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Abstract

We investigate the convergence of Q-learning with linear function approximation and in-
troduce the multi-Bellman operator, an extension of the traditional Bellman operator. By
analyzing the properties of this operator, we identify conditions under which the projected
multi-Bellman operator becomes a contraction, yielding stronger fixed-point guarantees com-
pared to the original Bellman operator. Building on these insights, we propose the multi-Q-
learning algorithm, which achieves convergence and approximates the optimal solution with
arbitrary precision. This contrasts with traditional Q-learning, which lacks such convergence
guarantees. Finally, we empirically validate our theoretical results.

1 Introduction

Reinforcement learning aims to approximate the value of performing different actions in different states,
considering the expected sum of time-discounted rewards in a Markovian environment. The importance of
this task cannot be overstated, as an accurate value function allows an agent to make optimal decisions
by selecting the action with the highest value in a given state (Puterman, 2005). The value function also
facilitates environment evaluation and enables comparisons between different environments. If we can store
the value of performing each action on each state individually, the Q-learning algorithm converges to the
correct value function (Watkins & Dayan, 1992). When it is not possible to store values, for example when
there are too many states, Q-learning can be combined with function approximation (Melo & Ribeiro, 2007).

Unfortunately, the combination of Q-learning and function approximation is troublesome, and even when
the function approximation space is linear, the algorithm can diverge (Sutton & Barto, 2018). In fact, the
approximation problem that Q-learning addresses does not have, in general, a solution (Melo et al., 2008).
To address this limitation, we propose an alternative problem and algorithm that effectively solve linear
function approximation in reinforcement learning, unlike Q-learning. The problem and algorithm proposed
are extensions of the original. To our ends, we start by introducing the multi-Bellman operator, and identify
the conditions under which its projection into the function approximation space is contractive. Leveraging
the contractivity property of the Multi-Bellman operator, we propose the multi Q-learning algorithm, and
demonstrate its convergence to arbitrarily good solutions, both theoretically and empirically.
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2 Background

A Markov decision problem (MDP) is a tuple (X ,A,P, r, γ), where X is a discrete set of states, A is a
finite set of actions, P is a set of distributions over X for each state and action, r : X × A → [0, 1] is a
reward function, and γ is a real in [0, 1) called the discount factor (Puterman, 2005). A policy is a function
π : X → ∆ (A), mapping states to distributions over A, and its value is the function qπ : X × A → R such
that

qπ(x, a) = E

[ ∞∑
t=0

γtrt | x0 = x, a0 = a

]
, (1)

where the expectation is with respect to trajectories of the MDP, namely rewards rt and states xt+1 that
are obtained by performing action at on state xt, with actions at that are selected according to π at every t.
There is at least one policy π∗ that maximizes the value q on every state and action (Puterman, 2005) and
we refer to its value as q∗. The value q∗ satisfies the Bellman fixed-point equation given by

q∗ = Hq∗, (2)

where H is the Bellman operator, such that

(Hq)(x, a) = E
[
r(x, a) + γ max

a′∈A
q (x′, a′)

]
, (3)

where the expectation is with respect to the next state x′ obtained by performing action a on state x.

2.1 Function Approximation

Our goal is to approximate q∗. In other words, we want to find a good parameterized representation of the
value of an optimal policy for a given MDP, given a function approximation spaceH = {hω : Z → R, ω ∈ Rk}.
Let us consider that every hω ∈ H is differentiable in ω, a function h : Z → R, a distribution µ over a
random z taking values in Z, and the loss l(ω) = 1

2 ∥h− hω∥2, where we consider the µ-norm such that
∥h∥2 = Eµ

[
h2(z)

]
. To approximate h is to find an element in the set Proj h ⊂ H such that

Proj h = arg min
hω∈H

l(ω). (4)

Any ω parameterizing a hω in Proj h must be a critical point and thus verify

∇ωl(ω) = 0. (5)

Linear function approximation Given features ϕ : Z → Rk, a linear function approximation space is
given by the functions such that hω(z) = ϕT (z)ω. In this case, the gradient of the loss function is given by

∇ωl(ω) = −Eµ [ϕ(z) (h(z)− hω(z))] . (6)

Solving for ∇ωl(ω) = 0, we obtain that

ω = Eµ

[
ϕ(z)ϕT (z)

]−1 Eµ [ϕ(z)h(z)] . (7)

Thus, if the inverted matrix above exists, the set Proj h has a single element and we can refer to both as
hω∗ . The solution ω∗ is also the equilibrium of the dynamical system

ω̇ = ∇ωl(ω), (8)

and the limit of the sequence of ωt obtained by performing a discretized update with zt i.i.d. from µ

ωt+1 = ωt + αt [ϕ (zt) (h(zt)− hωt
(zt))] , (9)

with αt a small positive real called the learning rate.
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Stochastic approximation Without access to h, stochastic approximation performs the update

ωt+1 = ωt + αt [ϕ (zt) (τt − hωt
(zt))] , (10)

with τt a possibly ωt-dependent estimate of h (zt) called the target. If there exists an equilibrium ω∗ for the
dynamical system

ω̇ = Eµ [ϕ (zt) (τt − hω(zt))] , (11)

and it is globally asymptotically stable, well-established conditions guarantee the stochastic approximation
update converges to ω∗ (Borkar, 2008).

2.2 Q-learning with Linear Function Approximation

We focus now on the reinforcement learning setting and consider Z = X × A, and an approximation space
of linearly parameterized functions qω : X ×A → R such that

qω(x, a) = ϕT (x, a)ω. (12)

In reinforcement learning, we want to approximate the value q∗, by computing ω∗ that satisfies

qω∗ = Proj q∗. (13)

Without knowledge of q∗, we are unable to perform the exact stochastic approximation update,

ωt+1 = ωt + αt [ϕ (xt, at) (q∗(xt, at)− qωt
(xt, at))] . (14)

Leveraging the fact that q∗ = Hq∗, Q-learning performs instead the stochastic approximation update

ωt+1 = ωt + αt [ϕ (xt, at) (τt − qωt
(xt, at))] , (15)

where the target τt is a sample for (Hqωt
) (xt, at), i.e.

