
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HyperChr: QUANTIZATION OF HETEROGENEOUSLY
DISTRIBUTED MATRICES THROUGH DISTRIBUTION-
AWARE SUBSPACE PARTITIONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Matrix quantization is crucial for reducing the memory footprint of matrices
across various applications, including large-scale machine learning models and
data compression. We have observed that matrices in different application do-
mains exhibit heterogeneity in the distribution across columns. Leveraging this
characteristic, we introduce HyperChr, a novel matrix quantization algorithm
tailored for heterogeneous data distributions prevalent across different matrix
columns. Unlike traditional quantization methods, HyperChr capitalizes on the
heterogeneous distribution characteristics of each column to optimally partition
high-dimensional subspaces and perform compression within each subspace. This
technique enhances the compression effectiveness by grouping vectors with simi-
lar distribution ranges, enabling more precise quantization. Moreover, HyperChr
dynamically adjusts the number of centroids in each subspace based on the spe-
cific data distribution traits, optimizing both storage efficiency and data fidelity.
We evaluate HyperChr’s performance on diverse datasets, demonstrating its supe-
riority in reducing quantization errors compared to existing methods. Our results
show that HyperChr exhibits significant improvements at lower compression ra-
tios (θ = 2 − 8), reducing MAE by an average of 55.3% and MSE by 75.3%
compared to PQ. However, at higher compression ratios (θ = 10 − 16), the im-
provements are more moderate, with an average reduction of 14.9% in MAE and
25.9% in MSE compared to PQ. In addition, our algorithm reduces the average
dequantization time by 62.9%, which is crucial for large language model infer-
ence.

1 INTRODUCTION

Matrix quantization refers to the process of reducing the memory footprint of a matrix while mini-
mizing certain performance metrics, such as mean squared error (MSE) or cross-entropy. The goal
is to represent matrix elements in a more compact format without sacrificing too much accuracy.
When the quantized matrix needs to be used, it can be dequantized to restore the matrix, enabling
further computations with minimal loss in precision.

With the rise of big data and large models, the computation and storage of large matrices have
become increasingly critical. For instance, GPT-2 contains 1.5 billion parameters Solaiman et al.
(2019), whereas GPT-3 has expanded to 175 billion parameters Brown et al. (2020). There-
fore, matrix quantization plays a crucial role in Large Language Models (LLMs) weight quanti-
zation Dettmers et al. (2024); Lin et al. (2024); Shao et al. (2023); Xiao et al. (2023). Additionally,
the KV cache accounts for over 30% of GPU memory during deployment, compared to the 65%
occupied by the parameters Kwon et al. (2023). Both the parameters and KV cache are stored in
the form of matrices, and many recent model quantization techniques have been applied to LLM k-v
cache quantization Liu et al. (2024); Zhang et al. (2024); Hooper et al. (2024); Kawakibi Zuhri et al.
(2024); Duanmu et al. (2024); Yue et al. (2024); Lee et al. (2024); Adnan et al. (2024). In Q4 2023,
Facebook reported 3.05 billion monthly active users, with user data typically represented as graphs
and matrices fac. Consequently, matrix quantization is widely used in graph compression Brisaboa
et al. (2009); Claude & Ladra (2011). Matrix quantization also finds applications in other fields, such

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

as vector databases Xu et al. (2018); Jegou et al. (2010) and image compression Yu et al. (2018);
Ning et al. (2016).

There has been a growing body of related work on matrix quantization, which can be broadly clas-
sified into two categories: general-purpose matrix compression algorithms and task-specific matrix
compression algorithms. General-purpose matrix compression techniques include product quanti-
zation (PQ) Jegou et al. (2010), optimized product quantization (OPQ) Ge et al. (2013), and locally
optimized product quantization (LOPQ) Kalantidis & Avrithis (2014). In contrast, task-specific ma-
trix compression algorithms are designed for particular use cases, such as large language models
(LLMs) or other machine learning applications. These include methods like LLM.int8 Ge et al.
(2013), Optimal Brain Damage LeCun et al. (1989), GPTQ Frantar et al. (2022), AWQ Lin et al.
(2023), SmoothQuant Xiao et al. (2023), OmniQuant Shao et al. (2023), and SqueezeLLM Kim et al.
(2023). The first category of methods primarily builds on the PQ algorithm, focusing on making
various optimizations for general use, while the second category integrates task-specific heuristics
into the Round-To-Nearest (RTN) algorithm Gray & Neuhoff (1998), which quantizes elements by
rounding each value to its nearest representable level.

0.040.020.000.020.04Value 1
2

3
4

5
6

Colu
mn

0
5
10
15
20
25
30

De
ns

ity

Original Column (solid)
Sampled Column (dashed)

(a) LLM weight distribution.

0.000.050.100.150.200.25Value 1
2

3
4

5
6

Colu
mn

0

5

10

15

20

De
ns

ity

Original Column (solid)
Sampled Column (dashed)

(b) GIST distribution.

5.02.50.0 2.5 5.0 7.510.0Value 1
2

3
4

5
6

Colu
mn

0.000
0.025
0.050
0.075
0.100
0.125
0.150

De
ns

ity

Original Column (solid)
Sampled Column (dashed)

(c) SIFT distribution.

Figure 1: Column distribution of different datasets.

However, many real-world datasets exhibit heterogeneous distributions across different columns.
This heterogeneity is particularly prevalent in applications such as Large Language Model (LLM)
weights, LLM key-value (KV) caches, image retrieval, and other applications, where certain
columns of data display vastly different statistical properties compared to others.

Figures 1a, 1b, and 1c illustrate the column distributions for LLM weights, GIST cache, and SIFT
descriptor, respectively. In each figure, the solid line represents the distribution of the entire column,
while the dashed line shows the distribution when randomly selecting half of the data from that
column. These visualizations highlight that while different columns exhibit unique distributions,
the distributions within the same column are quite consistent, pointing towards the necessity for
distribution-aware quantization strategies.

