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Abstract001

Process or step-wise supervision has played a002
crucial role in advancing complex multi-step003
reasoning capabilities of Large Language Mod-004
els (LLMs). However, efficient, high-quality005
automated process annotation remains a sig-006
nificant challenge. To address this, we intro-007
duce Single-Pass Annotation with Reference-008
Guided Evaluation (SPARE), a novel structured009
framework that enables single-pass, per-step010
annotation by aligning each solution step to011
one or multiple steps in a reference solution,012
accompanied by explicit reasoning for evalua-013
tion. We show that reference-guided step-level014
evaluation effectively facilitates process super-015
vision on four datasets spanning three domains:016
mathematical reasoning, multi-hop composi-017
tional question answering, and spatial reason-018
ing. We demonstrate that SPARE, when com-019
pared to baselines, improves reasoning perfor-020
mance when used for: (1) fine-tuning models in021
an offline RL setup for inference-time greedy-022
decoding, and (2) training reward models for023
ranking/aggregating multiple LLM-generated024
outputs. Additionally, SPARE achieves compet-025
itive performance on challenging mathemati-026
cal datasets while offering 2.6 times greater027
efficiency, requiring only 38% of the runtime,028
compared to tree search-based automatic anno-029
tation. The codebase provided along with the030
submission will be made publicly available1.031

1 Introduction032

While large language models (LLMs) have demon-033

strated strong performance across a broad range034

of tasks (Brown et al., 2020; Wei et al., 2022a,b;035

Chowdhery et al., 2023; Touvron et al., 2023; Sri-036

vastava et al., 2023), complex multi-step reason-037

ing still remains a challenge for LLMs even when038

they are trained and finetuned with ground-truth039

chains of thoughts (Azerbayev et al., 2024; Yu et al.,040

1The codebase can be accessed at URL-placeholder.

2024b). Self-consistency (Wang et al., 2023) can 041

improve performance by voting over multiple gen- 042

erations, only if the answers are correct in majority 043

of them. To address this, reward models trained to 044

assess output correctness have gained popularity. 045

Outcome Reward Models (ORMs) (Cobbe et al., 046

2021; Yu et al., 2024a) are trained using outcome 047

supervision relying on the correctness of the final 048

answer, while Process Reward Models (PRMs) (Ue- 049

sato et al., 2022; Lightman et al., 2024) use process 050

supervision that relies on the correctness of indi- 051

vidual reasoning steps. 052

PRMs achieve better performance due to the 053

targeted step-level feedback but suffer from expen- 054

sive and complex annotation requirements. Human- 055

supervision (Uesato et al., 2022; Lightman et al., 056

2024) is very demanding in terms of highly skilled 057

human evaluators, motivating efforts toward auto- 058

matic process annotation largely driven by Monte 059

Carlo Tree Search (MCTS)-based methods (Wang 060

et al., 2024a,c; Luo et al., 2024; Zhang et al., 061

2024b). In MCTS-based approaches, models are 062

initially trained on ground-truth reasoning traces 063

and answers through supervised fine-tuning. How- 064

ever, during step evaluation, these methods over- 065

look the valuable step-by-step information already 066

present in the reference ground-truth rationales. In- 067

stead, they rely exclusively on final answer match- 068

ing across multiple model rollouts, resulting in both 069

computational inefficiency and under-utilization of 070

the data already available at hand. 071

Parallel efforts aim to leverage valuable sig- 072

nals from reference reasoning traces, that are ei- 073

ther existing ground-truth or synthetically gener- 074

ated rationales. For instance, Li et al. (2023); 075

Khalifa et al. (2023) generated step-level anno- 076

tations by decomposing candidate and reference 077

solutions into individual steps, performing align- 078

ment using dataset-specific discriminative models 079

with limited applicability to challenging datasets 080

like MATH (Hendrycks et al., 2021), and annotat- 081
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System Prompt ( ):
You are a teacher grading a candidate's assignment .... 
Match the steps of Candidate Answer with that in Reference Answer and Context sentences.
Score the steps of Candidate Answer as below:

A step that matches or is factually consistent with one or more steps in the Reference Answer and / or Context sentences is labelled as correct (+1).
While matching steps, evaluate on the basis of topics, entities, variables ... Ta
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Context ( ):
[ ] What is the area, in square units, of a triangle with vertices at $(0,0)$, $(0,5)$, and $(7,12)$? Express your answer as a decimal to the nearest tenth.

Reference Answer ( ):
[ ] Let's think step by step. The base of the triangle lies on the $y$-axis, and is 5 units
long.
[ ] The height of the triangle is the horizontal distance from the point $(7,12)$ to the
$y$-axis, and is 7 units long.
[ ] Thus, the area of the triangle is $\frac{5\cdot7}{2}=\boxed{17.5}$ square units.
Hence, the answer is 17.5.

Candidate Answer ( ):
[ ] Let's think step by step. To calculate the area of this triangle, we simply find the area of a
rectangle containing the triangle and divide by $2$.
[ ] The area of this rectangle is \[(7)(5) = 35\] square units.
[ ] The rectangle that will encompass our triangle is half that size, so the area of the triangle is
$\boxed{17.5}$ square units. Hence, the answer is 17.5.

Explicit Explanation + Multiple Step AlignmentCapture surface form variation

No direct match for  calculating
area of rectangle in  or .

Direct single step alignment may not be possible with
surface form variations in terms of approach, equations etc.

Context, Reference Answer
and Candidate Answer are

delimited for alignment
Crucial number but can't be

heuristically matched in  or .

explanation: Based on previous step [ ], the candidate continues to calculate the area of rectangle that contains the triangle with the sides 7 and 5
as 35 which is numerically correct. The steps [ ] and [ ] mention the sides of the triangle, hence the rectangle as well, to be 5 and 7 respectively.
Thus, this step is correct.

label: +1

Evaluation exemplar under
 framework

Figure 1: Determining the correctness of a step in a candidate solution against a given context and reference
solution presents several challenges, including step alignment, surface-form variations, and heuristic limitations.
We propose a unified, single-stage framework: Single Pass Annotation with Reference-Guided Evaluation (SPARE:
(S, C,R,O) → E). SPARE produces an explanation-based step-by-step evaluation E of a candidate model output O,
grounded to a given context C, reference reasoning R, and system prompt S (Section 3.1).

