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ABSTRACT

We propose the max-sliced Bures distance, a lower bound on the max-sliced
Wasserstein-2 distance, to identify the instances associated with the maximum
discrepancy between two samples. The max-slicing can be decomposed into two
asymmetric divergences each expressed in terms of an optimal slice or equiva-
lently a ‘witness’ function that has large magnitude evaluations on a localized
subset of instances in one distribution versus the other. We show how witness
functions can be used to detect and correct for covariate shift through reweighting
and to evaluate generative adversarial networks. Unlike heuristic algorithms for
the max-sliced Wasserstein-2 distance that may fail to find the optimal slice, we
detail a tractable algorithm that finds the global optimal slice and scales to large
sample sizes. As the Bures distance quantifies differences in covariance, we gen-
eralize the max-sliced Bures distance by using non-linear mappings, enabling it
to capture changes in higher-order statistics. We explore two types of non-linear
mappings: positive semidefinite kernels where the witness functions belong to a
reproducing kernel Hilbert space, and task-relevant mappings corresponding to a
neural network. In the context of samples of natural images, our approach pro-
vides an interpretation of the Fréchet Inception distance by identifying the syn-
thetic and natural instances that are either over-represented or under-represented
with respect to the other sample. We apply the proposed measure to detect imbal-
ances in class distributions in various data sets and to critique generative models.

1 INTRODUCTION

Divergence measures quantify the dissimilarity between probability distributions. They are funda-
mental to hypothesis testing and the estimation and criticism of statistical models, and serve as cost
functions for optimizing generative adversarial neural networks (GANs). Although a multitude of
divergences exists, not all of them are interpretable. A divergence is interpretable if can be expressed
in terms of a real-valued witness function ω(·) whose level-sets identify the specific subsets that are
not well matched between the distributions, specifically, subsets which have much higher or much
lower probability under one distribution versus the other. Localizing these discrepancies is useful
for understanding and compensating for differences between two samples or distributions, to detect
covariate shift (Shimodaira, 2000; Quionero-Candela et al., 2009; Lipton et al., 2018) or to evaluate
generative models (Heusel et al., 2017).

While many divergences can be posed in terms of witness functions, not all witness functions are
readily obtained or interpreted. From an information-theoretic perspective, the most natural witness
function is the logarithm of the ratio of the densities (Kullback & Leibler, 1951) as in the Kullback-
Leibler divergence. Applying other convex functions to the density ratio constitutes the family of
f -divergences (Ali & Silvey, 1966; Rényi, 1961), which include the Hellinger, Jensen-Shannon,
and others. However, without a parametric model estimating the densities from samples is challeng-
ing (Vapnik, 2013). Following Vapnik’s advice to “try to avoid solving a more general problem as an
intermediate step,” previous work has sought to directly model the density ratio via kernel learning
(Nguyen et al., 2008; Kanamori et al., 2009; Yamada et al., 2011; 2013; Saito et al., 2018; Lee et al.,
2019) or to estimate an f -divergence by optimizing a function from a suitable family (Nguyen et al.,
2010) such as a neural network Nowozin et al. (2016).
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Witness functions need not rely on the density ratio. A wide class of divergences called integral
probability metrics (IPMs) (Müller, 1997), which include total variation, the Wasserstein-1 distance,
maximum mean discrepancy (MMD) (Gretton et al., 2007), and others (Mroueh et al., 2017), seek
a witness function that maximizes the distance between the first moments of the witness function
evaluations. In these cases the optimal witness function ω?(·) has a greater expectation in one
distribution compared to the other distribution. An IPM between two measures µ and ν is expressed
as supω∈F |EX∼µ[ω(X)]− EY∼ν [ω(Y )]| for a given family of functions F .

A class of related divergences are the max-sliced Wasserstein-p distances, which seek a lin-
ear (Deshpande et al., 2019) or non-linear slicing function (Kolouri et al., 2019) that maximizes
the Wasserstein-p distance between the witness function evaluations for the two distributions. How-
ever, there are two difficulties with computing the max-sliced Wasserstein distance for two samples.
The first is that it is a saddlepoint optimization problem, whose objective evaluation requires sorting
the samples. Previous work has sought to approximate it using a first moment approximation (Desh-
pande et al., 2019) or to use a finite number of steps of a local optimizer (Kolouri et al., 2019),
without any guarantee of obtaining an optimal witness function. Another difficulty is in the inter-
pretation of the obtained witness function. Unlike the density ratio, there is no notion of whether
the witness function will take higher values for points associated to one distribution versus the other.
To address both of these issues we propose a max-sliced distance that replaces the Wasserstein-2
distance with a second-moment approximation based on the Bures distance (Dowson & Landau,
1982; Gelbrich, 1990). The Bures distance (Bures, 1969; Uhlmann, 1976) is a distance metric be-
tween positive semidefinite operators. It is well-known in quantum information theory (Nielsen &
Chuang, 2000; Koltchinskii & Xia, 2015) and machine learning (Brockmeier et al., 2017; Muzellec
& Cuturi, 2018; Zhang et al., 2020; Oh et al., 2020; De Meulemeester et al., 2020).

1.1 CONTRIBUTION

We propose a novel IPM-like divergence measure, the “max-sliced Bures distance”, to identify
localized regions and instances associated with the maximum discrepancy between two samples.
The distance is expressed as the maximal difference between the root mean square (RMS) of
the witness function evaluations supω∈S

∣∣∣√EX∼µ[ω2(X)]−
√
EY∼ν [ω2(Y )]

∣∣∣, where S is an ap-
propriate family of functions. As |∆| = max{∆,−∆}, the max-sliced Bures can be expressed
as the maximum of one-sided max-sliced divergences with optimal witness functions, ωµ>ν =

arg maxω∈S
√

Eµ[ω2(X)]−
√
Eν [ω2(Y )], and ωµ<ν = arg maxω∈S

√
Eν [ω2(Y )]−

√
Eµ[ω2(X)].

If the distributions are not well-matched, then ωµ>ν has large magnitude function evaluations under
a ‘localized’ subset of µ and smaller magnitude values for ν, and the opposite for ωµ<ν . The two
samples {xi}mi=1, {yi}ni=1 can be sorted by the magnitude of the witness function evaluations.1

Crucially, we detail a tractable optimization procedure that is guaranteed to yield a global optimum
witness function for the one-sided max-sliced Bures divergence. When X = Rd and the first or
second moments distinguish the distributions, linear witness functions can be used S = {ω(·) =
〈·,w〉 : w ∈ Sd−1}, where Sd−1 denotes the unit sphere in Rd. The optimal witness function for the
one-sided max-sliced Bures divergence ωµ>ν(·) = 〈·,wµ>ν〉 coincides with the subspace with the
greatest difference in RMS, wµ>ν = arg maxw∈Sd−1

√
w>E[XX>]w −

√
w>E[Y Y >]w. This

optimization problem depends on the dimension d; after computation of the covariance matrices,
it is independent of the sample sizes m ≥ n. In comparison, the optimal slice for the max-sliced
Wasserstein may not be obtained, and even gradient ascent to a local optimum requiresO(m logm)
at each function/gradient evaluation. Furthermore, the slice that maximizes the max-sliced Wasser-

1Four groups of ‘witness points’ (top-K instances) can be inspected to identify any discrepancies:

ω2
µ>ν(xπ̀(1)) ≥ · · · ≥ ω2

µ>ν(xπ̀(K))︸ ︷︷ ︸
π̀ sorts {xi}mi=1 to reveal examples from µ̂ with large ω2

µ>ν

�̃ ω2
µ>ν(yσ̀(1)) ≥ · · · ≥ ω2

µ>ν(yσ̀(K))︸ ︷︷ ︸
σ̀ sorts {yi}ni=1 to find the examples from ν̂ with large ω2

µ>ν

, (1)

ω2
µ<ν(xπ́(1)) ≥ · · · ≥ ω2

µ<ν(xπ́(K))︸ ︷︷ ︸
π́ sorts {xi}mi=1 to find examples from µ̂ with large ω2

µ<ν

�̃ ω2
µ<ν(yσ́(1)) ≥ · · · ≥ ω2

µ<ν(yσ́(K))︸ ︷︷ ︸
σ́ sorts {yi}ni=1 to find the examples from ν̂ with large ω2

µ<ν

, (2)

where π̀, π́, σ̀, σ́ denote permutations and �̃ and �̃ denote expected inequalities with a large difference.
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Figure 1: The magnitude of the witness functions obtained from max-sliced Bures indicate dis-
crepancies. (Left) A Gaussian kernel is used to construct non-linear witness functions and identify
witness points. (Right) Witness points for real and fake images from stacked MNIST and CIFAR10.
In each of the 6 frames, instances corresponding to the left hand sides of equation 1 and equation 2
are on the top; the bottom instances correspond to the right hand sides of the expected inequalities.

stein lacks an intrinsic ordering, and it is left to the user to determine whether instances from µ or ν
have high or low values or magnitudes.

As second-order moments may be insufficient for distinguishing the distributions, we explore
non-linear mappings of the random variables. Firstly, we consider a reproducing kernel Hilbert
space (RKHS) H with the family of witness functions S = {ω(·) = 〈φ(·), ω〉H : ω, φ(·) ∈
H, 〈ω, ω〉H = 1}. An example with Gaussian kernels is shown in Figure 1. Secondly, we use a
pre-trained neural network to create a task-relevant mapping, computing the second-order statistics
of the hidden-layer activations, and apply this in the context of samples of natural images. This
enables interpretation of the Fréchet Inception distance (FID) (Heusel et al., 2017) by identifying
the subspace and images associated with discrepancies between synthetic and natural images. We
prove that the max-sliced Bures distance provides a lower bound on the max-sliced Fréchet distance.

Because of their similarity, we develop the max-sliced Bures distance in the context of max-sliced
versions of the total variation and Wasserstein-2 distances. The kernel-based versions of these are
novel contributions themselves. The max-sliced total variation distance is a special case of the
covariance feature matching proposed by Mroueh et al. (2017).

In experimental results, we show applications of the linear and kernel-based versions to detect im-
balances in class distributions of natural images and to critique GANs. We compare to other diver-
gences expressed in terms of witness functions including MMD. Finally, we propose algorithms to
reweight an empirical distribution in order to minimize max-sliced divergences (with applications to
generating conditional distributions and covariate shift correction).

2 METHODOLOGY

Consider a topological space X , a Borel σ-algebra BX , and the set Pr(X ) of Borel probability
measures on X . Let µ, ν ∈ Pr(X ) denote two probability measures, and X ∼ µ and Y ∼ ν
be two random variables X,Y ∈ X . Let κ denote a positive-definite, bounded kernel function
κ : X × X → B ⊂ R. For any κ, there is an implicit mapping φ : X → H that maps any element
x ∈ X to an element in the reproducing kernel Hilbert space (RKHS) φ(x) ∈ H such that κ(x, y) =
〈φ(x), φ(y)〉H = 〈κ(·, x), κ(·, y)〉H for x, y ∈ X , and ∀ω ∈ H, ω(x) = 〈ω, κ(·, x)〉H (Aron-
szajn, 1950). ∀ω ∈ H, ‖ω‖2 =

√
〈ω, ω〉H. When clear, we drop the H subscript on the inner

product. A rank-1 RKHS operator is denoted as ω ⊗ ψ ∈ H × H with 〈(ω ⊗ ψ)φ(x), φ(y)〉 =
〈ψ, φ(x)〉〈ω, φ(y)〉 = ψ(x)ω(y) for x, y ∈ X . Denote by mX = EX∼µ[φ(X)] ∈ H and
mY = E Y∼ν [φ(Y )] ∈ H the first moments of the random variables in the RKHS. The uncen-
tered second moments are ρX = E [φ(X)⊗φ(X)] ∈ H×H and ρY = E [φ(Y )⊗φ(Y )] ∈ H×H.
The covariance operators are ΣX = ρX −mX ⊗mX and ΣY = ρY −mY ⊗mY .
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2.1 DIVERGENCES AS DISTANCE METRICS

Let D(µ, ν) denote a divergence D : Pr(X ) × Pr(X ) → [0,∞). It is a distance metric between
measures (a probability metric) if all of the following statements hold: (i) µ = ν =⇒ D(µ, ν) = 0,
(ii) D(µ, ν) = 0 =⇒ µ = ν, (iii) D(µ, ν) = D(ν, µ), (iv) D(µ, ν) ≤ D(µ, ξ) + D(ν, ξ). It
is a semi-metric if all properties aside from (ii) hold. Müller (1997) defines the class of integral
probability metrics as the supremum of the absolute difference between expectations

DF (µ, ν) = sup
ω∈F

∣∣∣∣∫
X
ω(x)dµ(x)−

∫
X
ω(x)dν(x)

∣∣∣∣ = sup
ω∈F

∣∣E[ω(X)]− E[ω(Y )]
∣∣.

