Towards Human-Level Bimanual Dexterous
Manipulation with Reinforcement Learning
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Abstract

Achieving human-level dexterity is an important open problem in robotics. How-
ever, tasks of dexterous hand manipulation, even at the baby level, are challenging
to solve through reinforcement learning (RL). The difficulty lies in the high degrees
of freedom and the required cooperation among heterogeneous agents (e.g., joints
of fingers). In this study, we propose the Bimanual Dexterous Hands Benchmark
(Bi-DexHands), a simulator that involves two dexterous hands with tens of bi-
manual manipulation tasks and thousands of target objects. Specifically, tasks in
Bi-DexHands are designed to match different levels of human motor skills accord-
ing to cognitive science literature. We built Bi-DexHands in the Issac Gym; this
enables highly efficient RL training, reaching 30,000+ FPS by only one single
NVIDIA RTX 3090. We provide a comprehensive benchmark for popular RL
algorithms under different settings; this includes Single-agent/Multi-agent RL,
Offline RL, Multi-task RL, and Meta RL. Our results show that the PPO type of
on-policy algorithms can master simple manipulation tasks that are equivalent
up to 48-month human babies (e.g., catching a flying object, opening a bottle),
while multi-agent RL can further help to master manipulations that require skilled
bimanual cooperation (e.g., lifting a pot, stacking blocks). Despite the success on
each single task, when it comes to acquiring multiple manipulation skills, existing
RL algorithms fail to work in most of the multi-task and the few-shot learning
settings, which calls for more substantial development from the RL community.
Our project is open sourced at https://github.com/PKU-MARL/DexterousHands.

1 Introduction

Humans have a skillful ability to manipulate objects of different shapes, sizes, and materials, which
rely on the dexterity of our hands and fingers. Building a robot inspired by human hands that can
autonomously manipulate various objects has always been an important component of the robotics
field [1]. The development of human dexterity begins in infancy and is influenced by what the physical
environment provides, including the objects available to the child [2]. As infants and children develop
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physical and intelligence, they are more likely to attempt complex movements, and often learn
dexterity through attempting movements and the consequences of their actions [3, 4, 5]. Similarly,
robot dexterity can not be a constant program pre-set in the laboratory. To acquire the capability of
object manipulations in the real world, robots must be able to learn dexterous manipulation skills as if
we were infants. As a result, we expect robots to learn to master the ability of dexterous manipulation
at the human level from daily tasks.

Recently, reinforcement learning (RL) algorithms have outperformed human experts in many fields
that require decision makings [6, 7]. In contrast to the traditional control methods, RL can complete
some challenging tasks in learning dexterous in-hand manipulation [8, 9, 10] or grasping [11, 12].
However, manipulation that generates changes on the object is still difficult[13]. More difficult
is generalization across tasks, although previous work can achieve simple level of tasks such as
throwing [14], sliding [15], poking [16], pivoting [17], and pushing [18], but is still difficult to perform
well in unstructured or contact-rich environments, which require the ability to combine and generalize
complex manipulation skills. In a nutshell, reaching human-level sophistication of hand dexterity and
bimanual coordination remains an open challenge for modern robotics researchers.

To help solve the problems mentioned above and let robots have the same dexterous manipulation
ability as humans, we developed a novel benchmark on bimanual dexterous manipulation for RL
algorithms along with a diverse set of tasks and objects named Bi-DexHands. We follow the principle
of Fine Motor Subtest (FMS) [19] to design tens of tasks, which provides the opportunities to observe
and evaluate specific skills that demonstrate a child’s ability to use their hands to play with toys,
manipulate objects, and use tools. Next, we tested the baselines of various model-free RL algorithms
to show the ability of the baseline algorithm in these tasks, not only the standard RL algorithms
but also multi-agent RL (MARL), offline RL, multi-task RL, and Meta RL algorithms, each of
them focuses on the bimanual collaboration, learning from demonstration, and task generalization,
respectively. Our major goal is to facilitate researchers to master human-level bimanual dexterous
manipulations with RL. Not limited to this, we also hope this study to provide a new platform for the
community of RL, robotics, and cognitive science. Bi-DexHands are developed with the following
key features:

* Isaac Gym Efficiency: Building on the Isaac Gym [20] simulator, Bi-DexHands supports
running thousands of environments simultaneously. On one NVIDIA RTX 3090 GPU,
Bi-DexHands can reach 30,000+ mean FPS by running 2,048 environments in parallel.

