
Quartet: Native FP4 Training Can Be Optimal for Large Language Models

Roberto L. Castro * 1 Andrei Panferov * 1 Rush Tabesh 1 Jiale Chen 1

Oliver Sieberling 2 Mahdi Nikdan 1 Saleh Ashkboos 2 Dan Alistarh 1 3

Abstract
Training large language models (LLMs) models
directly in low-precision offers a way to address
computational costs by improving both through-
put and energy. NVIDIA’s recent Blackwell archi-
tecture facilitates very low-precision operations
using FP4 variants for efficiency gains. Yet, cur-
rent algorithms for training LLMs in FP4 pre-
cision face significant accuracy degradation and
often rely on mixed-precision fallbacks. In this pa-
per, we investigate hardware-supported FP4 train-
ing and introduce Quartet, a new approach for ac-
curate, end-to-end FP4 training with all the major
computations (in e.g. linear layers) in low preci-
sion. Through extensive evaluations on Llama-
type models, we reveal a new low-precision scal-
ing law that quantifies performance trade-offs
across bit-widths and training setups. Guided
by it, we design an optimal technique in terms of
accuracy-vs-computation, called Quartet. We im-
plement Quartet using optimized CUDA kernels
tailored for Blackwell, demonstrating that fully
FP4-based training is a competitive alternative to
standard-precision and FP8 training.

Introduction
One key lever for reducing the massive compute costs
of LLMs is lower-precision computation: executing the
matrix-multiplication (MatMul) kernels that dominate train-
ing workloads at lower bit-widths yields near-linear gains
in throughput and energy efficiency. On the inference side,
it is known that 4-bit quantization—or even lower—can
preserve accuracy, via sophisticated calibration and rotation
schemes [19; 2; 9]. For training, recent work has pushed
the precision frontier from FP16 [29] to 8-bit pipelines,
responsible in part for efficiency breakthroughs such as
DeepSeek-V3 [27]. In this context, NVIDIA’s Blackwell
architecture introduces efficient hardware support for even
lower-precision microscaling formats [31] such as MXFP

*Equal contribution 1ISTA 2ETH Zürich 3Red Hat AI. Corre-
spondence to: Dan Alistarh <dan.alistarh@ist.ac.at>.

and NVFP, which natively support 4-bit floating-point oper-
ations at higher teraFLOP-per-watt efficiency: for instance,
moving from 8- to 4-bit multiplies on the B200 GPU can
almost double arithmetic throughput, while cutting energy
roughly in half [30].

Yet, today’s algorithmic support for accurate end-to-end
training in such low precision is missing. State-of-the-art
quantized training methods such as Switchback [46], Jet-
fire [49], HALO [3], and INT4-Transformers [48] either (i)
lose precision and stability when training current models
in 4-bit formats, or (2) fall back to higher precision for se-
lected matrix multiplications. Bridging this gap calls for
both a deeper understanding of quantization error during
back-propagation and new algorithmic safeguards tailored
to hardware-native FP4 formats.

Contributions. In this paper, we address this challenge
via a first systematic study of hardware-supported FP4
training, focusing on the high-efficiency of the MXFP4
format [31; 30]. Based on this analysis, we introduce an
algorithm for MXFP4 native training—in which all matrix
multiplications occur in MXFP4—called Quartet, which
provides the best accuracy-efficiency trade-off among ex-
isting methods, and is near-lossless for LLM pre-training
in the large-data regime. Our main technical contribu-
tion is a highly-efficient GPU implementation of Quartet,
which achieves speedups of almost 2x relative to FP8 for
linear layer computations on an NVIDIA Blackwell RTX
5090 GPU, relative to a well-optimized FP8 baseline. One
key achievement is that Quartet enables MXFP4 precision
to be “optimal” on the accuracy-efficiency trade-off: at a
fixed computational budget, the accuracy impact of lower-
precision training in Quartet is fully compensated by the
higher efficiency of our implementation. Specifically, we
show for the first time that the new MXFP4 format can be
competitive with FP8 in terms of accuracy-vs-speed, which
we hope can enable significant reductions in the rising com-
putational costs of AI.

1. Ingredient 1: Comparing Training
Approaches via their Induced Scaling Laws

The ability of LLMs to scale predictably with both model
size and data across orders of magnitude is a cornerstone of

1

Quartet: Native FP4 Training

the current AI scaling landscape [24]. Mathematically, this
says that the expected loss is a function of model and data
parameters, often described in the form of parametric func-
tion. This function can be fitted on a set of training runs, and
then used to determine the optimal computational training
regime [23] or to extrapolate model performance [22].

We investigate scaling laws relating evaluation loss to the
precision in which the forward and backward passes are
performed, denoted by Pfw and Pbw , respectively. For this,
we propose a scaling law for the loss L(N,D,Pfw , Pbw) of
the following functional form:

(
A

(N · effN (Pfw))α
+

B

(D · effD(Pbw))β

)γ

+ E, (1)

where A,B, α, β, γ are constants describing the general loss
scaling w.r.t. model parameters N and data size D.

The key addition is given by the fitted parameters effN (Pfw),
representing the parameter efficiency of the precision Pfw

used in the forward pass, and effD(Pbw) representing the
“data efficiency” of the backward pass. The former fol-
lows the general trend of modeling the effect of forward
pass quantization as a multiplicative factor on parameter
count [20; 26; 21; 32]. For the latter, we postulate that low-
ering backward-pass precision primarily impacts the data
term D, so we effectively need additional data to reach the
same the same loss, precisely by a factor of 1/effD(Pbw).
This is a novel way to model backward pass quantization that
we propose, consistent with optimization theory results [1],
as well as observed performance gaps (see Figure 1 (a)). We
compare against alternatives [24; 23] in the Appendix.

Experimentally, we observe that different quantized training
methods, e.g. STE [6] vs. QuEST [32], induce different scal-
ing laws, and in particular different efficiency parameters.
While, usually, scaling laws are used to extrapolate model
performance across different parameter and data sizes, we
propose to use scaling laws to compare different training
methods. Specifically, we say that quantized training method
A is superior to method B if it offers both higher parameter
efficiency effN and higher data efficiency effD.

2. Ingredient 2: Mixed-Precision Induces
Inference-Training Trade-Offs

The above scaling law suggests that, given a set of scaling
parameters and a target loss we wish the model to achieve,
we can directly solve for the “optimal” forward and back-
ward precisions which allow us to match the loss. However,
as pointed out by Sardana et al. [33], it is often the case in
practice that we wish to put a larger weight on inference
cost, rather than training cost, which can lead to different
results when determining the “optimal” training precisions.

Operation FP4:FP8 FP8:FP4 FP4:FP4

Forward / Inference (spfw) 2.0 1.0 2.0
Backward (spbw) 1.0 2.0 2.0
Training (sptr) 1.2 1.5 2.0

Table 1. Speedups relative to an FP8 baseline for forward (spfw),
backward (spbw); sptr is the harmonic mean of spfw and spbw
with weights 1/3 (forward) and 2/3 (backward).

Because inference latency depends solely on the forward
pass (∼ 33% of training compute) while the backward pass
consumes the remaining ∼ 66%, these trade-offs may need
to be analyzed separately.

Specifically, we can state a set of simple guiding principles:

• Forward pass. Low-precision induces a trade-off be-
tween reduced parameter efficiency, and increased infer-
ence speed: for instance, we could train a larger model
in terms of parameters N , but quantize its forward pass
to lower precision, and obtain a better trade-off. As such,
Pfw should be picked to optimize this trade-off.

• Backward pass. Similarly, training speedup due to a
quantized backward pass can offset the reduced data
efficiency effD: we could train more heavily-quantized
model on more data under the same computing budget.
Thus, Pbw should be picked to optimize this trade-off.

We contrast this with previous work, which often requires
lower precision to suffer no accuracy loss (e.g., Chmiel et al.
[11]). This unnecessarily reduces these trade-offs to simple
selection of the fastest lossless precision. We argue that
scaling-law analysis enables a more fine-grained approach
needed to decide upon the “optimal” set of forward and
backward precisions.

Example speedup model. To illustrate this, we assume a
hardware-agnostic bit-wise ops (BOPS) model, which states
that speedup is inversely proportional to datatype bit-width.
The speedups are stated in Table 1, relative to FP8:

Given a forward-pass compute budget Nmax and a training
budget NmaxDmax, the effective loss will be given by:

Loss
(
Nmax spfw, Dmax sptr / spfw, Pfw, Pbw

)
,

which we evaluate with the scaling law from Equation (1),
leading to the fit from Figure1(a). One can see how spfw
and sptr propagate as multiplicative factors on effN and
effD and directly counter the suboptimal parameter and
data efficiencies. Figures 1(b)–(c) illustrate the optimal-
ity regions: specifically, it tells us for which model sizes
(Y axis) and corresponding data-to-model ratios (X axis)
FP4 is optimal relative to FP8 (red vs orange region). The
green thatched area is the range in which training using our
MXFP4 implementation would be optimal by this metric.