Traditional quantization methods, which typically assume a homogeneous distribution across all
elements, often yield suboptimal results when applied to these heterogeneous matrices, ignoring the
diverse nature of real-world data.

Existing matrix quantization algorithms, such as Product Quantization (PQ), RTN, and its variations,
have demonstrated promising performance. Nevertheless, they do not explicitly consider hetero-
geneity in data distributions. These methods typically apply uniform quantization without adapting
to the diverse nature of the data. This uniform approach can lead to suboptimal performance when
dealing with matrices that exhibit heterogeneous data distributions across their dimensions.

In this paper, we introduce HyperChr (HyperChromosome), a novel algorithm tailored to exploit
the heterogeneity in data distributions across matrix columns. Recognizing that data exhibit diverse
distributions along each column, HyperChr strategically partitions high-dimensional subspaces ac-
cording to the distribution properties of each column. This approach allows for the grouping of
vectors with similar distribution ranges into the same subspace, enhancing the efficacy of the quan-
tization process. Additionally, we propose a method to dynamically determine the compression ratio
(number of centroids) for each subspace based on its characteristics.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

We validate the effectiveness of HyperChr across a range of datasets, demonstrating that it consis-
tently achieves lower quantization errors compared to conventional methods. The results show that
the HyperChr algorithm exhibits significant improvements at lower compression ratios1 (θ = 2−8),
reducing MAE by an average of 55.3% and MSE by 75.3% compared to PQ. However, for higher
compression ratios (θ = 10 − 16), the improvements are more moderate, with an average reduc-
tion of 14.9% in MAE and 25.9% in MSE compared to PQ. In addition, our algorithm reduces the
average dequantization time by 62.9%. Fast dequantization is crucial for large Language model
inference. Our code has been open-sourced 2.

Our contributions in this work are threefold:

• We identify the heterogeneous distribution characteristics of matrices in different application
scenarios.

• Leveraging the heterogeneous distribution properties of matrices, we design the HyperChr al-
gorithm to improve the performance of matrix compression.

• We dynamically adjust the intervals according to the varying distribution characteristics of the
data.

2 PROBLEM SETTING

In this section, we formally define the problem of heterogeneous matrix quantization. We then
discuss the feasibility of utilizing these heterogeneous distributions to enhance the effectiveness of
matrix quantization.

We define the matrix to be quantized as X , the quantized matrix as Xq , and the matrix recovered
through dequantization as X ′. Both X and X ′ are n× d matrices, while Xq depends on the quanti-
zation method. The elements of the matrices are denoted as xi,j , xq

i,j , and x′
i,j , respectively.

The memory usage of a matrix is given by memory(), and the memory constraint is denoted as
mem constraint.
Definition 1 (Heterogeneous Matrix Quantization). The goal of Heterogeneous Matrix Quantization
is to minimize the following objective function, which balances the Mean Squared Error (MSE) and
the memory used by the quantized matrix:

minimize MSE(X,X ′) + λ ·memory(Xq),

where the MSE between X and X ′ is defined as:

MSE(X,X ′) =
1

n · d

n∑
i=1

d∑
j=1

(
xi,j − x′

i,j

)2
.

The quantization process is subject to a memory constraint:

memory(Xq) ≤ mem constraint,

and considers the column-wise heterogeneous distribution of the matrix, such that:

X:,j ∼ Dj for j = 1, 2, . . . , d,

where Dj represents the distinct distribution governing the values in column j of matrix X .

Here, λ is a regularization parameter that adjusts the trade-off between minimizing MSE and the
memory footprint of Xq .

For datasets with column-wise heterogeneous distributions, directly applying quantization algo-
rithms can lead to inefficiencies for two main reasons. On the one hand, the value ranges in different
columns can vary significantly. For example, in the RTN (Round-to-Nearest) algorithm, a column
a might have values ranging from −10 to 10, while another column b might only span from −1
to 1. Applying a uniform quantization over the range [−10, 10] would lead to wasted quantization

1Compression ratio = Space occupied by the matrix before quantization
Space occupied by the matrix after quantization

2https://github.com/HyperChr-release/HyperChr-release

3

https://github.com/HyperChr-release/HyperChr-release

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

…

…

…

Matrix partition

…

…

…

…
[0, 2] [2, 4] [4, 6] [6, 8]

[0, 2] [2, 3] [3, 5] [5, 8]

[0, 3] [3, 6] [6, 7] [7, 8]

Intervals

2 1 1 6

 a b c d

High-dimensional subspace

[0, 3] [3, 4] [4, 5] [5, 8]

 a b c d

 a b c d

 a b c d

 (a a a c)

 Subspace ID generation

Subspace 2

Subspace 1
…

Subspace 1

Subspace 4

Subspace 4

…
Subspace 2

Subspace 7

Subspace 9

Subspace 7

Subspace 1
…

Subspace 1 Subspace 2

…

Subspace 3

… …

Clustering and quantization for each subspace

Cluster Centroid

Cluster Centroid

…
Cluster Centroid

Cluster Centroid

…
Cluster Centroid

Cluster Centroid

…

Matrix quantizationSubspace generation

Assign the
subspaces

Subspace 2

n×d dimensional matrix

Figure 2: Overview of the HyperChr algorithm.

levels for column b, as the regions [−9,−1] and [1, 9] would contain no data points, reducing the
efficiency of the quantization process. On the other hand, even when columns c and d have similar
ranges, such as [−10, 10], their data densities within that range may differ. For instance, column d
may have very few or no data points in the range [−9, 9], which would again result in inefficiencies
for quantization algorithms that do not account for these distributional differences. Thus, leveraging
the heterogeneous nature of data distributions across columns to optimize matrix compression is
both feasible and beneficial. By adapting the quantization strategy to the unique distribution of each
column, it is possible to achieve more efficient and accurate compression, preserving memory while
minimizing quantization error.