* Comprehensive RL Benchmark: We provide the first bimanual manipulation task environ-
ment for common RL, MARL, offline RL, multi-task RL, and Meta RL practitioners, along
with a comprehensive benchmark for SOTA continuous control model-free RL methods.

* Heterogeneous-agent Cooperation: Agents in Bi-DexHands (i.e., joints, fingers, hands,...)
are genuinely heterogeneous; this is different from common multi-agent environments such
as SMAC [21] where agents can simply share parameters to solve the task.

» Task Generalization: We introduced a variety of dexterous manipulation tasks (e.g., hand
over, lift up, throw, place, put...) as well as enormous target objects from the YCB [22] and
SAPIEN [23] dataset, thus allowing meta-RL and multi-task RL algorithms to be tested on
the task generalization front.

* Cognition: We provided the underlying relationship between our dexterous tasks and the
motor skills of humans at different ages. This facilitates researchers on studying robot skill
learning and development, in particular in comparison to humans.

2 Related Work

Today, robots are skilled in some repetitive and familiar environments like assembled in the factory.
Grasping is a milestone in robotics manipulation. For decades, researchers have been working to
establish a stable grasping theory [24]. However, most previous methods have relied on various
assumptions, such as known object information or no uncertainty in the process. In recent years,
data-driven approaches have been successful in this regard, being able to deal with uncertainty
in perception and generate grasping methods for known, familiar, and even unknown objects in
real-time [25]. Grasping is only a part of the manipulation. Today’s robots can perform some simple
behaviors like grasping, pushing, and throwing. But it is still difficult to manipulate in unstructured
scenes and contact-rich situations. Moving objects while in-hand manipulation is also a complex



challenge. One step to address this challenge is to use hands with intrinsic dexterity [26, 27], which
often mimic human hands [28]. Another undeveloped area is bimanual manipulation, a method of
using a second hand to provide additional dexterity [29, 30]. Learning for manipulation is important
for robots to continuously learn and achieve intelligent control. It is especially suitable for modeling
manipulation on complex non-rigid objects and reducing control dimensions [31], but it still suffers
from problems such as lack of accurate models, reality gaps, and difficulty in collecting expert data.
There are many other robotic manipulation benchmarks [32, 33, 34], but none of them use dexterous
hands. Therefore, our work proposes a bimanual dexterous manipulation benchmark, hoping to
facilitate researchers to address the challenges of robotic manipulation we mentioned above.

Dexterous five-finger hands provide an essential tool to perform a multitude of tasks in human-centric
environments. However, such dexterous manipulation remains a challenging problem because of
the high dimensional actuation space and contact-rich model. Before the emergence of RL-based
controllers, a large variety of manipulation tasks highly relied on accurate dynamics models and
trajectory optimization methods [35, 36, 37]. For example, Williams et al. [38] used the model
predictive path integral control (MPPI) method to perform the task successfully, dexterous manipula-
tion of a cube. Charlesworth et al. [39] improved the MPPI method to make the handing over task
between two hands tractable. Since RL simplifies the design process of the controller, model-agnostic
approaches have become more and more popular in the field of robotic control [40, 41]. In terms of
dexterous manipulation, many works achieve a significant improvement compared with traditional
controllers. OpenAl et al. [9] developed an RL-based controller to reorient a block or a Rubik’s cube.
Considering the poor generalization of current approaches, Chen et al. [10] presented an efficient
system for learning how to reorient a large number of objects without access to shape information.
Qin et al. [42, 43] perform learning from demonstrations for dexterous manipulation collected from
teleoperation or video. While their studies demonstrate that RL enables efficient and scalable learning
on single-hand manipulation, bimanual manipulation remains a hardship for model-free reinforcement
learning [39]. In this paper, our benchmark provides a wide range of well-designed and challenging
daily life scenarios for comprehensive RL algorithms, hoping to help the researcher toward master
human-level bimanual dexterous manipulation.