ing steps in a restricted context where a candidate082

step is matched to a single reference step. Auto-083

PRM (Chen et al., 2024) decomposes reference084

solutions into sub-questions and corresponding so-085

lutions to enable process supervision. However,086

their approach relies on an auxiliary model for087

data collection, which is trained using outputs from088

a more capable language model. More recently,089

GenRM (Zhang et al., 2025) employed reference-090

guided grading to train verifiers using syntheti-091

cally generated rationales as references. However,092

GenRM is not a process supervision (PRM) model093

and relies on rationales generated by a more ca-094

pable model than the one trained as the reward095

model. Similarly, ThinkPRM (Khalifa et al., 2025)096

utilized a more capable model to generate synthetic097

verification rationales, which were subsequently098

filtered to retain only those whose step annotations099

aligned with human-labeled steps in the PRM800K100

dataset (Lightman et al., 2024).101

To address these gaps, we propose Single-Pass102

Annotation with Reference-Guided103

Evaluation (SPARE), a framework (Fig-104

ure 1) that enables automatic process supervision105

through step-level evaluation of model responses106

by leveraging intermediate steps from reference107

reasoning traces. SPARE introduces a generic,108

structured evaluation scheme focused on (i)109

explicit reasoning for each step evaluation and110

(ii) multi-step aligned comparisons between the111

model output and reference. This design enables112

single-pass evaluation with additive scaling 113

relative to the token lengths of the response and 114

reference. Our experiments across three domains 115

demonstrate that SPARE annotations outperform 116

self-consistency and outcome supervision, while 117

matching the performance of tree-search-based 118

annotation methods with greater efficiency on the 119

challenging MATH-500 dataset. In summary, our 120

contributions are as follows: 121

• We introduce SPARE, a general, single-pass, and 122

structured reference-guided evaluation frame- 123

work for process annotation, emphasizing ex- 124

plicit annotation reasoning and multi-step align- 125

ment. Importantly, SPARE does not require addi- 126

tional reasoning traces but reuses the same ref- 127

erence solutions already available for standard 128

supervised fine-tuning (SFT). 129

• We utilize SPARE annotations to improve reason- 130

ing capabilities of LLMs under two settings: (i) 131

fine-tuning a model in an offline reinforcement 132

learning (RL) setup for greedy-decoding during 133

inference, and (ii) training Reward Models (RMs) 134

for ranking and aggregating multiple generations. 135

• We extensively evaluate our framework on 136

two mathematical reasoning datasets (GSM8K 137

and MATH), a question-answering dataset 138

(� MuSiQue-Ans), and a spatial reasoning 139

dataset (SpaRP), demonstrating improvements 140

over baselines. Additionally, we show that our 141

approach is competitive with tree search-based 142

methods which are computationally expensive. 143
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2 Related Work144