With appropriate choice of the family of functions F , this form yields well-known diver-
gences (Sriperumbudur et al., 2010), e.g., when F is the set of functions with Lipschitz constant
less than 1, the resulting divergence is the Wasserstein-1 distance metric. Another example of an
IPM is when F = {ω ∈ H : ‖ω‖2 ≤ 1}, which yields MMD (Gretton et al., 2007), defined as

DHMMD(µ, ν) = sup
ω∈H:‖ω‖2≤1

{E[ω(X)]− E[ω(Y )] = E[〈φ(X)− φ(Y ), ω〉]} = ‖mX −mY ‖2

=
√

EX∼µ,X′∼µ[κ(X,X ′)] + EY∼ν,Y ′∼ν [κ(Y, Y ′)]− 2EX∼µ,Y∼ν [κ(X,Y )]. (3)

For characteristic kernels such as the Laplacian and Gaussian kernels, the mean embedding
EX∼µ[φ(X)] : Pr(X ) → H is an injective function (Sriperumbudur et al., 2008; Fukumizu et al.,
2009; Sriperumbudur et al., 2010), capturing the full statistics of µ. In these cases, MMD is a dis-
tance metric on Pr(X ); likewise, distance metrics between the operators ρX = E [φ(X) ⊗ φ(X)]
and ρY = E [φ(Y )⊗φ(Y )] induce probability metrics for characteristic kernels (Zhang et al., 2020).

2.2 OPERATOR DISTANCES FOR DEFINING DIVERGENCES

Total variation (TV) is a well-known probability metric and an integral probability metric (Müller,
1997), taking the form (1/2)

∑
i|pi−qi| for discrete measures, for which pi = µ(xi) and qi = ν(xi)

where {xi}i = X . The TV distance between operators in the RKHS is a divergence

DHTV (µ, ν) , dTV (ρX , ρY ) ,
1

2
‖ρX − ρY ‖1, (4)

where ‖·‖1 denotes the trace norm (Schatten 1-norm), which is the sum of the singular values.

The Bures distance generalizes the Hellinger distance
√

(1/2)
∑
i(
√
pi −

√
qi)2 to positive

semidefinite operators (Fuchs & Van De Graaf, 1999; Bromley et al., 2014; Bhatia et al., 2019).
The kernel Bures divergence DHB (µ, ν) and the Bures distance dB(ρX , ρY ) are defined as

DHB (µ, ν) = dB(ρX , ρY ) ,
√
‖ρX‖1 + ‖ρY ‖1−2 ‖√ρX

√
ρY ‖1. (5)

The Bures distance is used to define the Wasserstein-2 (W2) distance between Gaussian measures,
i.e., the Fréchet distance (Fréchet, 1957; Dowson & Landau, 1982). The multivariate Fréchet dis-
tance provides a lower bound for the W2 distance (Gelbrich, 1990).2 The kernel Gauss-Wasserstein
distance (Zhang et al., 2020; Oh et al., 2020) is defined as

DHGW (µ, ν) ,
√
‖mX −mY ‖22 + d2

B(ΣX ,ΣY ) =
√

[DHMMD(µ, ν)]2 + d2
B(ΣX ,ΣY ). (6)

Zhang et al. (2020) also proposed the kernel Wasserstein-p distance between µ and ν,

WHp (µ, ν) ,

(
inf

γ∈Γ(µ,ν)
E

(X,Y )∼γ
[dpκ(X,Y )]

) 1
p

, p ≥ 1, (7)

where Γ(µ, ν) defines the set of all joint distributions coupling µ and ν, and dpκ(X,Y ) = ‖φ(X)−
φ(Y )‖p2. For p = 2, d2

κ(X,Y ) = κ(X,X)+κ(Y, Y )−2κ(X,Y ). When p = 2 and φ(x) 7→ x ∈ Rd

such thatH = Rd, the standard W2 distance WRd
2 (µ, ν) is obtained.

2In the finite-dimensional case, the multivariate Fréchet distance (squared) is often expressed as ‖mX −
mY ‖22 + tr(ΣX +ΣY −2

√
ΣXΣY ); the trace term is the squared Bures distance d2

B(ΣX ,ΣY ) = tr(ΣX +
ΣY )− 2

∥∥√ΣX

√
ΣY

∥∥
1
, where

∥∥√ΣX

√
ΣY

∥∥
1

= tr(
√

ΣXΣY ) (Dowson & Landau, 1982).
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2.3 DIVERGENCES BASED ON SLICING HILBERT SPACES

The sliced Wasserstein distance (Wu et al., 2019; Deshpande et al., 2018; Kolouri et al., 2018), and
max-sliced Wasserstein distance (Deshpande et al., 2019; Kolouri et al., 2019) evaluate discrepancies
in linear or non-linear one-dimensional subspaces. A motivation for this is the analytic solution
of the Wasserstein-p distance in one dimension. The max-sliced Wasserstein-p distance takes the
form max-WRd

p (µ, ν) ∝ supw∈Sd−1 infγ∈Γ(µ,ν) E (X,Y )∼γ [〈X − Y,w〉p], p ≥ 1. Similarly, we
propose the max-sliced Bures, the kernel TV, and the kernel Wasserstein-p distances using the rank-
1 operator Ω = ω ⊗ ω ∈ H × H, which projects (slices) the RKHS along a one-dimensional
subspace defined by the ray ω ∈ H, with 〈ω, φ(X)〉 = ω(X), due to the reproducing property. In
this formulation, ω : X → R is the witness function from the set S={ω ∈ H : ‖ω‖2 =1}. Notably,
a linear slice in the RKHS is a possibly non-linear function in the input space.

For conciseness, we denote the mean square witness function evaluations E [ω2(X)] = 〈ω, ρXω〉 =
‖√ρXω‖22 as ‖ω‖2µ, and E [ω2(Y )] = 〈ω, ρY ω〉 = ‖√ρY ω‖22 as ‖ω‖2ν . The RMS ‖ω‖µ is an L2

semi-norm on ω induced by the positive semidefinite operator
√
ρX . The max-sliced kernel TV,

Bures, and W2 distances, derived in appendix A.1, are expressed as

max-DHTV (µ, ν) ,
1

2
max

{
sup
ω∈S
‖ω‖2µ − ‖ω‖2ν , sup

ω∈S
‖ω‖2ν − ‖ω‖2µ

}
, (8)

max-DHB (µ, ν) , max

{
sup
ω∈S
‖ω‖µ − ‖ω‖ν , sup

ω∈S
‖ω‖ν − ‖ω‖µ

}
, and (9)

max-WH2 (µ, ν) , sup
ω∈S

√
‖ω‖2µ + ‖ω‖2ν − sup

γ∈Γ(µ,ν)

E
(X,Y )∼γ

[2ω(X)ω(Y )], (10)

respectively. The inner supremums in equation 8 and equation 9 are the one-sided divergences.

The max-sliced TV distance is an IPM with F = {ω2(x) = 〈φ(x), ω〉2 : ∀ω ∈ S} and is a special
case of the IPMΣ divergence proposed by Mroueh et al. (2017). While not an IPM, the max-sliced
kernel Bures distance can be directly related to max-sliced versions of the TV, Fréchet, and W2
distance, as detailed by the following results.

Theorem 1. The square of the max-sliced Bures distance in the RKHS H is less than or equal to

twice the max-sliced TV distance, max-DHB (µ, ν) ≤
√

2
(
max-DHTV (µ, ν)

)
.

Theorem 2. The max-sliced Bures distance in the RKHS H is a lower bound on the kernel max-
sliced Gauss-Wasserstein distance, max-DHB (µ, ν) ≤ maxL-DHGW (µ, ν) ≤ maxU -DHGW (µ, ν).

Theorem 3. The max-sliced Bures distance in the RKHS is a lower bound on the kernel max-sliced
W2 distance, max-DHB (µ, ν) ≤ max-WH2 (µ, ν).

These results trivially translate to the linear kernel case H = Rd, S = Sd−1, ω(x) = 〈w,x〉, for
w,x ∈ Rd and X ⊆ Rd. The latter two show that the max-sliced Bures distance is a lower-bound
on the max-sliced Fréchet distance, which is a lower-bound on the max-sliced W2 distance. The
proofs and other relationships among the divergences are in Appendix A.2.

2.4 COMPUTING THE MAX-SLICED DIVERGENCES

The max-sliced kernel Bures, TV, and W2 distances require solving optimization problems to find
the optimal witness function. As noted by others investigating IPMs (Mroueh et al., 2017; Li
et al., 2017; Kolouri et al., 2019), the witness function can be defined using a family of functions
implemented as a neural network. In this context, Goodfellow et al. (2014) use the divergence
DA(µ, ν) = maxω E [logω(X)] + E [log (1− ω(Y ))], where ω : X → (0, 1). In comparison,
the Wasserstein-1 distance DW 1(µ, ν) = supω∈Lip1 E[ω(X)] − E[ω(Y )] requires a Lipschitz con-
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straint (Arjovsky et al., 2017; Gulrajani et al., 2017).3 Table 1 compares the form and constraints.

Table 1: Divergences written in terms of witness functions. Closed-form solutions denoted ω∗.
DA(µ, ν) = maxω:ω(·)∈(0,1) E[logω(X)] + E[log (1− ω(Y ))], ω∗(·) = dµ(·)

dµ(·)+dν(·) .
DW 1(µ, ν) = supω∈Lip1 E[ω(X)]− E[ω(Y )].
DHMMD(µ, ν) = supω∈H:‖ω‖2≤1 E[ω(X)]− E[ω(Y )], ω∗ = mX−mY

‖mX−mY ‖2 .
max-DHTV (µ, ν) = supω∈H:‖ω‖2≤1

1
2

∣∣E[ω2(X)]− E[ω2(Y )]
∣∣.

max-DHB (µ, ν) = supω∈H:‖ω‖2≤1

∣∣∣√E[ω2(X)]−
√

E[ω2(Y )]
∣∣∣.

2.5 SAMPLE-BASED ESTIMATORS FOR MAX-SLICED DIVERGENCES

We consider the case of finite samples expressed as empirical measures µ̂ =
∑m
i=1 µiδxi and ν̂ =∑n

i=1 νiδyi for the samples {xi}mi=1 and {yi}ni=1 with discrete probability masses denoted as column
vectors [µ1, . . . , µm]> = µ ∈ [0, 1]m, 〈µ,1〉 = 1, and [ν1, . . . , νn]> = ν ∈ [0, 1]n, 〈ν,1〉 = 1.
The kernel-based max-sliced divergences optimize the witness function ω(·) =

∑l
i=1 αiκ(·, zi) in

terms of the dual variablesα ∈ Rl corresponding to a subset of the pooled sample {xi}mi=1∪{yi}ni=1.
The optimization problems and algorithms are detailed in appendix A.4.

