data and Preprocessing 166

We utilize the Extended Distress Analysis Interview 167

Corpus (E-DAIC) (Gratch et al., 2014), which con- 168

tains anonymized semi-structured interview tran- 169

scripts and associated PHQ-8 (Kroenke et al., 2009) 170

depression scores. Each participant’s data consists 171

of a sequence of utterances extracted from tran- 172

script files, along with a PHQ-8 score indicating 173

depression severity. The PHQ-8 (Patient Health 174

Questionnaire-8) is a standardized self-report in- 175

strument with scores ranging from 0 to 24, used 176

to assess depressive symptom severity. More de- 177

tails on the PHQ-8 and E-DAIC in Appendix A and 178

Appendix B, respectively. 179

To improve interview transcription fidelity, we 180
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Figure 1: Probabilistic Textual Time Series Depression Detection

reprocessed the original E-DAIC audio using Whis-181

perX (Bain et al., 2023), which provides more ac-182

curate word-level alignment and robust speaker di-183

arization compared to the baseline Whisper model184

(Radford et al., 2023) employed in (Sadeghi et al.,185

2024). We organize utterances into temporal se-186

quences and split the data into training, validation,187

and test sets using the predefined partitions. During188

batching, utterances are padded to the batch’s max-189

imum length, and an attention mask is constructed190

to differentiate padded from valid tokens.191

3.2 Generating Utterance Embeddings192

We represent each utterance using the193

all-MiniLM-L6-v21 Sentence Transformer194

(Reimers and Gurevych, 2019), which we found195

to outperform other tested embedding models196

(e.g., standard BERT) in preliminary experiments.197

Each utterance is independently encoded into198

a fixed-dimensional vector (et ∈ RD using199

a pretrained language model. The resulting200

embedding sequence is (e1, e2, . . . , eT ), where201

T is the utterance sequence length. These202

embeddings form the input to the model M.203

Utterance embeddings are stacked into a tensor204

X ∈ RB×T×D, where B denotes the batch size,205

T the number of utterances per sequence, and D206

the dimensionality of each embedding. Attention207

masks are propagated throughout the pipeline to208

mask out padded positions during modeling, loss209

computation, and evaluation.210

1https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

3.3 Probabilistic LSTM 211

Sequence-to-Sequence 212

Inspired by the architecture of Mandal et al. (2025), 213

we first encode X using a multi-layer bidirec- 214

tional LSTM. The resulting hidden sequence H ∈ 215

RB×T×H is passed through a multi-head self- 216

attention layer (Vaswani et al., 2017) to capture 217

long-range dependencies. A residual connection is 218

applied between the LSTM and attention outputs. 219

Two feedforward networks then predict the mean 220

µ̂t and standard deviation σ̂t at each time step: 221

µ̂t = fmean(et), σ̂t = softplus(fstd(et)) + ϵ 222

Dropout is applied after the LSTM and within the 223

MLPs. All predictions and ground truth values are 224

masked to select only valid, non-padded positions. 225

An overview of this architecture is illustrated in 226

Figure 1. 227

3.4 Sequence Modeling and Predictive 228

Distributions 229

We model the PHQ-8 score as a time series where 230

the label at time step t is predicted as: 231

p(yt | e≤t; θ) 232

where θ denotes the model parameters, and e≤t 233

are the utterance embeddings up to time t. The 234

model is trained in parallel across all time steps 235

(i.e., non-autoregressively), and does not receive 236

ground truth labels y<t or past predictions. 237

We explore two probabilistic output distribu- 238

tions: 239

Gaussian distribution. The model predicts a 240

mean µ̂t and standard deviation σ̂t at each time 241

step, defining the conditional distribution as: 242

p(yt | e≤t; θ) = N (yt | µ̂t, σ̂
2
t ) 243
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Student’s t-distribution. Alternatively, the244

model may output a location µ̂t, scale σ̂t, and245

degrees of freedom νt, defining:246

p(yt | e≤t; θ) = StudentT(yt | µ̂t, σ̂t, νt)247

The corresponding probability density function is:248

f(y | µ, σ, ν) = C(ν, σ)