3 Formulations & Algorithms

In order to create a platform toward mas-
tering human-level dexterity, we use two i
Shadow Hands to manipulate in our environ-
ment. Shadow Hand [44] is a popular robotic
hand usually used in some dexterous manipula-
tion tasks. It is designed to resemble the typical
human male hand in shape and size, and capable
of performing a variety of flexible and delicate
operations. Shadow Hand’s DoF is shown in
Fig.1, designed to mimic the human skeleton as

much as possible. Concretely, the 24-DoF hand Figure 1: Degree-Of-Freedom (DOF) configura-

is actuated by 20 pairs of agonist-antagonist ten- ;o of the Shadow Hand similar to the skeleton of
dons, while the other four joints remain under- 2 human hand.

actuated.

Furthermore, our low-level controller runs at 1k Hz, as well as the RL-based policy outputs the
relative positions of actuated joints at 30 Hz. It is worth noting that compared with previous studies,
the base of the hand is not fixed in some tasks. Instead, the policy can control the position and
orientation of the base within a restricted space, which takes advantage of the function of the wrist,
thus making the Shadow Hand more bio-mimetic. Meanwhile, we can efficiently perform the task in
real-world applications by linking the base to a robotic arm. Refer to Appendix A.1 for more details
about the physical parameters of the Shadow Hand.

Our benchmark aims at providing solutions for bimanual dexterous manipulation in a comprehensive
field of RL. To achieve that, We consider five RL formulations including: Single-agent RL, Multi-
agent RL (MARL), Offline RL, Multi-task RL, and Meta-RL in Bi-DexHands. In the following part,
we will introduce the detailed formulation and the corresponding implemented algorithms in our
benchmark of these five RL formulations.
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Figure 2: Framework of Bi-DexHands, a bechmark for learning bimanual dexterous manipulation.

RL/MARL. In order to evaluate the performance of RL/MARL [45, 46], we formulate our scenarios
as a decentralized partially observable MDP (Dec-POMDP). The Dec-POMDP consists of 10
components, Z =< N, M,S,0,A I, P,R,p,v >. Initially, the robotic hands are manually
separated as N agents, the set of which represents M. When starting the simulation, the state of
the environment (i.e., the information of robots and objects) is set at so € S according to the initial
distribution of states p(sg). Then at the time step ¢, s; represents the state, and the i-th agent receives
an observation o} € O relying on s;. Hereafter, the policy of the i-th agent, 7; € II, takes the o} as
input, and outputs an action a: € A;. Additionally, we denote the joint action of all agents by a; € A,
and the equation A = [A;,..Ays] is naturally satisfied. After that, i-th agent can obtain a reward 7
based on R(s,at), as well as all agents transitions to the next state s;41 with the possibility of the
transition function P(s:11]S¢,a:). The goal is to find the optimal policy II to maximize the sum of
rewards E| tT;OI vt Zi\il ri] in an episode with T' time steps. It should be pointed out that when
N =1, it s the problem formulation of single-agent RL.

In this setting, We implemented state-of-the-art continuous single-agent RL algorithms, such as
PPO [47], SAC [48], TRPO [49], DDPG [50], and TD3 [51] algorithms. Taking our continuous
control and fully cooperative environments into consideration, we introduced HAPPO/HATRPO
[52, 53, 54], MAPPO [55], IPPO [56], and MADDPG [57] algorithms.

Offline RL. Offline RL follows the formulation of standard MDP, where the goal is to maximize the

expected return E [ZtT;()l ~r;]. However, in offline RL, the agent has to learn policy only using
the transitions in previously collected dataset D = {(s;, as, St41, r+) }, without interacting with the
environment. The fundamental challenge of offline RL is value errors of out-of-distribution actions
[58]. We implemented BCQ [59], TD3+BC [58], and IQL [60] algorithms for offline RL.

Multi-task RL. Multi-task reinforcement learning aims to train a single policy 7 (a|s, z), which can
achieve good results on different tasks. z represents an encoding of the task ID. The goal of our policy
is to maximize the reward given by E7,(7)[Ex [ZtT;Ol 77|, where p(T) is a task distribution in
our benchmark. In practice, multi-task RL. adds the context vector corresponding to the type of
environment (e.g., one-hot task ID) into states to learn a general skill. We implemented multi-task
PPO, multi-task TRPO, and multi-task SAC algorithms for multi-task RL.