τt = rt + γ max
a′∈A

qωt
(x′

t, a′) . (16)

Since the target is not differentiated, despite possibly depending on ωt, Sutton & Barto (2018) calls these
semi-gradient methods. An equilibrium for Q-learning with linear function approximation must be the
fixed-point for the projected Bellman operator, thus verifying the fixed-point equation

qω = Proj (Hqω) . (17)

Unfortunately, since the Projected Bellman operator is not generally a contraction, the fixed-point may not
exist and, even when it does, the solution may not be an equilibrium of the associated dynamical system

ω̇ = Eµ [ϕ (xt, at) (τt − qω(xt, at))] . (18)

Consequently, Q-learning with linear function approximation can diverge, failing to provide any stable so-
lution. The divergence of Q-learning is evidenced in classic counter-examples where the parameters of the
approximator do not approach any solution, either oscillating within a window (Boyan & Moore, 1995; Gor-
don, 2001) or growing without bound (Tsitsiklis & Van Roy, 1996; Baird, 1995). Currently, the theoretical
results that establish convergence of Q-learning restrict the data or the features too much (Szepesvári &
Smart, 2004; Melo et al., 2008), and the proposed variants of Q-learning that are guaranteed to converge
under more general conditions (Carvalho et al., 2020; Zhang et al., 2021; Lim et al., 2022) converge to
fundamentally biased limit solutions that do not hold good performance guarantees (Chen et al., 2023).
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3 Multi-Bellman Operator

Let us define the multi-Bellman operator Hn, such that

H1q = Hq (19)

and

Hn+1q = H (Hnq) . (20)

Since q∗ = Hq∗, it also holds that, for every n in N,

q∗ = Hnq∗. (21)

Proposition 3.1. The operator Hn is a contraction in the ∞-norm with contraction factor γn.

Proof. See the proof of B.1 of the appendix.

While unsurprising, the result has profound implications on the use of linear function approximation.
Assumption 3.2. The features and data are such that the matrix Eµ

[
ϕ(x, a)ϕT (x, a)

]
is invertible.

Theorem 3.3. There exists N ∈ N such that, for all n ≥ N , the operator Proj Hn is a contraction in the
∞-norm.

Proof. See the proof of B.2 of the appendix.

Corollary 3.4. There exists N ∈ N such that, for all n ≥ N , there exists a unique solution ω̃n to the
fixed-point equation

qω = Proj(Hnqω). (22)

The result states that, while the projected Bellman operator may not be contractive, the projected multi-
Bellman operator is guaranteed to be contractive for sufficiently large n. Consequently, whereas the fixed-
point equation of the projected Bellman operator may fail to have a solution, the fixed-point equation of the
projected multi-Bellman operator is guaranteed to have a unique solution.

While the previous result establishes existence and uniqueness of solution, it says nothing about the quality
of such solution in light of the reinforcement learning objective. Now, we compare qω̃n with the optimal
solution.
Assumption 3.5. For all t ∈ N, (xt, at) is i.i.d. from µ.
Theorem 3.6. For all n ≥ N , the solution ω̃n is such that

∥q∗ − qω̃n∥∞ ≤
1

1− λγn
∥q∗ − qω∗∥∞ . (23)

where λ = σmaxϕ2
max, with ϕmax = maxx,a ∥ϕ(x, a)∥2 and σmax =

∥∥∥Eµ

[
ϕ(x, a)ϕT (x, a)

]−1
∥∥∥

2
.

Proof. See the proof of B.3 of the appendix.

Corollary 3.7. The sequence of {ω̃}n≥N is such that

lim
n→∞

∥ω∗ − ω̃n∥ = 0. (24)

The results state that the solution qω̃ can be made arbitrarily close to the optimal solution qω∗ , and can
therefore provide an optimal approximation of q∗ in a given function approximation space. In the following,
we design a stochastic approximation algorithm that aims to approximate ω̃n.
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4 Multi Q-learning

For given n ∈ N, to approximate the solution of

qω = Proj(Hnqω), (25)

we propose to perform the multi Q-learning update

ωt+1 = ωt + αt [ϕ(xt, at) (τn,m
t − qωt

(xt, at))] , (26)

where the target τn,m
t := τn,m(xt, at) is a sample for (Hnqωt) (xt, at) defined recursively as:

τ1,m(xt, at) = rt + γ max
a′

qωt
(x′

t, a′) (27)

and

τn+1,m(xt, at) = rt + γ max
a′

(
1
m

m∑
i=1

τn,m
i (x′

t, a′)
)

, (28)

where τn,m
i (x′

t, a′) are i.i.d. τn,m (x′
t, a′) and are used to build an average with m samples.

At time step t, instead of building a 1-step greedy target, multi Q-learning builds a target that is obtained
by trying, on every state encountered along n-step trajectory starting at x′

t, every action m times, and
maximizing the average of the sum of the discounted rewards at each level. We assume access to a fixed
replay buffer D, from which state-action pairs are sampled, and a simulator to sample transitions. Our
algorithm is most similar to the one of Kearns et al. (2002). In our case, in addition to off-policy learning, we
have function approximation and bootstrapping. Our algorithm is also similar to the one of Rosenberg et al.
(2023), but with off-policy learning and function approximation. More generally, our n-step updates differ
from the usual in that they are policy-independent, which as we will see allows our updates to approximate
the multi-Bellman operator accurately. Moreover, our setting introduces additional technical challenges due
to maximization at each step and at each level, which does not usually appear in the related works and can
lead to biased updates and solution if not properly handled. We provide a pseudo-code of Multi Q-learning
in Algorithm 1, which calls a function that builds the target for the update defined in Algorithm 2.

Algorithm 1 Multi Q-learning
Initialize weight vector ω0
Given a fixed replay buffer D containing state-action pairs (st, at)
Access to a simulator that returns (rt, s′

t) given (st, at)
For each training iteration:

• Sample a random state-action pair (st, at) from D

• Simulate reward rt and next state s′
t by calling the simulator with (st, at)

• Call build_target to compute the target:

τn,m(st, at) = build_target(n, m, st, at, ωt)

• Update weights:
ωt+1 ← ωt + α [ϕ(st, at) (τn,m(st, at)− qωt

(st, at))]

4.1 Convergence

Contrary to the case of Q-learning, there is a solution to the dynamical system of the multi Q-learning
update.