3 METHODS

The core idea of HyperChr is to leverage the characteristic that data within the matrix column have
similar distributions, while the distributions differ across columns. By partitioning data within each
column based on their distribution, different column intervals form high-dimensional subspaces.
The vectors within each high-dimensional subspace exhibit similarity, leading to more effective
quantization results.

3.1 ALGORITHM LOGIC

The design and operations of the HyperChr algorithm are illustrated in Figure 2, which provides a
conceptual overview of the algorithm’s workflow and its key components. The algorithm is struc-
tured into four main parts: matrix partition, subspace generation, subspace ID generation, and matrix
quantization. Each component plays a crucial role in optimizing the quantization process.

Matrix Partition: Firstly, during the matrix partition phase, we pre-partition the columns of the
original matrix to reduce the computational complexity of subsequent operations and to avoid the
exponential explosion associated with high-dimensional subspaces. Specifically, we divide the ma-
trix’s columns into several groups, such as grouping every four columns together as shown in Fig-
ure 2 This strategy helps reduce computational and storage overhead when dealing with large-scale
data.

Subspace Generation: During the subspace generation phase, we generate intervals for columns in
the same position across different groups based on their combined data distribution. For example,
as illustrated in Figure 2, the first column of the first group and the first column of the second group
are considered together. Considering each column’s data distribution separately would increase the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

storage space of intervals and lead to suboptimal results; in the example shown, it would triple the
storage space. These intervals reflect the range and distribution characteristics of the data in each
column. By combining intervals from different columns, we generate high-dimensional subspaces.

Subspace ID Generation: In the subspace ID generation phase, we map each vector in the origi-
nal matrix using the intervals generated in the subspace generation step. Specifically, we determine
the combination of intervals where each vector’s elements fall, thereby assigning it a unique sub-
space identifier. This process maps data from the original high-dimensional space into predefined
subspaces, facilitating subsequent quantization operations.

Matrix Quantization: Finally, in the Matrix Quantization phase, we perform independent quanti-
zation for the set of vectors within each subspace. Since vectors within a subspace exhibit similar
features, the quantization algorithm can improve quantization effectiveness and accuracy. We com-
press the vectors in each subspace into several centroids using a clustering algorithm, and then use
the indices of the centroids to replace the data in the original matrix.

3.2 HyperChr QUANTIZATION

Algorithm 1 Matrix Quantization Algorithm

1: Input: Matrix X ∈ Rn×d, number of subgroups m, number of intervals l for each dimension
2: Output: Quantized matrix Xq , Codebook C
3: Step 1: Matrix Partition
4: Partition X into m column groups {G1, G2, . . . , Gm}, where each group has s = d

m columns
5: Step 2: Subspace Generation
6: for each dimension k = 1 to s do
7: Collect columns {G(k)

1 , G
(k)
2 , . . . , G

(k)
m } ▷ G

(k)
i is the k-th column of group Gi

8: Combine data from these columns to determine l intervals {Ik,1, Ik,2, . . . , Ik,l} based on the
l-quantiles of their distribution

9: Ik ← {Ik,1, Ik,2, . . . , Ik,l}
10: I← I ∪ Ik
11: Step 3: Subspace ID Generation
12: for each group Gi in {G1, G2, . . . , Gm} do
13: for each data point gi,j in group Gi do ▷ gi,j is the j-th row vector of group Gi

14: for each dimension k = 1 to s do
15: Assign interval index idxi,j,k such that gi,j,k ∈ Ik,idxi,j,k

16: Concatenate indices idxi,j = [idxi,j,1, idxi,j,2, . . . , idxi,j,s]
17: Compute subspace ID Sj,i = ComputeSubspaceID(idxi,j) ▷ In matrix S, the j-th row

and i-th column correspond to group Gi and row j

18: Step 4: Matrix Quantization
19: for each unique subspace identifier s in set S do
20: Collect the vector Vs = {gi,j |Sj,i = s}
21: Calculate the number of centroids ks, ks = calcCentroids(Vs)
22: Apply clustering to Vs to obtain ks centroids, Cs

23: Add centroids Cs to the global codebook C, and assign new indices for each centroid in C
24: for each vector gi,j in subspace Vs do
25: Xq

j,i ← argmincj ∥gi,j − cj∥ ▷ Quantize to nearest centroid within group
26: Replace the centroid index in Xq

j,i with the new index in the global codebook C

27: return Quantized matrix Xq , Codebook C

As shown in Algorithm 1, the matrix quantization process begins by partitioning the input matrix
X ∈ Rn×d into m column groups, each containing s = d

m columns. For each dimension k within
these groups, subspace intervals are generated based on the data distribution’s quantiles, and these
intervals are stored in Ik. Each data point within the matrix is then assigned a subspace ID by
determining the interval indices across all dimensions for the corresponding group.

Once the subspace IDs have been computed, the quantization process begins. For each unique
subspace identifier, the corresponding vectors are collected, and a clustering algorithm (e.g., k-
means) is applied to these vectors to determine centroids. The number of centroids ks for each

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

subspace is determined based on the distribution of the vectors within that subspace. The centroids
are stored in subspace-specific codebooks Cs, which are then merged into a global codebook C.
Each data point is quantized by replacing it with the nearest centroid, and the index of the centroid
from the global codebook is stored in the quantized matrix Xq .

Finally, the quantized matrix Xq , containing indices that point to centroids in the global codebook
C, and the codebook C itself are returned.

The HyperChr algorithm optimizes the quantization process through a structured approach, as il-
lustrated in Figure 2. The matrix partition phase pre-partitions the columns of the matrix to sim-
plify computational requirements. Subspace generation then creates high-dimensional subspaces by
combining intervals from the grouped columns based on their data distribution. Subspace IDs are
generated by mapping each vector to these subspaces based on its elements’ interval locations. Fi-
nally, matrix quantization is performed within each subspace, enhancing quantization effectiveness
and reducing overall memory usage.

