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Abstract
Understanding neuronal mechanisms in large language models remains challenging, particularly
due to polysemanticity and superposition. In this work, we further investigate the previously iden-
tified “Wasserstein neurons,” characterized by non-Gaussian pre-activation distributions. Our anal-
ysis reveals that these neurons are more prevalent and exhibit faster learning dynamics in larger
models. Critically, we demonstrate for the first time the mechanistic significance of the negative
activation space, showing that Wasserstein neurons leverage negative pre-activations for nuanced
input differentiation, especially regarding syntactic and structural tokens. Ablation experiments
confirm that constraining negative activations significantly degrades model performance, highlight-
ing previously underappreciated computational roles. These findings offer new directions for inter-
pretability research by emphasizing the importance of negative computation.
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1. Introduction

Interpretability in machine learning has been a longstanding goal, though it is significantly compli-
cated by the presence of polysemantic neurons [5, 6, 9, 16, 20]. Polysemantic neurons respond to
multiple, seemingly unrelated concepts, obscuring straightforward interpretations of neuron func-
tionality. Such neurons have been observed in a wide range of models, notably in large language
models (LLMs) [2, 7, 15, 16]. One driver of polysemanticity is the superposition phenomenon,
which posits that neural networks are able to encode more features than they have neurons due to
the sparse nature of input features [4], though recent work has shown evidence that polysemanticity
can arise in settings without more features than neurons [1, 10].

Despite these interpretability challenges, prior works have successfully investigated the roles
of specific neurons within LLMs [6, 7, 19]. In these studies, the responsiveness of polysemantic
neurons is generally characterized in terms of binary pre-activation (positive or negative). More
recently, a group of neurons with notably non-Gaussian output distributions—termed Wasserstein
neurons due to the distinctive statistical properties of their pre-activations—was identified within
the feedforward up-projection matrices of transformer blocks [17]. These neurons exhibit high sen-
sitivity to weight sparsification and uniquely map similar input vectors to dissimilar scalar outputs.

In this work, we build upon such findings to further investigate the role of Wasserstein neu-
rons in the Pythia suite of LLMs [3]. We observe that Wasserstein neurons are more prevalent in
larger models and, intriguingly, begin learning and converge earlier compared to other neuron pop-
ulations. We also find that Wasserstein neurons in early layers seem to attend to token pairs that

*Equal contribution.

© L. Kong, A. Ning & N.N. Shavit.



INPUT DIFFERENTIATION VIA NEGATIVE COMPUTATION

those in other layers do as well. We empirically investigate the pairs of tokens that Wasserstein neu-
rons map the furthest relative to their similarity, finding that those are grammatical and structural
in nature. Finally, we discover that Wasserstein neurons in particular utilize the negative portion of
the activation space to perform such differentiation, which we term negative computation. To our
knowledge, this work is the first to show the functional and mechanistic significance of negative ac-
tivation spaces, moving beyond previous examinations limited primarily to their training advantages
[8, 11, 12, 14, 18]. By highlighting the nuanced role of negative activations, our findings encourage
future interpretability frameworks to investigate beyond just the polarity of neuron activations.

2. Results

We investigate Wasserstein neurons in the up projection matrices of each feedforward block in the
Pythia suite of LLMs, leveraging the availability of model checkpoints during training [3]. Here, we
define a neuron as a single row vector within a linear layer’s weight matrix. Each neuron computes
a scalar output as the dot product of its weight vector with an incoming input vector. To analyze
neuron behavior, we record input vectors and their corresponding scalar outputs for every neuron
by running the models on the Wikitext-2 test dataset [13].

We adopt previously established metrics: the Wasserstein distance (WD) of a neuron’s output
distribution, and the mapping difficulty (MD) of a neuron [17]. Briefly, to compute WD, we normal-
ize a neuron’s output distribution to zero mean and unit variance, then calculate the 1-WD between
this distribution and a standard normal distribution. For MD, we sample pairs of input vectors
and compute the L2 distances between them, as well as the L2 distances between their respective
scalar outputs. Input distances are normalized between zero and one, while output distances are
normalized by their median value. MD is then calculated as the average ratio of normalized output
distances to normalized input distances (OI ratio) across all sampled pairs. Given the strong corre-
lation between WD and MD [17], we use these metrics interchangeably throughout our analysis.

2.1. Wasserstein neurons are more prevalent in and learn faster in larger models

Figure 1: Wasserstein neurons across model size and training. (a) Larger models have more Wasser-
stein neurons, both on average, as indicated by the dotted vertical line, as well as by the maximum,
in general. (b) Especially for larger models, Wasserstein neurons tend change their weights much
more rapidly initially during training, but then change less than other neurons. The top 10 Wasser-
stein neurons were collected for each model. Error bars represent ±1 standard error of the mean.