Reasoning abilities of LLMs. Reasoning re-145

mains a challenging area for the Large Language146

Models (LLMs). Various prompting techniques,147

such as chain-of-thought, few-shot prompting and148

their variants (Wei et al., 2022b; Kojima et al.,149

2022; Yao et al., 2023; Hao et al., 2023; Bi et al.,150

2024) elicited reasoning capabilities in LLMs. Im-151

portance of individual steps while prompting (Fu152

et al., 2023; Zhou et al., 2023) was soon found to153

be crucial in successfully solving multi-step rea-154

soning problems. While prompt-only techniques155

show promising results, their performances are con-156

strained by and sensitive to prompt design and na-157

ture of tasks (Ye and Durrett, 2022). Consequently,158

explicitly finetuning with high-quality reasoning159

traces for improving LLM reasoning capabilities160

has become popular (Yu et al., 2024b; Luo et al.,161

2025).162

Outcome and Process Supervision. Supervised163

finetuning quickly results in saturation, leading to164

the search for other advanced techniques and better165

supervision signals. Outcome supervision (Cobbe166

et al., 2021; Yu et al., 2024a) relies on signal based167

on the final answer, and hence, is easier to ob-168

tain. Process supervision offers advantages in the169

form of fine-grained feedback from individual rea-170

soning steps, however, early work (Uesato et al.,171

2022; Pan et al., 2023; Lightman et al., 2024) re-172

lied on time-consuming and costly human anno-173

tation. To alleviate this problem, several recent174

approaches have emerged for automating process175

supervision. Monte-Carlo Tree Search (MCTS)176

based approaches (Wang et al., 2024a,c; Luo et al.,177

2024; Zhang et al., 2024a) target obtaining process178

annotation by several continuations from intermedi-179

ate steps whose correctness are evaluated based on180

the final step. Parallel work has explored leveraging181

reference reasoning traces, either ground-truth or182

synthetic, for supervision. Prior approaches decom-183

pose solutions into steps for alignment (Li et al.,184

2023; Khalifa et al., 2023), often relying on dataset-185

specific models with limited generalizability. Oth-186

ers, like AutoPRM (Chen et al., 2024), use sub-187

question decomposition but depend on auxiliary188

models trained with outputs from stronger LLMs.189

GenRM (Zhang et al., 2025) and ThinkPRM (Khal-190

ifa et al., 2025) use synthetic rationales from more191

capable models for training verifiers, but do not pro-192

vide a general-purpose, reference-guided process193

supervision framework. In contrast to these efforts,194

our work proposes a unified, single-pass, and struc- 195

tured evaluation framework for automatic process 196

annotation, enabling flexible alignment and multi- 197

step comparison with reference solutions. We fur- 198

ther demonstrate its effectiveness across both fine- 199

tuning and verification settings. 200

3 Our Approach 201

3.1 Single-Pass Annotation with 202

Reference-Guided Evaluation (SPARE) 203

Consider a reference reasoning path R = {r}mi=1 204

consisting of a sequence of m steps, a model gen- 205

erated output O = {o}ni=1 consisting of n steps, 206

and a sequence of s sentences as context with ques- 207

tion C = {c}si=1. An answer or outcome anno- 208

tation y ∈ R is a score indicating a measure of 209

correctness of the model’s output. Most commonly, 210

y = I(on = rm); i.e., the output’s answer matches 211

with the reference reasoning answer. In contrast, 212

a process annotation Y = {y | y ∈ R}ni=1 is a se- 213

quence of scalar scores assigned to the correspond- 214

ing steps oi ∈ O. 215

We propose Single-Pass Annotation 216

with Reference-Guided Evaluation (SPARE: 217

(S, C,R,O) → E) as a unified, single-pass 218

framework that generates a step-by-step evaluation 219

E = {ε}ni=1 of a model output O with respect 220

to a context C, a reference reasoning R, and a 221

system prompt S that defines evaluation heuristics 222

and guidelines. Each step oi is evaluated in 223

a structured format ε = (e, c+, o+, r+, ϵ, yi), 224

where e provides an explicit explanation of the 225

evaluation, ϵ is an optional list of error categories, 226

and yi ∈ {−1,+1} is the assigned evaluation 227

label. In addition to providing justification 228

for the evaluation, the explanation e aligns the 229

step oi with potentially multiple reference steps 230

(oi 7→ c+ ∪ o+ ∪ r+), where c+ ⊂ C represents a 231

subset of relevant context sentences, o+ ⊂ O\{oi} 232

includes other related output steps, and r+ ⊂ R 233

consists of selected reference reasoning steps used 234

for evaluation. The evaluation scheme enables 235

efficient process annotation with an additive token 236

complexity of O(s + m + n), and allows for 237

multiple alignment possibilities, particularly in 238

cases where m ̸= n: 239

1. One-to-one – Most simple alignment where one 240

output step aligns directly and completely with 241

at most one step, making it sufficient for evalua- 242

tion. The alignment can take one of the forms: 243

(i) a single reference reasoning step (oi 7→ rj), 244
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(ii) a single context sentence (oi 7→ ck), (iii)245

follows directly from or complements another246

output step (oi 7→ ol), or (iv) no alignment at all247

(oi 7→ ∅). In this case, |c+ ∪ o+ ∪ r+| ≤ 1.248

2. One-to-many – An output step requires align-249

ment with at least two steps for its evaluation.250

Such an alignment is necessarily required:251

i) When the model output step oi is a compos-252

ite step, either omitting minor intermediary253

steps or merging multiple steps into one. Its254

correctness must be evaluated against mul-255

tiple reference steps rj and ck. In this case,256

o+ = ϕ and |c+ ∪ r+| > 1. This is likely257

when n < m or n < (m+ s).258

ii) When the model output step oi is a simple259

step while the reference steps are compos-260

ite, its correctness must be evaluated in con-261

junction with at least one other output step262

ol and at least one reference step rj or con-263

text sentence ck. In this case, |o+| ≥ 1 and264

|c+ ∪ r+| ≥ 1. This is likely when n > m265

or n > (m+ s).266

In summary, our SPARE framework defines step267

correctness based on its alignment with one or268

more reference reasoning steps, other output steps269

or context sentences, with the reference reason-270

ing representing a valid path to the final answer.271

The multi-step alignment, combined with explicit272

step evaluation and explanations, accommodates273

surface form variations such as different topical ap-274

proaches (Figure 1) and expression formats. This275

ensures that the steps are properly contextualized276

within the broader reasoning structure, allowing for277

their more accurate evaluation.278

We implement SPARE using LLM-based evalua-279

tion, where off-the-shelf LLMs are prompted with280

k-shot exemplars. A small, manually annotated281

set of diverse examples is used to capture SPARE’s282

core evaluation principles. To generate automatic283

annotations for model-produced reasoning traces,284

we use a model—typically from the previous fine-285

tuning stage in an iterative setup—to generate mul-286

tiple solutions per problem via temperature-based287

sampling. Each solution is then decomposed into288

individual steps, typically delineated by newline289

characters. Our SPARE framework subsequently290

evaluates the correctness of each step, enabling291

automatic process supervision.292

3.2 Training Approach 293

3.2.1 SPARE–based Finetuning (SPARE–ORPO) 294

We propose SPARE-based fine-tuning of a model 295

to enhance its reasoning capabilities. The step- 296

by-step process annotations Y = {yi}ni=1, de- 297

rived using the SPARE framework, can be effec- 298

tively integrated with both online and offline Rein- 299

forcement Learning (RL). For ease of implemen- 300

tation, training stability, and resource efficiency, 301

we employ Odds Ratio Preference Optimization 302

(ORPO) (Hong et al., 2024) for preference training 303

over chosen and rejected pairs (Ow, Ol). 304

In SPARE-ORPO, we compute a mean aggrega- 305

tion ȳ = 1
n

∑
yi of the reasoning step annotations 306

to quantify reasoning trace correctness and com- 307

bine this with the final answer correctness y. The 308

tuple (y, ȳ) is used as the effective score for pref- 309

erence pair identification, where yw = 1, yl = −1, 310

and ȳw > ȳl. Thus SPARE-ORPO employs a more 311

comprehensive set of preference pairs, where the 312

chosen solution demonstrates superiority over the 313

rejected solution with respect to both reasoning 314

quality and answer accuracy. In contrast, Outcome- 315

ORPO is trained using preference pairs (Ow, Ol) 316

that are determined solely by final answer accuracy, 317

i.e., yw = 1 and yl = −1. 318

3.2.2 SPARE–based Process Reward Model 319

(SPARE–PRM) 320

We utilize the step-level evaluations yi obtained 321

through SPARE as direct reward signals to train pro- 322

cess reward models. The SPARE-PRM is trained in 323

a stepwise classification setting, using the follow- 324

ing cross-entropy loss: 325

LPRM = −
n∑

i=1

(
yi log σ(rθ(C, o1:i))+ 326

(1− yi) log (1− σ(rθ(C, o1:i)))
)

(1) 327

where o1:i is the sub-sequence of output O till the 328

ith step. Unlike ORMs which predict a single so- 329

lution score for O, PRMs generate a probability 330

sequence P = {pi}ni=1 for each step oi ∈ O. 331

These step-wise probabilities are aggregated into a 332

final correctness score using functions such as min, 333

prod (Lightman et al., 2024; Wang et al., 2024a), 334

last, and max (Wang et al., 2024c). 335

Ranking and Aggregation. We use reward mod- 336

els to score multiple generations during inference. 337
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We then either do rank-and-select (e.g. Best-of-N338

