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ABSTRACT

Estimating free energy differences between molecular systems is fundamental for
understanding molecular interactions and accelerating drug discovery. Current
techniques use molecular dynamics to sample the Boltzmann distributions of the
two systems and of several intermediate “alchemical” distributions that interpo-
late between them. From the resulting ensembles, free energy differences can be
estimated by averaging importance weight analogs for multiple distributions. In-
stead of time-intensive simulations of intermediate alchemical systems, we learn
a fast-to-train flow to bridge the two systems of interest. After training, we obtain
free energy differences by integrating the flow’s instantaneous change of variables
when transporting samples between the two distributions. To map between molec-
ular systems with different numbers of atoms, we replace the previous solutions
of simulating auxiliary “dummy atoms” by additionally training two autoencoders
that project the systems to a same-dimensional latent space in which our flow oper-
ates. A generalized change of variables formula for trans-dimensional mappings
allows us to employ the dimensionality collapsing and expanding autoencoders
in our free energy estimation pipeline. We validate our approach on systems of
increasing complexity: mapping between Gaussians, between subspaces of ala-
nine dipeptide, and between pharmaceutically relevant ligands in solvent. All
results show strong agreement with reference values. We provide an example
anonymized Jupyter notebook for our method applied to Gaussian distributions
here.

1 INTRODUCTION

Figure 1: Free energy difference as
the log ratio of two Boltzmann dis-
tributions’ normalizing constants. In-
tractability of the normalizing constants
makes the problem challenging.

Estimating free energy differences between two states of
a thermodynamic system allows us to compare the rel-
ative likelihoods of the two states (Chipot et al., 2007;
Stoltz et al., 2010). This task underpins insights in com-
putational chemistry, biology, and is extensively used in
drug discovery, where free energy differences can inform
which ligand is more likely to bind to a protein. In this
paper, we explore estimating free energy differences via
a neural mapping that is based on flow matching (Lipman
et al., 2023; Albergo et al., 2023; Liu et al., 2022) between
the Boltzmann distributions of the two molecular systems
of interest.

In the free energy difference estimation problem (see
Figure 1), we are given two molecular systems, A and
B, and their unnormalized densities (energy functions)
over their 3D structures. Their free energy difference is
∆F = −kBT ln(ZB/ZA) where ZA and ZB are their
normalizing constants. For instance, in the context of
drug discovery, the systems A and B could be two dif-
ferent molecules bound to the same protein. Their free
energy difference (together with the molecules’ free en-
ergy differences in solvent) determines the difference in
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Figure 2: Overview of approaches for estimating free energy differences between systems A
and B. Free Energy Perturbation: importance sampling between the two systems with samples ob-
tained via molecular dynamics simulations, and the negative log of the average importance weight
estimates the free energy difference. Alchemical FEP: importance sampling between a sequence of
systems interpolating from A to B. Increased overlap between the subsequent systems makes im-
portance sampling converge faster at the cost of running separate simulations for each intermediate
system. Targeted FEP: a learned mapping is used instead to map A to B′, which is expected to have
a higher overlap with B. FreeFlow: encode A and B into a low dimensional latent space and learn
a latent mapping to be able to bridge systems of different dimensions. On the right we highlight that
traditional methods often materialize non-physical systems by the addition of “dummy atoms” to be
able to bridge between systems of different dimensions, which FreeFlow avoids by mapping both
systems to a fixed-dimensional latent space.

their binding affinities to the protein. Thus, access to estimates between a set of molecules allows
for identifying the strongest binder out of a pool of candidate molecules.

The common traditional approaches for such estimations are based on Free Energy Perturbation
(FEP). The FEP identity (Zwanzig, 1954) reduces estimating free energy differences to importance
sampling between distributions A and B: the negative log of the average importance weights is the
free energy difference. For molecules, the distributions are sampled by running molecular dynam-
ics (MD) simulations. The convergence of this estimate depends on the variance of the importance
weights, which is large if there is insufficient overlap between distributions A and B. Thus, in prac-
tice, one turns to alchemical FEP (Bash et al., 1987; Mey et al., 2020) where a series (typically a
few tens) of “alchemical” molecular systems between systems A and B are simulated (see Figure 2).
Modeling these additional intermediate distributions yields a lower variance free energy difference
estimate at the cost of additional molecular dynamics simulation time.