For clarity, we proceed to the linear kernel case for a finite-dimensional embedding φ(x) = x ∈ Rd.
After embedding, kernel evaluations correspond to vector inner-products κ(x, y) = 〈φ(x), φ(y)〉 =
x>y. Let X = [x1, . . . ,xm] ∈ Rd×m and Y = [y1, . . . ,yn] ∈ Rd×n denote the sample points
with corresponding masses µ and ν, respectively. The witness function is the inner product ω(x) =
w>x, where the variable w defines the slice with ‖ω‖2µ̂ = w>ρXw with ρX = XDµX> and
‖ω‖2ν̂ = w>ρY w with ρY = YDνY>, where Dv is diagonal with entries v. For i.i.d. samples,
Dµ = 1

mI and Dν = 1
nI. The max-sliced TV, Bures, and W2 divergences are

max-DRd
TV (µ̂, ν̂) = max

w:‖w‖2≤1

∣∣w>(ρX − ρY )w
∣∣ = λ1(ρX − ρY ), (11)

max-DRd
B (µ̂, ν̂) = max

w:‖w‖2≤1

∣∣∣√w>ρXw −
√

w>ρY w
∣∣∣ , and (12)

max-WRd
2 (µ̂, ν̂) = max

w:‖w‖2≤1

√
w>(ρX + ρY )w − 2 max

P∈Pµ̂,ν̂
w>XP>Y>w, (13)

where λ1(·) denotes the largest magnitude eigenvalue of the argument and Pµ̂,ν̂ = {P ∈
[0, 1]m×n|P1n = µ,P>1m = ν} is a transportation polytope.

These three optimizations differ in difficulty. The first two require only the sample means mX ,mY

and covariance matrices ΣX ,ΣY , since ρX = mXm>X + m−1
m ΣX and ρY = mY m>Y + n−1

n ΣY

(assuming unbiased covariance estimates). The one-sided max-sliced TV divergences can be solved
by finding the eigenvectors associated to the largest eigenvalues of ρX−ρY and ρY −ρX . Likewise
the optimal slice for each one-sided max-sliced Bures divergence requires solving a series of eigen-
vector problems. Specifically, if ρX and ρY are strictly positive definite, then the optimal witness
function is ωµ>ν(·) = 〈wγ? , ·〉, where γ? ∈ (0, 1] solves the optimization problem

γ? = arg max
0<γ≤1

√
w>γ ρXwγ −

√
w>γ ρY wγ , wγ = arg max

w:‖w‖2≤1

w>(γρX − ρY )w. (14)

The general case involves checking the nullspace of ρY and is given in the Appendix A.5. In com-
parison, the max-sliced W2 distance is a saddlepoint optimization problem (Deshpande et al., 2019).

3In the context of GANs, the sum of the one-sided max-sliced Bures divergences may prove more appro-
priate for training, since it allows for separate witness functions for over- and under-representation. However,
as its witness functions tend to localize discrepancies, even two witness functions may not make efficient
use of the generator’s samples. Instead, a distributional-version of the sliced Bures distance akin to the re-
cent distributional-sliced Wasserstein proposal (Anonymous, 2021a) or the Bures distance itself (Anonymous,
2021b) could be used. Nonetheless, this localization property is what makes the max-sliced Bures interpretable.
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Following Kolouri et al. (2019), gradient ascent on w can be performed with first-order solves. Each
gradient evaluation requires solving the transport map by sorting X>w and Y>w. For this, we use
ADAM (Kingma & Ba, 2015) and quasi-Newton approaches, such as MINFUNC (Schmidt, 2012).
The same approaches can be used to approximate max-DB after smoothing

√
· as
√
·+ 0.01.

3 EXPERIMENTS

We present various examples of using the proposed max-sliced divergences to identify the discrep-
ancies between two samples. We apply the proposed approach to detect mismatched distributions of
natural and fake images using the internal representation of the Inception Network (Szegedy et al.,
2016) as in the Fréchet Inception distance (Heusel et al., 2017) and the Inception score (Salimans
et al., 2016). We investigate whether the witness functions detect covariate shift caused by class
imbalances. Then, we propose optimizing the weights ν to compensate for covariate shift. Finally,
we use the one-sided max-sliced Bures divergence to monitor mode dropping during GAN training.

3.1 INTERPRETING THE FRÉCHET INCEPTION DISTANCE

We use a linear witness function to identify instances that are not well matched between two sam-
ples of real or fake images represented by internal activations of the Inception object classify-
ing network (Szegedy et al., 2016). Specifically, we search for witness functions with the form
ω (x) = 〈w, φ(x)〉, where the vector φ(x) ∈ R2048 is an Inception code—the internal activations of
penultimate layer of the network after pooling (Heusel et al., 2017).

Figure 2 shows the performance of the proposed measure to identify instances associated with im-
balanced representation of particular classes. In particular, µ̂ is a uniform sample from the training
set and ν̂ is a sample from the test set with less instances from one class. Using the one-sided
max-sliced Bures divergence we obtain the optimal slice ωµ>ν and apply it to the imbalanced
sample ν̂, identifying the top-10 witness points with the largest magnitude witness function eval-
uations ω2

µ>ν(yσ̀(1)) ≥ . . . ≥ ω2
µ>ν(yσ̀(10)), where σ̀ is a permutation corresponding to sorting

{yi}ni=1 by descending magnitude. (While this may seem counterintuitive as it is expected that
max1≤i≤m ω

2
µ>ν(xi) � max1≤i≤n ω

2
µ>ν(yi), since ωµ>ν corresponds to a one-dimensional sub-

space, {yσ̀(i)}Ki=1 are theK instances from ν̂ with the largest norm after projection to this subspace.)
The performance is quantified by the precision of the labels of these instances (ideally, these wit-
ness points should be from the underrepresented class). Notably, the mean precision of the top-10
instances is 0.79 or better across the classes with a mean average precision (MAP) of 0.94 when the
class probabilities differ by 2% (10.2% for majority and 8.2% for minority). This is compared to a
MAP of 0.82 for the first-moment based surrogate of the max-sliced W2 distance (Deshpande et al.,
2019). Computing the max-sliced W2 distance takes much longer to run on this sample size.

Figure 2: Max-sliced divergences using the Inception Network representation are applied to samples
with mismatched class distributions in CIFAR10. The first sample consists of the training set (bal-
anced classes with m=50,000), and the second sample is an imbalanced subset of the test set with
n=10,000. Each curve is the mean precision@10 (averaged across 10 random draws) for test sets
where the given class is subsampled at different levels of imbalance and other classes are balanced.

Next we generate a set of 50,000 synthetic images for an AutoGAN instance pre-trained on CI-
FAR10 (Gong et al., 2019), which has an Inception score of 8.525 and a FID score of 12.41.
We applied both one-sided max-sliced Bures divergences to identify the two subspaces that max-
imize the difference in RMS between fake and real images. Figure 3 details the top-10 images in

7
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each subspace and their realism scores R (Kynkäänniemi et al., 2019).4 Applying the max-sliced
Wasserstein-2 distance yielded almost the same solution as wReal<Fake (a linear correlation of 0.992).

A B

C D

Figure 3: Max-slicing Inception codes to illustrate the AutoGAN discrepancies. One-sided max-
sliced Bures is used to identify two witness function (as linear subspaces of the Inception codes) that
differentiate the real from fake samples. (Left: A,C) Images in subspace under-represented by fake
wReal>Fake. (Right: B,D) Images in subspace over-represented by fake wReal<Fake. (Top: A,B) Real
CIFAR10 test images. (Bottom: C,D) Fake images. (C) Realism scores (median and range): 0.92
(0.84–1.03). (D) Realism scores (median and range): 0.68 (0.62–0.73)

3.2 BASELINE COMPARISON ON COVARIATE SHIFT DETECTION

We compare the proposed max-sliced Bures distance and the resulting max-sliced Fréchet distance to
the max-sliced W2 distance for linear witness functions. Figure 4 compares the divergence estimates
instances associated with a simple case of covariate shift with the MNIST data set. Notably, the
precision of detecting class imbalances is higher for smaller samples using a kernel (Appendix A.8).
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Figure 4: Max-sliced distances applied to two samples from MNIST. The first sample µ̂ ism images
drawn uniformly from the training set, and the second sample ν̂ is n images from the test set where
one digit is a minority class l ∈ {0, . . . , 9} with prevalence of 5%. (Left) Divergence estimates
across sample size with l = 7. For m < 2000, gradient-based approaches for the max-sliced W2
distance fail to obtain the optimal slice as it should upper bound the max-sliced Fréchet distance.
(Center) Computation time. (Right) Each curve is the average precision@10 (averaged across the
10 classes). The one-sided max-sliced Bures yields the witness function ωµ>ν(·) = 〈w, ·〉, which is
applied to reliably identify the instances from µ̂ that are from the minority class for m ≥ 1000.

3.3 COVARIATE SHIFT CORRECTION BY REWEIGHTING

We consider the task of reweighting the instances in one sample to minimize the max-sliced Bures
distance. This optimization problem can be expressed as minν∈Rn≥0

:
∑
i νi=1 J(ν), where J(ν) ∝

max-DRd
B (µ̂, ν̂). As shown in appendix A.7, this is a convex minimization problem with a simplex

constraint on ν. We apply the Frank-Wolfe algorithm (Jaggi, 2013) to iteratively adjust the weight
of one instance at each iteration. The performance is quantified in terms of the Fréchet Inception
distance between the real-test images of the class and the reweighted sample of fake images. For
comparison, we also optimize reweightings that minimize the W2 distance and the max-sliced W2
distance (using 10 mini-batches of size n = m =100 at each iteration). The average FID distance
across the classes is 49.15 for the max-sliced Bures reweighting compared to 68.1 and 72.5 for the
mini-batch W2 and max-sliced W2. (See Table 4 in the Appendix for full results).

4We also compute the realism scores of the entire set of fake images using the set of 10,000 test images and
3-nearest neighbor distances. The Spearman rank correlation between the realism scores for the full set of fake
images and the witness function evaluations is -0.70 for ω2

Real<Fake and it is 0.17 for ω2
Real>Fake. This means the

realism score has a strong inverse correlation with ω2
Real<Fake ∝ −R, and a weak correlation forR ∝ ω2

Real>Fake.
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Figure 5 shows results of a reweighting uniform distributions to match target distributions using
either linear slices or random Fourier bases (Rahimi & Recht, 2008) for approximating a Gaussian
kernel.5 For the latter, using the max-sliced Bures as a loss achieves the lowest reweighted W2
distance, which is computed by solving a discrete transportation problem (Flamary & Courty, 2017).
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Figure 5: Reweighting a uniform distribution to match various target distributions by minimizing
the max-sliced W2 distance or the max-sliced Bures distance with either a linear kernel or ran-
dom Fourier bases (d=2,000, σ ∈ {0.1, 0.2}). Examples follow Kolouri et al. (2019) and uses
ADAM (Kingma & Ba, 2015) defaults and a learning rate of 10−2. A point’s size is proportional to
their weights after 100 iterations. Learning curves are the weighted W2 distance (log-scale).

3.4 DETECTING MODE DROPPING

We create a 3-channel “Stacked MNIST” data set with 500,000 images from the MNIST training set
to test mode dropping detection throughout GAN training (DCGAN architecture). The training set
µ̂ has 1000 possible modes corresponding to all 3-digit combinations. At the end of each training
epoch (1000 iterations), a fake sample n = 104 is generated. To verify mode coverage we use a
4-layer conv. net trained on single-channel MNIST; any missing combination of 3-digit labels is
considered a dropped mode. Figure 6 details using the proposed approach to detect missing modes.
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Figure 6: Detecting dropped modes using one-sided max-sliced Bures distance. The slice wReal>Fake
is used to identify the top-10 real training images with the largest magnitude witness function values
at each epoch. Precision@10 measures the fraction that correspond to dropped modes, as compared
to random selection. The curves are the mean (A) and median (B) across 100 GAN training trials.