[
1 +

1

ν

(
y − µ

σ

)2
]− ν+1

2

249

with normalization constant:250

C(ν, σ) =
Γ
(
ν+1
2

)
Γ
(
ν
2

)√
νπ σ

251

3.5 Loss Functions252

The total sequence loss is the negative log-253

likelihood of all valid time steps:254

Lseq = −
T∑
t=1

log p(yt | e≤t; θ)255

The batch loss is normalized across participants:256

Lbatch =
1

B

B∑
i=1

1

Ti
L(i)

seq257

where Ti is the valid sequence length for participant258

i. When using Gaussian outputs, the loss becomes:259

LNLL =
1

2N

N∑
i=1

[
log(2πσ̂2

i ) +

(
yi − µ̂i

σ̂i

)2
]

260

We optionally use MSE or MAE as auxiliary losses261

for ablation.262

3.6 Training Procedure263

PTTSD is trained for 50 epochs using the Adam264

optimizer with a constant learning rate (2e-4). We265

batch at the participant level, with each batch con-266

taining all utterances from a subset of participants.267

Early stopping with a patience of 15 epochs is ap-268

plied based on Dev MAE, and the best-performing269

model checkpoint is restored. To address label270

imbalance, we apply a log transformation to the271

targets during training, with outputs transformed272

back to the original scale for evaluation.273

4 Experiments274

4.1 Experimental Setup275

Implementation. All models are implemented in276

PyTorch (Paszke et al., 2017). Padding, batching,277

and masking ensure that variable-length sequences278

do not affect loss or metric computations.279

Hardware. Training is performed on a single 280

NVIDIA A100-SXM4-80GB GPU with 80GB of 281

GDDR6 VRAM, using CUDA version 12.2. 282

Runtime. Training PTTSD for 50 epochs on a 283

single NVIDIA A100–80 GB takes ~2h 23min in 284

wall-clock time (≈172 s per epoch). The model 285

has a total 2,703,403 trainable parameters. 286

Data Splits. We follow the official training, val- 287

idation, and test splits (163, 56, and 56 samples, 288

respectively) provided in the E-DAIC dataset. As 289

described in Section 3.1, all audio is re-transcribed 290

using WhisperX to improve transcription quality 291

and alignment over the original transcripts. 292

Evaluation Metrics. We evaluate models on 293

both the validation and held-out test sets using 294

mean squared error (MSE) and root mean squared 295

error (RMSE). These metrics quantify average pre- 296

diction error, with RMSE placing greater emphasis 297

on larger errors due to its squaring operation. This 298

makes RMSE particularly useful for identifying 299

models that minimize not just average error, but 300

also variance in error magnitude. When model- 301

ing predictive uncertainty, we additionally report 302

negative log-likelihood (NLL). All metrics are com- 303

puted over valid (non-padded) utterances only. 304

Reproducibility. All preprocessing steps, model 305

configurations, and training scripts are made pub- 306

licly available on GitHub.2 To account for variabil- 307

ity due to random initialization, we report average 308

performance over three runs with different seeds. 309

4.2 Main Results 310

Table 1 reports the performance of our proposed 311

model PTTSD alongside a range of text-only base- 312

lines for PHQ-8 prediction on the E-DAIC dataset. 313

PTTSD achieves the lowest test MAE (3.85) and 314

RMSE (4.52), setting a new state of the art among 315

fully automated, text-based systems. 316

Early approaches such as the LSTM-based multi- 317

level attention network from Ray et al. (2019) and 318

the CNN-LSTM variants by Rodrigues Makiuchi 319

et al. (2019) demonstrate competitive but overall 320

lower performance, with test RMSEs of 4.73 and 321

6.88, respectively. While Rodrigues Makiuchi et al. 322

(2019) reports a stronger dev RMSE (4.22) using 8 323

CNN blocks, no corresponding test results are pro- 324

vided for that setting, limiting direct comparability. 325

2 https://github.com/someonedoing-research/
PTTSD
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Method MAE (Dev) RMSE (Dev) MAE (Test) RMSE (Test)

Ray et al. (2019) – 4.37 4.02 4.73
Rodrigues Makiuchi et al. (2019) – LSTM – 4.97 – 6.88
Rodrigues Makiuchi et al. (2019) – 8 CNN blocks-LSTM – 4.22 – –
Sadeghi et al. (2023) 3.65 5.27 4.26 5.37
Sadeghi et al. (2024) – Pr3+Whisper 3.17 4.51 4.22 5.07
Sadeghi et al. (2024) – Pr3+Whisper+AudioQual 2.85 4.02 3.86 4.66

PTTSD (ours) 3.47
(±0.017)

4.57
(±0.041)

3.85
(±0.041)

4.52
(±0.38)

Table 1: Evaluation of PHQ-8 regression performance across text-only models on the E-DAIC dataset. Results for
related work are taken from Sadeghi et al. (2024). Bold results indicate best performance.