We measured the WD for all neurons in the up projection matrix of the second transformer
block across Pythia models ranging from 70 million to 12 billion parameters, evaluated at multiple
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training checkpoints. As network size increases, both the average WD per neuron and the maximum
WD observed across neurons tend to increase (Figure 1a). Notably, this increase in WD is broadly
distributed across neurons rather than confined to a small subset, indicating that a larger fraction of
neurons exhibit greater deviation from Gaussian-like activation distributions as model size scales up.
These observations suggest a potential relationship between the prevalence of Wasserstein neurons
and the overall expressive capability of larger neural networks.

We also observed interesting dynamics in how Wasserstein neurons learn compared to typical
neurons. Early in training, Wasserstein neurons exhibit rapid changes in their weights, as mea-
sured by the L2 norm difference computed at successive 5000-step intervals. However, after this
initial rapid adjustment, their weights stabilize more quickly than those of other neurons, with their
L2 norm difference between subsequent intervals correspondingly smaller (Figure 1b). This pat-
tern potentially indicates rapid convergence toward stable weight configurations, suggesting that
Wasserstein neurons might initialize closer to effective solutions.

2.2. Early layer Wasserstein neurons attend to token pairs of other Wasserstein neurons

We now focus our analysis on the Pythia-1.4B model. For each feedforward block, we compute
the mapping difficulty (MD) of every neuron in the up projection matrix. Following prior work,
we refer to neurons with high MD as entangled neurons [17]. For each of the 10 most entangled
neurons in a given layer, we identify the 10 input pairs with the highest OI ratios. This gives us a
pool of 100 ”high-effort” token pairs per layer. (See Section A for more implementation details.)

Figure 2: Specialized processing of high-OI token pairs across layers. (a) The normalized cross-
layer z-scores of the top OI ratio token pairs for each layer. (b) The z-score of the input distances
of the top OI ratio pairs for each layer. Layer 1 (index 0) is excluded due to instability in the
OI ratio metrics, as many inputs remain indistinguishable at this early stage, yielding unreliable
measurements. Layer indices are zero-indexed. Error bars represent ±1 standard error of the mean.

To investigate how these high-effort token pairs are handled across the network, we compute the
z-score of the OI ratio for each selected pair across all layers, normalized to the layer from which the
entangled neurons were selected. This measures how anomalously difficult a pair is to map within
the distribution of pairs seen by entangled neurons in different layers. We find that these token pairs
typically receive the highest z-scores in the same layer from which they were selected, implying that
each layer’s entangled neurons specialize to process certain types of inputs. Once a token pair is
processed heavily in one layer, it tends to receive less computation in subsequent layers, suggesting
a layer-wise division of labor in handling tokens that must be distinguished.
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Interestingly, layer two exhibits a distinct pattern. Despite not being the source of the selected
token pairs in other layers, it often has elevated z-scores to these pairs, sometimes even more than
the source layer. Such a trend indicates that many difficult distinctions are already being emphasized
in one of the very first feedforward blocks, suggesting this layer’s foundational role in highlighting
subtle input differences, possibly alleviating the computational difficulty of subsequent layers.

We also analyze the input distances of the selected top OI ratio token pairs. Compared to all
input pairs, the 100 high-OI pairs consistently have smaller input distances across all layers. This
trend implies that entangled neurons are especially focused on mapping nearby inputs to divergent
outputs. Again, this effect is strongest in layer two, reinforcing its unique role in early representa-
tions. Taken together, these findings suggest that entangled neurons are not uniformly distributed
in their function, but instead contribute to a hierarchical and specialized processing pipeline. Early
layers, particularly layer two, appear to play an outsized role in transforming subtle differences into
separable representations, which are then further refined or preserved in later stages.

2.3. Empirical investigation into specific Wasserstein neurons

To better understand the nature of semantic processing in layer two, we analyze its 100 most en-
tangled token pairs. Consistent with earlier observations that layer two plays a foundational role in
subsequent computation (Section 2.2), we interestingly find that it is primarily involved in syntactic
construction, establishing grammatical relationships and sentence structure. A substantial fraction
of these pairs involve functional and transitional tokens such as “the,” “and,” “to,” “of,” and “in,”
highlighting the model’s need to differentiate between high-frequency tokens that carry limited se-
mantic content individually but are critical for structuring sentences. These findings suggest that
Wasserstein neurons in layer two serve as a syntactic scaffold that future layers may build upon.

To probe deeper into contextual processing, we also examined the tokens that follow each en-
tangled pair. No strong patterns emerged, suggesting that the key computational burden at this stage
lies in disambiguating contextually similar tokens that nonetheless lead to divergent subsequent
ones, a transformation likely handled in subsequent layers (see Section B for further analysis).