Instead of bridging distributions A and B via additional MD simulations, FreeFlow learns a neural
map between them and estimates their free energy differences by observing the change of density
when transporting samples from system A to system B or back. The aim is to overfit and run infer-
ence with such a map faster than carrying out a series of MD simulations for FEP (while maintaining
or improving upon the accuracy of FEP). For this purpose, previous work (Wirnsberger et al., 2020)
employed normalizing flows (Rezende & Mohamed, 2016) with the same input and output dimen-
sionality that do not accommodate different dimensionality (different numbers of atoms) between
systems A and B.
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Concretely, we propose FreeFlow to map between distributions of arbitrary dimensions by encoding
the systems into a lower dimensional latent space and learning a flow model in that latent space
using flow matching. The autoencoders to produce the latent spaces for systems A and B are fast-to-
train and overfitting a flow between their small dimensional latent spaces is equally efficient. After
training this map, computing the free energy difference requires evaluating the change of density a
sample incurs when transporting it between the distributions. While this is trivial for normalizing
flows, FreeFlow involves changes in dimensionality, which we accommodate with a generalized
change of variables formula for “trans-dimensional” mappings.

Empirically, we evaluate FreeFlow on a series of free energy difference estimations of increasing
complexity. First, we confirm that FreeFlow is able to recover analytically computed free energy
differences between Gaussians of different dimensionalities. Next, we turn to a well-explored molec-
ular system, alanine dipeptide, and estimate free energy differences between partitions of its state
space. Lastly, we tackle the real-world task of computing free energy differences between different
pharmaceutically relevant ligands in solvent. In this experiment, we observe Spearman and Pear-
son correlations of up to 0.93 between our free energy difference and the Free Energy Perturbation
reference values.

We summarize our key contributions as:

1. A simulation-free continuous normalizing flow training procedure based on flow match-
ing without constraints such as easy-to-compute Jacobian determinant or fast invertibility
unlike older flows.

2. A map that translates between systems of arbitrary dimensionality via a same-dimensional
latent space, avoiding the introduction of dummy atoms and requiring an order of mag-
nitude fewer MD simulations compared to intermediate-window-based methods such as
Alchemical FEP.

3. Using a generalized change of variables formulation for computing density changes in
trans-dimensional maps.

4. Validation on real-world pharmaceutically relevant ligands of varying numbers of atoms.

2 BACKGROUND

Flow Matching. Flow Matching (FM) (Lipman et al., 2023; Albergo et al., 2023; Liu et al., 2022)
is a training framework for CNFs that avoids the need for simulation during training. Instead of
integrating the ODE, FM directly trains the vector field vθ(t, x) to match a target probability flow
defined by a prescribed time-dependent probability path pt(x). The objective minimizes the dis-
crepancy between the model’s vector field and the target vector field that transports pt(x) along the
flow:

LFM(θ) = Et,x∼pt
|ut(x)− vθ(t, x)|2 , (1)

where ut(x) is the target vector field derived from the continuity equation. To construct more ex-
pressive probability paths pt(x), Conditional Flow Matching (CFM) (Lipman et al., 2023; Tong
et al., 2023) introduces a conditioning variable z and expresses pt(x) as a combination of simpler
distributions pt(x|z) such as Gaussians conditioned on z.

Free Energy Calculations in Molecular Systems. Free energy calculations are essential for un-
derstanding molecular interactions and predicting binding affinities in drug discovery (Chipot et al.,
2007). The accuracy of these methods depends on the overlap between the configurations sampled
from the different states. Insufficient overlap can lead to high variance and unreliable estimates.
Techniques like stratification and the use of intermediate states help mitigate this issue but increase
computational complexity.

The Free Energy Perturbation (FEP) method, introduced by Zwanzig (1954), provides an exact
relationship for computing ∆F between two thermodynamic states A and B:

EA

[
e−β∆U(x)

]
= e−β∆F , (2)

where β = 1/(kBT ) is the inverse temperature, ∆U(x) = UB(x)− UA(x) is the potential energy
difference at configuration x, and EA[·] denotes the expectation over the equilibrium distribution

3
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ρA(x) ∝ e−βUA(x). However, the convergence of the FEP estimator critically depends on the
overlap between the configurations sampled from ρA and those relevant under ρB . Insufficient
overlap can lead to high variance and slow convergence (Jarzynski, 2006).