2

Quartet: Native FP4 Training

102 103

D/N

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5
C

4
Va

l L
os

s

N
=3

0M
N

=5
0M

N
=1

00
M

N
=2

00
M

(a)

FP8:FP8
FP8:FP4
FP4:FP8
FP4:FP4

102 103

Dmax/Nmax

100M

1B

10B

100B

N
m

ax

(b)

FP8 Backward

Optimal Forward Precision
FP4 (RTX 5090, our kernels)
FP4 (BOPS)
FP8

102 103

Dmax/Nmax

100M

1B

10B

100B

(c)

FP4 Backward

Llama 3
Qwen 2.5
Gemma 3

Figure 1. Analysis of Quartet: (a) Scaling-law 1 fit for various FORWARD:BACKWARD precisions. (b) Regions where each forward
precision is optimal when the backward pass is FP8. (c) Same, but with an FP4 backward pass. Observe that the FP4 backward enlarges
the regime in which FP4 forward is optimal. Interestingly, popular models such as Llama3 or Qwen2.5 fall into the FP4 optimality region,
implying that training similar models in FP4 might have been optimal.

(This is derived using our actual obtained speedups.)

Ingredient 2 says that low-precision impact should be anal-
ysed under the compute budget; scaling-law fits then reveal
when a given precision is the optimal choice for either pass.

3. Ingredient 3: Minimal Forward-Pass Error
with Unbiased Gradient Estimation

The above ingredients should allow us to determine the
“best” quantized training method among existing approaches,
focusing on the hardware-supported MXFP4 [31] format.

Forward Pass Quantization. As detailed in Section A,
existing QAT (forward-only) approaches can be split into
“noise injection” [5] and “error-minimization” approaches,
e.g. [32]. Focusing on the forward pass, by the above dis-
cussion (Ingredients 1 and 2), we seek the approach which
maximizes the parameter efficiency factor effN . For this,
we implement four standard schemes for QAT: 1) stochastic
rounding (SR) with standard AbsMax per-group normal-
ization [39]; 2) vanilla round-to-nearest (RTN) quantiza-
tion with AbsMax per-group normalization; 3) learnable
scale clipping (LSQ) with RTN quantization [16; 48]; 4)
Hadamard normalization followed by RMSE-based clip-
ping (QuEST) [32]. We apply the Hadamard transform to
weights and activations for each one of these schemes be-
fore quantization. We compare these approaches following
Section 1: we train models using each technique, apply
scaling law fitting, and register their resulting effN factors.
For additional information, we also show representations’
mean-squared error (MSE) for fitting random Gaussian data.
The results are provided in the first rows/columns of Table 2.

The results in Table 2 show that QuEST has the best param-
eter efficiency effN among all existing methods. Moreover,
effN appears to correlate heavily with MSE, as suggested

Rounding effN MSE eff∗D Misalignment

Stochastic Rounding AbsMax 0.44 2.84× 10−2 0.85 0
Round-to-nearest AbsMax 0.61 1.40× 10−2 0.83 9.3× 10−3

QuEST (Hadamard + RMSE) 0.65 1.35× 10−2 0.18 1.3× 10−2

RTN AbsMax PMA 0.61 1.42× 10−2 0.83 2.8× 10−5

Table 2. Illustration of error-bias trade-off between different quan-
tized forward and backward pass approaches. For the forward
(given by the effN metric) the best performing method is QuEST,
correlating with superior MSE over Gaussian input data. By con-
trast, for the backward pass (the data efficiency eff*D computed at
800 Tokens/Parameter), the best performing method is stochastic
rounding, correlated with perfect magnitude alignment. This justi-
fies our choice of method, which combines block-wise QuEST on
the forward, with Stochastic Rounding on the backward pass.

by [32]. Additionally, the results align with the analysis
of Chmiel et al. [11] that determined deterministic RTN to
always be preferable to stochastic rounding for the forward.

Backward pass: a novel error-bias trade-off. The above
findings do not transfer to backward pass quantization, as
optimization theory shows that unbiased gradient estimation
is critical for convergence, e.g. [1].

To study gradient bias, we follow the analysis of [40; 41],
who studied RTN quantization with randomized rotations,
approximated by the randomized Hadamard transform,
which we denote by Ĥ . They show that, while RHT makes
quantization unbiased in direction, it adds a bias in magni-
tude. To address this, they introduce fine group-wise scaling
factors S that make the estimation truly unbiased.

Eξ[Q(X, ξ)] = X if Q(X, ξ) = S(X) · RTN(Ĥ(X, ξ)).

Unfortunately, their re-scaling is incompatible with coarse

3

Quartet: Native FP4 Training

group-wise scaling of the MXFP4 format, so we cannot use
it in practice. However, we can still use their approach to
gauge the degree of misalignment for different quantizers
by simply studying their corresponding expected value of
E [1/S], which we call the projection magnitude alignment
(PMA). Misalignment (1 − E [1/S]) is shown in Table 2,
along with the MSE across different schemes. Focusing on
stochastic rounding vs round-to-nearest with AbsMax, one
can see that SR trades high error for perfect alignment.

Additional experiments aimed at bridging the gap between
PMA and final performance are presented in Appendix C. In
short, we observe that MSE has high impact on initial con-
vergence and shorter training runs, while PMA has greater
impact on longer runs. Concretely, while RTN backward
quantization may be preferable for shorter training, stochas-
tic rounding (SR) performs consistently better for models
more saturated with data. In this setup, the inflection point
is around the D/N = 400 data-to-parameter ratio.

Summary. Our analysis outlines a new trade-off between
parameter efficiency on the forward (equated with quantiza-
tion MSE), and data-efficiency on the backward (which we
equate with the new misalignment metric). In the following,
we will adopt a “best of both worlds” approach, aiming
to perform a forward pass that minimizes MSE (based on
QuEST [32]) together with a backward pass that is unbiased
(based on Stochastic Rounding [39]). The novel challenge,
which we address next, will be an extremely efficient GPU-
aware implementation of such an approach.

4. Ingredient 4: Fast GPU Support for
Accurate Quantized Training

Algorithm 1 Quartet MXFP4 Forward-Backward Algo-
rithm
Require: Hadamard Transform (Hg , Ĥg) block size g
1: function FORWARD(input X , weights W)
2: Xh ← Hg(X); Wh ← Hg(W)
3: (Xq, αx)←QuEST(Xh)
4: (Wq, αw)←QuEST(Wh)
5: Yq ← GEMMLP(Xq,Wq)
6: y ← (αxαw) · RESCALE(Yq)
7: return y, ctx = {Xq,Wq, αx, αw}
8: end function
1: function BACKWARD(output gradient dy, ctx, random seed ξ)
2: Unpack {Xq,Wq, αx, αw} from ctx

3: Gh ← Ĥg(dy, ξ); W⊤
h ← Ĥg(W

⊤
q , ξ)

4: Gq ← SR(3
4
Gh); W⊤

q ← SR(3
4
W⊤

h)

5: dxq ← GEMMLP(Gq,W
⊤
q)

6: dx← H−1
g

(
16
9
dxq ⊙ αx

)
7: G⊤

h ← Ĥg(dy
⊤, ξ); X⊤

h ← Ĥg(X
⊤
q , ξ)

8: G⊤
q ← SR(3

4
G⊤

h); X⊤
q ← SR(3

4
X⊤

h)

9: dWq ← GEMMLP(G
⊤
q , X

⊤
q)

10: dW ← H−1
g

(
16
9
dWq ⊙ αw

)
11: return dx, dW
12: end function

Quartet Overview. We integrate our prior discussion into
Algorithm 1, which aims to perform accurate training while
executing all three matrix multiplications of a linear layer in
low precision. The forward pass applies a fixed Hadamard
transform Hg (of block size g equal to the quantization
group size) and QuEST projection to low precision and mul-
tiplies the resulting tensors with an MXFP4 kernel. The
backward pass decorrelates the multiplied tensors with
an identical block-wise random Hadamard transform Ĥg,
applies unbiased stochastic rounding (SR) to MXFP4, per-
forms the two gradient GEMMs in MXFP4, rescales to
compensate for SR range matching, applies QuEST mask-
ing and inverts the Hadamard transform Hg .

Costs and Format Specialization. The key added cost of
the above pipeline is that of the Hadamard rotations and
their inversion: specifically, two Hadamard/Inverse trans-
forms are added over standard training. Our key observation
is that, since the MXFP4 already groups 32 consecutive
weights (in 1D), sharing scales, we can and should apply the
Hadamard rotations and their inversion at the same group
size. With a fast Hadamard implementation, the theoretical
cost is O(g log g)—negligible for g≤ 256 compared with
the GEMMs.