4 CONCLUSION

We propose the max-sliced Bures distance, a lower-bound on the max-sliced W2 distance, which
can be computed optimally with a tractable algorithm. We show increased performance with kernel-
based witness functions for covariate shift detection and correction, and also highlight its utility
in the linear case when the feature space is the internal representation of a pre-trained network.
Importantly, the one-sided max-sliced Bures divergences enable direct interpretation of under- and
over-representation between two samples, which can be used to identify systematic discrepancies.

5https://github.com/anon-author-dev/gsw
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A APPENDIX

The appendix details the derivation of the proposed divergences, formal results relating them to
existing divergences, algorithms, and additional experimental results.

A.1 DERIVATION OF THE MAX-SLICED KERNEL DIVERGENCES

Let U1 = {ω ⊗ ω : |ω|2 ≤ 1, ω ∈ H} denote the set of rank-1 symmetric operators with bounded
trace norm. Let d denote either the TV distance (d = dTV ) or the squared Bures distance (d = d2

B),
defined in equation 4 and equation 5, respectively. In these cases, the expression of the max-sliced
distance can be simplified as

max-d(ρX , ρY ) = sup
Ω∈U1

d(ΩρXΩ,ΩρY Ω) = sup
Ω∈U1

d(〈Ω, ρX〉HSΩ, 〈Ω, ρY 〉HSΩ)

= sup
Ω∈U1

δ(〈Ω, ρX〉HS , 〈Ω, ρY 〉HS) = sup
ω∈H:‖ω‖2≤1

δ(〈ω, ρXω〉H, 〈ω, ρXω〉H),
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where 〈·, ·〉HS : (H×H)× (H×H)→ R denotes the inner-product defining the Hilbert-Schmidt
(Schatten-2 norm), 〈Ω, ρ〉HS = 〈ω ⊗ ω, ρ〉HS = 〈ω, ρω〉H, and δ(p, q) = d(pΩ, qΩ) denotes the
distance between scaled versions of Ω, for p ∈ R≥0 and q ∈ R≥0. The equalities follow from the fact
that ΩρΩ = (ω ⊗ ω) ρ (ω ⊗ ω) = 〈ω, ρω〉Ω. The max-sliced TV distance and squared max-sliced
Bures distance yield expressions for δ(p, q) that match the form of the underlying TV and Hellinger
divergences: dTV (pΩ, qΩ) yields δ(p, q) = 1

2 |p−q|, and d2
B(pΩ, qΩ) yields δ(p, q) = (

√
p−√q)2:

max-dTV (ρX , ρY ) , sup
ω∈S

1

2
|〈ω, ρXω〉 − 〈ω, ρY ω〉|, and (15)

max-dB(ρX , ρY ) , sup
ω∈S
|
√
〈ω, ρXω〉 −

√
〈ω, ρY ω〉|, (16)

where S = {ω ∈ H : ‖ω‖2 = 1}. The kernel-based divergences can be expressed in terms of
the witness functions since 〈ω, ρXω〉 = E [〈φ(X), ω〉〈φ(X), ω〉] = E [ω2(X)] and likewise for ρY .
The underlying divergences and distances are listed in Table 2.

Table 2: Relationship between scalar discrepancy δ, divergence D between continuous µ, ν and
discrete measures µ,ν, operator dissimilarity d, max-sliced dissimilarity, and kernel max-sliced
divergence for the TV and squared Bures divergences (squared Bures is twice the squared Hellinger).

TV (Bures)2

δ(p, q) 1
2 |p− q| |√p−√q|2

D(µ,ν) 1
2

∑
i|µi − νi|

∑
i

(√
µi −

√
νi
)2

D(µ, ν) 1
2

∫
X |dµ(x)− dν(x)|

∫
X

(√
dµ(x)−

√
dν(x)

)2

d(ρX , ρY ) 1
2‖ρX − ρY ‖1 ‖ρX‖1 + ‖ρY ‖1 − 2

∥∥∥ρ 1
2

Xρ
1
2

Y

∥∥∥
1

max-d(ρX , ρY ) 1
2 supω∈S |〈ω, ρXω〉 − 〈ω, ρY ω〉| supω∈S

(√
〈ω, ρXω〉 −

√
〈ω, ρY ω〉

)2

max-D(µ, ν) 1
2 supω∈S |E [ω2(X)]− E [ω2(Y )]| supω∈S

(√
E [ω2(X)]−

√
E [ω2(Y )]

)2

Slicing is natural for the operator-based distances, as it is inherent in their definition such that
they coincide with the corresponding divergences between discrete probability laws (Fuchs & Van
De Graaf, 1999). The scalar discrepancy measure δ(·, ·) can be accumulated across a complete set of
slices to obtain the original distances. Consider a set (or countably infinite sequence) of orthogonal
trace-norm operators O = {Ω1 = ω1 ⊗ ω1,Ω2 = ω2 ⊗ ω2, . . . ,Ωk = ωk ⊗ ωk}. Since these
operators are orthogonal and have unit trace-norm ‖

∑k
i=1 Ωi‖∞ = 1,

d(ρX , ρY ) ≥
k∑
i=1

d(〈Ωi, ρX〉HSΩi, 〈Ωi, ρY 〉HSΩi) =

k∑
i=1

δ(〈Ωi, ρX〉HS , 〈Ωi, ρY 〉HS)

=

k∑
i=1

δ(pi(O), qi(O)), (17)

where pi(O) = 〈Ωi, ρX〉HS and qi(O) = 〈Ωi, ρY 〉HS . To obtain the equality, one must optimizeO
over all possible sets of orthogonal trace-norm operators.

A.1.1 MAX-SLICED TOTAL VARIATION DISTANCE

The sliced kernel total variation distance is

dTV (ΩρXΩ,ΩρY Ω) =
1

2
‖Ω(ρX − ρY )Ω‖1 =

1

2
‖〈Ω, ρX − ρY 〉Ω‖1 =

1

2
|〈Ω, ρX − ρY 〉|‖Ω‖1.

Maximizing over slices yields

1

2
sup

Ω∈U1
|〈Ω, ρX − ρY 〉|‖Ω‖1 =

1

2
sup

Ω∈U1
|〈Ω, ρX − ρY 〉| =

1

2
sup

ω:‖ω‖2≤1

|‖ω‖2µ − ‖ω‖2ν |, (18)

14



Under review as a conference paper at ICLR 2021

where the first equality follows from the fact that distance is maximized when ‖Ω‖1 = 1. This
yields the expression

max-DHTV (µ, ν) ,
1

2
sup

ω:‖ω‖2=1

|‖ω‖2µ − ‖ω‖2ν |. (19)

Notably, the penultimate expression in equation 18 can be related to the operator norm,

sup
Ω∈U1

|〈Ω, ρX − ρY 〉| ≤ sup
Ω∈{O∈H×H:‖O‖1≤1}

〈Ω, ρX − ρY 〉 = ‖ρX − ρY ‖∞, (20)

due to the dual norm definition. Since ρX − ρY is symmetric, the equality is achieved. Thus,
max-DHTV (µ, ν) = 1

2‖ρX − ρY ‖∞. For a linear kernel, this can be computed by finding the largest
magnitude eigenvalue of ρX − ρY = EX∼µ[XX>]− EY∼ν [Y Y >] ∈ Rd×d.

A.1.2 MAX-SLICED BURES DISTANCE

The sliced version of the Bures distance is

dB(ΩρXΩ,ΩρY Ω) =

√
‖ΩρXΩ‖1 + ‖ΩρY Ω‖1 − 2‖(ΩρXΩ)

1
2 (ΩρY Ω)

1
2 ‖1,

which can be simplified since ‖ΩρXΩ‖1 = tr((ω ⊗ ω)ρX(ω ⊗ ω)) = 〈ω, ρXω〉‖ω‖22 =

‖ω‖2µ‖ω‖22, and ‖(ΩρXΩ)
1
2 (ΩρY Ω)

1
2 ‖1 =

√
〈ω, ρXω〉〈ω, ρY ω〉‖Ω‖1 =

√
‖ω‖2µ‖ω‖2ν‖Ω‖1 =

‖ω‖µ‖ω‖ν‖ω‖22. Using these expressions, the max-sliced Bures distance is

sup
Ω∈U1

dB(ΩρXΩ,ΩρY Ω) = sup
ω∈H:‖ω‖2≤1

‖ω‖2
√
‖ω‖2µ + ‖ω‖2ν − 2‖ω‖µ‖ω‖ν .

The expression is monotonic with the norm of ω yielding

max-DHB (µ, ν) , sup
ω∈H:‖ω‖2≤1

√
(‖ω‖µ − ‖ω‖ν)

2
= sup
ω∈H:‖ω‖2≤1

∣∣‖ω‖µ − ‖ω‖ν∣∣ (21)

= sup
ω∈H:‖ω‖2=1

∣∣∣∣√EX∼µ[ω2(X)]−
√

EY∼ν [ω2(Y )]

∣∣∣∣ .
A.1.3 MAX-SLICED GAUSS-WASSERSTEIN DISTANCES

Two max-sliced versions of the Gauss-Wasserstein or Fréchet distance in the RKHS are

maxL-DHGW (µ, ν) = sup
Ω∈U1

√
‖Ω(mX −mY )‖22 + d2

B(ΩΣXΩ,ΩΣY Ω)

= sup
ω∈H:‖ω‖2≤1

‖ω‖2

√
〈mX −mY , ω〉2 +

(√
〈ω,ΣXω〉 −

√
〈ω,ΣY ω〉

)2

= sup
ω∈H:‖ω‖2≤1

√
〈mX −mY , ω〉2 +

(√
〈ω,ΣXω〉 −

√
〈ω,ΣY ω〉

)2

= sup
ω∈H:‖ω‖2≤1

√
(EX∼µ[ω(X)]− EY∼ν [ω(Y )])2 +

(
σω(X) − σω(Y )

)2
, (22)

where σω(X) =
√

E[(ω(X)− 〈mX , ω〉)2] is the standard deviation of ω(X), and σω(Y ) =√
E[(ω(Y )− 〈mY , ω〉)2], and

maxU -DHGW (µ, ν) =

(
sup

Ω∈U1
‖Ω(mX −mY )‖22 + sup

Ω∈U1
d2
B(ΩΣXΩ,ΩΣY Ω)

) 1
2

=

√
MMD2(µ, ν) + sup

ω∈H:‖ω‖2≤1

(
σω(X) − σω(Y )

)2
=
√

MMD2(µ, ν) + max-d2
B(ΣX ,ΣY ). (23)

Notably, maxL-DHGW (µ, ν) is the supremum of the Fréchet distance over all witness functions.
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A.1.4 MAX-SLICED KERNEL WASSERSTEIN

A sliced version of the kernel Wasserstein distance between µ and ν relies on the the sliced distance

dκ,ω(X,Y ) = ‖(ω ⊗ ω) (φ(X)− φ(Y ))‖2 = ‖〈ω, φ(X)− φ(Y )〉ω‖2
= |〈ω, φ(X)− φ(Y )〉|‖ω‖2 = |〈ω, φ(X)〉 − 〈ω, φ(Y )〉|‖ω‖2 = |ω(X)− ω(Y )|‖ω‖2.

This distance is monotonic with the norm of ω and convex with respect to ω. The max-sliced kernel
Wasserstein-p distance, p ≥ 1, is

max-WHp (µ, ν) = sup
ω∈H:‖ω‖2≤1

inf
γ∈Γ(µ,ν)

[
E

(X,Y )∼γ
(dκ,ω(X,Y ))

p

] 1
p

= sup
ω∈H:‖ω‖2≤1

inf
γ∈Γ(µ,ν)

[
E

(X,Y )∼γ
|ω(X)− ω(Y )|p

] 1
p

, (24)

which is a one-dimensional optimal transport problem. Let ω#µ and ω#ν denote the pushforward
measures, then the divergence can be written as

max-WHp (µ, ν) = sup
ω∈H:‖ω‖2≤1

inf
π∈Π(ω#µ,ω#ν)

[
E

(S,T )∼π
|S − T |p

] 1
p

, (25)

where Π(ω#µ, ω#ν) is the set of all joint distributions coupling the pushforward measures.