To address this challenge, Jarzynski (2002) introduced Targeted Free Energy Perturbation (TFEP),
which employs an invertible mapping M : X → X to transform configurations from A to a new
distribution B′, thereby increasing the overlap with B. The generalized FEP identity in TFEP is
given by:

EA

[
e−βΦF (x)

]
= e−β∆F , (3)

where the generalized energy difference ΦF (x) is defined as:

ΦF (x) = UB(M(x))− UA(x)− β−1 log |det JM (x)| , (4)

and JM (x) is the Jacobian matrix of M at x. By appropriately choosing M , one can enhance the
overlap between B′ and B, improving the efficiency of the free energy estimation.

Building upon TFEP, Wirnsberger et al. (2020) introduced Learned Free Energy Perturbation
(LFEP), using normalizing flows to learn the mapping M . Instead of relying on hand-crafted trans-
formations, LFEP learns M by optimizing a neural network to maximize the overlap between the
transformed distribution B′ and the target distribution B. This approach provides a data-driven way
to enhance free energy estimations without the need for explicit intermediate states or extensive
physical intuition.

3 METHOD

Figure 3: The change of dimensionality prob-
lem. The Jacobian of a trans-dimensional map-
ping is rectangular and hence does not have a de-
terminant.

Our aim is to estimate the free energy difference
∆F between thermodynamic systems A and B
with equilibrium distributions ρA and ρB , and
potentially different numbers of atoms nA and
nB . For this purpose, we assume access to sam-
ples x0 ∼ ρA and x1 ∼ ρB , which are obtained
via molecular dynamics simulations when con-
sidering molecular systems. Unlike FEP, we do
not carry out additional MD for intermediate al-
chemical systems to bridge between systems A
and B. Instead, we overfit a fast-to-train neu-
ral mapping to transport samples between them
over a lower-dimensional latent space. Given
this map, we estimate the free energy difference
by transporting samples between A and B and
averaging their incurred change of density.

Concretely, our neural mapping consists of sep-
arate autoencoders (EA◦DA) and (EB◦DB) to
map the samples from the two systems to the la-
tent space and back, and an ODE parametrized
via a flow model v(x, t) between the latent
spaces. Then we combine the encoder EA, the
flow, and the decoder DB to map system A to system B. In Section 3.1, we first summarize how
neural maps (including ODEs parameterized as flow models) and their change of density can be
employed to estimate free energy differences. Next, we present our autoencoders to map systems of
arbitrary sizes nA, nB to a fixed size same-dimensional latent space and how the change of density
for such “trans-dimensional” maps (Section 3.2). Finally, in Section 3.3, we lay out our full free
energy difference estimation procedure of 1) training autoencoders, 2) training a flow between their
latent spaces, 3) and mapping samples from system A to system B while observing the map’s change
of variables.

4
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3.1 FREE ENERGY DIFFERENCES VIA NEURAL MAPS

We seek a mapping f such that the pushforward distribution of ρA through f approximates ρB .
Traditional normalizing flows (Rezende & Mohamed, 2016) model f as a composition of invertible
mappings with the likelihoods computed via the change of variables (CoV) formula as

ρB(x1) = ρA(x0)

∣∣∣∣det(∂f

∂x

)∣∣∣∣−1

(5)

where x1 = f(x0) and ∂f
∂x is the Jacobian of f at x0. We denote such models discrete normalizing

flows. For discrete NFs, free energy differences can then be estimated via TFEP by computing the
expectation in Equation 3 with

ΦF (x) = UB(f(x))− UA(x)− β−1 log

∣∣∣∣det(∂f

∂x

)∣∣∣∣ . (6)

However, normalizing flows requiring invertible components with efficiently-computable Jacobians
might limit their expressivity. Flow matching on the other can be used with arbitrary neural networks
as the flow model, and learn to map arbitrary distributions in simulation-free manner. It is thus an
expressive yet efficient alternative to discrete normalizing flows.

