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Abstract
Link prediction (LP) is a central task in graph-1

based recommendation systems, enabling the dis-2

covery of potential user-item interactions. How-3

ever, existing LP models often struggle with data4

sparsity, leading to spurious correlations and poor5

generalization. In this work, we explore pretrain-6

ing as a scalable approach to causal learning for7

LP, aiming to extract invariant link formation mech-8

anisms from large and diverse graphs. We pro-9

pose a modular framework that decomposes link10

prediction into node-level and edge-level reason-11

ing, and introduce a Mixture-of-Experts (MoE) ar-12

chitecture to model heterogeneous causal patterns13

across data subsets. For deployment, we adopt a14

parameter-efficient adaptation strategy that aggre-15

gates expert outputs without full model retraining.16

Our approach, PALP, achieves state-of-the-art per-17

formance and efficiency on six real-world datasets,18

demonstrating the promise of pretraining and mod-19

ular adaptation as a scalable path toward causal rep-20

resentation learning in recommendation systems.21

1 Introduction22

Graph-based recommender systems have emerged as a pow-23

erful framework for modeling complex user-item interac-24

tions, enabling personalized content delivery in applica-25

tions such as e-commerce, social networks, and media plat-26

forms [Perozzi et al., 2014] [Fan et al., 2019]. A central task27

in these systems is link prediction (LP), which estimates the28

likelihood of unseen interactions between entities based on29

the observed graph structure and node attributes.30

Despite its importance, existing LP models often struggle31

with data sparsity, which manifests itself in two forms: lim-32

ited training data within individual datasets and limited diver-33

sity across training distributions. As a result, models tend to34

learn spurious correlations by overfitting to dataset-specific35

artifacts or shortcuts, leading to poor generalization when de-36

ployed on new graphs or under distribution shifts.37

Causal learning offers a promising framework to address38

these challenges by focusing on learning invariant mech-39

anisms—factors that causally influence link formation and40

remain stable across environments [Xu et al., 2025] [Gao41

et al., 2024]. However, applying causal learning to LP 42

and recommendation systems remains underexplored. Many 43

existing approaches require interventional data, depend on 44

strong assumptions about the data-generating process, or suf- 45

fer from scalability limitations in large graphs [Zhu et al., 46

2024] [Wang et al., 2020]. 47

In this work, we explore pretraining as a practical and scal- 48

able approach to causal learning for LP. By pretraining on 49

large-scale and diverse graphs, we aim to expose models to a 50

wide spectrum of generative patterns and enable them to dis- 51

till generalizable knowledge that more closely approximates 52

the true causal mechanisms behind link formation. Viewed 53

through a causal lens, pretraining serves as an implicit form 54

of environment diversity, supporting the discovery of stable 55

and transferable factors that generalize across domains. 56

To capture a comprehensive set of causal factors, we pro- 57

pose a two-branch LP framework that decomposes link for- 58

mation into node-level and edge-level processes. This modu- 59

lar design allows the model to isolate and learn from different 60

generative signals, i.e., semantic similarity and topological 61

structure [Mao et al., 2023]. To further disentangle heteroge- 62

neous causal factors and enhance representational capacity, 63

we introduce a Mixture-of-Experts (MoE) architecture [Ma 64

et al., 2024], in which each expert is responsible for model- 65

ing a distinct subset of the training data, thereby capturing 66

different patterns of link generation. Accompanying this, a 67

routing network dynamically selects which experts to consult 68

for each input query, enabling fine-grained specialization. 69

During downstream deployment, we adopt a parameter- 70

efficient adaptation strategy. Rather than fine-tuning the en- 71

tire model, we learn a small set of aggregation weights over 72

the pretrained experts, which is both computationally efficient 73

and mitigates the risk of catastrophic forgetting. 74

Empirically, our framework, Pretraining and Adaptation 75

for Link Prediction (PALP), achieves state-of-the-art general- 76

ization and efficiency across six real-world datasets. It consis- 77

tently outperforms both classical and pretrained LP baselines 78

while requiring over 104× fewer FLOPs. These results sup- 79

port the view that pretraining combined with modular adapta- 80

tion offers a scalable and effective path toward causal learn- 81

ing in recommendation systems. These findings reinforce the 82

potential of combining large-scale pretraining with modular 83

adaptation as a scalable and causally enhanced solution for 84

robust recommendation systems. 85



Contributions. This work makes the following key contri-86

butions:87

• We propose a novel perspective that leverages pretrain-88

ing as an approach to discover invariant link formation89