sampling) or weighted aggregation as:339

â = argmax
a

N∑
i=1

I(ai = a) · f(C,Oi) (2)340

where each final answer ai from Oi is grouped and341

weighted by a function f(·) over N solutions. In342

self-consistency (Wang et al., 2023), the weighting343

function f accounts for the presence of an answer344

ai, meaning all occurrences of an answer are given345

equal weight., i.e., f(C,Oi) = 1. Alternatively, the346

probability scores from Reward Models are used347

as weights for aggregation, effectively enhancing348

reasoning accuracy by prioritizing solutions that ex-349

hibit both correct final answers and well-structured350

reasoning steps.351

4 Experiment Results352

4.1 Experimental Set-up353

Datasets. We conduct extensive experiments354

over a suite of reasoning datasets2:355

• Mathematical Reasoning. We use two mathe-356

matical datasets, GSM8K (Cobbe et al., 2021),357

which is a collection of grade school math word358

problems, and MATH (Hendrycks et al., 2021),359

which contains high school competition-level360

math problems across seven diverse topics. Fol-361

lowing standard practice in the verification set-362

ting, we use the MATH-500 subset (Lightman363

et al., 2024) for test-time evaluation involving364

multiple generations.365

• Question-Answering. We use � MuSiQue-Ans366

dataset (Trivedi et al., 2022), a challenging multi-367

hop question-answering dataset constructed by368

composing six diverse reasoning graphs of sub-369

questions from five different sources.370

• Spatial Reasoning. We use the small371

SpaRP (Rizvi et al., 2024), i.e., SpaRP-S dataset,372

which comprises four textual spatial reasoning373

sub-datasets covering various spatial characteri-374

zations. SpaRP requires spatial relation compo-375

sition to deduce relations between two objects376

when their direct relation is not provided in the377

context.378

2Since GSM8K, MATH, and � MuSiQue-Ans do not pro-
vide dev-sets, we partition their train-sets to create train and
dev splits. For GSM8K and MATH, we use a 90:10 split,
while for � MuSiQue-Ans, we adopt an 80:20 split.

Models. We conduct our primary experiments 379

across all four datasets for both model fine-tuning 380

and reward model training using the LLaMA-3 381

8B Instruct model. Due to computational con- 382

straints, we limit additional experiments to selected 383

datasets. To assess generalization across model 384

families, we report results on the most challenging 385

MATH dataset using Qwen 2.5 models. For com- 386

parison with MCTS-based approaches, we evaluate 387

on GSM8K and MATH using Mistral-7B models. 388

Metrics. We report3 the accuracy for the GSM8K 389

and MATH datasets, accuracy and F1 metric for 390

the � MuSiQue-Ans dataset, and the accuracy and 391

macro-F1 for the SpaRP dataset. 392

Implementation Details and Baselines. We be- 393

gin with a single-epoch supervised fine-tuning 394

(SFT) on the training split. Next, for each problem 395

in the training and dev-set, we generate N = 20 396

solutions from the fine-tuned model using a tem- 397

perature of 1. These solutions are then annotated 398

using final answers for outcome supervision and 399

the SPARE framework for process supervision. 400

We employ off-the-shelf pretrained models4 401

for reference-guided step annotations using our 402

SPARE framework. To account for problem di- 403

versity, we manually construct structured step-by- 404

step evaluation exemplars per dataset—ranging 405

from 6 for SpaRP to 56 for MATH—balanced 406

for final answer correctness and covering all top- 407

ics (MATH), sub-datasets (SpaRP), or reasoning 408

graphs (� MuSiQue-Ans). Each dataset is evalu- 409

ated in a 5-shot setting using dataset-specific eval- 410

uation guidelines as system prompts. See Ap- 411

pendix A for an example. 412

In the finetuning scenario, we evaluate our 413

SPARE-ORPO iteration trained on preference pairs 414

formed using both outcome supervision and the 415

mean reasoning scores of the step-by-step annota- 416

tions (Section 3.2). We benchmark SPARE-ORPO 417

against Outcome-ORPO and second iteration of 418

Supervised Fine-Tuning (SFT) with an equivalent 419

number of training instances. The training hyper- 420

parameter details are provided in Appendix C. 421

In the verification scenario, we use process 422

annotations from the SPARE framework to train 423

3Exact Match for GSM8K. competition_math metric from
the evaluate library for MATH. Accuracy and F1 for
� MuSiQue-Ans from their github repository. Accuracy and
F1 for SpaRP from the scikit-learn library.

4Our framework could be further enhanced by specialized
evaluator models such as Prometheus 2 (Kim et al., 2024), or
by leveraging larger, more capable language models.

5
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Mathematical Question Spatial
Reasoning Reasoning Reasoning

Training GSM8K MATH � MuSiQue-Ans SpaRP-S
Method Acc. (↑) Acc. (↑) Acc. (↑) / F1 (↑) Acc. (↑) / F1 (↑)

SFT 1st Iteration 70.43 21.22 23.58 / 32.53 23.23 / 35.00
+ 2nd Iteration 70.43 22.08 26.31 / 35.12 39.90 / 47.13
+ Out.-ORPO 69.07 23.16 38.15 / 49.85 39.23 / 49.75

+ SPARE-ORPO 69.75 23.42 38.89 / 50.53 40.13 / 50.96

Table 1: Performance evaluations of Llama-3 8B In-
struct model with greedy decoding under different train-
ing methods. Best values in bold, second best in
underline.

Mathematical Question Spatial
Reasoning Reasoning Reasoning

Aggregation / GSM8K MATH-500 � MuSiQue-Ans SpaRP-S
Ranking Acc. (↑) Acc. (↑) Acc. (↑) / F1 (↑) Acc. (↑) / F1 (↑)

SC 74.91 23.40 19.74 / 25.18 25.43 / 34.37
ORM 79.76 20.20 33.43 / 45.42 41.73 / 49.79
ORM + SC 79.83 23.80 34.80 / 44.45 41.70 / 49.78

SPARE-PRM 79.98 20.90 34.84 / 45.52 43.73 / 50.08
SPARE-PRM + SC 80.29 24.10 32.11 / 40.43 39.58 / 46.92

Table 2: Performance evaluations of aggregators and
RM verifiers on N = 20 sample output generations
from Llama-3 8B SFT 1st iteration. SC denotes Self-
Consistency. RM only entries indicate Best-of-N (BoN)
sampling based results. Best values in bold, second best
in underline. Mean of metrics reported on 3 groups of
sampling results.