5



Published in Transactions on Machine Learning Research (04/2025)

Algorithm 2 build_target function
Input: parameters n, m, state s, action a, weight vector ω
Output: Target τ
Simulate reward rs,a and next state s′ by calling the simulator with (s, a)
If n = 1:

• Compute the target:
τ = rs,a + γ max

a′∈A
qω(s′, a′)

Else:

• For each i = 1 . . . m:

– Recursively obtain sample: τn−1,m
i (s′, a′) = build_target(n− 1, m, s′, a′, ω)

• Compute the target:

τ = rs,a + γ max
a′∈A

m∑
i=1

τn−1,m
i (s′, a′)

Return τ

Proposition 4.1. There exists N ∈ N such that, for all n ≥ N , there exists an equilibrium ω̂n,m for the
dynamical system

ẇ = Eµ [ϕ(x, a) (τn,m(x, a)− qω(x, a))] (29)

Proof. See the proof of C.1 of the appendix.

We show that multi Q-learning converges to the solution.
Assumption 4.2. The sequence of learning rates {αt}t∈N satisfies

∑∞
t=0 αt =∞ and

∑∞
t=0 α2

t <∞.
Theorem 4.3. There exists N ∈ N such that, for all n ≥ N and m ∈ N, the sequence of {ωt}t∈N is such
that

lim
t→∞

∥ω̂n,m − ωt∥ = 0. (30)

Proof. See the proof of C.2 of the appendix.

The result establishes conditions under which multi Q-learning converges to qω̂n,m . The assumptions are
commonplace (Tsitsiklis & Van Roy, 1996; Carvalho et al., 2020; Melo et al., 2008). Assumptions 3.2 and 4.2
are mild. Assumption 3.5 is the most restrictive of the three, as it requires the data distribution to have no
shift during training. Same as the other authors, we use the assumption to facilitate our technical analysis
of the convergence of Q-learning, which still fails in this benign setting. Nevertheless, the replay buffer can
slow down the data distribution shift arbitrarily much. In the limit, the case of offline reinforcement learning,
the distribution is indeed fixed and samples are i.i.d.. We do believe our result can be extended to the case
where the data distribution converges.

4.2 Performance

Unfortunately, in general, qω̂n,m does not equal qω̃n . Specifically, when the environment is not deterministic,
the target of multi Q-learning is biased, due to the difficulty in estimating the maximum of an expectation.
In fact, it is impossible to estimate the expectation of the maximum without bias (Van Hasselt, 2013). We
show, however, that as the number m of samples per action grows, regardless of the randomness of the
environment, the solution of multi Q-learning converges to the unbiased solution qω̃n .
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(b) Star.

Figure 1: Classic counter-examples. The y-axis shows the difference between the estimated q and q∗. In
both examples, Q-learning, that is multi Q-learning with n = 1, diverges but, for sufficiently large n, multi
Q-learning converges.

Theorem 4.4. For all n ≥ N and m ∈ N, we have that

∥qω̃n − qω̂n,m∥ ≤ ξ

1− λγn

max
√

var (τn−1,m)√
m

, (31)

with ξ = λ

√
|A|−1
1−γ .

Proof. See the proof of C.8 of the appendix.

The results states that, for each n, when m increases, the solution of multi Q-learning qω̂n,m approaches
the fixed-point of the projected Multi-Bellman operator qω̃n . On the other hand, it states that, for each
m, when n increases, the distance between the two can grow, but is bounded, since we also have that√

var (τn−1,m) ≤ 1
1−γ for all n and m.

Corollary 4.5. The sequence of {ω̂n,m}m∈N is such that

lim
m→∞

∥ω̃n − ω̂n,m∥ = 0. (32)

From Corollary 3.7, we also knew that, as n grows, the fixed-point of the projected Multi-Bellman operator
qω̃n approaches the optimal solution qω∗ . Putting the two results together, we conclude that, increasing n
and m, the solution of multi Q-learning becomes arbitrarily close to qω∗ .

5 Experiments

In this section, we validate our theoretical findings. We start by focusing on the convergence property of
multi Q-learning. All results are averages of five runs with standard deviations. Given the linear function
approximation setting and relatively small scale of the environments, all experiments can be performed on
standard commercial CPUs, with small memory costs, and lasting less than eight hours.

5.1 Convergence

We show that, on well-known problems where Q-learning with linear function approximation fails to converge,
multi Q-learning converges if n is sufficiently large, as predicted in Theorem 4.3. We start by using two
classical problems that are typically used in the literature to exhibit the divergence of Q-learning with linear
function approximation. The first problem was introduced by Tsitsiklis & Van Roy (1996) and the second
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problem by Baird (1995). Even though both problems are relatively simple and even though the correct
solution q∗ is within the function approximation space, the parameters of Q-learning diverge to infinity in
some conditions. Additionally, we introduce another simple example, which we call the Bias example. This
example serves as a complement to the first examples by showcasing the bias that can appear in multi
Q-learning, as predicted in 4.4, and how we can minimize it.

ω → 2ω The ω → 2ω is a problem due to Tsitsiklis & Van Roy (1996). The MDP has two states y1 and
y2 and only one action b1. Performing the action on any of the two states always takes the agent to the
second state. The reward received is always zero. Therefore, q∗ is zero. The features ϕ : X × A → R such
that ϕ(y1, b1) = 1 and ϕ(y2, b1) = 2. We consider a discount factor of 0.9, which is within the interval where
Q-learning is originally reported to diverge, and a learning rate of 10−1, and uniform data distribution.
Figure 2 depicts the problem.

ω 2ω

Figure 2: Transition diagram of the process in the ω → 2ω problem.

Star The Star problem is due to Baird (1995). The MDP has seven states y1 to y7 and two actions b1
and b2. The first action always takes the agent to the last state, the second action takes the agent to any
of the first five states uniformly. The reward received is always zero. Therefore, q∗ is zero. The features are
ϕ : X ×A → R16 such that, for j between 1 and 7, for all i between 1 and 16 ϕi(yj , b2) = 1(i = j + 1), for i
between 2 and 7 ϕi(yj , b1) = 2 · 1(i = j + 1), for j between 1 and 6 ϕ1(yj , b1) = 1(j ≤ 6) and ϕ1(y7, b1) = 2,
ϕi(yj , b1) = 0 otherwise. We consider a discount factor of 0.98, within the interval at which Q-learning
diverges, a learning rate of 10−2, and a data distribution that samples the first action one seventh of the
times and the second action six sevenths of the times. Figure 3 depicts the problem.