mechanisms across diverse graphs.90

• We develop a scalable framework that combines a two-91

branch design for semantic and structural modeling with92

a Mixture-of-Experts architecture to capture heteroge-93

neous causal patterns.94

• We propose a parameter-efficient adaptation strategy for95

robust deployment to new domains.96

• We demonstrate the effectiveness of our approach97

(PALP) on six real-world datasets, achieving superior98

performance and efficiency compared to strong LP base-99

lines.100

2 Background101

Link prediction (LP) aims to infer missing edges between102

node pairs in partially observed graphs. Given a graph G103

with adjacency matrix A ∈ Rn×n and node feature matrix104

X ∈ Rn×d, the task is to estimate the probability of form-105

ing an edge (i, j). Prior work suggests that link formation is106

driven by two primary mechanisms: feature proximity (FP)107

and structure proximity (SP) [Mao et al., 2023].108

FP reflects homophily—the tendency of similar nodes to109

connect, and is captured by node encoders such as Message110

Passing Neural Networks (MPNNs) [Gilmer et al., 2017],111

which produce embeddings used to compute link probabili-112

ties:113

H = NodeEncoder(A,X), pij = ScoreFunction(Hi⊙Hj).

where ⊙ denotes the Hadamard product. However, MPNNs114

struggle to model higher-order structures like triangles, lim-115

iting their ability to approximate heuristics such as com-116

mon neighbors, Adamic-Adar (AA), and Resource Allocation117

(RA) [Srinivasan and Ribeiro, 2019].118

SP, on the other hand, captures topological relationships119

through pairwise structural encodings that consider path over-120

laps and neighborhood intersections [Katz, 1953] [Newman,121

2001] [Li et al., 2020]:122

eij = EdgeEncoder(A, i, j), pij = ScoreFunction(eij).

To exploit both FP and SP, recent approaches have pro-123

posed hybrid models that fuse node and edge representa-124

tions [Wang et al., 2024] [Yun et al., 2021] [Wang et al.,125

2023] [Shomer et al., 2024]. A common strategy is to com-126

bine their outputs before scoring:127

pij = ScoreFunction(Hi ⊙Hj | eij).

3 Methodology128

We propose PALP, a scalable link prediction framework that129

decouples feature-based and structure-based modeling during130

pretraining while enabling effective fusion during adaptation.131

PALP adopts a two-branch pretraining strategy with Mixture- 132

of-Experts (MoE) in each branch to encode diverse link for- 133

mation patterns. It then applies a lightweight fusion module 134

to combine expert predictions at test time. Figure 1 illustrates 135

the architecture. 136

3.1 Pretraining with MoE 137

Node module. We use NAGPhormer [Wang et al., 2024] 138

as the node encoder due to its linear complexity and ability 139

to aggregate information from multiple hops, which is well- 140

suited for personalized receptive fields in link prediction. The 141

representation of node i is computed by: 142

hi = NAG([x0
i | x1

i | · · · | xK
i ]),

where xk
i aggregates k-hop neighborhood information. Given 143

node representations hi and hj , the link probability is esti- 144

mated by: 145

pnode
ij = σ(MLP(hi ⊙ hj)),

where ⊙ is the Hadamard product. 146

Edge module. To model structure proximity, we use 147

BUDDY [Li et al., 2020]—a heuristic structural encoder that 148

captures critical link formation factors (e.g., common neigh- 149

bors, Adamic-Adar, Resource Allocation) using node pair 150

distances: 151

eij = {Bij [d], Aij [du, dv]},

where Aij [du, dv] counts nodes at distances du and dv from 152

i and j, respectively, and Bij [d] =
∑

dv>k Aij [d, dv]. The 153

edge probability is computed as: 154

pedge
ij = σ(MLP(eij)).

MoE architecture. To increase the diversity of knowledge 155

encoded during pretraining, we instantiate K expert MLPs 156

per module and use a learnable gating function to softly as- 157

sign edges to experts. The gating score is computed using: 158

zij = MLP(gij), gij = xi + xj , wk
ij = −∥zij − ck∥,

where ck is the learnable centroid of the k-th cluster. We 159

apply Gumbel-Softmax to ensure differentiability: 160

pkij =
exp((wk

ij +Gk)/τ)∑
k′ exp((wk′

ij +Gk′)/τ)
,

where Gk ∼ Gumbel(0, 1) and τ is annealed across epochs to 161

promote early exploration and late exploitation. This mecha- 162

nism enables finer-grained modeling of heterogeneity in link 163

formation and helps prevent expert collapse. 164

Training. We optimize the sum of binary cross-entropy 165

losses from both branches. Given positive edges E+ and neg- 166

ative samples E−, the loss is: 167

L = − 1

|E+|+ |E−|

 ∑
(i,j)∈E+

log pij +
∑

(i,j)∈E−

log(1− pij)

 .
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Figure 1: An overview of PALP. (Left) We individually train the node module and edge module on the pretraining dataset. Each module
consists of a node/edge encoder to generate node/edge representations, a learnable gating function to route edges to different experts, and
a set of score functions (experts) to output the predicted probabilities. (Right) During adaptation, we learn a weight vector to adaptively
aggregate outputs from different experts. Note that all pretrained modules are kept frozen during adaptation, and only the weight vector is
updated using downstream training data.