SPARE-PRMs as a standard language modeling424

task, predicting special tokens for correct and in-425

correct steps as a classification objective (Sec-426

tion 3.2.2) at special end-of-step (EOS) tokens.427

We benchmark these models against outcome re-428

ward models (ORMs) and majority-voted self-429

consistency (Wang et al., 2023). To ensure bal-430

anced training, we randomly sample equal num-431

bers of positive and negative examples. Evaluation432

metrics for both ORMs and PRMs are reported433

under two settings: (a) weighted aggregation (i.e.,434

RM-weighted self-consistency) and (b) no aggre-435

gation, i.e., Best-of-N (BoN) sampling considering436

only the highest-scoring solution. Further train-437

ing details and hyperparameters are provided in438

Appendix D.439

4.2 Results and Discussion440

SPARE Helps in Fine tuning. We report the per-441

formance of fine tuning LLM followed by greedy442

decoding in Table 1. SPARE-ORPO achieves the443

best performance across three of the four datasets,444

with a maximum relative improvement of 2.43%445

in F1 score on the SpaRP-S dataset compared to446

the next-best Outcome-ORPO models. On the447

challenging MATH dataset, it attains a relative448

improvement of 1.12%, reaching an accuracy of449

Generator Verifier Agg./Rank. Math–500

Qwen-2.5-3B

– SC 31.4

Llama-3-8B SPARE-PRM 32.2
SPARE-PRM + SC 34.2

Qwen-2.5-3B

ORM 33.4
ORM + SC 33.8
SPARE-PRM 32.2
SPARE-PRM + SC 34.6

Qwen-2.5-32B

– SC 64.6

Llama-3-8B SPARE-PRM 55.0
SPARE-PRM + SC 65.4

Qwen-2.5-3B

ORM 57.6
ORM + SC 65.6
SPARE-PRM 58.6
SPARE-PRM + SC 66.0

Table 3: Accuracy of SPARE-PRMs across model fam-
ilies and sizes on MATH-500 test-set with N = 20
generations. Mean accuracy reported on 3 groups of
sampling results.

23.42%. The improvements of the SPARE models 450

over Outcome baselines are statistically significant 451

(p < 0.05) under one-tailed paired t-test. This 452

underscores the effectiveness of SPARE in reason- 453

ing step annotation and identifying superior pref- 454

erence pairs than outcome-only preference pairs. 455

Both these ORPO models significantly outperform 456

the SFT models trained on the ground-truth rea- 457

soning traces, except for the GSM8K dataset. For 458

GSM8K, the performance does not increase on 459

ORPO-finetuned models and shows stagnation be- 460

tween the 1st and 2nd SFT iterations. We attribute 461

this to the saturation of performance on this dataset, 462

particularly as we used the same hyperparameters 463

across all datasets (see details in Appendix C.1). 464

For example, if we use different learning rates on 465

GSM8K, we can observe a higher performance on 466

SPARE. We did not include the result in Table 1 in 467

order to ensure a fair and robust comparison (see 468

details in Appendix C.2). Again, SPARE consis- 469

tently outperforms other models in all the other 470

setups in Table 1 and 2. 471

SPARE Improves Reward Model Training and 472

Scales with Inference-Time Compute. Table 2 473

shows that SPARE-PRM performs the best across 474

all four datasets, outperforming both ORMs and 475

the majority-voted Self-Consistency (SC). The im- 476

provements of the best SPARE-PRM ranked or ag- 477

gregated strategy over the best Outcome baselines 478

are statistically significant (p < 0.05) under one- 479

tailed paired t-test, with a maximum relative im- 480

provement of 4.79% accuracy on SpaRP-S. On the 481

challenging MATH-500 dataset, it attains a relative 482
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Figure 2: Performance of Llama-3 8B Instruct model un-
der different strategies–SC, ORM-weighted and PRM-
weighted consistency–over difficulty levels and with
candidate scaling on MATH-500 test set.

improvement of 1.26%, reaching an accuracy of483

24.10%. Notably, this improvement is consistent484

across difficulty levels and especially significant485

for more difficult problems (Figure 2a). We note,486

however, that all the reported performance corre-487

sponds to N = 20 generations. When scaled to488

the commonly reported setting of larger number of489

generations, e.g., N = 256 (Wang et al., 2024a),490

performance on MATH-500 improves to 35.4 with491

a Mistral-7B model (Table 4). Comparable results492

are also achieved with the Llama-3-8B model, as493

illustrated in Figure 2b, where SPARE-PRM con-494

sistently outperforms baselines as the number of495

generated solutions increases from 4 to 256.496

Finally, even with N = 20 generations, we show497

that the Llama-3-8B PRM, and the SPARE frame-498

work more broadly, generalizes across model fam-499

ilies. As shown in Table 3, it achieves 34.2% ac-500

curacy with a Qwen-2.5-3B generator, outperform-501

ing the corresponding ORM and only surpassed502

by the PRM from the same model family. For503

Qwen-2.5-32B generations, although the Llama-504

3-8B PRM is outperformed by the Qwen-2.5-3B505

ORM, the effectiveness of SPARE-PRM remains506

consistent when trained on the same Qwen-2.5-3B507

base model, achieving a peak accuracy of 66%.508

SPARE Adapts to Diverse Reasoning Traces.509

SPARE-PRM with Best-of-N (BoN) sampling510

achieves the best performance on datasets with511

limited reasoning diversity—� MuSiQue-Ans and512

SpaRP. In contrast, aggregating multiple outputs513

via self-consistency (SC) reduces the performance514

of SPARE-PRM on these datasets, whereas other515

reward models perform comparably or better. Com-516

bined with the fact that SPARE-PRM is trained on517

multiple outputs annotated against a reference rea-518

soning trace, this suggests that SPARE-PRM may519

struggle to assess outputs with diverse reasoning520
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Figure 3: Distribution-plots of ORM and SPARE-PRM
probabilities for correct and incorrect answers of Math-
500 and SpaRP-S datasets.

forms. However, in challenging datasets with more 521

diverse reasoning structures such as GSM8K and 522

MATH-500, SPARE-PRM combined with aggrega- 523

tion (SC) outperforms both Best-of-N (BoN) sam- 524

pling and other reward models. 525

Distribution plots of ORM and SPARE-PRM 526

probabilities for correct and incorrect answers (Fig- 527

ure 3) on two representative datasets, Math-500 528

and SpaRP-S, further support this observation. On 529

SpaRP-S, SPARE-PRM assigns lower mean proba- 530

bilities to correct answers and higher mean proba- 531

bilities to incorrect ones compared to ORMs. For 532

correct responses, its probability distribution is 533

more dispersed, whereas ORMs tend to skew to- 534

ward higher probability values. These factors di- 535

minish the effectiveness of PRMs under aggrega- 536

tion (SC), making them better suited for ranked 537

selection (BoN) strategies. However, on Math-500 538

dataset, although SPARE-PRM also assigns higher 539

probabilities to incorrect answers, this is offset by 540

a distribution skewed toward higher probability val- 541

ues for correct answers, resulting in a higher overall 542

mean probability for correct responses. 543

SPARE is Computationally Efficient and Com- 544

petitive with MCTS Methods. Monte Carlo 545

Tree Search (MCTS)-based automatic annota- 546

tions (Wang et al., 2024a,c; Zhang et al., 2024b) 547

have recently proven effective for process supervi- 548

sion. To facilitate a comparison with MCTS-based 549

methods, we report results on the GSM8K and 550

Math-500 datasets using Math-Shepherd (Wang 551

et al., 2024a) and SPARE-PRM in Table 4. For a 552
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Aggregation GSM8K MATH-500
Acc. (↑) Acc. (↑)