(a) Neuron 5176 Token Associations
T1 T2 NT1 NT2
Ġfor Ġthe Ġa Ġunrest
ĠThe Ġfor Ġgrowing Ġhis
Ġto Ġof Ġthe Ġthe
Ġthe Ġin Ġearly ĠQ
Ġof Ġto Ġnational Ġthat

Figure 3: Semantic processing of entangled neurons. (a) Pairs of tokens with the greatest OI ratio
(T1 and T2), as well as their next tokens (NT1 and NT2) for neuron 5176. Ġ indicates the start of
a word. (b) Location of each pair of tokens in the output space. All but one token is mapped to a
negative pre-activation. (c) The input-output (IO) relationship of this neuron.

At the individual neuron level, we find that highly entangled neurons appear to specialize in nar-
row syntactic roles. Neuron 5176 exhibits a high OI ratio for conjunctional and prepositional transi-
tions such as “for,” “the,” “of,” and “in” (Figure 3a), which are essential for maintaining coherence.
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Notably, these distinctions manifest primarily in the negative portion of its pre-activation output
space (Figure 3b), suggesting a richer use of the activation space than is often acknowledged. Be-
cause prior work frequently overlooks the functional significance of negative pre-activations, even
those in non-ReLU models, we further investigate this phenomenon in Section 2.4.

2.4. Wasserstein neurons utilize negative computation to differentiate inputs

Figure 4: Wasserstein neurons use the negative activation space to perform meaningful computation.
(a) A representative Wasserstein neuron in OPT-1.3B. (b) Post-ReLU activations of the same neuron
in OPT-1.3B, with the zero values removed for visualization. (c) A representative Wasserstein
neuron in Pythia-1.4B. (d) Post-GELU activations of the same neuron in Pythia-1.4B. (e) Removing
the ability of Wasserstein neurons to conduct negative computation significantly hinders the model’s
performance. *** indicates p ≤ 10−4. Error bars represent ±1 standard error of the mean.

Finally, we investigate the functional importance of the negative pre-activation space in Wasser-
stein neurons. Compared to those in a ReLU-based model such as OPT-1.3B, which exhibit pre-
dominantly smooth, exponential-like negative pre-activation distributions, Wasserstein neurons in
Pythia-1.4B (which uses GELU) frequently display rich, multimodal structure in their negative pre-
activations (see Section C). These patterns persist even after activation (Figure 4a–d), indicating that
meaningful computation is occurring in the negative activation space for Wasserstein neurons.

To probe this quantitatively, we conduct a targeted ablation experiment. In each up projection
matrix in Pythia-1.4B, we identify the neurons with the highest Wasserstein distance. We then
clamp the post-activation outputs of these neurons to be non-negative, effectively applying a ReLU
after the GELU. We measure the resulting degradation in model performance using perplexity on
the WikiText-2 validation set. The results are striking: ablating only the negative activations—a
seemingly weak change—of the top 5% of Wasserstein neurons increases perplexity from 12.3 to
nearly 14. In contrast, clamping an equal number of randomly selected neurons has a much smaller
effect. This demonstrates that Wasserstein neurons rely heavily on their ability to compute in the
negative activation space to perform their nuanced input differentiation.

To our knowledge, this is the first study to directly demonstrate the mechanistic importance
of the negative activation space in large language models. While previous work has highlighted
the benefits of smooth activation functions like GELU in terms of gradient flow and convergence
[8, 12, 18], our findings show that the negative region itself enables qualitatively different forms of
computation. In particular, Wasserstein neurons appear to specialize in exploiting this region, offer-
ing new insights into how non-ReLU activations support rich, multimodal representations. These
results suggest that the negative activation space is not merely a byproduct of smooth activations but
a functional substrate for distinct computational roles. Future work may further uncover how models
allocate representational capacity across the activation space, and how such allocation arises.
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Appendix A. Details on layer-wise input mapping

Because neurons with high WD are those that disproportionately amplify the distance between
similar input pairs, we refer to them as entangled neurons, following the convention set by previous
work [17].

Our exact setup is as follows: the model processes an input of 140 token sequences, created from
the Wikitext-2 test dataset, each consisting of 2048 tokens. We aim to identify the most entangled
neurons in each layer and analyze the token pairs that these neurons are most sensitive to, across
different layers.

We begin by generating 1000 random pairs of tokens from the flattened array of input IDs. Token
pairs were selected without replacement, ensuring that all 2000 token IDs were unique. Using these
token pairs, we calculated the mapping difficulty (MD) of all 8192 neurons in each layer.