Meta RL. Meta RL [61], also known as "learning to learn", aims to gain the ability to train on tasks
to extract the common features of these tasks, so as to quickly adapt to new and unseen tasks. In
Meta-RL, both training and test environments are assumed to follow the same task distribution p(7").
In Bi-DexHands, we design some common structures between different tasks for meta-training to
ensure that it can adapt efficiently to new tasks. Compared with Multi-task RL, Meta RL is not
allowed to get direct task-level information such as task ID. It needs to solve entirely new tasks by
task inference and adaptation purely based on interactions. We implemented model-agnostic meta
learning (MAML) [62] and proximal meta-policy search (ProMP) [63] algorithms for Meta RL.

4 Bimanual dexterous manipulation benchmark

In this section, we will discuss the construction of Bi-DexHands, a benchmark for bimanual dexterous
manipulation over diverse scenarios.

4.1 System design

As we mentioned before, the core of Bi-DexHands is to build up a learning framework for two
Shadow Hands capable of diverse skills as humans, such as reaching, throwing, catching, picking



and placing. To be specific, Bi-DexHands consists of three components: datasets, tasks, and learning
algorithms, as shown in Fig.2. Varying worlds provide a large number of basic settings for robots,
including the configuration of robotic hands and objects. Meanwhile, a variety of tasks corresponding
to children’s behaviors at different ages make it possible to learn dexterity like a human. Combining
a dataset and task, we can generate a specific environment or scenario for the following learning.
Eventually, our experiments demonstrate that reinforcement learning is able to facilitate the robots to
achieve some remarkable performance on such challenging tasks, and there is still some room for
improvement and more difficult tasks for future work.

4.2 Construction of datasets

The construction of the datasets corresponds to the configuration of robots and objects. The core
goal of datasets is to generate a large variety of scenes for robot learning. As we mentioned in the
last part, the robots in our benchmark are two dexterous Shadow Hands. Other than the robots, the
objects also play an essential role in constructing the datasets. For extending the types of tasks, we
introduced a variety of objects from the YCB [22] and SAPIEN [23] datasets. Two datasets contain
many everyday objects. Notably, the SAPIEN dataset provides many articulated objects with motion
annotations and rendering material, which means these objects are close to the real ones significantly.
Therefore, it provides a natural way to build a connection between the worlds of our benchmark and
scenes of daily life. Concretely, Fig.2 shows the construction of datasets, and we can see that the
object includes pots, pens, eggs, scissors, eyeglasses, doors, and other common tools. After defining
the configuration of robots and the type of objects, we build the specific world based on the Isaac
Gym simulator. Meanwhile, each world defines variable initial poses of robots and objects, providing
a diverse set of environments.

4.3 Design of tasks

An infant’s behavior experiences a multi-stage development, such as social, communication, and
physical parts [64]. Particularly in bimanual dexterous manipulation, there are some relationships
between some common behaviors of babies and the ages. To gain insights into the underlying
relationships, we conducted an in-depth analysis and built a mapping between the baby’s age and
tasks according to the Fine Motor Subtest (FMS) [19]. As the baby’s age increases, the difficulty of
completing the designed tasks also increases, because the baby can complete more and more difficult
behaviors as the body develops. So it is also of great importance to evaluate the performance of
trained agents, because we can roughly point out agents’ intelligence level by analogy with a baby’s
movement for bimanual dexterous manipulation. An overview of the correspondence of our tasks to
the FMS is shown in Table.1. For more details on the tasks, please refer to Appendix A.2.

4.4 Design of Multi-task/Meta RL

The design of our Multi-task/Meta RL categories is generally similar to Meta-World [32], divided
into ML1, MT1, ML4, MT4, ML20, and MT20. Each of our tasks has object variation, which as
we can interact with different kinds of objects in daily life scenes, providing a foundation for us to
learn dexterous manipulation like humans. In the following, we will introduce 6 tasks categories for
Multi-task/Meta-RL. More details can refer to Appendix D.