3.2 Adaptation and Fusion Strategy168

After pretraining, PALP adapts to downstream graphs169

through a lightweight and efficient fusion mechanism.170

Specifically, we learn a global fusion vector p ∈ RK that171

assigns weights to the K pretrained experts across both the172

node and edge modules. Given the logits lkij from each expert173

for edge (i, j), the final prediction is computed as:174

pij = σ

(∑
k

pk · lkij

)
,

where only the fusion weights pk are updated during adapta-175

tion. All expert parameters are kept frozen. This strategy en-176

ables the downstream model to selectively aggregate knowl-177

edge from diverse pretraining signals while maintaining high178

efficiency. By leveraging soft aggregation over all experts,179

the model benefits from ensemble effects, improving robust-180

ness and generalization without incurring additional training181

overhead.182

3.3 Complexity Analysis183

PALP is designed for scalability, with its computational cost184

primarily arising from two components: representation gen-185

eration and link scoring. For the edge module, structural186

features are computed using BUDDY during preprocessing,187

incurring no runtime cost during training. The node mod-188

ule uses NAGPhormer, which, after precomputing multi-hop189

propagated features, has a training complexity of O(NKF 2),190

where N is the number of nodes, K is the number of hops,191

and F is the feature dimension. Since node embeddings192

are shared across edges, PALP supports efficient mini-batch193

training. The score function, used to compute probabilities194

for E edges, adds O(EF 2) to the total cost. Altogether, the195

overall pretraining complexity of PALP is O(NKF 2+EF 2),196

enabling efficient training on large-scale graphs with millions197

of nodes and edges.198

4 Experiments199

In this section, we evaluate the effectiveness and efficiency of200

PALP on six benchmark graphs. We compare PALP with a201

range of baselines and analyze how its design impacts perfor- 202

mance and computational cost. 203

4.1 Experimental Setup 204

Pretraining Data. We pretrain PALP on the ogbn- 205

papers100M dataset [Hu et al., 2020], the largest publicly 206

available academic graph. To address memory constraints 207

stemming from the large-scale feature matrix and to improve 208

training efficiency by eliminating on-the-fly sampling, we 209

partition the graph into multiple subgraphs using the METIS 210

algorithm, following the procedure in [Song et al., 2024]. 211

This preprocessing enables scalable training while preserving 212

local structure. Detailed statistics of the resulting subgraph 213

partitions are provided in Table 1. 214

Table 1: Summary of METIS partitions on ogbn-papers100M

#Graphs Avg. #Nodes Avg. #Edges #Node Range #Edge Range
11105 10000.90 61357.03 303 - 45748 328 - 122644

Evaluation Data. We evaluate PALP on six benchmark 215

graphs spanning citation and e-commerce domains: Cora, 216

Pubmed, Art, Business, History, and Child. The first four 217

datasets are derived from academic citation networks and re- 218

flect literature recommendation scenarios. Since they share 219

semantic and structural similarities with the pretraining cor- 220

pus (ogbn-papers100M), they are considered in-domain. In 221

contrast, History and Child are sampled from e-commerce in- 222

teraction graphs [Chen et al., 2024], representing product and 223

book recommendation tasks. Due to their differing data dis- 224

tributions and domain semantics, they serve as cross-domain 225

evaluation settings. For all datasets, we use a fixed edge split 226

of 40% for training, 10% for validation, and 50% for test- 227

ing. All node features are 384-dimensional SentenceBERT 228

embeddings [Reimers and Gurevych, 2019], and structural 229

features are precomputed using the sketching method from 230

BUDDY [Wang et al., 2024]. We evaluate model perfor- 231

mance using Mean Reciprocal Rank (MRR), computed over 232

100 negative samples per positive link. 233

Baselines. We compare PALP against two classes of meth- 234

ods. The first includes general-purpose models such as MLP, 235



Table 2: Statistics of downstream datasets

Dataset Name #Nodes #Edges Domain

Cora 2,708 10,858 Citation
Pubmed 19,717 88,670 Citation
Art 58,373 7,184 Citation
Business 4,279 36,697 Citation
History 4,153 12,622 E-commerce
Child 3,819 45,408 E-commerce