Self-Consistency (SC) 83.1 33.6
+ ORM 86.7 35.1
+ Math-Shepherd 87.7 35.4
+ SPARE-PRM 87.8 35.4

Table 4: Performance comparison on mathematical
datasets including Math-Shepherd (Wang et al., 2024a),
a MCTS-based approach, over N = 256 generations.
Mean accuracy reported on 3 groups of sampling re-
sults.
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Figure 4: Precision and recall of SPARE relative to hu-
man annotations for ground-truth single-step and multi-
step alignments.

direct comparison, we adopt the same experimen-553

tal settings used in Math-Shepherd, employing the554

Mistral-7B: MetaMATH generator with 256 sam-555

pled outputs. Verifier performance is also reported556

for both Math-Shepherd and SPARE-PRM using557

the Mistral-7B model. With weighted aggregation,558

SPARE-PRM slightly outperforms Math-Shepherd559

on GSM8K and achieves comparable results on560

Math-500. Both methods outperform baselines561

such as self-consistency and ORM.562

However, under identical compute setting (Ap-563

pendix B), the MCTS-based annotation framework564

of Math-Shepherd is 2.6 times slower than SPARE,565

with SPARE completing the annotation process in566

just 38% of the time. This efficiency stems from567

SPARE’s single-pass annotation process, in contrast568

to MCTS-based methods that require extensive569

search and repeated model inference at each step.570

Minimizing inference for annotation will be par-571

ticularly advantageous when using commercially-572

hosted or proprietary models, where completion to-573

kens incur higher costs than input tokens, making574

SPARE’s single-pass, completion-light evaluation575

even more cost-efficient. As a result, SPARE is par-576

ticularly well-suited for large-scale deployments577

and scenarios with constrained resources.578

Comparison of SPARE with Manual Step Anno-579

tations. We evaluated the accuracy of SPARE an-580

notations on 56 manually annotated examples from 581

the MATH dataset, balanced for final answer cor- 582

rectness and covering all seven topics. We used 5- 583

shot setting with the LLaMA-3-8B model, exclud- 584

ing the target example from in-context exemplars 585

to avoid data leakage. For each instance, exemplars 586

were randomly sampled, and annotations were re- 587

peated ten times. Comparing SPARE annotations 588

to manual labels, we observed 76.9% accuracy for 589

steps with single-step alignment and 73% for those 590

requiring multi-step alignment. Despite a slight 591

decrease for multi-step cases, these results demon- 592

strate SPARE’s strong capability in capturing com- 593

plex reasoning and validate its robustness across 594

topics and multiple runs. 595

A class-wise precision recall is also presented in 596

Figure 4. We observe the recall of correct steps and 597

precision of incorrect steps to be high (>80%) in 598

both single-step and multi-step alignment scenarios. 599

In comparison, the observed drop in precision for 600

correct steps and recall for incorrect steps across 601

both single- and multi-step scenarios indicates a 602

more permissive and lenient annotation behavior 603

by the LLM. 604

5 Conclusions 605

Achieving high-quality and efficient automatic pro- 606

cess supervision is crucial for enhancing the com- 607

plex multi-step reasoning abilities of Large Lan- 608

guage Models (LLMs). To this end, we propose 609

Single-Pass Annotation with Reference-Guided 610

Evaluation (SPARE), a structured framework that 611

enables per-step annotation in a single pass by eval- 612

uating each solution step against one or multiple 613

reference steps with explicit reasoning. Our ex- 614

perimental results demonstrate that fine-tuning a 615

base model and training a reward model with SPARE 616

lead to improved reasoning performance under both 617

greedy decoding and ranking/aggregation of mul- 618

tiple solutions. Furthermore, we observe consis- 619

tent improvements across four datasets spanning 620

mathematical reasoning, multi-hop compositional 621

question answering, and spatial reasoning. SPARE 622

achieves competitive performance with greater effi- 623

ciency compared to tree search–based annotation 624

methods, and shows strong alignment with human 625

annotations. These findings highlight the potential 626

of reference-guided automatic process supervision 627

as a promising approach for enhancing LLM rea- 628

soning capabilities. 629
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Limitations630

SPARE and its associated models depend on the631

availability of reference reasoning chains to per-632

form reference-guided step evaluations. However,633

we note that the reference reasoning traces used634

by SPARE are the same as those commonly used in635

Supervised Finetuning (SFT)—a foundational step636

in most finetuning methodologies including other637

automatic annotation methods. Thus, our approach638

does not introduce an additional annotation bur-639

den beyond what is typically required for training640

strong instruction-following models.641

We also note that SPARE, like other LLM-based642

automatic processes, is susceptible to some degree643

of noise. Nevertheless, we find that the structured,644

reference-evaluated step annotations it provides are645

effective for training both Process Reward Mod-646

els (PRMs) and base models, leading to improved647

reasoning performance. Despite its limitations,648

SPARE remains a practical, efficient and impact-649

ful approach for process supervision and model650

enhancement.651
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A LLM-based Grading Example906