MT1&ML1: Learning a multi-task policy & Few-shot adaptation within one task: Both ML1
and MT1 are categories for generalization ability within the same task, and their generalization ability
is reflected in the ability to complete tasks under different goals. ML1 uses meta-reinforcement
learning for few-shot adaptation, in which goal information will not be provided. MT1 uses the
multi-task method for generalization, and the information on the goal will be provided in a fixed set.

MT4&MT20: Learning a multi-task policy belonging to 4&20 training tasks: MT4 and MT20
conduct policy training in 4&20 tasks and hope to complete all tasks in only one policy. In MT4,
we hope to learn policy with similar human skills, so we try to combine similar tasks as much as
possible. MT20 uses all of our 20 tasks. In MT4 and MT20, we use a one-hot task ID to represent
different tasks, and the information on the goal will be provided in a fixed set.

ML4&ML20: Learning a Few-shot adaptation for new 1&5 test tasks from 3&15 training tasks:
ML4 and ML20 are categories for learning meta-policies in 3&15 tasks respectively and hoping
to adapt to new 1&35 testing tasks. There is no doubt that this is a difficult challenge. We choose
the tasks which using the catch behavior for design in ML4. The ML20 requires adaptation in all
15 tasks with large differences designed according to baby intelligence, which is the most difficult



Table 1: Task name and the description of the human skill in the corresponding age. References
under the human age are the cognitive science literature referenced for the behavior designed, and the
difficulty level of the tasks is under the task name. Easy level tasks are more basic skills, medium level
tasks need more precise control and finger dexterity, and hard level tasks require handing dynamic
interaction and tool use.

Turn Button

They can push and squish soft

11

ON/OFF stuff or push hard things, like a [66. 11 months]
Easy button on a toy phone or popup toy
Swing Cup Thic)y1 can turn a ballhonlthelr toy 11
Easy mobile, a steering wheel on a toy [66, 11 months]
car, or the faucet in the tub ’
Lﬁftftpgl& They can put a sippy cup to their 12
p mouth to drink [66, 12 months]
Easy
Dooa(()) Is) een & Toddlers can open and close 13
Easy cupboards and oven doors [66, 13 months]

Re-Orientation

Infant further refines this ability
to differentiate individual finger

18

Medium movement and manipulate objects (65, Chapter 4]
Stack Block(2,6,.8)  Child stacks at least 2/6/8 blocks 62;5325?22
Medium in any trial. [19, Chapter 3]
Pull a Ball into Child place s 10 pellets in the 2228
Bucket bottle in 60 seconds or less, one [19, Chapter 3]
Medium pellet at a time. ’ p
Open Bottle Cap Uses hands to twist things, like 30
(priir/[n:(giifl i]'I(l)int) turning doorknﬁgz or unscrewing [67. Table 6]

Catch Underarm

Catches a large ball most of the

48

Hard time [67, Table 6]
Pour Water Serves himself food or pours 48
Hard water, with adult supervision [67, Table 6]
Two Catch Some adults can throw objects
Underarm . . adult
Hard between two hands like magic

Human Task Name Human’s Skill Description Age (months) Demo
Push Block ] Child extends one or both arms 5.6
Easy orward and touchgs the block with [19, Chapter 3]
any part of either hand ’
Open Scissor & They use one hand to hold 7
Oper;i Pen Cap a toy and Fhe othgr hand [65, Chapter 4]
asy manipulate it




challenge in our benchmark. Similarly, we will variate the goal for each task, and will not provide
task information, requiring Meta RL algorithms to identify the tasks.

5 Benchmarking reinforcement learning algorithms

In this section, we conduct a full benchmark of the RL algorithms in Bi-DexHands. We firstly
quantify our environment speed to demonstrate the running efficiency of Bi-DexHands. Then We
offer the benchmark results and corresponding discussion and analysis on those five RL formulations.
All of our experiments are run with Intel i7-9700K CPU @ 3.60GHz and NVIDIA RTX 3090 GPU.
For the hyperparameters of all algorithms, please refer to Appendix B.