Assuming the measures are absolutely continuous and adopting the notation from Santambro-
gio (2015), let Fω,µ(w) =

∫ w
−∞ dω#µ = ω#µ((−∞, w]) and Fω,ν(w) =

∫ w
−∞ dω#ν =

ω#ν((−∞, w]) denote the cumulative distribution functions of the pushforward measures with
pseudo-inverses F−1

ω,µ(q) = inf{w ∈ R : Fω,µ(w) ≥ q} and F−1
ω,ν(q) = inf{w ∈ R : Fω,ν(w) ≥ q}.

As shown in Lemma 2.8 (Santambrogio, 2015), then the optimal transport plan π∗ has cumulative
distribution Gω(wX , wY ) = min{Fω,µ(wX), Fω,ν(wY )} and the divergence is

max-WHp (µ, ν) = sup
ω∈H:‖ω‖2≤1

[∫ 1

0

∣∣F−1
ω,µ(q)− F−1

ω,ν(q)
∣∣p dq] 1

p

, (26)

and for the case p = 1 (Santambrogio, 2015, Proposition 2.17),

max-WH1 (µ, ν) , sup
ω∈H:‖ω‖2≤1

∫
R
|Fω,µ(w)− Fω,ν(w)| dw. (27)

The objective in the last quantity is an L1-norm version of the Cramér–von Mises criterion (Schmid
& Trede, 1995; Anderson, 1962). That is, the max-sliced kernel Wasserstein-1 distance is equivalent
to a max-sliced L1-norm version of the Cramér–von Mises criterion, where the slicing corresponds
to a function in the RKHS that witnesses the largest discrepancies between the measures. The choice
of p = 2 simplifies, yielding the following optimization problem

max-WH2 (µ, ν) = sup
ω∈H:‖ω‖2≤1

inf
γ∈Γ(µ,ν)

(
E

(X,Y )∼γ

[
ω2(X) + ω2(Y )− 2ω(X)ω(Y )

]) 1
2

= sup
ω∈H:‖ω‖2≤1

(
‖ω‖2µ + ‖ω‖2ν − sup

γ∈Γ(µ,ν)

E
(X,Y )∼γ

[2ω(X)ω(Y )]

) 1
2

(28)

= sup
ω∈H:‖ω‖2≤1

(
‖ω‖2µ + ‖ω‖2ν − 2

∫ 1

0

F−1
ω,µ(q)F−1

ω,ν(q)dq

) 1
2

. (29)

A.2 RELATIONSHIP BETWEEN THE KERNEL-BASED MAX-SLICED DIVERGENCES

The Bures distance can be used to lower bound the TV distance, d2
B(ρX , ρY ) ≤ ‖ρX − ρY ‖1 =

2dTV (ρX , ρY ) (Fuchs & Van De Graaf, 1999). This inequality stems from the inequality between
the squared Hellinger and total variation distances for discrete probability laws.

∑
i‖
√
pi−
√
qi‖22 ≤∑

i|pi − qi|, where the inequality holds for each summand, |√pi −
√
qi|2 ≤ |

√
pi −

√
qi|(
√
pi +√

qi) = |pi − qi|. This inequality holds for the max-sliced divergences as stated in Theorem 1.
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Proof of Theorem 1. (‖ω‖µ − ‖ω‖ν)
2 ≤

∣∣‖ω‖2µ − ‖ω‖2ν∣∣, where the inequality is a consequence of
the inequality between the arithmetic and geometric means, let a = ‖ω‖2µ and b = ‖ω‖2ν , then
(
√
a −
√
b)2 ≤ |

√
a −
√
b|(
√
a +
√
b) = |a − b|. Taking the supremum over ω ∈ H with the

constraint ‖ω‖2 ≤ 1 yields the desired the result
(
max-DHB (µ, ν)

)2 ≤ 2
(
max-DHTV (µ, ν)

)
.

We now consider the relationship between the Gauss-Wasserstein or Fréchet distance—which com-
bines the distances between the first and second-order moments—with the max-sliced Bures when
it is applied directly to the uncentered covariance matrices. For this we need the following lemma.
Lemma 4 (Reverse triangle inequality). For two vectors in R2, the difference between their Eu-
clidean norms is less than or equal to the Euclidean norm of their differences. For a, b, c, d ∈ R,∣∣√a2 + b2 −

√
c2 + d2

∣∣ ≤√(a− c)2 + (b− d)2.

Proof. Let e =
(√
a2 + b2 −

√
c2 + d2

)2
and f = (a− c)2 + (b− d)2.

e = a2 + b2 + c2 + d2 − 2
√

(a2 + b2)(c2 + d2)

= a2 + b2 + c2 + d2 − 2
√
a2c2 + b2d2 + b2c2 + a2d2

≤ a2 + b2 + c2 + d2 − 2

√
a2c2 + b2d2 + 2

√
a2b2c2d2, by the arithmetic and geometric mean inequality

= a2 + b2 + c2 + d2 − 2

√
(
√
a2c2 +

√
b2d2)2

= a2 + b2 + c2 + d2 − 2(
√
a2c2 +

√
b2d2)

≤ a2 + b2 + c2 + d2 − 2(ac+ bd) = (a− c)2 + (b− d)2 = f.

Taking the square root of each side yields the inequality
√
e ≤
√
f .

Proof of Theorem 2. To relate the sliced Bures and Gauss-Wasserstein distances, we note that
‖ω‖2µ = 〈ρX , ω ⊗ ω〉HS = 〈ΣX +mX ⊗mX , ω ⊗ ω〉HS = σ2

ω(X) + 〈mX , ω〉2 and likewise for
‖ω‖2ν . Then, ∣∣∣√‖ω‖2µ −√‖ω‖2ν∣∣∣ =

∣∣∣√〈mX , ω〉2 + σ2
ω(X) −

√
〈mY , ω〉2 + σ2

ω(Y )

∣∣∣
≤
√
〈mX −mY , ω〉2 + (σω(X) − σω(Y ))2, (30)

where the inequality relies on Lemma 4, with a = 〈mX , ω〉, b = σω(X), c = 〈mY , ω〉, and d =
σω(Y ). Taking supremum over slices yields the desired inequality.

Theorem 2 shows that the max-sliced kernel Bures distance is a lower-bound on the max-sliced
kernel Wasserstein-2 distance, since the latter is lower bounded by the max-sliced kernel Gauss-
Wasserstein distance.

Proof of Theorem 3. Let ω(X) = 〈mX , ω〉+ ω̃(X) and ω(Y ) = 〈mY , ω〉+ ω̃(Y ), where ω̃(X) =
〈φ(X) − mX , ω〉 and ω̃(Y ) = 〈φ(Y ) − mY , ω〉 are zero mean, and E [ω̃2(X)] = σ2

ω(X) and
E [ω̃2(Y )] = σ2

ω(Y ). The squared Fréchet distance between random variables ω(X) and ω(Y ) is

(E [ω(X)]− E [ω(Y )])2 + (σω(X) − σω(Y ))
2 = 〈mX −mY , ω〉2 + (σω(X) − σω(Y ))

2

= 〈mX , ω〉2 + σ2
ω(X) + 〈mY , ω〉2 + σ2

ω(Y ) − 2
(
〈mX , ω〉〈mY , ω〉+ σω(X)σω(Y )

)
= E [ω2(X)] + E [ω2(Y )]− 2

(
E [ω(X)]E [ω(Y )] +

√
E [ω̃2(X)]E [ω̃2(Y )]

)
.

By Hölder’s inequality, E [ω̃(X)ω̃(Y )] ≤ σω(X)σω(Y ) =
√
E [ω̃2(X)]E [ω̃2(Y )]. Consequently,

E [ω2(X)] + E [ω2(Y )]− 2
(
E [ω(X)]E [ω(Y )] +

√
E [ω̃2(X)]E [ω̃2(Y )]

)
(31)

≤ E [ω2(X)] + E [ω2(Y )]− 2 (E [ω(X)]E [ω(Y )] + E [ω̃(X)ω̃(Y )])

= E [ω2(X)] + E [ω2(Y )]− 2E [ω(X)ω(Y )] = E [(ω(X)− ω(Y ))
2
]. (32)
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Taking the infimum over all possible joint distributions (X,Y ) ∼ γ that are within the coupling
distribution γ ∈ Γ, yields the sliced Wasserstein-2 distance on the right hand side. Maximizing
over slices, yields maxU -DHGW (µ, ν) ≤ max-WH2 (µ, ν) and combining with Theorem 2 yields the
desired result.

A.3 RELATIONSHIP TO OTHER DIVERGENCES

Finally, we note that the terms in the max-sliced Gauss-Wasserstein divergences are related to kernel
Fischer discriminant analysis (KFDA) (Mika et al., 1999). KFDA objective is based on the ratio of
the difference in means to the pooled variances:

DHFDA(µ, ν) = sup
ω

〈ω,mX −mY 〉2

σ2
ω(X) + σ2

ω(Y )

= sup
ω

〈ω,mX −mY 〉2

〈ω, (ΣX + ΣY )ω〉
. (33)

KFDA seeks a witness function which has widely separated means for the two measures, and mini-
mal variance.

A.4 COMPUTING THE MAX-SLICED KERNEL DIVERGENCES

We assume the witness function6 ω ∈ H is of the form ω =
∑n+m
i=1 αiφ(zi) with ω(·) =∑n+m

i=1 αiκ(·, zi) where zi =

{
xi, 1 ≤ i ≤ m
yi−m, m < i ≤ n+m

and α ∈ Rm+n. In this case,

‖ω‖2µ̂ = 〈ω ⊗ ω, (φ⊗ φ)#µ̂)〉 =

m∑
j=1

µj〈ω ⊗ ω, φ(xj)⊗ φ(xj)〉 =

m∑
j=1

µj〈ω, φ(xj)〉2

=

m∑
j=1

µj〈
n+m∑
i=1

αiφ(zi), φ(xj)〉2 =

m∑
j=1

µj

(
n+m∑
i=1

αiκ(zi, xj)

)2

= 〈µ, (KXZα)◦2〉

= α>K>XZdiag(µ)KXZα = ‖D
1
2
µKXZα‖22,

where κ(zi, zj) = Kij , K =

[
KXX ,KXY

KY X ,KY Y

]
=

[
KXZ

KY Z

]
, (·)◦2 denotes the elementwise squaring of

a matrix/vector, and Dv = diag(v) denotes a diagonal matrix whose diagonal entries are the vector

v. Similarly, ‖ω‖2ν̂ = 〈ν, (KY Zα)◦2〉 = ‖D
1
2
ν KY Zα‖22.

In order for the constraint ‖ω‖22 ≤ 1 =⇒ α>Kα ≤ 1 to ensure a bounded solution, we assume
K is strictly positive definite. For this purpose, we add a small value to its diagonal K + 10−9I
when necessary in the optimization procedures. For computational purposes when m or n are large,
a subset (possibly random) of landmark points of size l < n + m can be used to form the witness
function ω =

∑l
i=1 αiφ(zτi), where {τi}li=1 ⊂ {1, . . . ,m + n}. In this case, KXZ ∈ Rm×l and

KY Z ∈ Rn×l with [KXZ ]i,j = κ(xi, zτj ) and [KY Z ]i,j = κ(yi, zτj ). In this case, the constraint
also needs to be adjusted.