Using flow matching, we train our normalizing flow between the same-dimensional latent represen-
tations of the two systems learned by our autoencoders, which are low-dimensional and hence lead
to fast training, minimizing the objective

LCFM(θ) = Et∼U(0,1),(x0,x1)∼π(X0,X1),zt∼pt(EA(x0),EB(x1)) ∥vθ(zt, t)− (EB(x1)− EA(x0))∥22
(7)

where π denotes the optimal transport coupling between the datasets X0, X1 approximated with
mini-batches. Using OT couplings is advantageous as the learned vector field has straighter trajec-
tories which lead to lower integration error. In particular for free energy estimation, approximating
the OT map between ρA and ρB has been shown to result in paths with lower free energy, improving
the convergence of the ∆F estimate (Decherchi & Cavalli, 2023).

The flow model leads to an ordinary differential equation (ODE) which we can integrate through
time to transport the samples. For an ODE, the change in log-density w.r.t. time is given by the
instantaneous change of variables formula (Chen et al., 2018)

∂ log ρ(xt)

∂t
= − tr

(
∂v(xt, t)

∂xt

)
. (8)

We integrate over time to obtain

log ρ(x1) = log ρ(x0)−
∫ 1

0

tr

(
∂v(xt, t)

∂xt

)
dt (9)

which we use to obtain free energy difference estimates by employing the following generalized
energy difference to take the expectation over in Equation 3:

ΦF (x) = UB(x1)− UA(x0)− β−1

∫ 1

0

tr

(
∂v(xt, t)

∂xt

)
dt. (10)

3.2 AUTOENCODER CHANGE OF VARIABLES

As noted above, we train our flow over a low-dimensional latent space, which enables fast training
and allows FreeFlow to map between systems with different numbers of atoms. This is opposed
to previous classical and ML solutions for estimating energy differences between systems of differ-
ent dimensionality, which commonly simulate additional dummy-atoms in the lower-dimensional
system.

Concretely, we first train two separate autoencoders, consisting of the encoders EA, EB and the
decoders DA, DB for the two states A and B. As the autoencoders are not required to generalize,
we choose simple MLPs that map the flattened vectors of atom coordinates (ignoring the atom types)
to the latent space Z . In our experiments, we set this latent space to have 32 dimensions. We train

5
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our autoencoders until the reconstruction MSE converges on training data since we will be using the
training data to estimate ∆F . We chose MLPs instead of more popular architectures for molecular
representation learning such as equivariant graph neural networks after validating their performance
on alanine dipeptide (see Figure 7). The MLP achieved a lower reconstruction error, while being 8x
faster in terms of training speed.

Given these autoencoders, the end-to-end mapping from A to B can then be expressed as

x1 = f(x0) = DB (ODE (EA(x0))) (11)

where ODE denotes integrating vθ(zt, t) starting from z0 = EA(x0), i.e., z0 +
∫ 1

0
vθ(zt, t)dt.

Thus, our neural map f involves changes of dimensionality, and evaluating its change of density
when mapping samples requires a generalization of the standard change of variables formula in
Equation 5. A simple way to see this is that the Jacobian for what we will proceed to term a trans-
dimensional mapping is a rectangular matrix (not square) and hence does not have a well-defined
determinant.

In obtaining a change of variables formulas for trans-dimensional mappings such as E : X 7→ Z
and D : Z 7→ X , we consider an autoencoder’s decoder manifold

M = {D(z) : z ∈ Z} (12)

for which the change of variables formula will hold. Since we overfit our autoencoder on samples
and do not require generalization to new data points, the points for which we evaluate the change
of variables will lie in this manifold (assuming the size of the latent space and the expressivity of
E and D are sufficient for encoding our dataset). If E and D are each other’s inverse, then, for
points on the decoder manifold xm ∈ M, the decoder’s change of density between their projection
z = E(xm) and their projection’s fibers F(z) := {x ∈ X : z = E(x)} is (Köthe, 2023)

ρZ(z) = ρX (F(z))
√∣∣det(JT

DJD)
∣∣ (13)

where JD is the decoder’s Jacobian. For the encoder, for points on the decoder manifold and with
JE as the encoder’s Jacobian, the change of density is

ρX (x) = ρZ(z)
√∣∣det(JEJ⊤

E )
∣∣. (14)

These generalized change of variables formulae rescale a density by the mapping’s Jacobian (or
transposed Jacobian) volume (Ben-Israel, 1999): volJ =

√
det JTJ . For square Jacobians of maps

between same-dimensional spaces, volJ =
√
det JTJ = |det J | which recovers the scaling factor

of the standard change of variables formula (Equation 5).