5.1 Environmental speed

Thanks to Isaac Gym’s high-performance GPU parallel simulating capabilities, we can greatly
improve the sampling efficiency of our RL algorithm while using fewer computing resources. We
believe that the high sampling efficiency improves the exploration ability of the RL algorithm,
allowing us to successfully learn the bimanual dexterous manipulation policy. To demonstrate the
Isaac Gym’s efficiency of Bi-DexHands, We provided some results of environmental speed in Table.2
by running on-policy algorithms. Both PPO and HAPPO can achieve more than 20k FPS.

Table 2: Mean and standard deviation of FPS (frame per second) of the environments in Bi-DexHands.

Algorithms CatchUnderarm  CatchOver2Underarm  CatchAbreast TwoCatchUnderarm
PPO 35564 £ 613 35607 £ 344 35164 £ 450 32285 £+ 898
HAPPO 23929 £ 98 23827 +£135 23456 £ 255 23205 + 168

5.2 RL/MARL results

Currently, we evaluate the performance of PPO, SAC, TRPO, MAPPO, HATRPO and HAPPO
algorithms on these 20 tasks, and we implemented the rest of the RL/MARL algorithms in our Github
repository. The performance of each algorithm are shown in Figure 3. Note that the experiments
of MARL algorithms run based on two agents, which means each hand represents an agent. It can
be observed that the PPO algorithm performs well on most tasks. Although there are some tasks
that require two-hand cooperation, PPO algorithm is still better than HAPPO, MAPPO algorithms in
most cases. This may be because PPO algorithm is able to use all observations for training the policy,
while MARL can only use partial observations. However, in most tasks, the more difficult and require
the cooperation of both hands, the smaller the performance gap between PPO and HAPPO, MAPPO,
indicating that the multi-agent algorithm can improve the performance of bimanual cooperative
manipulation. Another finding is that the SAC algorithm does not work on almost all tasks. It may be
due to 1) the off-policy algorithm has a lower improvement in high sampling efficiency than on-policy.
2) The policy entropy of SAC brings instability to policy learning under the high-dimension input.
We discuss this finding in detail in Appendix C.

5.3 Offline RL results

We build offline datasets with four datatypes, i.e., random, replay, medium, and medium-expert.
The data collection follows that in D4RL-MuJoCo [68], which is a standard offline benchmark, and
the details are given in Appendix A.3. We evaluate behavior cloning (BC), BCQ [59], TD3+BC
[58], and IQL [60] on two tasks, Hand Over and Door Open Outward, and report normalized scores
in Table 3. BCQ and TD3+BC could obtain significant performance improvement compared with
behavior policy (BC). However, the action space and state space in Bi-DexHands are much larger
than that in MuJoCo, which means the problem of out-of-distribution action [58] is more severe in
Bi-DexHands datasets. That is the reason why IQL could only achieve performance improvement in
several datasets. Due to the potential large distribution shift, we believe Bi-DexHands can be a more
challenging and meaningful offline benchmark for offline RL research.

5.4 Generalization ability

The goals of our generalization evaluation is 1) to find out the ability of current multi-task and meta
reinforcement learning algorithms to generalize on the tasks we designed. 2) to find out whether
the tasks that are harder for babies are also harder for RL. The previous RL/MARL results have
proved that our individual task is solvable. For goal 1), we evaluate the multi-task PPO [47] and
ProMP [63] algorithms on MT1, ML1, MT4, ML4, MT20, and ML20. We also provided the results
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Figure 3: Learning curves for all 20 tasks. The shaded region represents the standard deviation of the
score over 10 trials. Curves are smoothed uniformly for visual clarity. All algorithms interact with
environments in 100M steps and the number of parallel simulations is 2048.

Table 3: Normalized score in offline tasks.