3.2.1 HyperChr DEQUANTIZATION

As shown in Algorithm 2, the matrix dequantization process reconstructs the original matrix X from
the quantized matrix Xq and the codebook C. For each element Xq

i,j in the quantized matrix, the
algorithm retrieves the corresponding centroid ck from the codebook C using the index stored in
Xq

i,j . The retrieved centroid ck is then placed into the corresponding position in the reconstructed
matrix X , such that Xi,j ← ck. This process is repeated for all elements in Xq , resulting in the full
reconstruction of the original matrix X .

Algorithm 2 Matrix Dequantization Algorithm

1: Input: Quantized matrix Xq , Codebook C
2: Output: Reconstructed matrix X
3: for each element Xq

i,j in the quantized matrix Xq do
4: Retrieve the corresponding centroid ck from the codebook C using the index Xq

i,j
5: Assign Xi,j ← ck ▷ Place the centroid value into the reconstructed matrix X

6: return Reconstructed matrix X

3.3 THEORETICAL ANALYSIS OF HyperChr

We first present a comparison of HyperChr and PQ in terms of MSE, followed by a comparison of
the time complexity between PQ and HyperChr.
Theorem 1. (Theoretical analysis of MSE) The Mean Squared Error (MSE) of the HyperChr
algorithm is lower than that of the PQ algorithm:

MSEHyperChr = Γ ·MSEPQ, (1)

where 0 < Γ < 1 is the effective variance reduction factor achieved by HyperChr, and the proof can
be found in Appendix A.1.

According to Theorem 1, since Γ < 1, it follows that:

MSEHyperChr = Γ ·MSEPQ < MSEPQ. (2)

Thus, the MSE of the HyperChr algorithm is lower than that of the PQ algorithm.
Theorem 2. (Time Complexity for Quantization) The quantization time complexity of HyperChr
method is:

QTHyperChr =
1

m · l d
m

·QTPQ, (3)

where QTHyperChr and QTPQ are the time complexities of our method and the PQ algorithm, respec-
tively. The proof can be found in Appendix A.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Since 1

m·l
d
m

< 1, the time complexity of HyperChr is lower than that of PQ.

Theorem 3. (Time Complexity for Dequantization) The time complexity of the dequantization
process in the Matrix Dequantization Algorithm is:

DQTHyperChr =
1

m
·DQTPQ, (4)

where DQTHyperChr and DQTPQ represent the time complexities of the Matrix Dequantization Al-
gorithm and the PQ algorithm, respectively. The proof can be found in Appendix A.3.

The Matrix Dequantization process of HyperChr has a lower time complexity than that of PQ, as
1
m < 1.

Thus, we draw three conclusions:

• The HyperChr algorithm achieves a lower Mean Squared Error (MSE) compared to the PQ
algorithm due to its effective subspace partitioning strategy.

• The quantization time complexity of the HyperChr method is lower than that of the PQ algo-
rithm.

• The dequantization process of the HyperChr algorithm also has a lower time complexity com-
pared to the PQ algorithm.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Platform and Implementation: We performed our algorithm evaluations on a high-performance
server configured with an Intel Core i9-10980XE processor, which boasts 18 cores and 36 threads,
operating at a base frequency of 3.00 GHz. The server is equipped with 128GB of 3200MHz DDR4
memory and a 24.8MB L3 cache, ensuring robust computational capabilities. All algorithms were
implemented in Python, specifically version 3.8.10. In each experimental scenario, we repeated the
evaluation 100 times.

Dataset: To evaluate the effectiveness of our proposed algorithm, we conducted experiments using
one synthetic dataset and three real-world datasets: a synthetic normal distribution dataset, LLM
weight dataset, GIST dataset, and SIFT dataset. Below, we provide a detailed description of each
dataset. Each element in the matrix is represented with 32 bits.

(1) Synthetic normal distribution dataset: The dataset was constructed by sampling each entry of the
matrix from a truncated normal distribution, characterized by a mean of 0.5 and a standard deviation
of 0.16. Furthermore, approximately one element out of every ten thousand was substituted with an
outlier, randomly selected from the interval [-100, 100]. The matrix dimensions are set to 1,024 ×
128.

(2) LLM weight dataset: This dataset includes weight matrices derived from the large language
model (LLM) LLaMA2 (Touvron et al. (2023)). The dimensions of the LLM weight matrices are
11,008 × 4096.

(3) GIST dataset: The GIST dataset consists of feature vectors used for image recognition and
retrieval tasks. It contains the first 100,000 features extracted from the Tiny Image dataset (Torralba
et al. (2008)). Moreover, this dataset has been employed in Jegou et al. (2010) and Oliva & Torralba
(2001). The dimensions of the GIST dataset are 100,000 × 960.

(4) SIFT dataset: The SIFT descriptors were obtained by extracting the learning set from Flickr
images, while the database and query descriptors were sourced from the INRIA Holidays image
collection Jegou et al. (2008). The matrix size for the SIFT dataset is 100,000 × 128.

Metrics: We primarily assess the accuracy and time efficiency of the algorithm. Accuracy is eval-
uated using Mean Absolute Error (MAE), Mean Relative Error (MRE), and Mean Squared Error
(MSE). For time efficiency, we measure the Quantization Time (QT) and DeQuantization Time
(DQT).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Let x(i,j) represent the elements of the original matrix to be quantized, while x′
(i,j) denotes the

elements of the dequantized matrix.