GPU Kernel Support. While the above blueprint appears
simple, implementing it efficiently on Blackwell GPUs—in
order to leverage fast MXFP4 support—is extremely chal-
lenging. For illustration, a direct implementation of the
above pattern would be slower than FP16 unquantized train-
ing, let alone optimized FP8. Our fast implementation builds
on CUTLASS 3.9 [37], which provides templates for the
new Blackwell architecture. Computation happens in two
stages: Stage 1 fuses the Hadamard transform, quantiza-
tion, scale calculation, and QuEST clipping mask generation
(only on forward) into a single kernel; Stage 2 performs
GEMM using a dedicated kernel.

To our knowledge, our implementation is the first to effi-
ciently support quantization-related operations on the Black-
well architecture.

5. Experiments
Experimental Setup and Scaling Law Fit. As described
in Section B, we pre-train Llama-style models on C4 and
report validation loss after a fixed token budget. All base-
lines reuse the optimiser, schedule, and hyper-parameters,
as described in Appendix E. Following Section 1, we com-
pare accuracy across methods by fitting the full scaling law
in Eqn. 1 across methods, as follows: we fit parameters
A,α,B, β,E and γ on a grid of baseline precision runs
(FP8 forward, FP8 backward) shown on Figure 1(a). Then
we fit the parameter and data efficiencies effN and effD sep-
arately for every forward and backward quantization scheme
we evaluate. The law is fitted identically to prior work in

4

Quartet: Native FP4 Training

800M 7B 52B
Model Size

0.0

1.0

2.0

3.0

4.0
B

lo
ck

w
is

e
Sp

ee
du

p

(a)

MXFP4 vs FP8 Speedup
Forward
Backward
Training

800M 7B 52B
Model Size

0.0

1.0

2.0

3.0

4.0

B
lo

ck
w

is
e

Sp
ee

du
p

(b)

MXFP4 vs BF16 Speedup

10⁴
Iteration (2.6e5 Tokens per Iteration)

2.5

3.0

3.5

4.0

4.5

5.0

C
4

Va
l L

os
s

(c)

7B Model Training Dynamics
FP8 Baseline
MXFP4 Quartet

Figure 2. (a, left), (b, middle): Quartet kernels block-wise speedup across model sizes relative to FP8 and BF16. (c, right): Training
dynamics for the 7B model trained with Quartet relative to FP8 .

Method 25× 50× 100× 200× 400× effN effD

LUQ–INT4 3.729 3.684 3.658 3.432 3.399 0.50 0.15
LUQ–FP4 4.806 4.906 4.880 4.842 4.799 0.01 0.09
Jetfire–FP4 7.033 6.941 6.759 6.621 6.581 0.01 0.07
HALO–FP4 6.649 7.040 6.551 6.501 5.381 Unstable
LSS–INT4 NaN 3.398 NaN NaN NaN Unstable
Quartet (ours) 3.500 3.382 3.299 3.244 3.205 0.64 0.94

Table 3. Validation loss (lower is better) on C4 for Llama models
with 30M parameters and efficiency coefficients fitted on them.
Columns show the tokens-to-parameters ratio (D/N). All methods
share identical setups; only the quantization scheme varies. NaNs
for LLS-INT4 appeared at arbitrary stages of training without any
irregularities.

this area [23; 26; 8]. A detailed description is presented in
Appendix F.

Accuracy Comparisons. We compare accuracy (validation
loss) as well as the efficiency factors against four recent,
fully–quantized training pipelines that operate in 4-bit pre-
cision for both forward and backward passes: 1) LUQ [11]
applies to both INT4 and FP4, using unbiased quantization
that pairs 4-bit weights/activations with stochastic under-
flow, and logarithmic stochastic rounding; 2) HALO [3],
which uses Hadamard rotations to mitigate outliers, evalu-
ated in FP4 at their most accurate HALO-2 setting; 3) Jet-
fire [50] quantizes in blocks of 32×32, originally introduced
for INT8, and adapted to FP4 for our setup; 4) LSS [48] for
INT4 training, that combines a Hadamard-based forward
pass with “leverage–score” sampled INT4 gradients.

Accuracy Discussion. As can be seen in Table 3, across
all token-to-parameter ratios, Quartet attains the lowest loss,
often by very large margins. At 100× toks/param., Quar-
tet improves upon LUQ–INT4 by 10% relative loss, and
the gap widens as we increase data size. We note that Jet-
fire and HALO incur large degradation and are unstable
when ported to FP4. Interestingly, LSS is competitive only
for shorter runs, and diverges for longer training budgets,

beyond 50×, matching observations from prior work [18].
Overall, LUQ–INT4 is the strongest prior work; however,
Quartet reaches significantly higher parameter and data ef-
ficiency, suggesting that it requires, roughly, 15% fewer
parameters and 5x less data to reach the same loss. Figure 2
(c) additionally demonstrates the stability of Quartet for
training models two orders of magnitude larger (7B).

Speedup Results. Next, we evaluate the efficiency of
our implementation on the NVIDIA RTX 5090 GPU by
measuring its performance across single layers of standard
shapes, and aggregating across an entire Transformer block.
Speedup results are shown in Figure 2, using a batch size 64
and sequence length of 512. The FP8 baseline is provided by
CUTLASS MXFP8 kernels, while the BF16 baseline uses
PyTorch, both using Blackwell-optimized kernels. Infer-
ence speedups are more pronounced due to the lower cost of
the forward pass compared to the backward pass, and the lat-
ter’s higher computational complexity. The speedup scales
with the arithmetic intensity (i.e., model size), reaching up
to 2.4× over FP8 and 4× over BF16 on the forward pass,
where it stabilizes. In the backward pass, our implemen-
tation achieves up to 1.6× over FP8 and 2.3× over BF16,
resulting in an overall training speedup of up to around
1.8×, and 2.6×, respectively.

6. Discussion and Limitations
We provided a set of guidelines to modeling, comparing
and designing fully-quantized training schemes for large
language models. Moreover, we followed those guidelines
to arrive at Quartet: a new SOTA full MXFP4 training
algorithm. One current limiting factor is that Quartet was
designed with a specific (standard) data-type and compute
architecture in mind. Certain aspects of our method rely on
specialized operations, like stochastic rounding, which have
hardware support for MXFP4, but may be lacking for other
formats. In future work, we plan to look into generalizing
our approach to alternative formats, as well as larger-scale

5

Quartet: Native FP4 Training

distributed model execution.

References
[1] Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vo-

jnovic, M. Qsgd: Communication-efficient sgd via
gradient quantization and encoding. Advances in neu-
ral information processing systems, 30, 2017.

[2] Ashkboos, S., Mohtashami, A., Croci, M. L., Li, B.,
Cameron, P., Jaggi, M., Alistarh, D., Hoefler, T., and
Hensman, J. Quarot: Outlier-free 4-bit inference
in rotated llms. arXiv preprint arXiv:2404.00456,
2024. URL https://arxiv.org/abs/2404.
00456.

[3] Ashkboos, S., Nikdan, M., Tabesh, S., Castro, R. L.,
Hoefler, T., and Alistarh, D. Halo: Hadamard-assisted
lower-precision optimization for llms, 2025. URL
https://arxiv.org/abs/2501.02625.

[4] Banner, R., Hubara, I., Hoffer, E., and Soudry, D.
Scalable methods for 8-bit training of neural networks.
In Advances in Neural Information Processing Systems
(NeurIPS), 2018.

[5] Baskin, C., Liss, N., Schwartz, E., Zheltonozhskii, E.,
Giryes, R., Bronstein, A. M., and Mendelson, A. Uniq:
Uniform noise injection for non-uniform quantization
of neural networks. ACM Transactions on Computer
Systems (TOCS), 37(1-4):1–15, 2021.

[6] Bengio, Y., Léonard, N., and Courville, A. Esti-
mating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013.

[7] Bhalgat, Y., Lee, J., Nagel, M., Blankevoort, T., and
Kwak, N. Lsq+: Improving low-bit quantization
through learnable offsets and better initialization. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) Work-
shops, June 2020.

[8] Busbridge, D., Shidani, A., Weers, F., Ramapuram, J.,
Littwin, E., and Webb, R. Distillation scaling laws,
2025. URL https://arxiv.org/abs/2502.
08606.

[9] Chee, J., Cai, Y., Kuleshov, V., and Sa, C. D. Quip:
2-bit quantization of large language models with guar-
antees. arXiv preprint arXiv:2307.13304, 2023. URL
https://arxiv.org/abs/2307.13304.

[10] Chmiel, B., Banner, R., Hoffer, E., Ben-Yaacov, H.,
and Soudry, D. Accurate Neural Training with 4-bit
Matrix Multiplications at Standard Formats. In In-
ternational Conference on Learning Representations
(ICLR), 2023.