A.4.1 MAX-SLICED KERNEL TV DISTANCE

Using these expressions, the max-sliced kernel TV distance is

max-DHTV (µ̂, ν̂) = max
α:α>Kα≤1

1

2

∣∣∣‖D 1
2
µKXZα‖22 − ‖D

1
2
ν KY Zα‖22

∣∣∣ (34)

= max
α:α>Kα≤1

1

2
|α>(K>XZDµKXZ −K>Y ZDνKY Z)α|. (35)

The solution is the generalized eigenvector corresponding to the largest magnitude eigenvalue of
the generalized eigenvalue problem Av = λKv, where A = K>XZDµKXZ − K>Y ZDνKY Z .
α? = arg maxα

α>Aα
α>Kα

. The witness function is ω?(·) =
∑m+n
i=1 α?i κ(·, zi).

6Similar to kernel PCA, the constraint ‖ω‖2 ≤ 1 allows the use of the representer theorem for the RKHS.
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A.4.2 MAX-SLICED KERNEL BURES DISTANCE

The sample-based max-sliced kernel Bures distance is

max-DHB (µ̂, ν̂) = max
α:α>Kα≤1

∣∣∣‖D 1
2
µKXZα‖2 − ‖D

1
2
ν KY Zα‖2

∣∣∣ (36)

= max
s∈{−1,+1}

max
α:α>Kα≤1

s‖D
1
2
µKXZα‖2 − s‖D

1
2
ν KY Zα‖2 (37)

The last expression shows that the max-sliced Bures distance can be expressed as a bilevel optimiza-
tion problem, where the inner optimization problem—which we refer to as one-sided max-sliced
Bures divergence—is a difference of convex functions:

max-DHB (µ̂, ν̂) = max

{[
min

α:α>Kα≤1
g(α)− h(α)

]
,

[
min

α:α>Kα≤1
h(α)− g(α)

]}
, (38)

g(α) = ‖D
1
2
ν KY Zα‖2, (39)

h(α) = ‖D
1
2
µKXZα‖2. (40)

Without loss of generality, we will consider the first case (s = 1),

min
α:α>Kα≤1

g(α)− h(α). (P)

Inspired by the approach Landsman (2008), we relate this problem to a quadratic program, specifi-
cally, the quadratically constrained quadratic program

min
α:α>Kα≤1

c1g
2(α)− c2h2(α) = min

α:α>Kα≤1
α>(c1K

>
Y ZDνKY Z − c2K>XZDµKXZ)α, (Q),

for c1, c2 ∈ R≥0. The solution of which can be obtained as in the max-sliced kernel TV distance by
solving a generalized eigenvalue problem. For (P), the Lagrangian function is

L(α, λ) = g(α)− h(α)− λ(α>Kα− 1). (41)

Let G = {α : g(α) > 0, h(α) > 0} denote the set of points where g and h are differentiable. Then
for α ∈ G and K positive definite, L(α, λ) is differentiable, and

∇αL(α, λ) = ∇αg(α)−∇αh(α)− 2λKα =
1

2g(α)
∇αg

2(α)− 1

2h(α)
∇αh

2(α)− 2λKα,

where the equality follows from ∇αg
2(α) = 2g(α)∇αg(α) and likewise ∇αh

2(α) =
2h(α)∇αh(α). For (Q), the Lagrangian function and its gradient are

L̄(α, λ) = c1g
2(α)− c2h2(α)− λ(α>Kα− 1), (42)

∇αL̄(α, λ) = c1∇αg
2(α)− c2∇αh

2(α)− 2λKα. (43)

If c1 = 1
2g(α) and c2 = 1

2h(α) , then ∇αL(α, λ) = ∇αL̄(α, λ).

Let α∗ denote a global optimum of (Q). If c1 = 1
2g(α∗) and c2 = 1

2h(α∗) , then∇αL(α, λ)|α=α∗ =

∇αL̄(α, λ)|α=α∗ . Consequently, α∗ is a local optimum of (P). By the Karush–Kuhn–Tucker con-
ditions, it is a necessary condition for all optima of (P) in G to have this form. Thus, any global
optimum of (P) that lies in G corresponds to a global optimum of (Q) for particular values of c1, c2.
The family of solutions to (Q) that includes all local optima of (P) in G, is

α∗γ = arg max
α:α>Kα≤1

γh2(α)− g2(α), γ =
c2
c1
∈ (0, 1], (44)

where the bounds are due to the non-negative functions and h2(α∗γ) ≥ g2(α∗γ) =⇒ 1
2c2
≥

1
2c1

=⇒ c1 ≥ c2 =⇒ c2
c1
≤ 1. Notably, γ = 1 =⇒ c1 = c2 corresponds to the one-sided

max-sliced TV. The global optimum of (P) within G is necessarily within {α∗γ}γ∈(0,1] and can be
found as the solution to the bound scalar optimization problem minγ∈(0,1] g(α∗γ)− h(α∗γ).

A remaining case for a global optimum is a non-differentiable point α? /∈ G, specif-
ically, g(α?) = 0 (the case of h(α?) = 0 is trivial), which corresponds to α? ∈
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Null(DνKY Z). In this case, the generalized eigenvalue problem must be restricted to the
nullspace α∗∅ = arg maxα∈Null(DνKY Z):α>Kα≤1 h

2(α). Let V ∈ R(m+n)×p denote a ma-
trix of p orthonormal columns that spans the nullspace, then α∗∅ = Vβ∗, where β∗ =

arg maxβ∈Rp:β>V>KVβ≤1‖D
1
2
µKXZVβ‖22. Overall, the one-sided max-sliced kernel Bures dis-

tance can be computed using a combination of a line search for γ ∈ (0, 1] and checking the solution
in the nullspace as described in Algorithm 1.

Algorithm 1: One-sided max-sliced kernel Bures divergence
Input: {(xi, µi)}mi=1, {(yi, νi)}ni=1, κ(·, ·), τ ⊆ {1,m+ n}

1 zi =

{
xi i ≤ m,
yi−m i+ 1 ≤ i ≤ m+ n

2 D
1
2
µKXZ = [

√
µiκ(xi, zτj )]

m, |τ |
i=1,j=1

3 D
1
2
ν KY Z = [

√
νiκ(yi, zτj )]

n, |τ |
i=1,j=1

4 A = K>XZDµKXZ

5 B = K>Y ZDνKY Z

6 K = [κ(zτi , zτj )]
m, |τ |
i=1,j=1

7 α? = ONESIDEDMAXSLICEDKERNELBURES(A,B,K)

8 ωµ>ν(z) : z 7→
∑|τ |
i=1 α

?
i κ(z, zτi)

Output: ωµ>ν

1 ONESIDEDMAXSLICEDKERNELBURES (A,B,K)
2 αγ : γ 7→ arg maxα:α>Kα≤1α

>(γA−B)α

3 γ? = arg max0<γ≤1

√
α>γ Aαγ −

√
α>γ Bαγ

4 α∅ = arg max
α∈Null(B):α>Kα≤1

α>Aα

5 if
√
α>∅Aα∅ >

√
α>γ?Aαγ? −

√
α>γ?Bαγ? then

6 α? = α∅
7 else
8 α? = αγ?
9 end

10 return α?

A.4.3 MAX-SLICED KERNEL WASSERSTEIN

The empirical version of max-sliced kernel Wasserstein divergence can be expressed in terms of
either equation 24 or equation 26,

max-WHp (µ̂, ν̂) = max
ω∈H:‖ω‖2≤1

min
P∈Pµ̂,ν̂

 m,n∑
i=1,j=1

Pi,j |ω(xi)− ω(yj)|p
 1
p

(45)

= max
ω∈H:‖ω‖2≤1

[∫ 1

0

|F−1
ω,µ̂(q)− F−1

ω,ν̂(q)|pdq
] 1
p

, (46)

where Pµ̂,ν̂ = {P ∈ [0, 1]m×n|P1n = µ,P>1m = ν} is a transportation polytope. The empirical
distribution functions are Fω,µ̂(w) =

∑m
i=1 µiIω(xi)≤w and Fω,ν̂(w) =

∑n
i=1 νiIω(yi)≤w with in-

verses F−1
ω,µ̂(q) = min{ω(xi), i ∈ {1, . . . ,m} : Fω,µ̂(ω(xi)) ≥ q} and F−1

ω,ν̂(q) = min{ω(yi), i ∈
{1, . . . , n} : Fω,ν̂(ω(yi)) ≥ q}. For fixed ω, the optimal transport plan Ṕ is based on the sorted
values ω(x(1)) ≤ ω(x(2)) ≤ · · · ≤ ω(x(m)) and ω(y(1)) ≤ ω(y(2)) ≤ · · · ≤ ω(y(m)). Denote the
sorted values as vectors ώX and ώY , with [ώX ]i = ω(x(i)) and [ώY ]i = ω(y(i)), and denote by µ́
and ν́ the corresponding permuted versions of µ and ν.
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In the case of equal samples sizes of uniform measure, m = n and µ = 1
m1m and ν =

1
n1n, elements in Pµ̂,ν̂ are scaled elements in the Birkhoff polytope (the set of doubly stochas-
tic matrices), and the solution to the linear program is a permutation and max-WHp (µ̂, ν̂) =

supω∈H:‖ω‖2≤1

{[∑m
i=1

∣∣ω(x(i))− ω(y(i))
∣∣p] 1

p = ‖ώX − ώY ‖p
}

, where ‖·‖p denotes the `p

norm in m dimensions. As in the continuous case, the discrete transport plan between the sorted
measures has the cumulative distribution Ǵ ∈ [0, 1]m×n with Ǵi,j = min{

∑i
k=1 µ́k,

∑j
k=1 ν́k}.

The optimal transport plan between the sorted measures is given by taking the first difference over
both rows and columns of Ǵ, Ṕ1,1 = Ǵ1,1, Ṕ1,j = Ǵ1,j − Ǵ1,j−1, Ṕi,1 = Ǵi,1 − Ǵi−1,1, and
Ṕi,j = Ṕi,j − Ṕi−1,j − Ṕi,j−1. Using the sorted witness function evaluations the distance can be
written as

max-WHp (µ̂, ν̂) = max
ω∈H:‖ω‖2≤1

 m,n∑
i=1,j=1

Ṕi,j
∣∣ω(x(i))− ω(y(j))

∣∣p 1
p

. (47)

We now turn our attention to the optimization of the function ω parametrized in terms of α, ω(·) =∑m+n
i=1 αiκ(·, zi). For arbitrary sample sizes with p = 2, the max-sliced kernel W2 distance is

max-WH2 (µ̂, ν̂) = max
ω∈H:‖ω‖2≤1

(
‖ω‖2µ̂ + ‖ω‖2ν̂ − 2 max

P∈Pµ̂,ν̂
〈P,ωXω>Y 〉

) 1
2

, (48)

with unsorted values ωX = [ω(x1), . . . , ω(xm)]> = KXZα and ωY = [ω(y1), . . . , ω(yn)]> =
KY Zα.

The max-sliced kernel W2 distance can be expressed in terms of equation 45 or equation 48:

[
max-WH2 (µ̂, ν̂)

]2
= max

α:α>Kα≤1
min

P∈Pµ̂,ν̂

m,n∑
i=1,j=1

Pij

∣∣∣∣∣
m+n∑
k=1

(κ(xi, zk)− κ(yj , zk))αk

∣∣∣∣∣
2

= max
α:α>Kα≤1

{
α>K>XZDµKXZα+α>K>Y ZDνKY Zα

− 2 max
P∈Pµ̂,ν̂

α>K>XZPKY Zα
}

= max
α:α>Kα≤1

min
P∈Pµ̂,ν̂

α>QPα = max
α

minP∈Pµ̂,ν̂ α
>QPα

α>Kα
, (49)

where QP = K>XZDµKXZ+K>Y ZDνKY Z−K>XZPKY Z−K>Y ZP>KXZ is a symmetric matrix
positive semidefinite matrix. (This can be seen since the objective is greater than or equal to zero
for all choices of α.) For fixed P, equation 49 is a convex maximization, that can be solved as
a generalized eigenvalue problem. For fixed α, the optimization in terms of P is a linear program
with the solution detailed above. However, when maximizing with respect toα, P is a matrix-valued
function of α. To find a local maximum for α we use the unconstrained optimization equation 49
and perform gradient ascent with respect to α, wherein each iteration we compute the optimal
transport plan. This approach is also used in computing the generalized max-sliced Wasserstein
distance Kolouri et al. (2019).