MAE =
1

n · d
∑
i,j

∣∣∣x(i,j) − x′
(i,j)

∣∣∣ , MSE =
1

n · d
∑
i,j

(
x(i,j) − x′

(i,j)

)2
Comparative Algorithms: We compare our approach with PQ (Product Quantization)(Jegou et al.
(2010)), OPQ (Optimized Product Quantization)(Ge et al. (2013)), and LOPQ (Locally Optimized
Product Quantization)(Kalantidis & Avrithis (2014)). For the comparative algorithms, under the
same space constraints, we use the same common parameters as our algorithm, while other parame-
ters are set according to the recommended configurations from their respective papers.

Parameter Selection for HyperChr: For an n×d matrix with a bits per element and a compression
ratio θ, the number of subgroups is m. Therefore, after the matrix partition operation, the dimension
of each vector becomes d

m . We first determine the total number of cluster centroids, ks, by solving
the following inequality using binary search to find the maximum value of ks:

ks ×
d

m
× a+ n×m× log2(k) ≤

n× d× a

θ

We use quantiles to divide each dimension into l intervals. Therefore, there are a total of l
d
m high-

dimensional subspaces. The number of centroids in each subspace is allocated based on the number
of subvectors in the subspace.

ks,j = ks ×
nj

n×m
(j = 1, 2, 3, . . . , l

d
m)

where nj is the number of vectors in the j-th subspace. Typically, we adopted the parameters d
m = 4

and l = 3.

4.2 MATRIX QUANTIZATION

This section primarily presents the accuracy (MAE and MSE) and computational efficiency (QT and
DQT) of the HyperChr algorithm.

MAE and MSE: The experimental results for MAE and MSE are presented in Figure 3. The
results clearly demonstrate that HyperChr consistently outperforms PQ, OPQ, and LOPQ in most
scenarios across various datasets and compression ratios, in both MAE and MSE metrics. For lower
compression ratios (θ = 2− 8), the HyperChr algorithm shows a significant improvement, reducing
MAE by an average of 55.3% and MSE by 75.3% compared to PQ. However, for higher compression
ratios (θ = 10 − 16), the improvements are more moderate, with an average reduction of 14.9% in
MAE and 25.9% in MSE compared to PQ.

For the Synthetic dataset, HyperChr exhibits the lowest MAE and MSE across all compression
ratios, significantly outperforming the other algorithms. At lower compression ratios, compared to
the PQ algorithm, HyperChr reduces MSE by 71.2% and MAE by 47.8%. At higher compression
ratios, it still achieves reductions of 41.2% in MSE and 24.1% in MAE.

In the LLM dataset, HyperChr exhibits a similar trend in maintaining lower MAE and MSE values.
At lower compression ratios, compared to the PQ algorithm, HyperChr reduces MSE by 90.3% and
MAE by 71.4%. At higher compression ratios, it still achieves reductions of 46.7% in MSE and
27.9% in MAE. It is worth noting that due to the additional space requirements of LOPQ, it was
unable to handle the compression of the LLM dataset.

The results on the GIST dataset further reinforce the strength of HyperChr, particularly in maintain-
ing lower errors across all compression ratios. While PQ and OPQ occasionally show comparable
performance, HyperChr consistently achieves better results. At lower compression ratios, compared
to the PQ algorithm, HyperChr reduces MSE by 76.8% and MAE by 58.5%. At higher compression
ratios, it still reduces MSE by 16.8% and MAE by 7.3%.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

2 4 6 8 10 12 14 16
Compression Ratio

2

4

6

8

M
A

E
×10 3

HyperChr PQ OPQ LOPQ

2 4 6 8 10 12 14 16
Compression Ratio

1

2

3

4
M

A
E

×10 1

(a) MAE of Synthetic.

2 4 6 8 10 12 14 16
Compression Ratio

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

M
SE

×10 1

(b) MSE of Synthetic.

2 4 6 8 10 12 14 16
Compression Ratio

1
2
3
4
5

M
A

E

×10 3

(c) MAE of LLM.

2 4 6 8 10 12 14 16
Compression Ratio

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

M
SE

×10 5

(d) MSE of LLM.

2 4 6 8 10 12 14 16
Compression Ratio

2
4
6
8

M
A

E

×10 3

(e) MAE of GIST.

2 4 6 8 10 12 14 16
Compression Ratio

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

M
SE

×10 4

(f) MSE of GIST.

2 4 6 8 10 12 14 16
Compression Ratio

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

M
A

E
(g) MAE of SIFT.

2 4 6 8 10 12 14 16
Compression Ratio

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

M
SE

×101

(h) MSE of SIFT.

Figure 3: MAE and MSE of different datasets.

Lastly, the analysis of the SIFT dataset reveals that HyperChr performs well at lower compression
ratios, but its performance is comparable to the PQ algorithm at higher compression ratios. At lower
compression ratios, compared to the PQ algorithm, HyperChr reduces MSE by 62.7% and MAE
by 43.6%. However, at higher compression ratios, it shows a slight increase of 1.2% in MSE and a
reduction of 0.5% in MAE.

2 4 6 8 10 12 14 16
Compression Ratio

2

4

6

8

M
A

E

×10 3
HyperChr PQ OPQ LOPQ

2 4 6 8 10 12 14 16
Compression Ratio

0
1
2
3
4
5
6

Q
T

(s
)

×101

(a) QT of Synthetic.

2 4 6 8 10 12 14 16
Compression Ratio

0.4

0.6

0.8

1.0

D
Q

T
(s

)

×10 2

(b) DQT of Synthetic.

2 4 6 8 10 12 14 16
Compression Ratio

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Q
T

(s
)

×103

(c) QT of LLM.

2 4 6 8 10 12 14 16
Compression Ratio

1
2
3
4
5
6
7

D
Q

T
(s

)

×10 1

(d) DQT of LLM.

2 4 6 8 10 12 14 16
Compression Ratio

0

1

2

3

4

Q
T

(s
)

×104

(e) QT of GIST.

2 4 6 8 10 12 14 16
Compression Ratio

0.4

0.6

0.8

1.0

1.2

D
Q

T
(s

)

(f) DQT of GIST.