[11] Chmiel, B., Banner, R., Hoffer, E., Yaacov, H. B.,
and Soudry, D. Accurate neural training with 4-bit
matrix multiplications at standard formats, 2024. URL
https://arxiv.org/abs/2112.10769.

[12] Choi, J., Wang, Z., Venkataramani, S., Chuang, P.
I.-J., Srinivasan, V., and Gopalakrishnan, K. Pact:
Parameterized clipping activation for quantized neural
networks. arXiv preprint arXiv:1805.06085, 2018.

[13] Dao-AILab. Fast hadamard transform in cuda, with
a pytorch interface. https://github.com/
Dao-AILab/fast-hadamard-transform,
2024. Accessed: 2025-05-13.

[14] Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer,
L. LLM.int8(): 8-bit matrix multiplication for trans-
formers at scale. arXiv preprint arXiv:2208.07339,
2022. URL https://arxiv.org/abs/2208.
07339.

[15] Dodge, J., Sap, M., Marasović, A., Agnew, W., Ilharco,
G., Groeneveld, D., Mitchell, M., and Gardner, M.
Documenting large webtext corpora: A case study
on the colossal clean crawled corpus, 2021. URL
https://arxiv.org/abs/2104.08758.

[16] Esser, S. K., McKinstry, J. L., Bablani, D., Ap-
puswamy, R., and Modha, D. S. Learned step size
quantization. arXiv preprint arXiv:1902.08153, 2019.

[17] Fino and Algazi. Unified matrix treatment of the fast
walsh-hadamard transform. IEEE Transactions on
Computers, 100(11):1142–1146, 1976.

[18] Fishman, M., Chmiel, B., Banner, R., and Soudry,
D. Scaling fp8 training to trillion-token llms. arXiv
preprint arXiv:2409.12517, 2024.

[19] Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh,
D. GPTQ: Accurate post-training compression for
generative pretrained transformers. arXiv preprint
arXiv:2210.17323, 2022. URL https://arxiv.
org/abs/2210.17323.

[20] Frantar, E., Ruiz, C. R., Houlsby, N., Alistarh, D.,
and Evci, U. Scaling laws for sparsely-connected
foundation models. In International Conference on
Learning Representations, 2024.

[21] Frantar, E., Evci, U., Park, W., Houlsby, N., and Al-
istarh, D. Compression scaling laws:unifying spar-
sity and quantization, 2025. URL https://arxiv.
org/abs/2502.16440.

[22] Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Ka-
dian, A., Al-Dahle, A., Letman, A., Mathur, A., Schel-
ten, A., Vaughan, A., Yang, A., Fan, A., Goyal, A.,
Hartshorn, A., Yang, A., Mitra, A., Sravankumar, A.,

6

https://arxiv.org/abs/2404.00456
https://arxiv.org/abs/2404.00456
https://arxiv.org/abs/2501.02625
https://arxiv.org/abs/2502.08606
https://arxiv.org/abs/2502.08606
https://arxiv.org/abs/2307.13304
https://arxiv.org/abs/2112.10769
https://github.com/Dao-AILab/fast-hadamard-transform
https://github.com/Dao-AILab/fast-hadamard-transform
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2104.08758
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2502.16440
https://arxiv.org/abs/2502.16440

Quartet: Native FP4 Training

Korenev, A., Hinsvark, A., Rao, A., Zhang, A., Ro-
driguez, A., Gregerson, A., Spataru, A., Roziere, B.,
Biron, B., Tang, B., Chern, B., Caucheteux, C., Nayak,
C., Bi, C., Marra, C., McConnell, C., Keller, C., Touret,
C., Wu, C., Wong, C., Ferrer, C. C., Nikolaidis, C.,
Allonsius, D., Song, D., Pintz, D., Livshits, D., Wyatt,
D., Esiobu, D., Choudhary, D., Mahajan, D., Garcia-
Olano, D., Perino, D., Hupkes, D., Lakomkin, E., Al-
Badawy, E., Lobanova, E., Dinan, E., Smith, E. M.,
Radenovic, F., Guzmán, F., Zhang, F., Synnaeve, G.,
Lee, G., Anderson, G. L., Thattai, G., Nail, G., Mialon,
G., Pang, G., Cucurell, G., Nguyen, H., Korevaar, H.,
Xu, H., Touvron, H., Zarov, I., Ibarra, I. A., Kloumann,
I., Misra, I., Evtimov, I., Zhang, J., Copet, J., Lee, J.,
Geffert, J., Vranes, J., Park, J., Mahadeokar, J., Shah,
J., van der Linde, J., Billock, J., Hong, J., Lee, J., Fu,
J., Chi, J., Huang, J., Liu, J., Wang, J., Yu, J., Bitton, J.,
Spisak, J., Park, J., Rocca, J., Johnstun, J., Saxe, J., Jia,
J., Alwala, K. V., Prasad, K., Upasani, K., Plawiak, K.,
Li, K., Heafield, K., Stone, K., El-Arini, K., Iyer, K.,
Malik, K., Chiu, K., Bhalla, K., Lakhotia, K., Rantala-
Yeary, L., van der Maaten, L., Chen, L., Tan, L., Jenk-
ins, L., Martin, L., Madaan, L., Malo, L., Blecher, L.,
Landzaat, L., de Oliveira, L., Muzzi, M., Pasupuleti,
M., Singh, M., Paluri, M., Kardas, M., Tsimpoukelli,
M., Oldham, M., Rita, M., Pavlova, M., Kambadur, M.,
Lewis, M., Si, M., Singh, M. K., Hassan, M., Goyal,
N., Torabi, N., Bashlykov, N., Bogoychev, N., Chat-
terji, N., Zhang, N., Duchenne, O., Çelebi, O., Alrassy,
P., Zhang, P., Li, P., Vasic, P., Weng, P., Bhargava, P.,
Dubal, P., Krishnan, P., Koura, P. S., Xu, P., He, Q.,
Dong, Q., Srinivasan, R., Ganapathy, R., Calderer, R.,
Cabral, R. S., Stojnic, R., Raileanu, R., Maheswari,
R., Girdhar, R., Patel, R., Sauvestre, R., Polidoro, R.,
Sumbaly, R., Taylor, R., Silva, R., Hou, R., Wang,
R., Hosseini, S., Chennabasappa, S., Singh, S., Bell,
S., Kim, S. S., Edunov, S., Nie, S., Narang, S., Ra-
parthy, S., Shen, S., Wan, S., Bhosale, S., Zhang, S.,
Vandenhende, S., Batra, S., Whitman, S., Sootla, S.,
Collot, S., Gururangan, S., Borodinsky, S., Herman,
T., Fowler, T., Sheasha, T., Georgiou, T., Scialom,
T., Speckbacher, T., Mihaylov, T., Xiao, T., Karn, U.,
Goswami, V., Gupta, V., Ramanathan, V., Kerkez, V.,
Gonguet, V., Do, V., Vogeti, V., Albiero, V., Petrovic,
V., Chu, W., Xiong, W., Fu, W., Meers, W., Martinet,
X., Wang, X., Wang, X., Tan, X. E., Xia, X., Xie, X.,
Jia, X., Wang, X., Goldschlag, Y., Gaur, Y., Babaei, Y.,
Wen, Y., Song, Y., Zhang, Y., Li, Y., Mao, Y., Coud-
ert, Z. D., Yan, Z., Chen, Z., Papakipos, Z., Singh,
A., Srivastava, A., Jain, A., Kelsey, A., Shajnfeld, A.,
Gangidi, A., Victoria, A., Goldstand, A., Menon, A.,
Sharma, A., Boesenberg, A., Baevski, A., Feinstein,
A., Kallet, A., Sangani, A., Teo, A., Yunus, A., Lupu,
A., Alvarado, A., Caples, A., Gu, A., Ho, A., Poulton,
A., Ryan, A., Ramchandani, A., Dong, A., Franco,