Tasks Datasets Online PPO BC BCQ TD3+BC IQL
random 100.0 0.7+0.2 1.0+£0.1 0.9+0.2 0.7+04
Hand Over replay 100.0 17.5+35 61.6+49 70.1+21 43.1+2.3
medium 100.0 61.6+1.0 66.1+19 65.8+22 574+1.5
medium-expert 100.0 63.3+1.4 81.7+49 84.9+53 67.2+3.6
random 100.0 2.1+0.6 23.8+29 34.9+43 38+1.0
Door replay 100.0 36.9+4.3 4884+45 60.5+2.6 31.7+2.0
Open Outward medium 100.0 63.9+0.7 60.1£23 66.3+0.7 56.6+1.2

medium-expert 100.0 69.0+6.4 73.7+45 71.9+35 53.8+£18

of random policy and using the PPO algorithm in individual task as the ground truth for comparison.
The average reward for each training is shown in Table 4. We can observe that the multi-task PPO
does not perform well, and the ProMP have tiny performance improvement compared with random
policy. It may because it’s hard to learn policy from individually each task itself in Bi-DexHands.
Therefore, we still have a lot of room to improve the generalization ability of bimanual dexterous
hands under cross-task setting, which is a meaningful open challenge for the community.

Table 4: The average reward of all tasks for MT1, ML1, MT4, ML4, MT20, and ML20 on 10 seeds.

ML1 ML4 ML20
train  test train  test train  test

Ground Truth 152 243 32.5 Ground Truth  15.0 15.8 28.0 13.1 33.7 26.1
Multi-task PPO 9.4 5.4 8.9 ProMP 0.95 1.2 2.5 0.5 002 0.36
Random 0.61 1.1 -2.5 Random 0.59 0.68 1.5 024 -29 027

Method MT1 MT4 MT20 Method

For goal 2), we use random and ground truth reward to normalize the results of all tasks in MT20
and arrange them in the order of increasing age. The results is shown in Fig.4. It can be seen that
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Figure 4: The normalized reward run by the MTPPO algorithm under the MT20 setting. The tasks

from left to right according to the increase of corresponding age. The normalized score is computed
by score = reward-random reward
y ~  ground truth reward-random reward *

in general, as the age of the person corresponding to the task increases, the difficulty for RL also
increases, which proves that our task design is designed with rationality and relevance to people.

6 Conclusion and Future Work

We introduced a benchmark, Bi-DexHands, which consists of well-designed tasks and a large variety
of objects for learning bimanual dexterous manipulation. We investigated the motor development
process of infants’ dexterity from cognitive science, and carefully designed more than twenty tasks for
RL based on the results, hoping that robots can learn dexterity like humans. With the help of the Isaac
Gym simulator, it can run thousands of environments in parallel, improving the sample efficiency
for RL algorithms. Moreover, the implemented RL/MARL/offline RL algorithms achieve superior
performance on tasks with simple manipulation skills required. Meanwhile, complex manipulations
still remain challenging. In particular, when the agent is trained to master multiple manipulation skills,
the results of multi-task/Meta RL are not satisfactory. Interestingly, we found that under the multi-task
setting, RL exhibited results associated with the development of human intelligence, that is, the trend
of RL performance matches with the development of human ages. So far, in bimanual dexterous
robot hand manipulation, the current reinforcement learning can reach the level of 48-months infants.

However, we think that the limitation of Bi-DexHands is that it does not support the deformable
object manipulation tasks. Dexterous hands have unique advantages in manipulating deformable
objects, but our tasks currently only cover articulated rigid body object manipulation. We hope to
develop in this direction in the future. Another limitation is that our tasks primarily train with policies
with a state-based observation space, which is difficult for sim-to-real transfer because such inputs
are not available in the real world. Our work will advance the field of robotics, increasing the level of
automation in factories or lives to replace human labor. The development of this field will reduce the
need to put humans in dangerous situations and improve the quality of human life, but it will also
bring about the potential for worker displacement.

We identify four main future directions toward mastering human-level bimanual dexterous manip-
ulation. 1) Learning from demonstration: our platform needs some human teaching data to study
learning from demonstration. 2) Soft body and deformable objects simulation: we need a better
physics engine to support our research on software and task design, to be more specific daily life
scenes. 3) Current meta/multi-task RL algorithms are unable to perform all tasks in our benchmark
successfully, which calls for substantial further development on the algorithmic design end. 4) We
would like address the sim-to-real gap by transferring the simulation result on real dexterous hands.
In particular, we hope our benchmark results can serve as a start point to help researchers transfer
RL-learned skills to reality and help real-world robots to learn dexterous manipulation.
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