2 4 6 8 10 12 14 16
Compression Ratio

0
1
2
3
4
5
6

Q
T

(s
)

×103

(g) QT of SIFT.

2 4 6 8 10 12 14 16
Compression Ratio

0.4

0.6

0.8

1.0

1.2

D
Q

T
(s

)

×10 1

(h) DQT of SIFT.

Figure 4: QT (s) and DQT (s) of different datasets.

QT and DQT: The experimental results for Quantization Time (QT) and DeQuantization Time
(DQT) are presented in Figure 4. The results clearly demonstrate that HyperChr consistently out-
performs PQ, OPQ, and LOPQ in most scenarios across various datasets and compression ratios, in
both QT and DQT metrics. The impact of compression ratio on QT is significant, while its effect on

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

DQT is minimal. At low compression ratios, the QT of HyperChr is reduced by 60.2% compared
to PQ. However, at higher compression ratios, where the QT is already small, the QT of Hyper-
Chr increases by 113.4% compared to PQ. On the other hand, DQT remains relatively stable; for
lower compression ratios, the DQT of HyperChr is reduced by 60.2% compared to PQ, while at
higher compression ratios, the DQT of HyperChr is reduced by 65.7%. Specifically, for the Syn-
thetic dataset, LLM dataset, GIST dataset, and SIFT dataset, the DQT is reduced by 62.2%, 64.5%,
53.8%, and 53.6%, respectively. At low compression ratios, the QT is reduced by 40.9%, 44.8%,
71.4%, and 83.9%, respectively.

4.3 TRADE-OFF BETWEEN ACCURACY AND COMPUTATIONAL EFFICIENCY

We explored the tradeoff between accuracy and computational efficiency of the HyperChr algo-
rithm by varying the number of intervals l based on the LLM dataset. The experimental results are
shown in Figure 5. Figures 5a, 5b, 5c, and 5d present the accuracy (MAE/MSE) and computational
efficiency (QT/DQT) for compression ratios of 2, 4, 6, and 8, respectively.

2 3 4 5 6 7 8
The number of intervals

0.0

0.5

1.0

1.5

Q
T&

D
Q

T
(s

)

×103
Quantization Time Dequantization Time MAE MSE

4.7

4.8

4.9

M
A

E

×10 4

5.2

5.4

5.6

M
SE

×10 7

2 3 4 5 6 7 8
The number of intervals

0.0

0.5

1.0

1.5

Q
T&

D
Q

T
(s

)

×103

4.7

4.8

4.9

M
A

E

×10 4

5.2

5.4

5.6

M
SE

×10 7

(a) θ = 2.

2 3 4 5 6 7 8
The number of intervals

0

2

4

6

Q
T&

D
Q

T
(s

)

×102

8.00

8.25

8.50

M
A

E

×10 4

1.3

1.4

M
SE

×10 6

(b) θ = 4.

2 3 4 5 6 7 8
The number of intervals

0

1

2
Q

T&
D

Q
T

(s
)

×102

1.10

1.15

1.20

M
A

E

×10 3

2.2

2.4

2.6

2.8

M
SE

×10 6

(c) θ = 6.

2 3 4 5 6 7 8
The number of intervals

0.0

2.5

5.0

7.5

Q
T&

D
Q

T
(s

)

×101

1.5

1.6

1.7

M
A

E

×10 3

4

5

6

M
SE

×10 6

(d) θ = 8.

Figure 5: Trade-off between accuracy and computational efficiency.

For different compression ratios θ, the algorithm exhibits a similar trade-off characteristic. As the
number of intervals increases, the DQT of the HyperChr algorithm decreases, while QT remains
relatively stable, but both MAE and MSE increase. Upon closer analysis of the algorithm, we ob-
serve that when the number of intervals increases, fewer centroids exist for each high-dimensional
subspace, resulting in faster computation. During the dequantization phase, HyperChr retrieves the
corresponding vectors from the codebook (arrays of centroids) to reconstruct the matrix, which ex-
plains the stability in QT. Additionally, increasing the number of intervals provides finer partitioning
of each dimension, thus reducing MAE and MSE.

5 CONCLUSION

Matrix quantization is essential for reducing memory usage while maintaining accuracy across vari-
ous applications, especially with the increasing scale of models like GPT-3. Traditional quantization
methods often overlook the heterogeneous distribution characteristics of real-world datasets, which
can lead to suboptimal results.

In this paper, we introduced HyperChr, a matrix quantization algorithm tailored for heterogeneous
data distributions. By partitioning high-dimensional subspaces based on column-specific distribu-
tion properties, HyperChr enhances both compression effectiveness and computational efficiency.
Our experimental results demonstrate that HyperChr significantly reduces quantization errors and
dequantization time, particularly at lower compression ratios, outperforming traditional methods.

These improvements highlight the potential of HyperChr in optimizing large-scale matrix quanti-
zation for real-world applications, especially in large language models and other machine learning
tasks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

How many users does facebook have? URL https://www.oberlo.com/statistics/
how-many-users-does-facebook-have. Accessed: 2024-09-09.

Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant Nair, Ilya Soloveychik, and Pu-
rushotham Kamath. Keyformer: Kv cache reduction through key tokens selection for efficient
generative inference. Proceedings of Machine Learning and Systems, 6:114–127, 2024.

Nieves R Brisaboa, Susana Ladra, and Gonzalo Navarro. k2-trees for compact web graph repre-
sentation. In International symposium on string processing and information retrieval, pp. 18–30.
Springer, 2009.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Francisco Claude and Susana Ladra. Practical representations for web and social graphs. In Pro-
ceedings of the 20th ACM international conference on Information and knowledge management,
pp. 1185–1190, 2011.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Haojie Duanmu, Zhihang Yuan, Xiuhong Li, Jiangfei Duan, Xingcheng Zhang, and Dahua Lin.
Skvq: Sliding-window key and value cache quantization for large language models. arXiv preprint
arXiv:2405.06219, 2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization. IEEE transac-
tions on pattern analysis and machine intelligence, 36(4):744–755, 2013.