2ω1 + wω 2ω2 + ω8 2ω3 + ω8 2ω4 + ω8 2ω5 + ω8 2ω6 + ω8

ω7 + 2ω8

Figure 3: Transition diagram of the process in the Star problem.

We test multi Q-learning for n ∈ {1, 2, 4}. We note that n = 1 recovers the original Q-learning. We use
m = 1. The experimental results in Figure 1 validate our theoretical finding that, whereas the projected
Bellman operator may fail to have a fixed-point and Q-learning may diverge, multi Q-learning converges for
large enough n, as predicted by Theorem 4.3, to the correct solution q∗ = 0.

Bias In some non-deterministic environments that are not reward-free, the solution of multi-Q-learning
may not equal the projected multi-Bellman operator, resulting in a bias that increases with n. To highlight
this behavior, we introduce the Bias example. The Bias example is intentionally simple, consisting of only
two states and two actions with uniformly random transitions. One state provides a reward of 1, while the
other provides 0. This example serves two key purposes. First, it serves to illustrate the potential bias in
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multi Q-learning when n > 1. As shown in prior work (Van Hasselt, 2013), it is generally impossible to
estimate the maximum of a set of expected values of random variables without introducing bias. In our case,
for fixed n and m, multi Q-learning can converge to a biased solution of the equation q = Proj(Hnq), and
this bias increases with n. This phenomenon aligns with the predictions of our theoretical results (Theorem
4.4). Second, the Bias problem serves to demonstrate how increasing the parameter m effectively reduces
the bias. Our theoretical results (Corollary 4.5) suggest that increasing m—the number of samples used to
construct the update target—reduces this bias. The example provides a controlled setting to validate this
claim.

ω1 ω2

+1

Figure 4: Transition diagram of the process in the Bias problem.

We use tabular features, with a discount factor of 0.9 and a learning rate of 0.1. Figure 4 shows the transition
diagram for the Bias problem. The results in Figure 5a confirm that, for m = 1, the bias increases as n
increases. In contrast, Figure 5b shows that, as m increases, the bias decreases, aligning with the theoretical
predictions in Corollary 4.5.

5.2 Performance

We also validate that, as n increases, the distance between the fixed-point of the projected Bellman operator
and qω∗ decreases, as predicted by Corollary 3.7. We use an ϵ-greedy policy where ϵ decays linearly from
100% to 5% during the first half of interactions and remains constant afterwards. We use a replay buffer
with 20% of the total number of timesteps used for the environment. We plot a moving average of the last
5% of the total number of time steps. We use classic deterministic environments, which we describe.

Acrobot Acrobot is a classic control problem proposed by Sutton (1995) where a joint actuates two links
such that one end is fixed and the other is free. The actions of the agent are to apply a negative torque to
the joint, apply a positive torque to the joint or do nothing. The state space is the tuple composed of sine,
cosine and angular velocity of each link. The reward is always minus one unless the free end of the links
reaches a target height, after which the agent reaches a terminal state. We discretize each dimension of the
state space in four and use gaussian features. We use a discount factor of 0.99 and a learning rate of 3 ·10−3.

Cartpole Cartpole is a classic control problem proposed by Barto et al. (1983), where a cart balances a
pole. The actions of the agent are to push the cart left or right. The state space is a tuple with the position
and velocity of the cart and the angle and angular velocity of the pole. The reward is always one unless the
pole falls and the agent reaches a terminal state. We discretize each dimension of the state space in two and
use gaussian features. We use a discount factor of 0.99 and a learning rate of 3 · 10−2.

The results in Figure 6 validate the finding that as n increases, the solution of multi Q-learning improves,
as predicted by Corollary 3.7.

Altogether, our experimental results confirm that, contrary to the original Q-learning, multi Q-learning
converges for sufficiently large n, that the distance between the projected multi-Bellman operator and the
optimal Proj q∗ decreases with n, and that the distance between the solution of multi Q-learning and the
fixed-point of the projected multi-Bellman operator decreases with m.

6 Related Work

We analyze work related to our own, both with respect to the problem of Q-learning with linear function
approximation and our proposed multi Q-learning solution.
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Figure 5: Bias problem.
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Figure 6: Classic control. The y-axis shows the average return. The performance increases with n.

Convergence conditions Around the time the divergence of Q-learning was established, some works
aimed at reaching conditions under which Q-learning would converge. The first works proposed restrictions
of the function approximation spaces themselves. They establish that with some specific choices of fea-
tures, Q-learning is guaranteed to converge (Singh et al., 1994; Ormoneit & Sen, 2002; Szepesvári & Smart,
2004). The linear architectures considered across the three works are extensions of what would be the one-
hot representation in the tabular case. Afterwards, another work considered again general linear function
approximation architectures. Melo et al. (2008) prove that Q-learning with linear function approximation
converges if the distribution of state-action pairs the agent uses to learn is sufficiently close to the distribution
that the optimal policy induces.

Gradient-TD methods Instead of finding conditions under which Q-learning converges, a different line
of works proposes to take a step back and modify the objective that Q-learning is trying to solve. Maei
et al. (2010) propose to perform full-gradient descent on a different objective, called the projected Bellman
error. The resulting algorithm, called Greedy-GQ, is a gradient-TD methods. Being a full gradient method,
Greedy-GQ is provably convergent to a minimum in the approximation space. However, the method can
converge to local minima and there is no guarantee that the resulting greedy policy is a good control policy
(Scherrer, 2010). Gradient-TD is also less efficient than semi-gradient methods (Mahadevan et al., 2014; Du
et al., 2017).

Regularized methods The problem of divergence of Q-learning with function approximation was signif-
icantly revived after an empirical success story of Q-learning with deep neural networks (Mnih et al., 2015).
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One of the components of the renowned deep Q-network (DQN) therein is a target network that aims at
compensating the instability generated by the Q-learning updates. While the DQN is not provably conver-
gent, its empirical success inspired theoretical results. The works of Carvalho et al. (2020), Zhang et al.
(2021) and Chen et al. (2023) provided convergence guarantees for variants with target networks. Addition-
ally, another work points out that the target network can be seen as a regularizer (Piché et al., 2021). As
hinted by Farahmand (2011), several works prove that various forms of regularization of the Q-values or the
parameters themselves can stabilize Q-learning, resulting in a convergent algorithms (Zhang et al., 2021; Lim
et al., 2022; Agarwal et al., 2021). However, the introduction of the regularizers biases the solution obtained,
even in deterministic environments. Contrarily, the bias of our method only appears in non-deterministic
environments and can be minimized arbitrarily much.