Recent works by Sadeghi et al. (2023, 2024)326

leverage prompt-based large language models and327

Whisper-based transcriptions. Among these, the328

Pr3+Whisper variant performs best (test MAE 4.22,329

RMSE 5.07), while the top dev results are achieved330

by Pr3+Whisper+AudioQual (MAE 2.85, RMSE331

4.02). However, this latter model involves audio-332

based quality filtering and is not strictly text-only,333

making PTTSD the best-performing model under334

the text-only constraint.335

The strength of PTTSD lies not only in its em-336

pirical performance but also in its simplicity and337

generalizability. Unlike prior work such as Sadeghi338

et al. (2024), which evaluates multiple prompt vari-339

ants and selects the best-performing configuration340

post hoc, PTTSD trains and evaluates a single, uni-341

fied model architecture end-to-end. This eliminates342

the need for prompt engineering.343

4.3 Ablation Studies344

Loss Dev Test
MAE RMSE MAE RMSE

Gaussian NLL 3.4440 4.5293 3.8603 5.0219
Student-t NLL 3.6637 4.9328 3.9294 5.1488
MAE 3.6427 4.8091 4.1885 5.4407
MSE 3.6398 4.9845 3.6694 4.8760

Table 2: Comparison of loss functions on development
and test sets.

Effect of Loss Function. Table 2 compares the345

impact of different loss functions on validation and346

test performance. Gaussian NLL yields the best347

overall balance, achieving low MAE and RMSE348

across both splits, with particularly strong test349

MAE (3.86). Student’s-t NLL performs compa-350

rably but with slightly worse calibration and higher351

RMSE, likely due to the added complexity of esti-352

mating the degrees of freedom.353

MAE and MSE losses exhibit inconsistent be-354

havior: while MSE achieves the lowest test MAE 355

(3.67), it performs worse on the dev set and yields 356

the highest test RMSE among all probabilistic 357

losses. The MAE loss underperforms across all 358

metrics, suggesting it is less effective for learning 359

stable sequence-level representations in this setting. 360

These results highlight that Gaussian NLL offers 361

the most reliable and generalizable performance 362

when modeling uncertainty in PHQ-8 prediction 363

from textual time series. 364

Effect of the model architecture. We conduct an 365

ablation study to assess the contribution of individ- 366

ual architectural components in our probabilistic 367

LSTM sequence-to-sequence model. Each ablation 368

variant disables a specific component—attention, 369

residual connections, or the variance prediction 370

head—while all other settings are held constant. 371

Models are trained for 20 epochs (rather than the 372

full 50 used in main experiments) to accelerate 373

comparison. Evaluation is performed on the test 374

set using mean absolute error (MAE) and root mean 375

squared error (RMSE). Full experimental details 376

are included in Appendix C. 377

Variant MAE ∆ MAE (%) RMSE ∆ RMSE (%)

Full Model 6.32 – 8.10 –
- w/o Attention 7.74 +22.48 9.74 +20.24
- w/o Residual 7.19 +13.78 8.96 +10.53
- w/o Variance Head 5.98 −5.37 7.21 −10.99

Table 3: Ablation of architectural components (Gaus-
sian NLL on test set). Absolute scores and percentage
change relative to the full model.

Table 3 and Figure 2 illustrate the effects of 378

disabling different components. Removing self- 379

attention yields the largest degradation in perfor- 380

mance, increasing MAE by 22.5% and RMSE by 381

20.2%, confirming its importance for modeling 382

long-range dependencies across utterances. 383

Omitting residual connections also leads to no- 384
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Figure 2: Ablation results

ticeable performance drops (MAE +13.8%, RMSE385

+10.5%), suggesting that residual pathways con-386

tribute to stable training and effective information387

flow across layers.388

Interestingly, removing the variance prediction389

head results in better MAE and RMSE (–5.4%390

and –11.0%, respectively), likely due to the sim-391

pler deterministic regression objective. However,392

this simplification eliminates the model’s ability393

to quantify uncertainty—an essential capability in394

risk-sensitive applications like mental health pre-395

diction.396

Overall, the full model offers the best trade-off397

between predictive accuracy and uncertainty mod-398

eling, with ablations confirming the value of self-399

attention, residuals, and probabilistic output heads.400

4.4 Hyperparameter Sensitivity401

α β γ NLL (Dev) NLL (Test) Comments

1 1 1 1.3129 1.1934 standard NLL
1 2 1 1.7854 1.4865 uncertainty-averse
1 1 2 1.2777 1.3189 error-focused
1 1 0.5 2.2163 2.0316 calibration-first

Table 4: Sensitivity analysis of Gaussian NLL loss
weighting parameters α, β, and γ.