3.3 FREEFLOW FREE ENERGY DIFFERENCE ESTIMATION

To obtain the change of variables between the two systems, we need to apply Equation 14 twice,
once for mapping XA to ZA with the encoder EA and once for mapping ZB to XB with the decoder
DB . We also integrate the instantenous change of variables (Equation 8) over the latent continuous
normalizing flow for our architecture to calculate the generalized energy difference as:

ΨF (x) = UB (DB (fz (EA(x))))− UA(x)

− β−1

log
∣∣det (JEA

J⊤
EA

)∣∣− 1
2︸ ︷︷ ︸

CoV XA→ZA

+

∫ 1

0

tr

(
∂v(z(t), t)

∂z(t)

)
dt︸ ︷︷ ︸

CoV ZA→ZB

+ log
∣∣det (J⊤

DB
JDB

)∣∣− 1
2︸ ︷︷ ︸

CoV ZB→XB


(15)

To estimate the free energy difference between systems A and B, we proceed as follows for training
and inference:

Training

1. Run MD simulations for systems A and B to obtain sets of samples XA from ρA and XB

from ρB .

6
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(a) Equidimensional Gaussian ∆F Estimates (b) Transdimensional Gaussian ∆F Estimates

Figure 4: Convergence of the ∆F estimates between equidimensional and transdimensional Gaus-
sians. The solid lines and the shaded regions show the mean and standard deviation of the estimates
averaged over five runs.

2. Train the autoencoders (EA ◦DA) on XA and (EB ◦DB) on XB .

3. Encode both sets of samples into the latent space to obtain ZA and ZB .

4. Train the flow model using flow matching between ZA and ZB , minimizing the objective
in Equation 7.

Inference

1. Encode, integrate through the flow, and decode XA to obtain approximate samples X̃B from
ρB . Compute Ψ(xA) for xA ∈ XA

2. Use the Ψ values to estimate ∆F with the TFEP estimator EA [exp(−βΨ(x)] =
exp(−β∆F ).

4 EXPERIMENTS

We evaluate FreeFlow on tasks of increasing complexity, starting with bridging Gaussian distribu-
tions of different dimensions, then two metastable states of the small molecule alanine dipeptide,
and finally we bridge the Boltzmann distributions of different pairs of pharmaceutically relevant
ligands with varying numbers of atoms.

4.1 GAUSSIAN DISTRIBUTIONS OF DIFFERENT DIMENSIONS

We first demonstrate that our generalized change of variables framework can be applied to transdi-
mensional mappings, such as FreeFlow’s encoder and decoder. Additionally, we aim to demonstrate
the ability to bridge distributions with differing dimensionality. To address these two questions, we
construct simplified toy problems using Gaussian distributions, which can be easily compressed to
lower-dimensional spaces. These distributions allow us to compute the free energy difference an-
alytically for reference values. Specifically, for two Gaussians of arbitrary dimensionalities with
covariance matrices Σ1,Σ2, their free energy difference is the logarithmic ratio of their partition
functions:

∆F = log
Z2

Z1
= log

√
(2π)d2 det(Σ2)√
(2π)d1 det(Σ1)

=
1

2

(
(d2 − d1) log(2π) + log

(
det(Σ2)

det(Σ1)

))
.

(16)

First, to validate the change of variables formulation, we let both system A and system B be 30-
dimensional zero-mean Gaussians with covariance matrices ΣA = I and ΣB = 0.5I . Then, to

7
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evaluate the trans-dimensional mapping, we let system A and B be zero-mean Gaussians with iden-
tity covariance, but in 60 and 30 dimensions. For both tasks, we use a latent space of 16 dimensions,
and after sampling 50,000 samples from each distribution, we train the autoencoders for 100 and the
flow model for 200 epochs.