For each of the 24 layers, we identified the top 10 entangled neurons based on their MD values.
We considered these neurons to do the most “work” in processing the relationship between tokens in
a pair—i.e., those whose outputs are most separated despite relatively small input differences. For
each of the selected neurons, we identified the 10 token pairs with the highest output difference to
input difference ratio (referred to as ”output-input (OI) ratios” in other sections), resulting in a total
of 100 token pairs per layer. While some pairs could be repeated across neurons, these repetitions
help highlight the token pairs that are most “effortful” to handle in a given layer.

For each of the 100 identified token pairs in a given layer, we computed the average OI ratio
across the top 10 most entangled neurons, considering not only the current layer but also previous
and successive layers. This resulted in a (23, 100) array of average output-input ratios, where 23
represents the layers being considered, excluding the first layer due to its abnormal behavior. Next,
we normalized these values by calculating the z-score for each token pair relative to the distribution
of output-input ratios for all 1000 pairs in each layer for each entangled neuron. We then normalize
the average z-score to the source layer for better visualization.
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Appendix B. Empirical investigation of other neurons

In addition to details previously mentioned in Section 2.3, in Wasserstein neurons, many pairs with
the highest OI ratio are near-duplicates—e.g., “the” vs. “The,” “to” vs. “the,” and “and” vs. “to,”
suggesting the grammar and low-level functional importance of the role of Wasserstein neurons. Ad-
ditionally, the appearance of punctuation-like tokens such as “-”, “.”, “(”, “@”, and “,” underscores
layer two’s involvement in processing syntactic boundaries—marking clause breaks, parentheticals,
enumerations, or formatting cues. Pairs like “The” vs. “the” and “A” vs. “a” further indicate
sensitivity to casing and sentence position, implying that layer two distinguishes between identical
tokens placed at the beginning of a sentence versus within it.

We provide additional examples of entangled neurons in layer two. Neuron 5224 is involved
in processing basic grammatical structures, particularly with functional words like “the,” “and,”
and “to.” Neuron 7723 focuses on token pairs involving numbers and specialized content. For
example, it handles pairs like “the” and “6” and “16” and “be,” which likely relate to numerical,
temporal, or domain-specific information. Neurons 1168 and 851 both seem to be focused on special
characters and punctuation marks, with Neuron 1168 processing several pairs involving hyphens (“-
”), highlighting a focus on segmentation of text, and Neuron 5 processing several pairs involving
commas (“,”), periods (“.”), and parentheses (“(”), indicating a focus on sentence boundaries.

Neuron 5224
T1 T2 N1 N2
Ġthe ĠThe ĠT Ġvice
ĠD Ġthe ia Ġproblematic
ĠG Ġof ins Ġ7
ĠA Ġwas Ġ70 Ġpushed
ĠO Ġa ya Ġlist

Neuron 7723
T1 T2 N1 N2
Ġthe Ġ6 ĠCross Ġkm
Ġ Ġ3 Ġthe Ġrecord
Ġit Ġ3 Ġmakes Ġinnings
Ġ2 ĠIt Ġkm Ġis
Ġas Ġ19 ĠTra Ġ

Neuron 1168
T1 T2 N1 N2
- Ġthe @ Ġthreat
Ġa - Ġstudent @
Ġis - Ġmore @
Ġto - Ġmarch @
- ed @ Ġ.

Neuron 851
T1 T2 N1 N2
Ġand Ġto Ġcrashed Ġuse
Ġand Ġto Ġthe Ġmove
Ġof Ġand Ġthe Ġcommenced
Ġ( ĠThe Ġ9 ĠUnder
Ġ( Ġthe Ġ19 ĠDan

Figure 5: The highest OI ratio token pairs for entangled neurons.
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Additionally, we show the input-output (IO) relationship for these and other entangled neurons
in layer two, demonstrating the degree to which these pairs of tokens are mapped further than
expected for the relative input distance.

Figure 6: IO relationship of entangled neurons.
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Appendix C. Wasserstein neurons in OPT-1.3B vs. Pythia-1.4B

Here, we show more examples of the neurons with the largest Wasserstein distances in the second
up projection matrix in both Pythia-1.4B and OPT-1.3B. Note how much more complex the output
distributions are for Wasserstein neurons in Pythia-1.4B than they are in OPT-1.3B, in particular in
the negative pre-activation space.

Figure 7: Top 25 Wasserstein neurons in Pythia-1.4B. Almost all neurons have complex and mul-
timodal distributions exclusively within the negative pre-activation output space. Figure partially
reproduced from [17] with permission from the authors.
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Figure 8: Top 25 Wasserstein neurons in OPT-1.3B. With one exception, there is no multimodality
in the negative computation space of any Wasserstein neuron pre-activation.
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