Non-linear function approximation The behaviour of Q-learning with linear function approximation
has been the focus of several theoretical works. In practice, however, Q-learning is mostly used with non-
linear function approximation, especially through neural networks (Mnih et al., 2015). Still, there are works
that address this more general setting. A recent work suggests a loss function that is decreasing over time,
assuming the neural network converges to a target network at each step (Wang & Ueda, 2021). However,
having a loss function that is monotonically decreasing does not imply that neither the parameters of the
approximator are converging nor that the Q-values are converging. Cai et al. (2019) and Xu & Gu (2020)
provide finite-time analysis of Q-learning with over-parameterized neural networks that convergence happens
only as the size of the network grows to infinity, which is an impractical scenario.

Lookahead In the context of policy iteration, several works hinted at the theoretical benefits of lookahead
in the tabular case (De Asis et al., 2018; Efroni et al., 2018a). Efroni et al. (2018b) then identified a
problem with soft policy improvement for lookahead policies, which happens if function approximation is
used. Specifically, contrarily to what happens with a single-step policy improvement step, a multistep policy
improvement step is not necessarily monotonically increasing. However, Efroni et al. (2020) and Winnicki &
Srikant (2022) respectively provide finite-time and asymptotic results for lookahead in approximate policy
iteration. Rosenberg et al. (2023) proposes an interesting policy-based algorithm with adaptive depth that
results in convergence in the tabular case. We focus on the problem of divergence of Q-learning, a value-
based algorithm, when used with linear function approximation architectures; the projected multi-Bellman
operator that we introduced differs in that it is designed for evaluating the optimal policy. Chen et al.
(2022) also analyze an operator similar to our proposed multi-Bellman operator in the context of off-policy
prediction in an actor-critic setting with linear function approximation, leveraging the improved fixed-point
guarantees. Due to the maximization that appears on the Bellman operator for control, in our case we lose
the property of linearity and, since a maximization and an expectation do not, in general, commute, the
Q-learning setting is more challenging and the algorithm we propose is significantly different.

Planning and model-based reinforcement learning Multi-step real time dynamic programming algo-
rithms, as defined by Efroni et al. (2018b) and discussed by Moerland et al. (2020), integrate planning and
learning and have several successful practical applications (Silver et al., 2017; 2018). We refer to the survey
of Moerland et al. (2023) for varied algorithms that include Q(σ) (De Asis et al., 2018), tree-backup (Precup,
2000) and multi-step expected SARSA (Sutton & Barto, 2018). While most such algorithms are policy-based
and on-policy, with separate value and policy and behavior-dependent solutions, we have an off-policy, value-
based algorithm, which plans exclusively at training time multi Q-learning. Our fixed depth and full breadth
setting are under-explored (Moerland et al., 2023).

7 Conclusion

Our work has made significant contributions to addressing the convergence challenge in Q-learning with lin-
ear function approximation. By introducing the multi-Bellman operator and demonstrating its contractive
nature, we have paved the way for improved convergence properties. The proposed multi Q-learning algo-
rithm effectively approximates the fixed-point solution of the projected multi-Bellman operator. Importantly,
we have shown that the algorithm converges under relatively mild conditions.
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7.1 Limitations and Future Work

Even though our algorithm can be combined with models that are learned concurrently to the reinforcement
learning update to simulate the environment, in our experiments, we used a given simulator of the environ-
ment. It is not the case that such simulator is always available in applications. There are several techniques
for learning a model of the environment. For example, we can learn the model previously or concurrently to
reinforcement learning; the model can be exact or inexact; the model can be parametric or non-parametric.
Multi Q-learning can be combined with any of the mentioned model-based approaches to remove the need
for a simulator when it is not available.

Multi Q-learning also performs every action on every reached state while building the target. Thus, the
computational complexity is exponential on the depth n. In case only some actions are performed on each
state, we cannot show convergence to an optimal solution. Nevertheless, in some cases, the computational
benefits of not performing every action on every state may outweigh the theoretical comfort. An analysis
of this trade-off would be valuable. Future work should also analyze techniques to prune the set of actions
sampled at each level of multi Q-learning and reduce the complexity of the algorithm.

It would also be interesting to analyze multi Q-learning with non-linear function approximation, both the-
oretically and empirically. Specifically, under which conditions and function approximation architectures
would our convergence result still hold? How would multi Q-learning with non-linear function approxima-
tion compare, in practice, with relevant policy-free reinforcement learning algorithms such as the DQN (Mnih
et al., 2015)? And will the target of multi-Q-learning, if combined with the target network, increase the
performance of the DQN? Finally, it would be interesting to see our method applied to real-world problems
where the environment, namely the transitions and rewards, can be simulated, including the training of large
language models (LLMs).
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A Stochastic approximation

Theorem A.1. Let us suppose that the following hold for the stochastic approximation setting of Sec. 2.

1. The map g : Rk → Rk such that

g(ω) = E [ϕ (z) (τ(ω)− gω(z))]

is Lipschitz;

2. The sequence of mt such that

mt+1 = ϕ(zt) (τt+1 − gωt(zt))− g(ωt);

is a martingale difference sequence with respect to {(τs, ωs) : s ≤ t} and is such that

E
[
∥mt+1∥2 | {(τs, ωs) : s ≤ t}

]
≤ cm

(
1 + ∥ωt∥2

)
.

3. The o.d.e

ω̇ = g(ω)

has a unique and globally asymptotically stable equilibrium ω∗ such that

ω∗ = E
[
ϕ (z) ϕT (z)

]−1 E [ϕ (z) τ(ω)] ;

4. The map gc : Rk → Rk such that

gc(ω) = g(cω)
c

is such that limc→∞ ∥gc(ω)− g∞(ω)∥ uniformly on compacts for a g∞ : Rk → Rk and that the origin
is the unique and globally asymptotically stable equilibrium of

ω̇ = g∞(ω).

Then, the sequence of stochastic approximation updates ωt converges to ω∗.