A.5 COMPUTING THE MAX-SLICED DIVERGENCES FOR THE LINEAR CASE

The linear case follows from the kernel case with some further simplification. The objec-
tives of the one-sided max-sliced Bures divergences are each a difference of convex functions,
whose stationary points are maximum eigenvalue problems, and correspond to reweighted ver-
sions of the one-sided max-sliced TV divergence. Assuming the covariance matrices are strictly
positive definite max-DRd

B (µ̂, ν̂) = max0<γ<1

∣∣∣√w>γ ρXwγ −
√

w>γ ρY wγ

∣∣∣ , where wγ =

arg maxw:‖w‖2≤1 w>(γρX − ρY )w for the one-sided case. If the matrices are singular, then cases
where w is in the nullspace must be checked. Without loss of generality, the algorithm to obtain the
optimal slice for the one-sided max-sliced Bures divergence is described in Algorithm 2.
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Algorithm 2: One-sided max-sliced Bures divergence

Input: ρX ,ρY ∈ Rd×d
1 wγ : γ 7→ arg maxw:‖w‖2≤1 w>(γρX − ρY )w

2 γ? = arg max0<γ≤1

√
w>γ ρXwγ −

√
w>γ ρY wγ

3 if rank(ρY ) = d then
4 wµ>ν = wγ?

5 else
6 v = arg max

w∈Null(ρY ):‖w‖2≤1

w>ρXw

7 if
√

v>ρXv >
√

w>γ?ρXwγ? −
√

w>γ?ρY wγ? then
8 wµ>ν = v
9 else

10 wµ>ν = wγ?

11 end
12 end

Output: wµ>ν

As an alternative to Algorithm 2, first-order algorithms can be applied, nevertheless, obtaining a
global optimal cannot be guaranteed easily in this case. To make the objective differentiable, the
square root, which is non-differentiable at 0, should be smoothed

√
· ≈
√
·+ ε2 (e.g., ε2 = 0.01).

A.6 SAMPLE-BASED MAX-SLICED BURES DISTANCE IS A RELAXATION OF THE
MAX-SLICED WASSERSTEIN-2 DISTANCE

We show that the max-sliced Bures distance is a relaxation of the max-sliced W2 distance. Let ρ =

ZZ> with Z ∈ Rd×p denote a strictly positive definite matrix, such that
√

w>ρw > 0,
√

w>ρw =√
w>ZZ>w = maxθ∈Sp−1〈θ,Z>w〉, where θ∗ = arg maxθ∈Sp−1〈θ,Z>w〉 = 1√

w>ZZ>w
Z>w.

Using this form, when ρX and ρY are non-singular, the one-sided sliced Bures can be expressed as

max
θ1∈Sd−1

〈θ1,
√
ρXw〉 − max

θ2∈Sd−1
〈θ2,
√
ρY w〉 = max

θ3∈Sm−1
〈θ3,D

1
2
µX>w〉 − max

θ4∈Sn−1
〈θ4,D

1
2
ν Y>w〉,

since ρX = XD
1
2
µ(XD

1
2
µ)> and ρY = YD

1
2
ν (YD

1
2
ν )>. Squaring this quantity and taking the square

root yields the objective of the max-sliced Bures distance in a similar form to the max-sliced W2
distance,

max-DRd
B (µ̂, ν̂) = max

w:‖w‖2≤1

√
w>(ρX + ρY )w − 2 max

Q∈Qµ̂,ν̂
w>XQY>w, (50)

where Qµ̂,ν̂ = {D
1
2
µΘD

1
2
ν : Θ ∈ Rm×n, ‖Θ‖1 ≤ 1}. This holds since

max
Θ:‖Θ‖1≤1

w>XD
1
2
µΘD

1
2
ν Y>w = max

θ3∈Sm−1,θ4∈Sn−1
〈θ3,D

1
2
µX>w〉〈θ4,D

1
2
ν Y>w〉 (51)

=
√

w>ρXw
√

w>ρY w. (52)

A.7 COVARIATE SHIFT CORRECTION ALGORITHMS

For covariate shift correction the goal is to minimize the divergence by adjusting the weights ν of
the instances in one sample ν̂. This results in the following convex optimization problem:

min
ν∈Rn≥0

:〈ν,1〉=1
J(ν), (53)
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where

J(ν) =
(
max-DHB (µ̂, ν̂)

)2
= max

α:α>Kα≤1
J̃(ν,α)

= max
α:α>Kα≤1

〈µ, (KXZα)◦2〉︸ ︷︷ ︸
Cα

+〈ν, (KY Zα)◦2︸ ︷︷ ︸
kα

〉 − 2
√
〈µ, (KXZα)◦2〉〈ν, (KY Zα)◦2〉

= max
α:α>Kα≤1

Cα + 〈ν,kα〉 − 2
√
Cα

√
〈ν,kα〉.

For fixed α the function J̃(·,α) is a sum of a linear function and a convex function f(·) = −
√
· is

convex since
√
· is concave. J(ν) = maxα:α>Kα≤1 J̃(ν,α) is convex since maximizing over α

preserves convexity (Nesterov, 2018, Theorem 3.1.8).

In the linear kernel case, the cost is

J(ν) =
(

max-DRd
B (µ̂, ν̂)

)2

= max
w:‖w‖2≤1

{
J̃(ν,w) =

(√
〈µ, (X>w)◦2〉 −

√
〈ν, (Y>w)◦2〉

)2
}

= max
w:‖w‖2≤1

(〈µ, (X>w)◦2〉+ 〈ν, (Y>w)◦2〉 − 2
√
〈µ, (X>w)◦2〉〈ν, (Y>w)◦2〉.

Again, J(ν) is convex since J̃(·,w) is convex for fixed w. In this case, the gradient has the intuitive
form of

∇νJ(ν) =

(
1− ‖ω‖µ̂
‖ω‖ν̂

)
(ω>Y)◦2 =

(
1−

√
〈µ, (X>wν)◦2〉√
〈ν, (Y>wν)◦2〉

)
(Y>wν)◦2. (54)

To solve this convex minimization over a probability simplex we apply the Frank-Wolfe (conditional
gradient) algorithm Jaggi (2013) to iteratively adjust the weight of one instance ν ← (1−γ)ν+γei,
where ei is an indicator vector, i = arg min1≤j≤n[∇νJ(ν)]j , and γ ∈ [0, 1] is the stepsize. A
benefit of the Frank-Wolfe scheme is that it requires only rank-1 updates of YDνY>, which are
needed for updating w.

A.8 ADDITIONAL EXPERIMENTAL RESULTS

We start by comparing the proposed max-sliced Bures distance to the max-sliced W2 distance
for two-dimensional data. We compare the fixed-point algorithm for solving each one-sided
max-sliced Bures divergence with gradient-based approaches for the max-sliced W2 distance us-
ing ADAM with parameters lr = 1e-3, beta1 = 0.9, beta2 = 0.999, epsilon
= 1e-08, capping the number of iterations at 1000 or until the change in the slice is minimal
‖w −wold‖∞ < 10−6.

In two-dimensions, a near optimal slice can be obtained by a fine grid search of the sliced Bures and
sliced W2 distance as shown in Figure 7 for two zero-mean Gaussian distributions. Figure 8 shows
the cases for success rate of the gradient-based optimizations across 10 trials at varying sample sizes
for 2- and 1000-dimensional zero-mean Gaussians. The effect of the number of gradient iterations
is reported in Figure 9.

For kernel-based divergences, maximum mean discrepancy (MMD) detects differences in the first
moments of the distributions in the RKHS. Using uncentered second-moments, the kernel-based
max-sliced Bures distance (MSB) may detect some of the same differences. Figure 10 details wit-
ness function evaluations of each for six data sets generated from two-dimensional distributions,
where a Gaussian kernel function is used. Notably, the one-sided MSB divergences correspond to
localized regions, which are not distributed outliers. This is beneficial for the ‘precision’ of the
witness function, but the ‘recall’ of MMD is better. This benefit of this localization depends on the
task.

A.9 COVARIATE SHIFT DETECTION WITH MAX-SLICED KERNEL DIVERGENCES

We proceed to generalize the comparisons in Figure 4 on imbalanced samples on MNIST to the
kernel case. We use a Gaussian kernel κσ with the parameter σ set as the median Euclidean distance

23



Under review as a conference paper at ICLR 2021

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.5 1 1.5 2 2.5 3

angle (radians) defining slice

0

0.1

0.2

0.3

0.4

0.5
Divergence between 2D Gaussians with known covariance

sliced Wasserstein-2

sliced Bures

max-sliced Wasserstein-2

one-sided max-sliced Bures(X,Y)

one-sided max-sliced Bures(Y,X)

0 0.5 1 1.5 2 2.5 3

angle (radians) defining slice

0

0.1

0.2

0.3

0.4

0.5
Estimated divergence between 2D Gaussians (m=n=1000)

sliced Wasserstein-2

sliced Bures

max-sliced Wasserstein-2 {ADAM}

max-sliced Bures

max-sliced Bures {ADAM}

0 0.5 1 1.5 2 2.5 3

angle (radians) defining slice

0

0.1

0.2

0.3

0.4

0.5
Estimated divergence between 2D Gaussians (m=n=100)

2D Gaussians (m=n=100)