A., Goyal, A., Saraf, A., Chowdhury, A., Gabriel, A.,
Bharambe, A., Eisenman, A., Yazdan, A., James, B.,
Maurer, B., Leonhardi, B., Huang, B., Loyd, B., Paola,
B. D., Paranjape, B., Liu, B., Wu, B., Ni, B., Han-
cock, B., Wasti, B., Spence, B., Stojkovic, B., Gamido,
B., Montalvo, B., Parker, C., Burton, C., Mejia, C.,
Liu, C., Wang, C., Kim, C., Zhou, C., Hu, C., Chu,
C.-H., Cai, C., Tindal, C., Feichtenhofer, C., Gao, C.,
Civin, D., Beaty, D., Kreymer, D., Li, D., Adkins,
D., Xu, D., Testuggine, D., David, D., Parikh, D.,
Liskovich, D., Foss, D., Wang, D., Le, D., Holland,
D., Dowling, E., Jamil, E., Montgomery, E., Presani,
E., Hahn, E., Wood, E., Le, E.-T., Brinkman, E., Ar-
caute, E., Dunbar, E., Smothers, E., Sun, F., Kreuk,
F., Tian, F., Kokkinos, F., Ozgenel, F., Caggioni, F.,
Kanayet, F., Seide, F., Florez, G. M., Schwarz, G.,
Badeer, G., Swee, G., Halpern, G., Herman, G., Sizov,
G., Guangyi, Zhang, Lakshminarayanan, G., Inan, H.,
Shojanazeri, H., Zou, H., Wang, H., Zha, H., Habeeb,
H., Rudolph, H., Suk, H., Aspegren, H., Goldman, H.,
Zhan, H., Damlaj, I., Molybog, I., Tufanov, I., Leon-
tiadis, I., Veliche, I.-E., Gat, I., Weissman, J., Geboski,
J., Kohli, J., Lam, J., Asher, J., Gaya, J.-B., Marcus,
J., Tang, J., Chan, J., Zhen, J., Reizenstein, J., Teboul,
J., Zhong, J., Jin, J., Yang, J., Cummings, J., Carvill,
J., Shepard, J., McPhie, J., Torres, J., Ginsburg, J.,
Wang, J., Wu, K., U, K. H., Saxena, K., Khandelwal,
K., Zand, K., Matosich, K., Veeraraghavan, K., Miche-
lena, K., Li, K., Jagadeesh, K., Huang, K., Chawla,
K., Huang, K., Chen, L., Garg, L., A, L., Silva, L.,
Bell, L., Zhang, L., Guo, L., Yu, L., Moshkovich, L.,
Wehrstedt, L., Khabsa, M., Avalani, M., Bhatt, M.,
Mankus, M., Hasson, M., Lennie, M., Reso, M., Gro-
shev, M., Naumov, M., Lathi, M., Keneally, M., Liu,
M., Seltzer, M. L., Valko, M., Restrepo, M., Patel, M.,
Vyatskov, M., Samvelyan, M., Clark, M., Macey, M.,
Wang, M., Hermoso, M. J., Metanat, M., Rastegari,
M., Bansal, M., Santhanam, N., Parks, N., White, N.,
Bawa, N., Singhal, N., Egebo, N., Usunier, N., Mehta,
N., Laptev, N. P., Dong, N., Cheng, N., Chernoguz, O.,
Hart, O., Salpekar, O., Kalinli, O., Kent, P., Parekh, P.,
Saab, P., Balaji, P., Rittner, P., Bontrager, P., Roux, P.,
Dollar, P., Zvyagina, P., Ratanchandani, P., Yuvraj, P.,
Liang, Q., Alao, R., Rodriguez, R., Ayub, R., Murthy,
R., Nayani, R., Mitra, R., Parthasarathy, R., Li, R.,
Hogan, R., Battey, R., Wang, R., Howes, R., Rinott,
R., Mehta, S., Siby, S., Bondu, S. J., Datta, S., Chugh,
S., Hunt, S., Dhillon, S., Sidorov, S., Pan, S., Maha-
jan, S., Verma, S., Yamamoto, S., Ramaswamy, S.,
Lindsay, S., Lindsay, S., Feng, S., Lin, S., Zha, S. C.,
Patil, S., Shankar, S., Zhang, S., Zhang, S., Wang,
S., Agarwal, S., Sajuyigbe, S., Chintala, S., Max, S.,
Chen, S., Kehoe, S., Satterfield, S., Govindaprasad, S.,
Gupta, S., Deng, S., Cho, S., Virk, S., Subramanian,
S., Choudhury, S., Goldman, S., Remez, T., Glaser,

7

Quartet: Native FP4 Training

T., Best, T., Koehler, T., Robinson, T., Li, T., Zhang,
T., Matthews, T., Chou, T., Shaked, T., Vontimitta,
V., Ajayi, V., Montanez, V., Mohan, V., Kumar, V. S.,
Mangla, V., Ionescu, V., Poenaru, V., Mihailescu, V. T.,
Ivanov, V., Li, W., Wang, W., Jiang, W., Bouaziz, W.,
Constable, W., Tang, X., Wu, X., Wang, X., Wu, X.,
Gao, X., Kleinman, Y., Chen, Y., Hu, Y., Jia, Y., Qi,
Y., Li, Y., Zhang, Y., Zhang, Y., Adi, Y., Nam, Y., Yu,
Wang, Zhao, Y., Hao, Y., Qian, Y., Li, Y., He, Y., Rait,
Z., DeVito, Z., Rosnbrick, Z., Wen, Z., Yang, Z., Zhao,
Z., and Ma, Z. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

[23] Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya,
E., Cai, T., Rutherford, E., de Las Casas, D., Hen-
dricks, L. A., Welbl, J., Clark, A., Hennigan, T.,
Noland, E., Millican, K., van den Driessche, G.,
Damoc, B., Guy, A., Osindero, S., Simonyan, K.,
Elsen, E., Rae, J. W., Vinyals, O., and Sifre, L.
Training compute-optimal large language models,
2022. URL https://arxiv.org/abs/2203.
15556.

[24] Kaplan, J., McCandlish, S., Henighan, T., Brown,
T. B., Chess, B., Child, R., Gray, S., Radford, A.,
Wu, J., and Amodei, D. Scaling laws for neural lan-
guage models, 2020. URL https://arxiv.org/
abs/2001.08361.

[25] Kaushal, A., Vaidhya, T., Mondal, A. K., Pandey, T.,
Bhagat, A., and Rish, I. Spectra: Surprising effective-
ness of pretraining ternary language models at scale.
arXiv preprint arXiv:2407.12327, 2024.

[26] Kumar, T., Ankner, Z., Spector, B. F., Bordelon, B.,
Muennighoff, N., Paul, M., Pehlevan, C., Ré, C.,
and Raghunathan, A. Scaling laws for precision,
2024. URL https://arxiv.org/abs/2411.
04330.

[27] Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C.,
Zhao, C., Deng, C., Zhang, C., Ruan, C., Dai, D., Guo,
D., Yang, D., Chen, D., Ji, D., Li, E., Lin, F., Dai, F.,
Luo, F., Hao, G., Chen, G., Li, G., Zhang, H., Bao,
H., Xu, H., Wang, H., Zhang, H., Ding, H., Xin, H.,
Gao, H., Li, H., Qu, H., Cai, J. L., Liang, J., Guo, J.,
Ni, J., Li, J., Wang, J., Chen, J., Chen, J., Yuan, J.,
Qiu, J., Li, J., Song, J., Dong, K., Hu, K., Gao, K.,
Guan, K., Huang, K., Yu, K., Wang, L., Zhang, L.,
Xu, L., Xia, L., Zhao, L., Wang, L., Zhang, L., Li, M.,
Wang, M., Zhang, M., Zhang, M., Tang, M., Li, M.,
Tian, N., Huang, P., Wang, P., Zhang, P., Wang, Q.,
Zhu, Q., Chen, Q., Du, Q., Chen, R. J., Jin, R. L., Ge,
R., Zhang, R., Pan, R., Wang, R., Xu, R., Zhang, R.,
Chen, R., Li, S. S., Lu, S., Zhou, S., Chen, S., Wu,
S., Ye, S., Ma, S., Wang, S., Zhou, S., Yu, S., Zhou,
S., Pan, S., Wang, T., Yun, T., Pei, T., Sun, T., Xiao,

W. L., Zeng, W., Zhao, W., An, W., Liu, W., Liang,
W., Gao, W., Yu, W., Zhang, W., Li, X. Q., Jin, X.,
Wang, X., Bi, X., Liu, X., Wang, X., Shen, X., Chen,
X., Zhang, X., Chen, X., Nie, X., Sun, X., Wang, X.,
Cheng, X., Liu, X., Xie, X., Liu, X., Yu, X., Song, X.,
Shan, X., Zhou, X., Yang, X., Li, X., Su, X., Lin, X.,
Li, Y. K., Wang, Y. Q., Wei, Y. X., Zhu, Y. X., Zhang,
Y., Xu, Y., Huang, Y., Li, Y., Zhao, Y., Sun, Y., Li,
Y., Wang, Y., Yu, Y., Zheng, Y., Zhang, Y., Shi, Y.,
Xiong, Y., He, Y., Tang, Y., Piao, Y., Wang, Y., Tan,
Y., Ma, Y., Liu, Y., Guo, Y., Wu, Y., Ou, Y., Zhu, Y.,
Wang, Y., Gong, Y., Zou, Y., He, Y., Zha, Y., Xiong,
Y., Ma, Y., Yan, Y., Luo, Y., You, Y., Liu, Y., Zhou, Y.,
Wu, Z. F., Ren, Z. Z., Ren, Z., Sha, Z., Fu, Z., Xu, Z.,
Huang, Z., Zhang, Z., Xie, Z., Zhang, Z., Hao, Z., Gou,
Z., Ma, Z., Yan, Z., Shao, Z., Xu, Z., Wu, Z., Zhang,
Z., Li, Z., Gu, Z., Zhu, Z., Liu, Z., Li, Z., Xie, Z.,
Song, Z., Gao, Z., and Pan, Z. Deepseek-v3 technical
report. arXiv preprint arXiv:2412.19437, 2024. URL
https://arxiv.org/abs/2412.19437.