Table 4 presents the effect of varying the NLL402

weighting parameters β (log-variance term) and γ403

(normalized squared error term), with α held con-404

stant as it weights the constant term in the NLL405

and hence does not influence the model’s gradi-406

ents or learning dynamics. The standard setting407

(β = γ = 1) yields the best overall performance408

on the test set (NLL = 1.1934), indicating a bal-409

anced trade-off between data fit and uncertainty410

modeling. Increasing β to 2 (“uncertainty-averse”)411

substantially increases NLL on both development412

and test sets, suggesting that heavily penalizing413

predicted variance harms calibration and leads to414

underconfident predictions. Conversely, increasing415

γ to 2 (“error-focused”) improves the development416

NLL slightly but increases test NLL, indicating 417

overfitting to the training signal. Reducing γ to 0.5 418

(“calibration-first”) degrades both development and 419

test NLLs, likely due to underemphasis on predic- 420

tion accuracy. The results suggest that aggressive 421

reweighting of either term destabilizes the trade-off 422

between sharpness and calibration, and that the de- 423

fault Gaussian NLL (β = γ = 1) remains the most 424

reliable setting across validation and test sets. 425

4.5 Uncertainty Analysis 426

Calibration Analysis. To evaluate the quality of 427

our model’s uncertainty estimates, we conduct a 428

three-part calibration analysis shown in Figure 3. 429

First, the binned calibration plot (left) groups pre- 430

dictions by predicted uncertainty and compares the 431

mean predicted standard deviation (x-axis) with the 432

mean absolute error (y-axis) in each bin. Perfect 433

calibration lies on the red diagonal, with devia- 434

tions quantified by the Expected Calibration Error 435

(ECE). Next, the individual calibration plot (mid- 436

dle) displays each test prediction as a scatter point, 437

with predicted uncertainty on the x-axis and the 438

observed absolute error on the y-axis. This view 439

provides fine-grained insight into the relationship 440

between uncertainty and error across instances. Fi- 441

nally, the coverage plot (right) evaluates the pro- 442

portion of ground truth values falling within the 443

model’s prediction intervals at various confidence 444

levels. Ideal calibration lies on the red diagonal; 445

deviations above or below reflect under- or over- 446

confident interval estimates, respectively. 447

We visualize calibration results for Gaussian 448

NLL under two hyperparameter settings. The first 449

uses the standard configuration α = 1, β = 1, γ = 450

1, which achieved the best overall performance (Ta- 451

ble 1) and is shown in Figure 3a. The second set- 452

ting, shown in Figure 3b, prioritizes calibration by 453

reducing γ to 0.5. As discussed earlier, this leads 454

to worse NLL on the development and test sets, 455

but improves calibration—evident in the left and 456

middle plots of Figure 3, as well as in the lower 457

Expected Calibration Error (2.1121 vs. 1.7651). 458

However, the model becomes overconfident, as in- 459

dicated by the coverage plot falling below the ideal 460

diagonal, meaning it underestimates its predictive 461

uncertainty. 462

Sharpness Calibration Tradeoff. To further an- 463

alyze the quality of our uncertainty estimates, we 464

examine the sharpness–calibration tradeoff. Sharp- 465

ness refers to the concentration or narrowness of 466
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Figure 3: Calibration analysis of the predicted uncertainties for Gaussian NLL on the test set