sliced Wasserstein-2

sliced Bures

max-sliced Wasserstein-2 {ADAM}

max-sliced Bures

max-sliced Bures {ADAM}

0 0.5 1 1.5 2 2.5 3

angle (radians) defining slice

0

0.1

0.2

0.3

0.4

0.5
Estimated divergence between 2D Gaussians (m=n=10000)

sliced Wasserstein-2

sliced Bures

max-sliced Wasserstein-2 {ADAM}

max-sliced Bures

max-sliced Bures {ADAM}

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Figure 7: Sliced and max-sliced Bures and Wasserstein-2 distances are compared on population
statistics and samples of varying sizes. µ = N (0,C) and ν = N (0, I), where C = ZZ>, and
Z ∈ R2×2 with entries that are originally standard normals and then row normalized such that C
is a correlation matrix. In the population case and for zero-mean Gaussians, the Bures distance is
equivalent to the W2 distance (Gelbrich, 1990). In the sample case, it is a lower bound. At both
m = 100 and m = 104 the gradient optimization of the max-sliced W2 distance fails to obtain the
global optimal slice (instead obtaining a local optimum).
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Figure 8: Success rate of finding optimal slices for the max-sliced Bures and W2 distances across
samples of varying sizes (10 random runs per size). The distributions are zero-mean Gaussians, with
µ = N (0,C) and ν = N (0, I), where C = ZZ>, and Z ∈ Rd×d with entries that are originally
standard normals and then row normalized such that C is a correlation matrix. (Left) In the case
of d = 2, success is obtained for a distance within 1% of the value obtained by fine-grid search
of angles. In this case, the gradient approach for the max-sliced Bures fails more often than the
max-sliced W2. (Right) For d = 1000 the eigenvalue-based approach (Algorithm A.5) defines the
global optimum. In the larger dimension, the gradient approach for the max-sliced Bures {ADAM}
succeeds in almost all of the cases, within 1% of the optimal value obtained by Algorithm A.5
(MSB), whereas the max-sliced W2 distance fails to upper bound the max-sliced Bures on roughly
half the trials.
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Figure 9: Performance of gradient algorithms for max-sliced Bures and max-sliced W2 distances
across d = 1000 dimensional samples of varying sizes (10 random runs per size) and number of
iterations in ADAM (Left to right: 50, 100, 200, 500, 1000). The samples are from zero-mean
Gaussians distributions, with µ = N (0,C) and ν = N (0, I), where C = ZZ>, and Z ∈ Rd×d
with entries that are originally standard normals and then row normalized such that C is a correlation
matrix. (Top) For the max-sliced W2 a successful run is obtained when it is greater than or equal
to the optimal solution to the max-sliced Bures (blue solid line) or when it is greater than 95% of
max-sliced Bures (red dotted with circles). For the gradient approach to max-sliced Bures, success
is when the difference to the optimal is 5% of the optimal (yellow solid with diamonds). (Bottom)
Divergence values obtained across the 10 trials with increasing sample size.
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Figure 10: Maximum mean discrepancy (MMD) and max-sliced Bures distance (MSB) applied
to two-dimensional samples using a Gaussian kernel. For each data set (shown as a two-by-two
subplot), the contour plots indicate the squared magnitude of the witness function evaluations. For
MMD, positive witness function values are plotted in the top row and negative evaluations are in the
second row. For MSB, the rows correspond to the two one-sided divergences. The witness functions
for the one-sided MSB divergences correspond to localized regions.
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in the pooled sample. To ease computation for large-sample sizes, we let τ be a random subset of the
pooled samples {xi}mi=1∪{yi}ni=1 of size l = min{500,m+n}. In this case, the max-sliced Fréchet
refers to maxL-DHGW , which is equal to the square root of the sum of square of MMD and the square
of the max-sliced Bures using centered kernels, as in equation 23. The kernel-based max-sliced W2
distance should be an upper bound of the max-sliced Fréchet. However, in practice the optimal slice
(witness function) may not be obtained.
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Figure 11: Kernel-based max-sliced distances are applied to balanced and imbalanced samples from
MNIST. The first sample µ̂ consists of the training set (balanced classes with sizem), and the second
sample ν̂ is a n-sized sample from the test set with a minority class l ∈ {0, . . . , 7} with prevalance
of 5%. (Left) Divergence estimates for increasing sample size for l = 7. Notably, for m < 2000
the max-sliced Wasserstein-2 distance fails to obtain the optimal slice as it should upper bound
the max-sliced kernel Gauss-Wasserstein (Fréchet) distance. (Center) Corresponding computation
time. (Right) Each curve is the average precision@10 (averaged across the 10 classes). The witness
function for the one-sided max-sliced Bures ωµ̂>ν̂ can be used to reliably identify instances from µ̂
associated to the missing class.

We now compare the proposed kernel-based max-sliced divergences to existing baselines. A primary
baseline for this task is to train a logistic regression model with kernel basis functions to distinguish
the two samples, and then use the probability estimates of the instances as the witness function
evaluations ω(x) = Pr(H0|X = x) = 1−Pr(H1|X = x), where H0 : X ∼ ν̂ and H1 : X ∼ µ̂.
As additional baselines we also tested three methods for importance reweighting and density ratio
estimation: kernel mean matching (KMM) (Huang et al., 2007), least-squares importance estima-
tion (uLSIF) (Kanamori et al., 2009), and relative density-ratio estimation (RuLSIF) (Yamada et al.,
2011), but all methods were outperformed by logistic regression with kernel bases. We also com-
pare with kernel Fischer discriminant analysis (KFDA) (Mika et al., 1999), and the linear cases of
max-sliced Wasserstein-2 distance, its first moment approximation, max-sliced Bures, and logistic
regression. For all kernel methods, a Gaussian kernel κσ is used with the parameter σ set as the
median Euclidean distance in the pooled sample.

Using the MNIST data set again, we test three scenarios of covariate shift. For each, one sample has
a mismatched probability for one class l ∈ {0, . . . , 9} and the other sample has a balanced sample:
(Scenario 1) µ̂ is balanced and ν̂ is missing l; (Scenario 2) µ̂ is imbalanced with l only appearing
in 2% of the cases, compared to 10.8̄% for the other classes and ν̂ is balanced; (Scenario 3) µ̂ is
balanced and ν̂ consists of only images from l. In each case, µ̂ is a sample of 500 images from
the training set and ν̂ is a sample of 500 images from the test set. A threshold-free way to assess
covariate shift detection is to use the area-under-the-curve (AUC) of the receiver operator curve
(ROC), where positive instances correspond to class l. For some methods, the witness function (or
its magnitude) may be ambiguous in sign, i.e., the values may be high (or large) for either the under-
or over-sampled instances (namely, max-sliced W2). To be generous, on each run we choose the
ordering with the highest AUC. The results are reported in Table 3.

The other baselines KMM, uLSIF, and RuLSIF are not shown (their AUC scores across the scenarios
are worse than the logistic regression with kernel baseline). In a separate set of runs we also compute
the realism scores (Kynkäänniemi et al., 2019) with k = 3 where ν̂ is considered the real set, and µ̂
are synthetic, to prioritize instances; results for the three scenarios are 0.75±0.11, 0.67±0.12, and
0.94±0.04, which is better than linear logistic regression and KFDA, but far worse than the kernel
logistic regression baseline.
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Table 3: Unsupervised covariate shift outlier detection on MNIST. The goal is to identify instances
associated with an over- or underrepresented class l ∈ {0, . . . , 9}. Values are AUC where positives
are instances from class l. We report the mean and standard deviation and the number of times each
method has the highest AUC (including ties) across 100 trials (10 for each case l ∈ {0, . . . 9}).

(Scenario 1) (Scenario 2) (Scenario 3) (1) (2) (3)
logistic regression-linear 0.60 (0.05) 0.60 (0.08) 0.91 (0.06) 0 1 0
Max-Sliced Bures 0.89 (0.12) 0.86 (0.13) 0.95 (0.03) 2 3 3
Max-Sliced W2 (approx.) 0.86 (0.10) 0.84 (0.13) 0.96 (0.02) 1 2 0
Max-Sliced W2 0.87 (0.14) 0.85 (0.14) 0.96 (0.02) 2 12 0
logistic regression-kernel 0.90 (0.07) 0.86 (0.10) 0.99 (0.01) 10 15 93
KFDA 0.58 (0.03) 0.61 (0.12) 0.91 (0.03) 0 2 1
MMD 0.87 (0.10) 0.85 (0.12) 0.97 (0.02) 1 3 0
Max-Sliced Kernel TV 0.85 (0.10) 0.83 (0.14) 0.96 (0.03) 2 0 1
Max-Sliced Kernel Bures 0.92 (0.11) 0.88 (0.14) 0.97 (0.02) 21 32 2
Max-Sliced Kernel W2 0.92 (0.11) 0.88 (0.13) 0.97 (0.02) 61 35 0

A.10 COVARIATE SHIFT CORRECTION FOR CLASS-CONDITIONAL SUBSAMPLING

Figure 12 shows 20 synthetic images—generated by AutoGAN trained on CIFAR10 (n=50,000)—
with the largest weights after reweighting in order to minimize the max-sliced Bures distance to the
subset of training images for each class separately (m=5,000). Computing the max-sliced Bures
distance with the entire training set of 50,000 points is tractable since it does not depend on the
sample size. The realism scores of the selected images have a median and range of 0.96 (0.63–
1.34). Figure 13 shows the same but based on the weights optimized by using the W2 distance with
the mini-batch optimization as the cost function. The realism scores of the selected images have a
median and range of 1.1 (0.93–1.29). Figure 14 shows the same but based on the weights optimized
by using the max-sliced W2 distance with the mini-batch optimization. The realism scores of the
selected images have a median and range of 0.97 (0.65–1.25). Finally, Figure 15 shows the synthetic
images selected for having the highest realism scores; notably this set lacks class correspondence.

The optimizations in the first three cases use the Frank-Wolfe algorithm (Jaggi, 2013) with sim-
plex constraints. The default step-size schedule γ = 2

k+2 and the same stopping criterion is used

max1≤i≤n|ν(k)
i − ν(k−1)

i | < 10−3, where k is the iteration index. This yields roughly the same
number of iterations for each method. The optimization starts from a uniform weighting, which
means the weights for only ∼2000 instances are actually individually adjusted (the rest are adjusted
by common scaling). The Fréchet Inception distances after reweighting are detailed in Table 4.
Based on the quantitative and qualitative results it appears that the W2 distance with mini-batch
approximation assigns high weight to high-quality synthetic images, but the diversity of the highly
weighted instances may not capture the full distribution for a class. In this regard, the max-sliced
Bures better captures the diversity of the class, albeit choosing less realistic images.
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Table 4: Fréchet Inception distances (FID) between CIFAR10 test set images in each class and
reweighted sample of synthetic images from AutoGAN. The second column shows the FID to the
corresponding training set. The third column is a uniform weighting over all 50,000 synthetic im-
ages. The reweighting that minimizes the max-sliced Bures distance (MSB) to the subset of training
images performs the best on average. Using the W2 distance—estimated through 10 mini-batches
of 100 images on each iteration—performs best only on one-class. The max-sliced W2 (MSW2)
distance also uses mini-batches. The realism scores R of the 20 images with the highest weight for
each class (200 images for each method) are summarized by the median and range.

Training set Uniform MSB W2 MSW2
airplane 28.00 108.67 57.82 74.67 81.85

automobile 20.20 133.10 39.88 66.76 74.81
bird 30.25 86.23 58.71 57.17 76.98
cat 35.53 84.63 61.27 83.89 75.57

deer 26.46 85.55 46.81 60.21 56.44
dog 28.99 106.76 56.88 67.94 78.77
frog 29.88 107.88 51.14 75.23 66.93
horse 24.33 111.30 42.68 66.77 63.24
ship 21.49 131.92 37.35 65.05 74.47
truck 17.77 141.56 38.97 63.73 76.05

Average 26.29 109.76 49.15 68.14 72.51
Median R 0.96 1.10 0.97
Range R 0.63–1.34 0.93–1.29 0.65–1.25

Figure 12: Distribution matching based on minimizing max-sliced Bures distance max-DRd
B (µ̂, ν̂).

Synthetic images shown are those with the highest values of ν, where ν̂ is the ν-weighted distribu-
tion over 50,000 synthetic images from AutoGAN and µ̂ consists of CIFAR10 training images for
a single class in each row. Rows (top to bottom) correspond to airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, and truck classes.
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Figure 13: Distribution matching based on minimizing the Wasserstein-2 distance through mini-
batch. Synthetic images shown are those with the higest values of ν, where ν̂ is the ν-weighted
distribution over 50,000 synthetic images from AutoGAN and µ̂ consists of CIFAR10 training im-
ages for a single class in each row. Rows (top to bottom) correspond to airplane, automobile, bird,
cat, deer, dog, frog, horse, ship, and truck classes.

Figure 14: Distribution matching based on minimizing the max-sliced Wasserstein-2 distance
max-WRd

2 (µ̂, ν̂) through mini-batch approximation. Synthetic images shown are those with the
highest values of ν, where ν̂ is the ν-weighted distribution over 50,000 synthetic images from Au-
toGAN and µ̂ consists of CIFAR10 training images for a single class in each row. Rows (top to
bottom) correspond to airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck classes.
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Figure 15: Selecting images directly with the highest realism scores. Synthetic images shown are
those with the highest realism values over 50,000 synthetic images generated by AutoGAN when
the realism scores used in each row are computed using the CIFAR10 training images for a single
class. Rows (top to bottom) correspond to airplane, automobile, bird, cat, deer, dog, frog, horse,
ship, and truck classes. Realism score correctly identifies “realistic” imagery, but is unable to find
samples that cover the real distribution. For example, the top row is missing airplanes, the third row
is missing birds, the fourth row is missing cats, etc.
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