[28] Loshchilov, I. and Hutter, F. Decoupled weight decay
regularization, 2019. URL https://arxiv.org/
abs/1711.05101.

[29] Micikevicius, P., Narang, S., Alben, J., Diamos, G.,
Elsen, E., Garcia, D., Ginsburg, B., Houston, M.,
Kuchaiev, O., Venkatesh, G., and Wu, H. Mixed preci-
sion training, 2018. URL https://arxiv.org/
abs/1710.03740.

[30] NVIDIA Corporation. Nvidia blackwell architecture
technical brief. https://resources.nvidia.
com/en-us-blackwell-architecture,
2024. Accessed: 2025-05-13.

[31] Open Compute Project. Ocp microscaling for-
mats (mx) specification version 1.0. https:
//www.opencompute.org/documents/
ocp-microscaling-formats-mx-v1-0-spec-final-pdf,
2023. Accessed: 2025-05-13.

[32] Panferov, A., Chen, J., Tabesh, S., Castro, R. L.,
Nikdan, M., and Alistarh, D. Quest: Stable training
of llms with 1-bit weights and activations, 2025. URL
https://arxiv.org/abs/2502.05003.

[33] Sardana, N., Portes, J., Doubov, S., and Frankle, J.
Beyond chinchilla-optimal: Accounting for inference
in language model scaling laws, 2025. URL https:
//arxiv.org/abs/2401.00448.

[34] Sun, X., Wang, N., Chen, C.-Y., Ni, J., Agrawal, A.,
Cui, X., Venkataramani, S., El Maghraoui, K., Srini-
vasan, V., and Gopalakrishnan, K. Ultra-Low Precision
4-bit Training of Deep Neural Networks. In Advances
in Neural Information Processing Systems (NeurIPS),
2020.

8

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2411.04330
https://arxiv.org/abs/2411.04330
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1710.03740
https://arxiv.org/abs/1710.03740
https://resources.nvidia.com/en-us-blackwell-architecture
https://resources.nvidia.com/en-us-blackwell-architecture
https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
https://arxiv.org/abs/2502.05003
https://arxiv.org/abs/2401.00448
https://arxiv.org/abs/2401.00448

Quartet: Native FP4 Training

[35] Suresh, A. T., Felix, X. Y., Kumar, S., and McMahan,
H. B. Distributed mean estimation with limited com-
munication. In International conference on machine
learning, pp. 3329–3337. PMLR, 2017.

[36] Team, P. Hadacore: Accelerating large language
models with fast hadamard transforms. https:
//pytorch.org/blog/hadacore/, 2024. Ac-
cessed: 2025-05-13.

[37] Thakkar, V., Ramani, P., Cecka, C., Shivam, A., Lu,
H., Yan, E., Kosaian, J., Hoemmen, M., Wu, H.,
Kerr, A., Nicely, M., Merrill, D., Blasig, D., Qiao,
F., Majcher, P., Springer, P., Hohnerbach, M., Wang,
J., and Gupta, M. CUTLASS, January 2025. URL
https://github.com/NVIDIA/cutlass.

[38] Touvron, H., Martin, L., Stone, K., Albert, P., Alma-
hairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhar-
gava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer,
C. C., Chen, M., Cucurull, G., Esiobu, D., Fernandes,
J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V.,
Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan,
H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann,
I., Korenev, A., Koura, P. S., Lachaux, M.-A., Lavril,
T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet,
X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y.,
Poulton, A., Reizenstein, J., Rungta, R., Saladi, K.,
Schelten, A., Silva, R., Smith, E. M., Subramanian,
R., Tan, X. E., Tang, B., Taylor, R., Williams, A.,
Kuan, J. X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan,
A., Kambadur, M., Narang, S., Rodriguez, A., Sto-
jnic, R., Edunov, S., and Scialom, T. Llama 2: Open
foundation and fine-tuned chat models, 2023. URL
https://arxiv.org/abs/2307.09288.

[39] Tseng, A., Yu, T., and Park, Y. Training llms with
mxfp4, 2025. URL https://arxiv.org/abs/
2502.20586.

[40] Vargaftik, S., Basat, R. B., Portnoy, A., Mendelson,
G., Ben-Itzhak, Y., and Mitzenmacher, M. Drive: One-
bit distributed mean estimation, 2021. URL https:
//arxiv.org/abs/2105.08339.

[41] Vargaftik, S., Basat, R. B., Portnoy, A., Mendelson,
G., Ben-Itzhak, Y., and Mitzenmacher, M. Eden:
Communication-efficient and robust distributed mean
estimation for federated learning, 2022. URL https:
//arxiv.org/abs/2108.08842.

[42] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.
Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

[43] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin,

I. Attention is all you need, 2023. URL https:
//arxiv.org/abs/1706.03762.

[44] Wang, H., Ma, S., Dong, L., Huang, S., Wang, H., Ma,
L., Yang, F., Wang, R., Wu, Y., and Wei, F. Bitnet:
Scaling 1-bit transformers for large language models.
arXiv preprint arXiv:2310.11453, 2023.

[45] Wang, R., Gong, Y., Liu, X., Zhao, G., Yang, Z., Guo,
B., Zha, Z., and Cheng, P. Optimizing Large Lan-
guage Model Training Using FP4 Quantization. arXiv
preprint arXiv:2501.17116, 2024.

[46] Wortsman, M., Dettmers, T., Zettlemoyer, L., Mor-
cos, A., Farhadi, A., and Schmidt, L. Stable and
low-precision training for large-scale vision-language
models. Advances in Neural Information Processing
Systems, 36:10271–10298, 2023.

[47] Wortsman, M., Dettmers, T., Zettlemoyer, L., Morcos,
A. S., Farhadi, A., and Schmidt, L. Stable and Low-
Precision Training for Large-Scale Vision-Language
Models. arXiv preprint arXiv:2304.13013, 2023.

[48] Xi, H., Li, C., Chen, J., and Zhu, J. Training Trans-
formers with 4-bit Integers. In Advances in Neural
Information Processing Systems (NeurIPS), 2023.

[49] Xi, H., Chen, Y., Zhao, K., Zheng, K., Chen, J., and
Zhu, J. Jetfire: Efficient and accurate transformer pre-
training with int8 data flow and per-block quantization.
arXiv preprint arXiv:2403.12422, 2024.

[50] Xi, H., Chen, Y., Zhao, K., Zheng, K., Chen, J., and
Zhu, J. Jetfire: Efficient and Accurate Transformer
Pretraining with INT8 Data Flow and Per-Block Quan-
tization. In Proceedings of the 41st International Con-
ference on Machine Learning (ICML), 2024.

[51] Yang, Y., Wu, S., Deng, L., Yan, T., Xie, Y., and
Li, G. Training High-Performance and Large-Scale
Deep Neural Networks with Full 8-bit Integers. arXiv
preprint arXiv:1909.02384, 2020.

9

https://pytorch.org/blog/hadacore/
https://pytorch.org/blog/hadacore/
https://github.com/NVIDIA/cutlass
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2502.20586
https://arxiv.org/abs/2502.20586
https://arxiv.org/abs/2105.08339
https://arxiv.org/abs/2105.08339
https://arxiv.org/abs/2108.08842
https://arxiv.org/abs/2108.08842
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

Quartet: Native FP4 Training

A. Related Work
Training in 8-bit formats. Early work on low-precision neural network training focused on 8-bit or higher precisions,
mainly on CNNs. Banner et al. [4] demonstrated accurate 8-bit training via careful scaling and higher-precision accumulation.
Yang et al. [51] proposed a framework that quantized weights, activations, gradients, errors, and even optimizer states to INT,
achieving for the first time completely integer-only training with comparable accuracy. SwitchBack [47] and JetFire [50]
build on this progress, targeting 8-bit training for Transformers [42]. Specifically, SwitchBack uses a hybrid INT8/BF16
linear layer for vision-language models, performing forward and input-gradient MatMuls in INT8 while computing weight
gradients in 16-bit; this yielded 13–25% end-to-end speedups on CLIP models with accuracy within 0.1% of full precision.

JetFire [50] achieved fully INT8 training for Transformers by using a novel per-block quantization scheme to handle
activation and gradient outliers. By partitioning matrices into small blocks and scaling each block independently, JetFire
preserved accuracy comparable to FP16 training while obtaining ∼ 40% end-to-end speedup and 1.49× reduction in memory
usage. The JetFire approach is conceptually similar to the FP8 DeepSeek training technique [27], which used larger block
sizes. Recently, HALO [3] improved upon JetFire in terms of the accuracy-speedup trade-off in INT8, specifically focusing
on low-precision fine-tuning. In our work, we will treat FP8 as the lossless baseline for the purposes of comparison.