An example system prompt with evaluation guide-907

lines, user request and process annotation as graded908

output for MATH dataset under our SPARE frame- 909

work is provided in Table 5 and Table 11. Similarly, 910

other datasets have their own domain and subject 911

specific evaluation heuristics included in the sys- 912

tem prompt. 913

B Computing Infrastructure 914

The experiments were conducted using 8 NVIDIA 915

A100 GPUs, each with 40GB of memory. 916

C Details of Finetuning 917

C.1 Implementation detail common across all 918

datasets. 919

We used Huggingface’s TRL library and QLoRA 920

for parameter-efficient finetuning of all ORPO mod- 921

els across datasets (Table 1), using a fixed set of hy- 922

perparameters for consistency (Table 7). This setup 923

performed well across all datasets except GSM8K, 924

where we observed performance saturation after 925

the first iteration and degradation in ORPO mod- 926

els. To address this, we conducted a learning rate 927

search specifically for GSM8K, leading to consis- 928

tent improvements as detailed in Section C.2. 929

C.2 GSM8K Hyperparameter Tuning. 930

Due to training saturation observed on GSM8K 931

with the common hyperparameters (Table 7), we 932

conducted a targeted search over learning rates 933

{10−6, 5 × 10−6, 10−5, 5 × 10−5, 10−4}. Using 934

lr = 10−5 for the first iteration and lr = 5× 10−6 935

for the second on SPARE produced the best results 936

on the validation/development dataset. The corre- 937

sponding test set performance is reported in Table 9, 938

where the SPARE-ORPO model achieved an accu- 939

racy of 72.25%. We did not include it in Table 1 in 940

order to ensure a robust comparison by using the 941

same hyperparameters across all datasets. 942

D Details of Reward Model (RM) 943

Training 944

The number N of individual positive and negative 945

samples (i.e. N pairs) for Reward Model training 946

are presented in Table 8. Hence, for example, the to- 947

tal effective outcome or process supervision dataset 948

used for RM training for mathemtical datasets was 949

≈40K. This is still significantly smaller than other 950

work (Lightman et al., 2024; Wang et al., 2024a). 951

While prior work (Lightman et al., 2024; Wang 952

et al., 2024a; Luo et al., 2024) have shown the 953

min or prod aggregation to be the better perform- 954

ing aggregation strategies, other work (Wang et al., 955
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Role Content

System

You are a teacher grading a student’s assignment. You are given a QUESTION, its ground-truth correct REFERENCE ANSWER
and a STUDENT’S ANSWER. You are asked to match the steps of STUDENT’S ANSWER with that in the REFERENCE
ANSWER and in the context of the given QUESTION. You are required to score the steps of STUDENT’S ANSWER as below:

A step in the STUDENT’S ANSWER that matches or is factually consistent with one or more steps in the REFER-
ENCE ANSWER and in the context of the sentences provided in the QUESTION is labelled as CORRECT. While matching
steps, evaluate on the basis of:

(a) whether the topic, entities, variables and the intended result of the step are correct or not, and
(b) whether the expressions, equations, and / or numerical computations in a step are correct or not.

A step in the STUDENT’S ANSWER that doesn’t match or is factually incorrect with respect to the provided REF-
ERENCE ANSWER and the QUESTION is labelled as INCORRECT.

You need to evaluate ALL the steps of the STUDENT’S ANSWER. Provide your evaluation ONLY and ONLY in
JSON format as a list of dictionaries whose keys and their intended purposes are:

“student_step”: The current step number of the STUDENT’S ANSWER.

“reasoning”: The reasoning expanding upon why or what part of the current ‘student_step‘ of the STUDENT’S AN-
SWER, either DIRECTLY and ENTIRELY in itself or probably in combination with other steps in the STUDENT’S ANSWER,
is correct or incorrect in reference to one or more REFERENCE ANSWER steps and the QUESTION sentences.

“question_sentences”: A list of sentences in the QUESTION based on which the correctness or the incorrectness of
the current ‘student_step‘ is reasoned and arrived at. If the number of steps in the STUDENT’S ANSWER is less than that in the
REFERENCE ANSWER or the topic and the intended goal of a ‘student_step‘ doesn’t match with any steps in the REFERENCE
ANSWER, then it is useful to look for QUESTION sentences to assess the ‘student_step‘. More than one QUESTION sentences
can be of use for this evaluation. Leave it as an empty list if the current ‘student_step‘ DIRECTLY and ENTIRELY matches with
one or more steps in the REFERENCE ANSWER.

“student_combining_steps”: A list of previous ‘student_step‘ that is necessary in evaluating the current ‘student_step‘
because of restatements or transformations, or when combined with the current ‘student_step‘ will be part or whole of one or
more steps in the REFERENCE ANSWER. Leave it as an empty list if the current ‘student_step‘ DIRECTLY and ENTIRELY
matches with one or more steps in the REFERENCE ANSWER. If the number of steps in the STUDENT’S ANSWER is more
than that in the REFERENCE ANSWER, then a single step in REFERENCE ANSWER may correspond to multiple steps in the
STUDENT’S ANSWER and this list will be non-empty for some of the ‘student_step‘.

“matching_reference_steps”: A list of steps in the REFERENCE ANSWER based on which the correctness or the in-
correctness of the current ‘student_step‘ is reasoned and arrived at. If the number of steps in the STUDENT’S ANSWER is less
than that in the REFERENCE ANSWER, then multiple steps in the REFERENCE ANSWER may correspond to a single step in
the STUDENT’S ANSWER. Leave this empty if there are no matching steps in the REFERENCE ANSWER.

“error_category”: A list of type of errors that caused the current ‘student_step‘ to be partially or fully incorrect. Re-
port from “COMPREHENSION” when the student misunderstands and misapplies some concept, “NUMERIC” when the
numeric values don’t match, “CALCULATION” when the computations done are incorrect, “TRANSFORMATION” when the
algebraic or trigonometric rearrangements or substitutions are incorrect, “PROPAGATION” when the incorrectness gets carried
forward directly from the previous ‘student_step‘, “RESTATEMENT” when the student makes mistake in restating from its own
or question sentences, and “NO STEP MATCH”. Leave it as an empty list if the current ‘student_step‘ is completely correct.

“label”: binary score of the current ‘student_step‘ as either CORRECT or INCORRECT.

User

QUESTION:
[1] My three friends and I have dinner together every weekend.
[2] Each weekend, two of us cook and the other two clean up afterwards.
[3] How many different ways are there for us to choose who cooks and who cleans?

REFERENCE ANSWER:
[1] Let’s think step by step.\nThere are four ways to choose the first cook and three ways to choose the second cook, but this
counts every pair of cooks twice since order doesn’t matter.
[2] Once the cooks are chosen, the two people left over are the cleaners.
[3] So, there are (4 · 3)/2 = 6 ways for us to choose who cooks and who cleans.\nHence, the answer is 6.

STUDENT’S ANSWER:
[1] Let’s think step by step.\nWe have four choices for who cooks, and then we have three choices for who cleans.
[2] Since each order cooks, it doesn’t matter who cleans; only the total cleaning pair counts.

[3] There are

(
4

2

)
·

(
2

1

)
= 12 ways in total.\nHence, the answer is 12.