Robert M. Gray and David L. Neuhoff. Quantization. IEEE transactions on information theory, 44
(6):2325–2383, 1998.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Hamming embedding and weak geometric
consistency for large scale image search. In Computer Vision–ECCV 2008: 10th European Con-
ference on Computer Vision, Marseille, France, October 12-18, 2008, Proceedings, Part I 10, pp.
304–317. Springer, 2008.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor
search. IEEE transactions on pattern analysis and machine intelligence, 33(1):117–128, 2010.

Yannis Kalantidis and Yannis Avrithis. Locally optimized product quantization for approximate
nearest neighbor search. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2321–2328, 2014.

Zayd Muhammad Kawakibi Zuhri, Muhammad Farid Adilazuarda, Ayu Purwarianti, and Alham
Fikri Aji. Mlkv: Multi-layer key-value heads for memory efficient transformer decoding. arXiv
e-prints, pp. arXiv–2406, 2024.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv preprint
arXiv:2306.07629, 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Prin-
ciples, pp. 611–626, 2023.

11

https://www.oberlo.com/statistics/how-many-users-does-facebook-have
https://www.oberlo.com/statistics/how-many-users-does-facebook-have

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. {InfiniGen}: Efficient generative
inference of large language models with dynamic {KV} cache management. In 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 24), pp. 155–172, 2024.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq:
Activation-aware weight quantization for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36, 2024.

Qingqun Ning, Jianke Zhu, Zhiyuan Zhong, Steven CH Hoi, and Chun Chen. Scalable image
retrieval by sparse product quantization. IEEE Transactions on Multimedia, 19(3):586–597, 2016.

Aude Oliva and Antonio Torralba. Modeling the shape of the scene: A holistic representation of the
spatial envelope. International journal of computer vision, 42:145–175, 2001.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. arXiv preprint arXiv:2308.13137, 2023.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu, Alec
Radford, Gretchen Krueger, Jong Wook Kim, Sarah Kreps, et al. Release strategies and the social
impacts of language models. arXiv preprint arXiv:1908.09203, 2019.

Antonio Torralba, Rob Fergus, and William T Freeman. 80 million tiny images: A large data set for
nonparametric object and scene recognition. IEEE transactions on pattern analysis and machine
intelligence, 30(11):1958–1970, 2008.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Donna Xu, Ivor W Tsang, and Ying Zhang. Online product quantization. IEEE Transactions on
Knowledge and Data Engineering, 30(11):2185–2198, 2018.

Tan Yu, Junsong Yuan, Chen Fang, and Hailin Jin. Product quantization network for fast image
retrieval. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 186–201,
2018.

Yuxuan Yue, Zhihang Yuan, Haojie Duanmu, Sifan Zhou, Jianlong Wu, and Liqiang Nie. Wkvquant:
Quantizing weight and key/value cache for large language models gains more. arXiv preprint
arXiv:2402.12065, 2024.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 THE PROOF OF THEOREM 1

Lemma 1. Suppose each element in the matrix is independently sampled with a mean µ and variance
σ2. After quantization by the PQ algorithm, the Mean Squared Error (MSE) is given by:

MSEPQ = σ2

(
1− 1

nk

)
.

Proof. Let c(i,j) denote the cluster centroid matrix, and let nk be the number of vectors in the cluster.
Define the residual matrix as s(i,j).

The expectation of the residual matrix is:

E[s(i,j)] = E[x(i,j) − c(i,j)] = µ− µ = 0.

The Mean Squared Error (MSE) can be expressed as the variance of the residual matrix:

MSEPQ = Var[s(i,j)] = Var[x(i,j)] + Var[c(i,j)]− 2 · Cov(x(i,j), c(i,j)).

Given that c(i,j) is the centroid within the cluster:

MSEPQ = σ2 +
σ2

nk
− 2E

[
(x(i,j) − µ)

(
1

nk

nk∑
i=1

x(i,j) − µ

)]

= σ2 +
σ2

nk
− 2 · 1

nk

E
[
(x(i,j) − µ)2

]
+
∑
i ̸=i′

E
[
(x(i,j) − µ)(xi′j − µ)

] .

Since x(i,j) and xi′j (for i ̸= i′) are independent:

MSEPQ = σ2 +
σ2

nk
− 2 · σ

2

nk
=

(
1− 1

nk

)
σ2. (5)

Theorem 1. (Theoretical analysis of MSE) The Mean Squared Error (MSE) of the HyperChr
algorithm is lower than that of the PQ algorithm:

MSEHyperChr = Γ ·MSEPQ, (6)

where 0 < Γ < 1 is the effective variance reduction factor achieved by HyperChr.

Proof. We assume that each element xi,j in the matrix X is independently sampled from a distribu-
tion with mean µ and variance σ2.

From Lemma 1, the MSE of the PQ algorithm is: MSEPQ = σ2
(
1− 1

nk

)
The HyperChr algorithm reduces quantization error through two main techniques:

Subspace Partitioning: Partitioning the data into subspaces based on interval indices, effectively
grouping similar data points together.

Localized Clustering: Clustering within each subspace allows for more precise centroids tailored
to the local data distribution.

Within each subspace s, the variance of the data σ2
s is less than the global variance σ2:

σ2
s = γsσ

2, with 0 < γs < 1. (7)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

This variance reduction occurs because the data within a subspace are more homogeneous due to
the partitioning based on interval indices.

The MSE for HyperChr can be expressed as the weighted sum of the MSEs within each subspace:

MSEHyperChr =
∑
s

ps ·MSEs, (8)

where ps is the proportion of data points in subspace s and MSEs is the MSE within subspace s.