B Multi-Bellman operator

Proposition B.1. The operator Hn is a contraction in the ∞-norm with contraction factor γn.

Proof. We establish the result by induction. First, we show that H contracts in the ∞-norm. We start by
writing the expression ∥Hq −Hp∥∞ in simpler terms, where q and p are value functions.

∥Hq −Hp∥∞ = max
x,a

∣∣∣∣E [r(x, a) + γ max
a′∈A

q (x′, a′)
]
− E

[
r(x, a) + γ max

a′∈A
p (x′, a′)

]∣∣∣∣
= γ max

x,a

∣∣∣∣E [max
a′∈A

q (x′, a′)−max
a′∈A

p (x′, a′)
]∣∣∣∣ .
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Next, we make use of Jensen’s inequality to establish that

∥Hq −Hp∥∞ ≤ γ max
x,a

E
[∣∣∣∣max

a′∈A
q (x′, a′)−max

a′∈A
p (x′, a′)

∣∣∣∣] .

We use that the absolute difference of maxima is less than or equal to the maxima of absolute difference.

∥Hq −Hp∥∞ ≤ γ max
x,a

E
[
max
a′∈A

|q (x′, a′)− p (x′, a′)|
]

.

Then, we use that the expectation of a random function is less than or equal to its maximum.

∥Hq −Hp∥∞ ≤ γ max
x′∈X

max
a′∈A

|q (x′, a′)− p (x′, a′)|

= γ max
x′,a′
|q (x′, a′)− p (x′, a′)|

= γ ∥q − p∥∞

Now, we make the induction step for Hn+1 = HHn, observing that

∥H (Hnq)−H (Hnp)∥∞ ≤ γ ∥Hnq −Hnp∥∞

= γγn ∥q − p∥∞

= γn+1 ∥q − p∥∞ .

We conclude the proof.

Theorem B.2. There exists N ∈ N such that, for all n ≥ N , Proj Hn is a contraction in the ∞-norm.

Proof. We want to show that there exists a function λ : N→ R such that

∥Proj (Hnq)− Proj (Hnp)∥∞ ≤ λ(n) ∥q − p∥∞

and such that, for all n greater than an existing N , λ(n) is strictly smaller than 1.

We start by showing that Proj satisfies

∥Proj q − Proj p∥∞ ≤ ϕ2
maxσmax ∥q − p∥∞ .

To see that, we start by recalling that

(Proj q) (x, a) = ϕT (x, a)E
[
ϕ(x, a)ϕT (x, a)

]−1 E [ϕ(x, a)q(x, a)] .

Then, we have that

∥Proj q − Proj p∥∞ = max
x,a
|ϕT (x, a)E

[
ϕ(x, a)ϕT (x, a)

]−1 E [ϕ(x, a) (q(x, a)− p(x, a))] |.

Now, we make use of a Cauchy-Schwarz inequality to say that

∥Proj q − Proj p∥∞ ≤ max
x,a

∥∥∥ϕT (x, a)E
[
ϕ(x, a)ϕT (x, a)

]−1
∥∥∥

2
∥E [ϕ(x, a) (q(x, a)− p(x, a))]∥2

and we can write, using the definition of the matrix norm induced by the Euclidean norm in Rk

∥Proj q − Proj p∥∞ ≤ max
x,a

∥∥ϕT (x, a)
∥∥ ∥∥∥E [ϕ(x, a)ϕT (x, a)

]−1
∥∥∥

2
·

· ∥E [ϕ(x, a) (q(x, a)− p(x, a))]∥2

We obtain that

∥Proj q − Proj p∥∞ ≤ ϕmaxσmax · E [∥ϕ(x, a)∥2 |q(x, a)− p(x, a)|]
≤ ϕ2

maxσmax ∥q − p∥∞ .
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To conclude the proof, we start by combining the inequality we just established and Proposition B.1.

∥Proj (Hnq)− Proj (Hnp)∥∞ ≤ ϕ2
maxσmax ∥Hnq −Hnp∥∞

≤ ϕ2
maxσmaxγn ∥q − p∥∞

We finish the proof by using λ(n) = ϕ2
maxσmaxγn. It is true that λ(n) < 1 for all n ≥ N when we consider

N = ⌈− logγ

(
ϕ2

maxσmax
)
⌉.1

Theorem B.3. For all n ≥ N , where N is identified in Theorem 3.3, ω̃n is such that

∥q∗ − qω̃n∥∞ ≤
1

1− λγn
∥q∗ − qω∗∥∞ , (33)

Proof. Let us use the triangle inequality with vertex qω∗ .

∥q∗ − qω̃n∥∞ ≤ ∥q
∗ − qω∗∥∞ + ∥qω∗ − qω̃n∥∞ .

Now we focus on the second term of the right-hand side above. We have that

∥qω∗ − qω̃n∥∞ = ∥Proj (Hnq∗)− Proj (Hnqω̃n)∥∞ .

From Proposition 3.3, we have that

∥qω∗ − qω̃n∥∞ ≤ σmaxϕ2
maxγn ∥q∗ − qω̃n∥∞ .

We can conclude the result taking algebraic operations, using λ = σmaxϕ2
max.

C Multi Q-learning

Theorem C.1. There exists N ∈ N such that, for all n ≥ N , there exists an equilibrium ŵn,m for the
dynamical system

ω̇ = E [ϕ(x, a) (τn,m(ω)− qω(x, a))]

Proof. We want to solve

ω̇ = 0

or, equivalently,

E [ϕ(x, a) (τn,m(ω)− qω(x, a))] = 0.

Taking linear operations, we have equivalently

ω = E
[
ϕ(x, a)ϕT (x, a)

]−1 E [ϕ(x, a) (τn,m(ω))]

We show existence and uniqueness of solution to the fixed-point equation by showing that the right-hand
side is contractive. For starters, we have that∥∥∥E [ϕ(x, a)ϕT (x, a)

]−1
∥∥∥

2
= σmax.