Figure 4 shows the histogram of the energy distributions and the convergence of the ∆F estimates
using FreeFlow. The convergence of the estimator towards the ground truth values empirically vali-
dates the use of the generalized energy difference of Equation 15 to bridge distributions of different
dimensions. Thus by the convergence of the estimate in Figure 4a, we first empirically validate our
modification of the generalized energy difference in Equation 15 between, and then by the conver-
gence in Figure 4b, we conclude that the formulation also holds for trans-dimensional mappings.
The estimate in Figure 4b exhibits a slight deviation in its mean from the true value. We believe to
be due to the transdimensional change of variables formula being an approximation. More specif-
ically, unless we can obtain a zero-loss autoencoder, there will be data points outside its decoder
manifold and the change of variables formula will not hold exactly for those values.

4.2 METASTABLE STATES OF ALANINE DIPEPTIDE

Figure 5: Pairwise distances for alanine dipep-
tide samples. D(·, ·) denotes the distribution of
pairwise distances between two sets with A,B,
the source and target systems, and M(A), the set
A is mapped to via FreeFlow.

After empirically validating our approach on
toy cases, we evaluate if FreeFlow can be ap-
plied to a small physical system simpler than
the larger molecules used in drug discovery
tasks. For this purpose, we estimate the free en-
ergy difference between two metastable states
of the small molecule alanine dipeptide. It
is a small (32 atoms) yet non-trivial molecule
commonly used as a benchmark in computa-
tional chemistry due to its well-known confor-
mational dynamics. We distinguish the two
metastable states with respect to the dihedral
angle ϕ, with system A ϕ ∈ [−π, 0] ∪ [2.15, π]
and system B to ϕ ∈ (0, 2.15).

Using the OpenMM library (Eastman et al.,
2017), we simulate alanine dipeptide in vac-
uum for 400 ns with step size 2 fs and save the
state every 500 steps to obtain 400,000 sam-
ples in total, and then separate the source and
target distributions with respect to the angle
ϕ. In the end, we obtain 371,094 source and
28,906 target samples. For the reference free
energy difference, we use the values in (Inv-
ernizzi et al., 2022) obtained via OPES simu-
lations (Invernizzi, 2021) and estimations of the ratio of the partition functions of the two states.

Figure 5 displays the distributions of pairwise distances between samples from A, B, and the esti-
mated samples M(A), where for two sets A and B, we define D(A,B) := {d(a, b) : a ∈ A, b ∈ B}
with d being the Euclidean distance. We observe a strong agreement between the pairwise distances
of samples from B among themselves, and the distances between B and the mapped samples M(A),
which is a desirable property for a flow model but not by itself sufficient to determine its accuracy.
Similar to Figure 4b, the estimated pairwise distributions show a deviation from the true values,
which we again attribute to the approximate nature of the trans-dimensional change of variables
formula. Nevertheless the accuracy of the flow model is further supported by the estimate we obtain
of 19.03± 1.69 kj/mol (averaged over five runs, ± standard deviation) compared to the reference of
20.87 kj/mol. We thus conclude that FreeFlow can be applied to physical systems before we move
on to more relevant real-world use cases.

8
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(a) BACE (b) Galectin (c) CMET

(d) P38 (e) BACE Hunt (f) BACE P2

Figure 6: Estimated and reference ∆F values (kj/mol) between ligands in water, separated
based on the subset of the Protein-Ligand Benchmark they belong to. Each dot represents one pair,
with the x-axis denoting our estimates and the y-axis to the values calculated in the pmx library
(Gapsys et al., 2020). The color of each dot corresponds to the absolute difference between its
coordinates (red: higher, blue: lower), and the gray line is a linear regression fit to the points. We
report various correlation measures as well as the mean absolute difference (MAE) above each plot.

4.3 PHARMACEUTICALLY RELEVANT LIGANDS IN SOLVENT

Finally, we evaluate FreeFlow on a real-world use case commonly addressed by FEP: comparing the
binding free energies of ligands to a protein, a key task in drug discovery. This process involves two
main legs: the solvent leg, where the free energy difference between the two ligands is estimated in
solution, and the complex leg, where they are bound to the protein. For this evaluation, we focus on
the solvent leg, using a set of pharmaceutically relevant ligands of varying sizes. More specifically
for this task, the solvent leg involves system A, where one ligand is in water, and system B, where a
different ligand is in water. The task is to learn a mapping between the Boltzmann distributions of
these two systems in order to estimate the free energy difference between them.