GCN [Kipf and Welling, 2016], and SAGE [Hamilton et al.,236

2017]. The second includes specialized link prediction mod-237

els: NCN [Wang et al., 2023], Neo-GNN [Yun et al., 2021]238

and BUDDY [Wang et al., 2024]. All baselines are trained239

end-to-end using the same node features.240

4.2 Performance Comparison241

Effectiveness. Table 3 presents the effectiveness compari-242

son across all six datasets. PALP consistently outperforms243

baseline methods on most datasets. Notably, it achieves sig-244

nificant improvements on Cora and History, surpassing the245

second-best model by over 3% in MRR. These gains are246

likely due to strong semantic alignment between the down-247

stream tasks and the pretraining corpus. On graphs with lower248

similarity to the pretraining data, e.g., Child, PALP slightly249

underperforms the top baseline but remains highly compet-250

itive. These results highlight PALP’s robust generalization251

ability, even under domain shifts, and demonstrate its effec-252

tiveness in both in-domain and cross-domain scenarios.253

Efficiency. Beyond predictive accuracy, PALP offers sub-254

stantial efficiency benefits. As illustrated in Figure 2, PALP255

reduces training-time FLOPs by over 10,000× compared to256

end-to-end models. This is achieved by freezing all pretrained257

modules and updating only a lightweight fusion vector. The258

adaptation process consists of a single pass through the ex-259

pert modules (node and edge) to extract logits, followed by260

training a logistic regressor with only K parameters. This de-261

sign makes PALP a practical solution for link prediction on262

resource-constrained platforms or rapid deployment scenar-263

ios.264

Table 3: Performance comparison on benchmark datasets. Metric:
Mean Reciprocal Rank (MRR).

Cora Pubmed Art Business History Child
MLP 54.97 66.86 56.71 40.76 64.53 70.48
GCN 53.53 70.56 62.98 41.25 66.41 75.79
SAGE 54.40 73.02 56.17 41.59 65.11 75.16
Neo 50.52 65.68 55.87 26.40 63.89 68.59
NCN 57.47 70.46 63.43 40.90 71.26 75.23
BUDDY 58.28 69.45 63.93 39.61 67.02 72.54
PALP 63.94 71.33 65.77 42.35 74.88 72.65

4.3 Ablation Study265

We conduct an ablation study to assess the contribution of266

different components in PALP. Specifically, we compare the267

following four variants:268

• Node-only: Uses only the pretrained node module for269

link prediction.270

Figure 2: Comparison of per-epoch FLOPs for different methods.
Numbers shown in log-scale.

• Edge-only: Uses only the pretrained edge module for 271

link prediction. 272

• PALP w/o MoE: A simplified version of PALP where 273

each module contains only a single expert, removing the 274

Mixture-of-Experts architecture. 275

• PALP: Our full method that adaptively fuses expert out- 276

puts using parameter-efficient tuning. 277

Table 4 reports the results on the Cora and Child datasets. 278

First, Node-only achieves strong results on both datasets, con- 279

firming the importance of feature proximity. However, Edge- 280

only lags behind, suggesting that structural signals alone can 281

be insufficient to model the factors of link formation. Sec- 282

ond, PALP w/o MoE achieves performance close to Node- 283

only, but slightly lower on both datasets. This indicates that 284

naively fusing semantic and structural information may not 285

provide benefits and even introduce conflicts across branches. 286

Finally, the full PALP model achieves the best performance, 287

showing the clear advantage of combining both modules with 288

MoE. This confirms that MoE plays a critical role in cap- 289

turing diverse link formation patterns and enabling effective 290

adaptation across heterogeneous datasets. Overall, these re- 291

sults validate that each component contributes meaningfully 292

to PALP’s overall effectiveness. 293

Table 4: Ablation study results on Cora and Child datasets. We
compare Node-only, Edge-only, PALP, and PALP w/o MoE.

Method Cora Child

Node-only 70.70 71.41
Edge-only 50.76 68.53
PALP w/o MoE 70.45 70.42
PALP 72.35 76.07

5 Conclusion 294

In this work, we introduced PALP, a scalable and causally 295

motivated framework for link prediction in graph-based rec- 296

ommendation systems. By leveraging large-scale pretrain- 297

ing and a modular two-branch architecture, PALP effectively 298

captures diverse generative factors underlying link forma- 299

tion, including both semantic and structural signals. The 300

integration of a Mixture-of-Experts architecture enables the 301

model to specialize in heterogeneous data regimes, while our 302



parameter-efficient adaptation strategy ensures robust and ef-303

ficient deployment across diverse downstream domains. Em-304

pirical results on six real-world datasets demonstrate that305

PALP achieves state-of-the-art performance while drastically306

reducing computational overhead. These findings highlight307

the potential of pretraining, when properly modularized and308

adapted, to serve as a practical pathway toward scalable and309

causally grounded link prediction.310
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