Then, for any δ ∈ Rk, using Jensen’s and Cauchy-Schwarz inequality, we have that∥∥∥E [ϕ(x, a)ϕT (x, a)
]−1 E [ϕ(x, a) (τn,m(ω)− τn,m(ω + δ))]

∥∥∥
2

≤ σmaxE [∥ϕ(x, a)∥2 |E [τn,m(ω)− τn,m(ω + δ)]|]
≤ σmaxϕmaxγn ∥qω − qω+δ∥∞

≤ σmaxϕ2
maxγn ∥δ∥2

Thus, if n is large enough, the operator is contractive and the fixed-point equation has a unique solution.
1⌈·⌉ : R+ → N is the ceiling function, giving the smallest natural that is larger or equal to its argument.
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C.1 Convergence

Theorem C.2. There exists N ∈ N such that, for all n ≥ N and m ∈ N, the sequence of {ωt}t∈N is such
that

lim
t→∞

∥ω̂n,m − ωt∥2 = 0.

Proof. To establish the result, we verify that we are in the conditions where Theorem A.1, which gives
conditions for the convergence of stochastic approximation algorithms, holds. We do so by proving the
following lemmas, one for each of the assumptions of the theorem.

Lemma C.3. The map g : Rk → Rk such that

g(ω) = E [ϕ(x, a) (τn,m(ω)− qω(x, a))]

is Lipschitz.

Proof. We start by writing

∥g(ω)− g(θ)∥2 = ∥E [ϕ(x, a) (τn,m(ω)− qω(x, a))]− E [ϕ(x, a) (τn,m(θ)− qθ(x, a))]∥2
≤ ∥E [ϕ(x, a) (τn,m(ω)− τn,m(θ))]∥2 + ∥E [ϕ(x, a) (qθ(x, a)− qω(x, a))]∥2 .

We can take care of the second term by making use of Jensen’s and Cauchy-Schwarz’ inequality.

∥E [ϕ(x, a) (qθ(x, a)− qω(x, a))]∥2 ≤ E [∥ϕ(x, a)∥2 |qθ(x, a)− qω(x, a)|]
≤ ϕmax ∥qθ − qω∥∞

≤ ϕ2
max ∥ω − θ∥2 .

Finally, by considering the sum of the coefficients from the first (obtained in the proof of C.1) and second
terms, we have

∥g(ω)− g(θ)∥2 ≤ ϕ2
max (1 + γn) ∥ω − θ∥2 ,

or that g is Lipschitz continuous.

Lemma C.4. The sequence of mt such that

mt+1 = ϕ(xt, at) (τn,m
t − gωt(xt, at))− g(ωt)

is a martingale difference sequence with respect to {(τn,m
s , ωs) : s ≤ t} and is such that

E
[
∥mt+1∥2 | {(τn,m

s , ωs) : s ≤ t}
]
≤ cm

(
1 + ∥ωt∥2

)
.

Proof. A martingale difference sequence has zero expectation conditioned on the past. Such condition
is evident once we consider Assumption 3.5. Then, a martingale difference sequence also has finite first
moment. That becomes evident when we observe that every term on the definition is bounded. Finally,
since, again, every term on the definition is also bounded, the second moment is bounded.

Lemma C.5. The o.d.e

ω̇ = g(ω)

has a unique and globally asymptotically stable equilibrium ω̃ such that

ω̃ = E
[
ϕ (x, a) ϕT (x, a)

]−1 E [ϕ (x, a) τn,m(ω̃)] .
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Proof. We already know from Theorem C.1 that the equilibrium ω̃ exists and is unique. Let us consider a
Lyapunov function l : Rk → R such that l(ω) = 1

2 ∥ω̃ − ω∥2. Existence of ω̃ is guaranteed from Banach’s
fixed-point theorem and Proposition 3.3. It is clear that l(ω) = 0 if ω = ω̃ and that l(ω) > 0 if ω ̸= ω̃. Now,
we show that l̇(ω) < 0 if ω ̸= ω̃.

We start by noticing that l̇(ω) = ∇l(ω) · ω̇. Since ∇l(ω) = − (ω̃ − ω) and ω̇ = g(ω), we have that

l̇(ω) = − (ω̃ − ω) g(ω).

Since g(ω̃) = 0, it is also true that

l̇(ω) = − (ω̃ − ω) (g (ω)− g (ω̃))

For now, let us focus on the second term of the right hand side and write

g(ω)− g(ω̃) = E [ϕ(x, a) (τn,m(ω)− τn,m(ω̃))]− E [ϕ(x, a) (qω̃(x, a)− qω(x, a))]

Let us make two assertions, one for each of the terms on the right-hand side of the equation. First,

∥E [ϕ(x, a) (τn,m(ω̃)− τn,m(ω))]∥2 = ∥E [ϕ(x, a) (τn,m(ω̃)− τn,m(ω))]∥2 .

Using Jensen’s and Cauchy-Schwarz’ inequality just as in the previous proof, we get that

∥E [ϕ(x, a) (τn,m(ω)− τn,m(ω̃))]∥2 ≤ ϕ2
maxγn ∥ω̃ − ω∥

Second, we have that

E [ϕ(x, a) (qω̃(x, a)− qω(x, a))] = E
[
ϕ(x, a)ϕT (x, a)

]
(ω̃ − ω) .

Having established the two assertions mentioned, we make use of them in the following.

l̇(ω) = −(ω̃ − ω)E [ϕ(x, a) (τn,m(ω)− τn,m(ω̃))]−
− (ω̃ − ω)E

[
ϕ(x, a)ϕT (x, a)

]
(ω̃ − ω)

≤ ∥(ω̃ − ω)E [ϕ(x, a) (τn,m(ω)− τn,m(ω̃))]∥2−
− (ω̃ − ω)E

[
ϕ(x, a)ϕT (x, a)

]
(ω̃ − ω)

≤ ϕ2
maxγn ∥ω̃ − ω∥2

2 − λmin ∥ω̃ − ω∥2
2

=
(
ϕ2

maxγn − λmin
)
∥ω̃ − ω∥2

2 ,

where λmin is the smallest eigenvalue of the auto-correlation matrix E
[
ϕ(x, a)ϕT (x, a)

]
. The expression is

negative if n is large enough. That concludes the proof.

Lemma C.6. The map gc : Rk → Rk such that

gc(ω) = g(cω)
c

is such that limc→∞ ∥gc(ω)− g∞(ω)∥ = 0 uniformly on compacts for some h∞ : Rk → Rk and that the origin
is the unique and globally asymptotically stable equilibrium of

ω̇ = g∞(ω).