Data Collection and Reference Values. We separately simulate each ligand in water at temperature
300 K for 400 ns with a step size of 2 fs using the OpenMM library (Eastman et al., 2017). As force
field, we use the implicit GBn2 solvation model (Nguyen et al.) with the gaff-2.11 force field
(Wang et al., 2004). We save a sample every 200 steps for a total of 1,000,000 samples from each
ligand. The reference values we use are free energy differences from the pmx library (Gapsys et al.,
2020) which were calculated using alchemical FEP (see Figure 2) and an explicit solvent potential.
We use the OpenMM bridge within the bgmol1 library to evaluate the energy functions. Before we
train FreeFlow on a pair of ligands, we align each sample of the two ligands to a single reference
by rotating and translating to minimize the root-mean-square distance between the sample and the
reference. This minimizes the distance between the samples while leaving their potential energies

1https://github.com/noegroup/bgmol
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unchanged, and makes training easier. We then train the two autoencoders for 500 epochs each, and
the flow model for 200 epochs.

Figure 6 displays the agreement between the estimates we obtain and the reference values along with
the resulting R2 values, Pearson and Spearman correlations, and the mean absolute error between
the estimates and the reference values. We acknowledge the high absolute error of the method,
however, this can be attributed to some of the simplifications we made such as using an implicit
solvent potential. Nonetheless, FreeFlow shows a very strong agreement for four of the six subsets of
ligands with correlation coefficient greater than or equal to 0.8, which demonstrates its effectiveness
in obtaining free energy differences between arbitrary ligands. These results indicate that FreeFlow
can be beneficial in comparing relative binding free energies, an important real-world use case in
drug discovery, where good correlation to reference values is necessary for accurate comparisons.

5 CONCLUSION

In this paper, we proposed FreeFlow, a novel method for estimating free energy differences between
two systems by first encoding both systems into lower dimensional latent space, and training a flow
model via Flow Matching to bridge the two latent distributions. This leads to fast training through
the simulation-free regression objective of Flow Matching, and has the main benefit that free energy
differences between systems of different dimensions can be estimated without resorting to nonphys-
ical modifications such as dummy atoms. The trans-dimensional latent map not being invertible
makes the typical formulations of change of variables inapplicable, and we build on previous work
to solve this challenge by separating the change of variables among the three components of the
map.

We evaluated FreeFlow first between simple Gaussian distributions to empirically validate our ap-
proach to learning a trans-dimensional map and our change of variables formulation. We then esti-
mated the free energy difference between two states of the small molecule alanine dipeptide, which
confirmed FreeFlow’s applicability to physical systems. We finally estimated the free energy differ-
ences between pairs of pharmaceutically relevant ligands of various dimensionality in water, which
represents one leg of the thermodynamic cycle commonly used to compare different molecules’
binding affinities to a protein, a critical task in drug discovery.

We anticipate that as future work FreeFlow can be extended to the other leg of the thermodynamic
cycle, learning a mapping between two bound protein-ligand complexes. This considerably in-
creases the dimensionality of the problem but can be tackled by FreeFlow since the lower dimen-
sional latent flow would still be fast to train.

6 REPRODUCIBILITY STATEMENT

We have implemented our method and experiments using publicly available libraries, primarily the
PyTorch library (Paszke et al., 2019) for architectures and training, the torchcfm package (Tong
et al., 2023) for an implementation of flow matching, and OpenMM (Eastman et al., 2017) for
molecular dynamics simulations. All reference values were either computed by us as explained in
the paper (e.g. in Section 4.1) or taken from the referenced resources. To reproduce the experiments,
we report how the data was collected for each experiment in their respective subsections in Section
4, and we provide additional architectural and training setup details in Appendix A. We finally
provide the steps required to use our method, as well as the trans-dimensional change of variables
formulation in Section 3.3. Our full implementation of the method and the experiments will also be
made available with the paper being publicly available.