End-to-end lower-precision training. As our results and prior work suggest, going below 8-bit precision in training
using the above approaches is extremely challenging, due to narrower dynamic range and higher error. This frontier
was first explored by Sun et al. [34], who achieved 4-bit training on ResNets by using a custom numeric format, which
unfortunately is far from being supported in hardware. Chmiel et al. [10] introduced a logarithmic unbiased quantization
(LUQ) scheme to this end, combining two prior ideas: (1) a log-scale FP4-type format to cover a wider dynamic range,
and (2) applying stochastic unbiased rounding on the backward. For reference, LUQ incurs a 1.1% top-1 accuracy drop on
ResNet50/ImageNet, and has not been validated on hardware-supported FP formats. Xi et al. [48] proposed a method to
train Transformers using INT4 effective precision for all linear layers, using specialized quantizers: block-wise Hadamard
transform and LSQ [16] for outlier mitigation on the forward pass, and leverage score sampling on the backward pass to
exploit structured sparsity, together with a custom INT4-effective format. Their approach trains BERT-family models within
1-2% accuracy gap relative to FP16, with a 2.2x speedup on individual matrix multiplies (relative to 4x theoretical speedup),
leading to up to 35% faster training end-to-end.

We compare relative to these techniques in Section 5, and show that Quartet outperforms them significantly in terms of
accuracy and stability.

Mixed-precision training in low-precision formats. Given the importance of inference cost reductions, there has been
significant work on quantization-aware training (QAT) [12; 7; 16; 5; 44; 25], i.e. methods that only quantize the forward
pass. Two key difficulties in this setting are 1) minimizing the error induced by quantization on the forward pass, and 2)
obtaining a stable gradient estimator over the resulting discrete space. With regards to error reduction, existing methods
either try to find a good “learnable” fit w.r.t. the underlying continuous distribution [12; 16], or perform noise injection
during QAT in order to make the network more robust to quantization [5]. Closer to our work, Wang et al. [45] explored FP4
QAT, introducing a “smoother” gradient estimator, together with outlier clamping and compensation to handle activation
outliers. While their approach shows good accuracy, it is fairly complex and not validated in terms of efficient support.
Concurrent work by [32] provided a simpler alternative approach, based on more precise MSE fitting, an optional Hadamard
rotation, and a clipping-aware “trust” gradient estimator. By contrast with these forward-only approaches, recent work
by Tseng et al. [39] investigated backward-only quantization with the MXFP4 format, signaling the importance of stochastic
rounding and outlier mitigation in low-precision backpropagation.

B. Background
Quantization grids. Quantization maps high-precision internal model states, such as weights, activations, or gradients,
to a lower-precision discrete set, i.e. the quantization grid. This grid can be uniform, e.g., for integer quantization, or
non-uniform, e.g., floating-point (FP) quantization, where the value spacing is roughly exponential for fixed exponent. Since
the original values may differ in scale compared to the grid, a higher-precision scale s is typically stored alongside the
quantized values. For a vector x, the quantization process can be written as q(x) = round

(
x
s ; grid

)
, and the original values

can be approximately reconstructed as x̂ = s · q(x). Common choices for the scale are setting it to the maximum absolute
value (absmax) in x (to avoid clipping) or optimizing it to minimize the mean squared quantization error, e.g. [32].

Quantization granularity. Apart from grid choice, quantization methods also differ in the granularity of the scales. A

10

Quartet: Native FP4 Training

single scale value can be shared across an entire tensor, e.g. [3], across each row or column [32], or over more fine-grained
custom-defined blocks, such as 2D blocks [49; 27] or 1D blocks [31; 39]. Notably, the latest Blackwell GPU architecture [30]
introduces hardware support for MXFP4/6/8 and NVFP4 formats. MXFP [31] formats share an FP8 power-of-two scale
over each 1D block of 32 elements, while NVFP4 [30] uses FP8 (E4M3) scales and 1D blocks of 16 elements.

Rounding. Quantization typically involves rounding, e.g. via deterministic rounding to the nearest grid point, results in
the lowest mean squared error (MSE). In contrast, stochastic rounding introduces randomness, rounding up or down with
probabilities based on the input’s distance to nearby grid points. While it may introduce higher MSE, stochastic rounding
helps control bias, which can be crucial for maintaining the convergence of iterative optimization algorithms [1].

Outlier mitigation. One key issue when quantizing neural networks is the existence of large outlier values in the network
weights, activations, and gradients [14]. One standard way of mitigating such outliers [35; 9; 3; 2; 39] is via the Hadamard
transform: given a vector x ∈ Rd, h(x) is defined as h(x) = Hdx, where Hd ∈ Rd×d is the normalized Hadamard matrix
with elements from {±1}. Hadamard matrices have a recursive structure Hd = 1√

2
H2 ⊗Hd/2, which enables efficient

computation when d is a power of two [17]. Optimized FWHT implementations for GPUs are available [13; 36]. When d
is not a power of two, the input vector x is typically either zero-padded to the next power of two or transformed using a
Grouped Hadamard Transform, where x is split into equal-sized blocks (each with power-of-two length), and the Hadamard
transform is applied independently to each block.

Blackwell Architecture Support. NVIDIA’s 5th-gen. Tensor Cores in Blackwell [30] provide native 4-bit floating-point
execution. The cores support different block-scaled formats such as MXFP4 [31] and NVFP4, which roughly double the
peak throughput over FP8/FP6, with a single B200 GPU peaking at 18 PFLOPS of dense FP4 compute [30]. Interestingly,
our investigation shows that, as of now, MXFP4 is the only microscaling format with support for all required layouts
for both forward and backward multiplications in low precision on Blackwell [37]. Therefore, we adopt MXFP4 for our
implementation. This format stores each value using 1 sign bit + 1 mantissa bit + 2-bits for exponent. Every group of 32
elements shares a common 8-bit scaling factor, represented with 8 exponent bits, and no bits for mantissa. Blackwell’s
5th-gen. Tensor Cores handle the required on-the-fly rescaling in hardware, without the need for software-based rescaling at
CUDA level. Additional details are provided in Section 4.

LLM pre-training. We pre-train Transformers [43] of the Llama-2 [38] architecture in the range of 30, 50, 100, 200 million
non-embedding parameters across a wide range of data-to-parameter ratios raging from 25x (around compute-optimal [23])
to 800x (extreme data saturation). We additionally selectively scale the model size up to around 7 billion parameters to verify
training stability. We train all models on the train split of the C4 [15] dataset and report C4 validation loss as the main metric.
We use the AdamW optimizer [28] weight decay of 0.1, gradient clipping of 1.0, a 10% LR warmup and cosine schedule.
We identify the optimal LR for one of the small unquantized baseline models, scale it inverse-proportionally to the number
of non-embedding parameters and reuse for every quantization scheme we evaluate. We present all hyper-parameters in
Appendix E.

C. PMA Analysis
To connect PMA with training dynamics, we analyze the cumulative effect of misalignment and error on backward
quantization for a 30M-parameters Llama model. In Figure 3 (a) and (c), we plot the alignment metrics–Cosine Similarity
and PMA—for inter-layer activation gradients as a function of back-propagation “depth”. We can again observe the trade-off
between similarity and magnitude alignment. Finally, Figure 3 (c) connects those quantities to final model quality (loss gap
vs. full-precision model) for increasing data-vs-parameters.

D. Extra Kernel Information
Below, we provide additional description of the two-stage Quartet kernels.

Stage 1: Fused Quantization-Related Operations. First, we observe that, thanks to the small group size, the Hadamard
transform can be implemented as a direct GEMM between the corresponding input matrix and a fixed 32× 32 Hadamard
matrix (see Sec. B), producing output in FP32, which is stored in GPU Shared Memory (SMEM). This allows us to
implement the Hadamard operation efficiently by leveraging CUTLASS’s multilevel tiling templates to optimize data
movement. All subsequent operations are integrated via a custom CUTLASS epilogue, which utilizes the intermediate
results previously stored in higher levels of the memory hierarchy and operates locally in the Register File (RF). At this
stage, Blackwell’s new hardware support is used to downcast FP32 values to FP4 (E2M1) using the PTX instructions for this

11

Quartet: Native FP4 Training

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Backprop Distance, Blocks

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

1.025

C
os

in
e

Si
m

ila
rit

y

(a)

SR AbsMax
RTN AbsMax
QuEST
RTN AbsMax PMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Backprop Distance, Blocks

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Pr
oj

ec
tio

n
M

ag
ni

tu
de

 A
lig

nm
en

t (
1/

S)

(b)

SR AbsMax
RTN AbsMax
QuEST
RTN AbsMax PMA

102 103

D/N

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

C
4

Va
l L

os
s G

ap

(c)

SR AbsMax
RTN AbsMax
RTN AbsMax PMA

Figure 3. The effect of backward pass quantization on LLM training gradient quality and impact on performance: (a, left) and (b, middle)
shows cosine similarity and projection magnitude alignement with unquantized reference, while (c, right) shows performance gaps with a
non-quantized baseline for a set model sizes and data-to-parameter ratios (D/N).

purpose. To construct the final MXFP4 format, we compute scaling factors of shape 1× 32. These scales are represented in
8-bit using the E8M0 format. Finally, the clipping mask is computed, and the three resulting tensors (values, scales, and
mask) are written to Global Memory (GMEM). Throughout, data storage is optimized to use the widest memory instructions
possible.