Proof. Let us expand the definition and obtain

gc(ω) = E [ϕ(x, a) (τn,m − qcω(x, a))]
c

= E [ϕ(x, a)τn,m]
c

− E [ϕ(x, a)qω(x, a)] .
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As c→∞, we have that gc(ω)→ g∞(ω) uniformly, using g∞(ω) = −E [ϕ(x, a)qω(x, a)].

We then have that the ordinary differential equation

ω̇ = g∞(ω)
= −E [ϕ(x, a)qω(x, a)]
= −E

[
ϕ(x, a)ϕT (x, a)

]
ω

is linear and time-invariant. Since the matrix above is invertible, we have that the origin is its unique and
globally asymptotically stable equilibrium. We conclude the result.

C.2 Performance

We establish the following lemma, quantifying the bias between the multi Q-learning target and the target
from the multi-Bellman operator. We will use the lemma in the subsequent theorem, which will include
function approximation.
Lemma C.7. We have that

0 ≤ E [τn,m(x, a)− (Hnq) (x, a)] ≤
√
|A| − 1

n∑
i=1

γn−i ϑi

√
m

,

where ϑn = max
√

var (τn−1,m) and ϑ1 = 0

Proof. We prove by induction. The basis is true because the bias of the 1-step update is zero. We move on
to the step.

From the definition and then taking algebraic operations, we have,

E
[
τn+1,m(x, a)−

(
Hn+1q

)
(x, a)

]
= E

[(
r(x, a) + γ max

a′

(
1
m

m∑
i=1

τn,m (x′, a′)
))
−

−
(

r(x, a) + γ max
a′

((Hnq) (x′, a′))
)]

= γE

[
max

a′

1
m

m∑
i=1

τn,m (x′, a′)−max
a′

((Hnq) (x′, a′))
]

Now, we use a result from Aven (1985) that says that, for given set of random variables {ζi}i≤I

E
[
max

i
ζi

]
≤ max

i
E [ζi] +

√
I − 1

I

∑
i

var (ζi),

and have, after Jensen’s inequality exchanges the order of the max and the expectation, that

E
[
τn+1,m(x, a)−

(
Hn+1q

)
(x, a)

]
≤ γE

[
max

a′
E [τn,m (x′, a′)]−max

a′
(Hnq) (x′, a′)

]
+ γ

√√√√ |A| − 1
|A|

∑
a′

var
(

1
m

m∑
i=1

τn,m (x′, a′)
)

Then, we add the absolute value and see that

|E
[
τn+1,m(x, a)−

(
Hn+1q

)
(x, a)

]
| ≤ γE

[
|max

a′
E [τn,m (x′, a′)]−max

a′
(Hnq) (x′, a′) |

]
+ γ

√√√√ |A| − 1
|A|

∑
a′

var
(

1
m

m∑
i=1

τn,m (x′, a′)
)
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≤ γE
[
max

a′
E [τn,m (x′, a′)− (Hnq) (x′, a′)]

]
+ γ

√√√√ |A| − 1
|A|

∑
a′

var
(

1
m

m∑
i=1

τn,m (x′, a′)
)

≤ γE
[
max

a′
E [τn,m (x′, a′)− (Hnq) (x′, a′)]

]
+ γ

√√√√ |A| − 1
|A|

|A|max var
(

1
m

m∑
i=1

τn,m (x′, a′)
)

Now, we use that for a given random variable ζ,

var
(

1
m

m∑
i=1

ζ

)
= 1

m
var (ζ)

and proceed to see that

|E
[
τn+1,m(x, a)−

(
Hn+1q

)
(x, a)

]
| ≤ γE [τn,m(x′, a′)− (Hnq) (x′, a′)]

+ γ

√
(|A| − 1) max var (τn,m (x′, a′))

m

Next, we use that √
max(·) = max

√
·

and the hypothesis to conclude

|E
[
τn+1,m(x, a)−

(
Hn+1q

)
(x, a)

]
| ≤ γ

√
|A| − 1

n∑
i=1

γn−i ϑi

√
m

+ γ
√
|A| − 1ϑn+1

√
m

≤
√
|A| − 1

n+1∑
i=1

γn+1−i ϑi

√
m

.

Theorem C.8. For all n ≥ N and m ∈ N, we have that

∥qω̃n − qω̂n,m∥ ≤ ξ

1− λγn

ϑn

√
m

,

ϑn = max
√

var (τn−1,m), ξ = ϕ2
maxσmax

√
|A| − 1.

Proof.

∥qω̃n − qω̂n,m∥∞ ≤ ∥Proj Hnqω̃n − Proj Hnqω̂n,m∥∞ + ∥Proj Hnqω̂n,m − qω̂n,m∥∞

≤ λγn∥qω̃n − qω̂n,m∥∞ + ∥Proj Hnqω̂n,m − qω̂n,m∥∞.

∥Proj Hnqω̂n,m − qω̂n,m∥∞ ≤ ϕ2
maxσmax|E [(Hnqω̂n,m) (x, a)− (τnqω̂n,m) (x, a)] |
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(a) Cartpole, with each dimension of the state
space discretized in two.
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(b) Cartpole, with each dimension of the state
space discretized in four.

Figure 7: Cartpole results. The y-axis shows the average return. The performance increases with n.

Using the previous lemma,

|E [(Hnqω̂n,m) (x, a)− (τnqω̂n,m) (x, a)] | = E [(τnqω̂n,m) (x, a)− (Hnqω̂n,m) (x, a)]

≤
√

(|A| − 1)
n∑

i=1
γn−i ϑi

√
m

≤
√

(|A| − 1) ϑn

√
m

n∑
i=1

γn−i

≤
√

(|A| − 1)
1− γ

ϑn

√
m

where we used that, for all i ≤ n

ϑi ≤ ϑn

and
n∑

i=1
γn−i = 1− γn−1

1− γ
≤ 1

1− γ
.

We conclude the result.

D Additional experiments

In this appendix we provide additional results regarding the Carpole environment. We show results for
features resulting from a finer discretization of the state space in Figure 7. Specifically, each dimension of
the state space is discretized in four, whereas in the results in the main text each dimension is discretized in
two. We recall the results from the main text for comparison. We see that the performance of Q-learning
(n = 1) improved the most. The performance of multi Q-learning (n = 2 and n = 4) also improves. Overall
the performance of multi Q-learning is superior to Q-learning.
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