7 ETHICS STATEMENT

We propose a method to estimate free energy differences between molecular systems, which is an
important problem in drug discovery, particularly to compare the binding affinities of different lig-
ands to proteins such as when screening a large number of candidate molecules to identify potential
binders. The use of our method is not inherently ethical or unethical since it can be applied for a
variety of goals, depending on the properties of the molecules and proteins involved. Nevertheless,
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methods to accelerate the drug discovery process have immense potential benefits, especially when
speed is a concern such as during a pandemic.
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A EXPERIMENTAL DETAILS

A.1 MODEL ARCHITECTURES

For the autoencoders, we implement both the encoders and the decoders as MLPs with four fully-
connected layers with Scaled Exponential Linear Unit (SELU) activations (Klambauer et al., 2017),
except for the final layer, which is linear to allow unbounded output values. Each hidden layer
contains 128 neurons.

We construct the flow model as an MLP as well. It takes as input the flattened latent coordinates
and the scalar time variable t, resulting in an input dimension of dlatent + 1. The flow model MLP
also consists of four hidden layers, each with 64 units, and uses the Scaled Exponential Linear Unit
(SELU) activation function (Klambauer et al., 2017) to promote self-normalizing properties in the
network.

We use the Adam optimizer (Kingma & Ba, 2017) with a learning rate of 10−3 for all models, and
set the batch size to 512 for all training runs as well as the mini-batch OT couplings within flow
matching to simplify the implementation.
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Figure 7: A comparison between the performance of the auto-encoder with different encoder archi-
tectures. The two models have roughly the same number of parameters and were trained for 500
epochs on alanine dipeptide conformations. It can be clearly seen that the MLP outperforms the
EGNN by almost an order of magnitude in terms of reconstruction error. Furthermore, the MLP-
based encoder is eight times faster than the EGNN-based one, which is extremely relevant for our
method.

A.2 FLOW MATCHING SETUP

We utilize OT couplings, approximated via mini-batches as proposed by Fatras et al. (2021), to con-
struct the coupling between samples from the source and target latent distributions. OT couplings
are advantageous because they lead to straighter transport paths, which can be integrated more effi-
ciently with lower numerical integration error (Tong et al., 2023; Klein et al., 2023). Additionally,
the use of OT couplings reduces the variance of the CFM objective since samples x0 ∼ ρ0 are more
likely to be coupled with nearby samples x1 ∼ ρ1, rather than with samples drawn uniformly from
ρ1. We then take the linear vector field ut = x1 − x0 as the regression target, and use Gaussian
probability paths with ρt(x) = N (x; (1− t)x0 + tx1, σ

2) where we set σ = 10−4.

B DERIVATION OF THE TARGETED FEP ESTIMATOR

As proposed in (Jarzynski, 2002), free energy differences can be estimated by mapping the source
distribution A to an approximation B′ of the target distribution B via the mapping M and doing
importance sampling from B′ to B. We now show that the equality in Equation 3 holds:

EA

[
e−βΦF

]
=

∫
A

ρA(x)e
−βΦF (x)dx (17)

=
1

ZA

∫
A

e−βUA(x)−βΦF (x)dx since ρA(x) =
e−βUA(x)

ZA
(18)

=
1

ZA

∫
A

e−βUA(x)−βUB(M(x))+βUA(x)+log |JM (x)|dx (19)

=
1

ZA

∫
A

e−βUB(M(x))|JM (x)|dx (20)

=
1

ZA

∫
B

e−βUB(y)dy after change-of-variables with y = M(x) (21)

=
ZB

ZA
(22)

= e−β∆F since ∆F = − log
ZB

ZA
. (23)
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C DERIVATION OF FREE ENERGY AS LOGARITHM OF PARTITION FUNCTION

Given the probability distribution ρ(x) = −βU(x)
Z with energy function U(x) and partition function

Z =
∫
x
e−βU(x) where β = 1

kT is the inverse temperature, we have the internal energy U of the
system

U =

∫
x

ρ(x)U(x) =

∫
x

e−βU(x)

Z
U(x) (24)

and entropy S defined as

S = −k

∫
x

ρ(x) ln(ρ(x)) = −k

∫
x

e−βU(x)

Z
ln

(
e−βU(x)

Z

)
. (25)

By algebraic manipulations and using the definitions above, we can obtain

S = kβU + k ln(Z). (26)

The Helmholtz free energy (F ) of a system is defined as

F = U − TS = U − T (kβU + k ln(Z)). (27)

If we then plug in the definitions above and simplify using β = 1
kT , we obtain

F = −kT ln(Z) (28)

which concludes the derivation of free energy as the logarithm of the partition function.
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