the model’s predictive distributions, with sharper467

(lower variance) predictions indicating higher con-468

fidence. However, sharpness must be balanced with469

calibration: a model that is too sharp may be over-470

confident, while a model that is too broad may be471

underconfident. Figure 4 visualizes the distribution472

of predictive standard deviations across the test set473

and assesses the relationship between predicted un-474

certainty and actual error. This analysis reveals475

whether the model’s most confident predictions are476

indeed more accurate, and whether improvements477

in sharpness come at the expense of calibration.478

We observe that the model with γ = 0.5 pro-479

duces a sharper distribution of predictive standard480

deviations, reflecting lower predicted uncertainty481

overall. This configuration also yields a stronger482

negative correlation between predicted standard483

deviation and absolute error (r = −0.3466), com-484

pared to the default uniform configuration (r =485

−0.1557). This indicates that, under γ = 0.5,486

the model’s uncertainty estimates more effectively487

distinguish between high- and low-error predic-488

tions. However, as discussed previously, this gain489

in sharpness and ranking quality comes at the cost490

of calibration: the model systematically underesti-491

mates its uncertainty, leading to undercoverage in492

the prediction interval analysis.493
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5 Conclusion494

We introduced PTTSD, a novel probabilistic neural495

framework for predicting PHQ-8 depression sever-496

ity from utterance-level textual sequences. Un-497

like prior work that outputs deterministic point498

estimates, PTTSD models calibrated predictive499

uncertainty using Gaussian and Student’s-t distri-500

butions. Our architecture combines bidirectional501

LSTMs, self-attention, and residual connections,502

and is trained via negative log-likelihood losses.503

PTTSD is fully data-driven and requires no manual504

feature engineering or prompt-based supervision,505

enhancing its applicability in real-world clinical506

settings where manual intervention is infeasible.507

Empirical evaluation on the E-DAIC dataset shows508

that PTTSD achieves state-of-the-art performance509

among fully automatic, text-only systems, outper-510

forming recent baselines. Ablation studies confirm511

the value of attention and probabilistic heads, while512

sensitivity analysis highlights the importance of513

balanced loss weighting. Calibration analysis fur-514

ther supports the reliability of PTTSD’s uncertainty515

estimates. The results demonstrate that uncertainty-516

aware textual time series modeling is both feasible517

and beneficial for clinical NLP. Future work will518

extend PTTSD to multimodal inputs and investi-519

gate its deployment in real-world digital mental520

health tools.521

Limitations522

While PTTSD offers promising results in predictive523

accuracy and uncertainty modeling, several limita-524

tions remain. First, the framework relies solely on525

textual data. Although effective, it does not lever-526

age multimodal cues such as vocal prosody or facial527

expressions, which are known to be informative528

for assessing mental health. Second, the E-DAIC529

dataset contains fewer than 300 participants, and530

further reduction due to filtering and partitioning531

limits the statistical power and generalizability of532

our findings to broader clinical settings. Third, the533

interviews in E-DAIC are conducted with a virtual534

interviewer ("Ellie") operated in a Wizard-of-Oz535

setup rather than a real clinician, which may affect536

the ecological validity of the speech data and limit537

applicability to authentic client–clinician interac-538

tions. In terms of modeling, we encode utterances539

independently using pretrained language models540

without context-aware finetuning, potentially over-541

looking local coherence or discourse-level cues.542

Furthermore, while PTTSD provides distributional543

predictions, we do not assess its clinical utility 544

or decision-support value; human-centered eval- 545

uations with therapists or end users are needed to 546

determine the interpretability and trustworthiness 547

of predicted uncertainty. Finally, although we eval- 548

uate calibration quantitatively, we do not study how 549

uncertainty scores might be perceived or utilized 550

by clinicians in real-world settings. Future work 551

should address these limitations by incorporating 552

multimodal signals, validating on therapist–client 553

dialogues, and evaluating the human trust and us- 554

ability of uncertainty-aware predictions. 555
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thoughts, making it more suitable for large-scale704