Stage 2: Dedicated GEMM Kernel. Blackwell introduces the tcgen05.mma instructions, which natively support matrix
multiplication with scale factors in the form D = C + (A × SFA) · (B × SFB). These scale factors are applied along
the inner (K) dimension of the GEMM. For MXFP types, every 32 elements along the K-dimension of matrices A and
B share a corresponding scale factor. This implies that an M ×K matrix A is associated with a scale matrix SFA of size
M × ⌈K/32⌉. Our dedicated kernel is based on CUTLASS block-scaled GEMM for narrow precision. As part of this
implementation, we also included the necessary functions to reorganize the scale factors generated in the Stage 1, aligning
them with the layout required by this architecture [30].

E. Training Hyper-parameters
Table 4 lists model-specific hyper-parameters. Table 5 lists hyper-parameters shared across all experiments.

Hyperparameter 30M 50M 100M 200M 7B

Number of Layers (Nlayer) 6 7 8 10 32
Embedding Dimension (Nembd) 640 768 1024 1280 4096
Attention Heads (Nhead) 5 6 8 10 32
Learning Rate (LR) 0.0012 0.0012 0.0006 0.0003 9.375·10−6

Table 4. Model-specific hyperparameters used in our experiments.

Hyperparameter Value

Sequence Length 512
Batch Size 512
Optimizer AdamW
Learning Rate Schedule Cosine decay with 10% warm-up
Gradient Clipping 1.0
Weight Decay (γ) 0.1
Number of GPUs 8
Data Type (optimizer/accumulators) FP32

Table 5. Common hyperparameters used across all model sizes and quantization setups.

12

Quartet: Native FP4 Training

102 103

D/N

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

C
4

Va
l L

os
s

N
=3

0M
N

=5
0M

N
=1

00
M

N
=2

00
M

Main Model, Busbridge et al.

Fit error: 1.88e-06

102 103

D/N

N
=3

0M
N

=5
0M

N
=1

00
M

N
=2

00
M

= 1 Model, Hoffman et al.

Fit error: 7.80e-06

102 103

D/N

N
=3

0M
N

=5
0M

N
=1

00
M

N
=2

00
M

= 1 Model, Kaplan et al.

Fit error: 1.20e-05

Figure 4. Comparison of various scaling law fits and their errors.

F. Scaling Law fitting
We fit the scaling law in two stages:

Stage 1. Identical to prior work [8], we fit the unquantized scaling law of the form

L(N,D) =

(
A

Nα
+

B

Dβ

)γ

+ E

on baseline BF16 runs for N ∈ [30M, 50M, 100M, 200M] and D/N ∈ [25, 50, 100, 200, 400, 800] (see Figure 1 (a))
using Huber loss with δ = 10−4 on logarithm of L. Table 6 shows the resulting fit.

Stage 2. Using the fixed fitted parameters from stage 1, we fit the additional effN and effD parameters using the same loss
function.

For the isolated methods compared in Section 2, we fit effN and effD independently for forward-only and backward-only
quantization respectively.

For the end-to-end 4-bit comparison in Section 5, we fitted the parameters jointly for the setups present in Table 3.

Alternative forms. We additionally for the scaling law forms with fixed γ = 1 [23] and β = 1 [24]. The fits are presented
in Figure 4 alongside the mainly used of Busbridge et al. [8].

Parameter A α B β E γ

Value 1.52 · 105 0.589 5.25 · 105 0.544 1.35 0.274

Table 6. Fitted scaling law coefficients.

G. Performance breakdown
Figure 5 presents a breakdown of runtime composition across three linear layer shapes in a LLaMA-7B model, taking the
MXFP4 forward pass as an example. Each subplot shows the percentage of total runtime spent in three key kernel stages:
matrix multiplication, quantization-related operations, and rearrangement of scaling factors for tcgen05.mma [30].

The figure compares three kernel configurations. The left subplot shows our fused kernel for quantization-related operations
using a basic 32 × 32 threadblock tile size. The center subplot increases this tile size to 128 × 32, resulting in a more
efficient quantization stage. The right subplot includes a custom Triton kernel, which further improves performance by
optimizing the MXFP rearrangement stage. All results are normalized to 100%.

13

Quartet: Native FP4 Training

(4096,4096) (4096,11008) (11008,4096)
0

20

40

60

80

100
Pe

rc
en

ta
ge

 o
f R

un
tim

e
(%

)
Quantization kernel: 32x32 threadblock tile

(4096,4096) (4096,11008) (11008,4096)

Quantization kernel: 128x32 threadblock tile

(4096,4096) (4096,11008) (11008,4096)

Triton MXFP rearrangement kernel

Matmul Quantization-related ops. MXFP rearrange

Figure 5. Breakdown of runtime composition across three linear layer shapes of a Llama-7B model, for an input of batch size 64, and
sequence length 512.

As the figure illustrates, tuning the quantization kernel significantly reduces the proportion of time spent in the quantization
stage—particularly for large matrix shapes. Increasing the threadblock tile size leads to more active warps per block,
enhancing arithmetic intensity and enabling better latency hiding. In CUTLASS-based implementations, this change
influences the multilevel tiling strategy (threadblock, warp, and instruction-level tiling), which is designed to optimize
data movement through shared memory and registers [37]. The Triton backend exhibits similar trends, with rearrangement
overheads further reduced and matrix multiplication dominating the total runtime.

H. End-to-end prefill speedups

16 32 64 128 256
Batch size (Sequence Length = 256)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Sp
ee

du
p

ov
er

 F
P8

End-to-End Prefill Speedup MXFP4 vs. FP8 on RTX5090

Figure 6. End-to-end prefill speedups for Quartet MXFP4 vs. FP8, across different batch sizes, using the 7B parameter model on a single
RTX 5090.

Figure 6 illustrates the inference prefill speedup of MXFP4 over FP8 as a function of batch size, evaluated at a fixed sequence
length of 256 on a 7B parameter model. The results demonstrate a consistent improvement in performance using MXFP4
across all batch sizes, with speedup increasing progressively and peaking at 1.41× relative to FP8 at a batch size of 128,
where it plateaus.

I. Post-Training Quantization Results
We compare the results of applying post-training quantization (PTQ) against QUARTET using the MXFP4 format on
the largest 7B model. For the PTQ baseline, we evaluate against QUAROT [2], where the weights are quantized using
GPTQ [19]. To ensure a fair comparison, we introduce two key modifications to the original QUAROT approach:

14

Quartet: Native FP4 Training

1. Attention Module: We remove the use of online Hadamard transformations and instead apply a fixed Hadamard
transformation of size 128 to the output dimension of the v proj layer and the input dimension of the out proj layer.
This optimization accelerates the overall process by eliminating per-head online Hadamard computations, without
affecting accuracy, since we use a group size of 32 in the MXFP4 format.

2. MLP Down-Projection: For down projection layers with non-power-of-two dimensions in the MLP, we apply grouped
Hadamard transformations using the largest power-of-two size that evenly divides the intermediate dimension of the
MLP.

Model Size BF16 QuaRot Quartet(PTQ)

7B 16.40 18.19 17.77

Table 7. Perplexity results on C4 dataset using MXFP4 quantization. We use 128 samples from the training set (of the same dataset) as the
calibration set in GPTQ.

Table 7 presents the comparison between the PTQ scheme (QuaRot) and QUARTET. QUARTET achieves a 0.42-point lower
perplexity (PPL) compared to QuaRot when applied to the same model. Notably, QUARTET is also more efficient than
standard QAT methods, as it quantizes both forward and backward passes.

J. Compute Resources
The pre-training experiments were conducted on datacenter-grade machines with 8xH100 NVIDIA GPUs for a total compute
of around 6,000 GPU-hours. Although most experiments do not require such an elaborate setup, we found the 7B pre-training
experiment specifically to be very DRAM-demanding and requiring such specific hardware.

The speedup results were obtained on a consumer-grade NVIDIA RTX5090 GPU with total runtime of under 1 hour.

15