Within each subspace s:

MSEs = σ2
s

(
1− 1

nks

)
= γsσ

2

(
1− 1

nks

)
, (9)

where nks
is the number of data points per centroid in subspace s.

Assuming that the average nks
across subspaces is approximately equal to nk in PQ, we can compare

the MSEs:

MSEHyperChr =
∑
s

ps · γsσ2

(
1− 1

nks

)
(10)

≈

(∑
s

psγs

)
σ2

(
1− 1

nk

)
(11)

= Γσ2

(
1− 1

nk

)
, (12)

where we define the effective variance reduction factor:+

Γ =
∑
s

psγs, with 0 < Γ < 1. (13)

A.2 THE PROOF OF THEOREM 2

Lemma 2. Assuming the same compression ratio, the number of centroids k1 per subspace in the
PQ algorithm is approximately equal to k2

m :

k1 ≈
k2
m

. (14)

Proof. The compressed memory size of the PQ algorithm is:

MemoryPQ = nm log2(k1) + k1d, (15)

where n is the number of data points, m is the number of subspaces, and d is the dimensionality of
the data.

In our method, since the total number of centroids across all subspaces is k2, the average number of
centroids per subspace is k2

m . Thus, the compressed memory size for our method is:

MemoryHyperChr = nm log2

(
k2
m

)
+ k2

d

m
. (16)

Assuming both methods achieve the same compression ratio, we set the compressed memory sizes
equal:

nm log2(k1) + k1d = nm log2

(
k2
m

)
+ k2

d

m
. (17)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Given that k1 and k2

m represent the respective centroid counts per subspace in each method, we can
deduce that for the equality to hold, k1 ≈ k2

m . Therefore,

k1 ≈
k2
m

.

Theorem 2. (Time Complexity for Quantization) The quantization time complexity of HyperChr
method is:

QTHyperChr =
1

m · l d
m

·QTPQ, (18)

where QTHyperChr and QTPQ are the time complexities of our method and the PQ algorithm, respec-
tively. The proof can be found in Appendix A.2.

Proof. We will compare the time complexity of our method with that of the PQ algorithm by ana-
lyzing both grouping and clustering steps.

The time complexity of the PQ algorithm is:

QTPQ = O(nk1d), (19)

where n is the number of data points, k1 is the number of centroids per subspace, and d is the data
dimensionality.

In our method, each data point is divided into d
m dimensions, and each dimension is segmented into

l intervals. Determining the appropriate group for each data point involves assigning it to one of
l

d
m groups. The time complexity per data point for this assignment is O

(
d
m log l

)
, due to sorting or

searching through the intervals.

Therefore, the total grouping time complexity for all data points is:

QTgroup = O

(
n
d

m
log l

)
.

Since l
d
m is assumed to be a constant and k2 ≫ l, the grouping time QTgroup is negligible compared

to the clustering time, which dominates the overall time complexity.

After grouping, there are l
d
m groups in total. Each group contains approximately n

l
d
m

data points.
Assuming the number of centroids in each group is proportional to the number of data points, each
group will have about k2

l
d
m

centroids.

The clustering time complexity per group is:

O

(
n

l
d
m

· k2
l

d
m

· d
m

)
= O

(
nk2d

ml2
d
m

)
.

Multiplying by the total number of groups l
d
m , the total clustering time complexity becomes:

QTcluster = l
d
m ·O

(
nk2d

ml2
d
m

)
= O

(
nk2d

ml
d
m

)
.

Combining both grouping and clustering times, the total time complexity of our method is:

QTHyperChr = QTgroup +QTcluster = O

(
n
d

m
log l

)
+O

(
nk2d

ml
d
m

)
.

Since QTgroup is negligible compared to QTcluster, we can simplify:

QTHyperChr = O

(
nk2d

ml
d
m

)
.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

From Lemma 2, we have k1 ≈ k2

m . Substituting k2 = mk1 into the expression for QTHyperChr, we
get:

QTHyperChr = O

(
n(mk1)d

ml
d
m

)
= O

(
nk1d

l
d
m

)
.

Comparing this with QTPQ:

QTHyperChr

QTPQ
=

O
(

nk1d

l
d
m

)
O(nk1d)

=
1

l
d
m

.

However, since PQ processes m subspaces and our method effectively reduces computations by a
factor of m · l d

m , the actual ratio is:

QTHyperChr

QTPQ
=

1

m · l d
m

.

Thus, the total time complexity of our method is approximately 1

m·l
d
m

times that of the PQ algorithm.

This completes the proof, showing that our method is significantly more efficient compared to the
PQ algorithm when m is large and l

d
m is constant.

A.3 THE PROOF OF THEOREM 3

Theorem 3. (Time Complexity for Dequantization) The time complexity of the dequantization
process in the Matrix Dequantization Algorithm is:

DQTHyperChr =
1

m
·DQTPQ, (20)

where DQTHyperChr and DQTPQ represent the time complexities of the Matrix Dequantization Al-
gorithm and the PQ algorithm, respectively.

Proof. For the Matrix Dequantization Algorithm, the time complexity for retrieving the correspond-
ing centroid is:

THyperChr = O(1), (21)

as the centroid is directly accessed via an index lookup.

For the PQ algorithm, since it divides the vector into m sub-vectors and retrieves the corresponding
sub-centroid from each sub-codebook, the time complexity is:

TPQ = O(m). (22)

Therefore, the time complexity of HyperChr relative to PQ can be expressed as:

THyperChr =
1

m
· TPQ. (23)

16

	Introduction
	PROBLEM SETTING
	METHODS
	Algorithm Logic
	HyperChr Quantization
	HyperChr Dequantization

	Theoretical Analysis of HyperChr

	Experiments
	Experiment setup
	Matrix Quantization
	Trade-off between accuracy and computational efficiency

	Conclusion
	Appendix
	The proof of theorem 1
	The proof of Theorem 2
	The proof of Theorem 3