Table 5: An example system prompt with evaluation guidelines and evaluation task as user prompt for MATH
dataset under our SPARE framework. Other datasets have their own domain and subject specific evaluation details
included in the system prompt.
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Role Content

Assistant

```json
[

{
“student_step”: 1,
“reasoning”: The step [1] of the STUDENT’S ANSWER mentions that there are 3 choices for who cleans. Sentence [2] of

QUESTION and step [2] of REFERENCE ANSWER mention that there two people who can clean. Hence this is a
mismatch and the student’s assertion is wrong.,

“question_sentences”: [2],
“student_combining_steps”: [],
“matching_reference_steps”: [2],
“error_category”: [“COMPREHENSION”],
“label”: [“INCORRECT”],

}
{

“student_step”: 2,
“reasoning”: The step [2] of the STUDENT’S ANSWER is a generic restatement of the fact that the count of cleaners

follows automatically from the count of cooks.,
“question_sentences”: [],
“student_combining_steps”: [],
“matching_reference_steps”: [],
“error_category”: [],
“label”: [“CORRECT”],

}
{

“student_step”: 3,
“reasoning”: The step calculates the total ways or count to be 12 which is twice the ground truth ways of 6 as reported in

[3] of the REFERENCE ANSWER. This could be because of the overuse of the factor 2 in doing the calculations due
to the misunderstandings in the previous steps.,

“question_sentences”: [],
“student_combining_steps”: [],
“matching_reference_steps”: [3],
“error_category”: [“COMPREHENSION”, “CALCULATION”],
“label”: [“INCORRECT”],

}
]
```

Table 6: A graded example for MATH dataset under our SPARE framework.

Parameter Name Value

QLoRA:

α 16
Dropout 0.1

r 64
bias None

task_type CAUSAL_LM

Training Arguments:

Effective Batch Size 32
lr 1.0e− 4

weight decay 0.001
max_grad_norm 0.3

warm up ratio 0.03
lr_scheduler cosine

Table 7: Values of the parameters and hyperparameters
used while ORPO finetuning.

Dataset N

GSM8K 20175
MATH 20,250

MuSiQue 5,000
SpaRP 8,000

Table 8: Training data sizes for Reward Models

2024c) have reported these to underperform ORM 956

when the annotation process differs. For their an- 957

notation process, they reported last aggregation 958

strategy, among others, to outperform ORM. We 959

also found the min and prod aggregation strategies 960

to sometimes underperform the ORMs, while last 961

aggregation strategy performing the best. Hence, 962

all the metrics are reported using the last aggrega- 963

tion strategy for PRMs. 964

E Pointwise vs Pairwise ORMs. 965

While pairwise-loss RM training is generally 966

considered more effective than pointwise-loss 967

RMs (Liu et al., 2025), empirical evidence remains 968

divided. For instance, even accounting for differ- 969
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Training GSM8K
Method Acc. (↑)

SFT 1st Iteration 68.61
+ 2nd Iteration 70.36
+ Out.-ORPO 71.27

+ SPARE-ORPO 72.25

Table 9: Performance evaluations of Llama-3 8B In-
struct model with greedy decoding under different train-
ing methods on the GSM8K dataset with lr = 10−5 for
1st SFT. followed by lr = 5× 10−6 for other iterations.
Best values in bold, second best in underline.

Mathematical Question Spatial
Reasoning Reasoning Reasoning

Aggregation / GSM8K MATH-500 � MuSiQue-Ans SpaRP-S
Ranking Acc. (↑) Acc. (↑) Acc. (↑) / F1 (↑) Acc. (↑) / F1 (↑)

pair.-ORM 78.54 16.30 30.45 / 42.87 31.65 / 40.78
pair.-ORM + SC 79.45 21.00 34.13 / 43.82 31.63 / 40.77
SPARE-ORM 79.15 19.00 34.67 / 45.11 32.7 / 41.95
SPARE-ORM + SC 79.22 20.60 35.29 / 45.52 32.63 / 41.90
point.-ORM 79.76 20.20 33.43 / 45.42 41.73 / 49.79
point.-ORM + SC 79.83 23.80 34.80 / 44.45 41.70 / 49.78

Table 10: Performance evaluations of different class
of ORMs on N = 20 sample output generations
from Llama-3 8B SFT 1st iteration. SC denotes Self-
Consistency. RM only entries indicate Best-of-N (BoN)
sampling based results. Mean of metrics reported on 3
groups of sampling results.

ences in annotation guidelines and human expecta-970

tions, Liu et al.(2025) found pairwise RM training971

superior, whereas Wang et al.(2024b) reported bet-972

ter results with pointwise RM training. Our study973

adds to this debate with empirical evidence show-974

ing pointwise-ORM outperforming pairwise-ORM,975

significantly so on the MATH and SpaRP datasets976

(Table 10). Both models are trained on a balanced977

set of positive and negative instances based on fi-978

nal answer outcomes, with pairwise-ORM forming979

pairs in reference to given contexts. Furthermore,980

SPARE-ORM also underperforms pointwise-ORM,981

despite incorporating superior pairs selected based982

on both outcome and mean aggregated reasoning983

scores.984

F Use of AI Assistance985

We used generative AI tools exclusively for gram-986

mar and language refinement. All content was sub-987

sequently reviewed and revised by the author(s),988

assuming full responsibility for the final version of989

the manuscript and its submission.990
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Dataset Error Categories

MATH

1. Comprehension – The student misunderstands and misapplies some concept.

2. Numeric – The numeric values don’t match.

3. Calculation – The computations done are incorrect.

4. Transformation – The algebraic or trigonometric rearrangements or substitutions are incorrect.

5. Propagation – The incorrectness gets carried forward directly from previous student steps.

6. Restatement – The student makes mistake in restating from its own or question sentences.

7. No Step Match – The step doesn’t match with any reference step nor it can be inferred from any context / question
sentences.

GSM8K

1. Comprehension – The student misunderstands and misapplies some concept.

2. Numeric – The numeric values don’t match.

3. Calculation – The computations done are incorrect.

4. No Step Match – The step doesn’t match with any reference step nor it can be inferred from any context / question
sentences.

� MuSiQue-
Ans

1. Document Name – The document name in the step doesn’t match or exists.

2. Entity Name – The entity name in the step doesn’t match or exists.

3. Numeric – The numbers mentioned don’t match.

4. Intended Category – The category differs from what is required e.g. Date required but Country discussed.

5. Semantic Relation – The relation between entities, to be compared semantically e.g. local language and native language
in reference to a person and a place is semantically same.

6. No Step Match – The step doesn’t match with any reference step nor it can be inferred from any context / question
sentences.

SpaRP

1. Entity Name – The name of the entity in the step doesn’t match or exist.

2. Incorrect Relation – The reported spatial relation in the step doesn’t match or exist.

3. No Step Match – The step doesn’t match with any reference step nor it can be inferred from any context / question
sentences.

Table 11: Dataset specific error categories.
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