screening and automated processing.705

Each of the eight items corresponds to a DSM-706

IV criterion for depression and asks respondents707

to rate how often they have experienced a specific708

symptom over the past two weeks. Responses are709

scored on a 4-point Likert scale:710

• 0 – Not at all711

• 1 – Several days712

• 2 – More than half the days713

• 3 – Nearly every day714

The total PHQ-8 score ranges from 0 to 24 and715

is interpreted as follows:716

• 0–4: None717

• 5–9: Mild depression718

• 10–14: Moderate depression719

• 15–19: Moderately severe depression720

• 20–24: Severe depression721

The PHQ-8 has been validated in both clinical722

and general populations and is considered a reliable723

proxy for identifying depressive symptom severity724

in mental health research.725

B Extended Distress Analysis Interview726

Corpus (E-DAIC)727

The Extended Distress Analysis Interview Cor-728

pus (E-DAIC) (Gratch et al., 2020) is an en-729

riched version of the DAIC-WOZ dataset (Gratch730

et al., 2014), designed to facilitate research in au-731

tomated depression detection. It comprises semi-732

structured interviews conducted by a virtual inter-733

viewer named Ellie, controlled by a human oper-734

ator in a "Wizard-of-Oz" setup. These interviews735

aim to elicit verbal and non-verbal indicators of736

psychological distress.737

B.1 Dataset Composition738

E-DAIC includes data from 275 participants, with739

the following partitioning:740

• Training set: 163 participants741

• Development set: 56 participants742

• Test set: 56 participants743

Each participant’s session contains: 744

• Audio recordings: Captured in WAV format. 745

• Transcripts: Annotated with time stamps and 746

speaker labels. 747

• Visual features: Extracted using tools like 748

OpenFace, including facial landmarks and ac- 749

tion units. 750

• Acoustic features: Derived using COVAREP, 751

encompassing prosodic and voice quality met- 752

rics. 753

• PHQ-8 scores: Self-reported assessments of 754

depression severity. 755

B.2 Data Organization 756

The dataset is organized into session-specific fold- 757

ers named with participant IDs (e.g., 300_P). Each 758

folder contains: 759

• TRANSCRIPT.csv: Dialogue transcripts with 760

time-aligned annotations. 761

• AUDIO.wav: Raw audio recordings of the in- 762

terview. 763

• COVAREP.csv: Acoustic feature sets. 764

• FORMANT.csv: Formant frequency features. 765

• CLNF_features.txt: 2D facial landmark po- 766

sitions. 767

• CLNF_AUs.csv: Facial Action Units data. 768

• CLNF_gaze.txt: Gaze tracking information. 769

• CLNF_pose.txt: Head pose estimations. 770

Additionally, the dataset includes metadata files: 771

• train_split.csv, dev_split.csv, 772

test_split.csv: Define the dataset 773

partitions. 774

• PHQ8_scores.csv: Contains individual item 775

responses and total scores. 776

B.3 PHQ-8 Score Distribution 777

The PHQ-8 scores in E-DAIC range from 0 to 24, 778

reflecting varying levels of depression severity. The 779

distribution is skewed towards lower scores, indi- 780

cating a higher number of participants with mini- 781

mal depressive symptoms. This imbalance poses 782

challenges for training models to accurately predict 783

higher severity levels. 784
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B.4 Usage Considerations785

Researchers utilizing E-DAIC should be aware of786

certain factors:787

• Data Quality: Some sessions may have miss-788

ing or incomplete data due to technical issues789

during recording.790

• Ethical Use: As the dataset involves sensitive791

mental health information, appropriate ethical792

considerations and approvals are necessary for793

its use.794

• Licensing: Access to E-DAIC requires agree-795

ment to a specific End User License Agree-796

ment (EULA) set by the data providers.797

Our use of the E-DAIC dataset is fully consis-798

tent with its intended purpose. The corpus was re-799

leased to support research on automated detection800

of psychological distress and related mental health801

conditions. In this work, we focus exclusively on802

the prediction of PHQ-8 depression severity from803

textual transcripts, a primary task for which the804

dataset was designed. The dataset is anonymized at805

source, with personally identifiable information re-806

moved prior to distribution. We further restrict our807

usage to non-commercial, academic settings, oper-808

ate solely on de-identified utterance sequences, and809

report only aggregate results. No individual-level810

data or metadata are released. All use complies811

with the dataset’s End User License Agreement812

(EULA) and contributes to its intended goal of ad-813

vancing computational methods for mental health814

assessment.815

For detailed information on data preprocessing816

and feature extraction methodologies, refer to the817

official documentation provided with the dataset.818

C Ablation Study Experimental Setup819

For each ablation, we use the same data splits,820

batch size, optimizer, learning rate schedule, and821

early stopping criteria as the main experiments.822

The following configurations are evaluated:823

• Full Model: All components enabled (atten-824

tion, residual, variance).825

• No Attention: Attention layer removed.826

• No Residual: Residual connection removed.827

• No Variance: Variance prediction head dis-828

abled; model trained with MSE loss.829

Each model is trained for the same number of 830

epochs with fixed random seeds for reproducibil- 831

ity. After training, we evaluate on the held-out 832

test set and report MAE, RMSE, and NLL (where 833

available). All code, configurations, and results are 834

available for reproducibility. 835
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