Under review as a conference paper at ICLR 2025

HyperChr: QUANTIZATION OF HETEROGENEOUSLY
DISTRIBUTED MATRICES THROUGH DISTRIBUTION-
AWARE SUBSPACE PARTITIONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Matrix quantization is crucial for reducing the memory footprint of matrices
across various applications, including large-scale machine learning models and
data compression. We have observed that matrices in different application do-
mains exhibit heterogeneity in the distribution across columns. Leveraging this
characteristic, we introduce HyperChr, a novel matrix quantization algorithm
tailored for heterogeneous data distributions prevalent across different matrix
columns. Unlike traditional quantization methods, HyperChr capitalizes on the
heterogeneous distribution characteristics of each column to optimally partition
high-dimensional subspaces and perform compression within each subspace. This
technique enhances the compression effectiveness by grouping vectors with simi-
lar distribution ranges, enabling more precise quantization. Moreover, HyperChr
dynamically adjusts the number of centroids in each subspace based on the spe-
cific data distribution traits, optimizing both storage efficiency and data fidelity.

We evaluate HyperChr’s performance on diverse datasets, demonstrating its supe-
riority in reducing quantization errors compared to existing methods. Our results
show that HyperChr exhibits significant improvements at lower compression ra-
tios (¢ = 2 — 8), reducing MAE by an average of 55.3% and MSE by 75.3%
compared to PQ. However, at higher compression ratios (8 = 10 — 16), the im-
provements are more moderate, with an average reduction of 14.9% in MAE and
25.9% in MSE compared to PQ. In addition, our algorithm reduces the average
dequantization time by 62.9%, which is crucial for large language model infer-
ence.

1 INTRODUCTION

Matrix quantization refers to the process of reducing the memory footprint of a matrix while mini-
mizing certain performance metrics, such as mean squared error (MSE) or cross-entropy. The goal
is to represent matrix elements in a more compact format without sacrificing too much accuracy.
When the quantized matrix needs to be used, it can be dequantized to restore the matrix, enabling
further computations with minimal loss in precision.

With the rise of big data and large models, the computation and storage of large matrices have
become increasingly critical. For instance, GPT-2 contains 1.5 billion parameters [Solaiman et al.
(2019), whereas GPT-3 has expanded to 175 billion parameters Brown et al.| (2020). There-
fore, matrix quantization plays a crucial role in Large Language Models (LLMs) weight quanti-
zation |Dettmers et al.| (2024)); Lin et al.| (2024); [Shao et al.| (2023); [Xiao et al.|(2023)). Additionally,
the KV cache accounts for over 30% of GPU memory during deployment, compared to the 65%
occupied by the parameters |Kwon et al.[(2023). Both the parameters and KV cache are stored in
the form of matrices, and many recent model quantization techniques have been applied to LLM k-v
cache quantization |Liu et al.|(2024)); [Zhang et al.[(2024); Hooper et al.|(2024); Kawakibi Zuhri et al.
(2024));\ Duanmu et al.| (2024); Yue et al.[(2024); |Lee et al.| (2024));|/Adnan et al.| (2024)). In Q4 2023,
Facebook reported 3.05 billion monthly active users, with user data typically represented as graphs
and matrices [facl Consequently, matrix quantization is widely used in graph compression Brisaboa
et al.[(2009);|Claude & Ladral(2011). Matrix quantization also finds applications in other fields, such

Under review as a conference paper at ICLR 2025

as vector databases Xu et al.| (2018)); Jegou et al.| (2010) and image compression [Yu et al.| (2018));
Ning et al.|(2016).

There has been a growing body of related work on matrix quantization, which can be broadly clas-
sified into two categories: general-purpose matrix compression algorithms and task-specific matrix
compression algorithms. General-purpose matrix compression techniques include product quanti-
zation (PQ)Jegou et al.|(2010), optimized product quantization (OPQ) |Ge et al.|(2013)), and locally
optimized product quantization (LOPQ) Kalantidis & Avrithis|(2014)). In contrast, task-specific ma-
trix compression algorithms are designed for particular use cases, such as large language models
(LLMs) or other machine learning applications. These include methods like LLM.int8 |Ge et al.
(2013), Optimal Brain Damage [LeCun et al.| (1989), GPTQ |Frantar et al.| (2022), AWQ |Lin et al.
(2023)), SmoothQuant|Xiao et al. (2023, OmniQuantShao et al.|(2023)), and SqueezeLLM Kim et al.
(2023). The first category of methods primarily builds on the PQ algorithm, focusing on making
various optimizations for general use, while the second category integrates task-specific heuristics
into the Round-To-Nearest (RTN) algorithm |Gray & Neuhoff| (1998)), which quantizes elements by
rounding each value to its nearest representable level.

—— Original Column (solid) —— Original Column (solid) —— Original Column (solid)
---- Sampled Column (dashed) ---- Sampled Column (dashed) ---- Sampled Column (dashed)

(a) LLM weight distribution. (b) GIST distribution. (c) SIFT distribution.

Figure 1: Column distribution of different datasets.

However, many real-world datasets exhibit heterogeneous distributions across different columns.
This heterogeneity is particularly prevalent in applications such as Large Language Model (LLM)
weights, LLM key-value (KV) caches, image retrieval, and other applications, where certain
columns of data display vastly different statistical properties compared to others.

Figures and [Ic]illustrate the column distributions for LLM weights, GIST cache, and SIFT
descriptor, respectively. In each figure, the solid line represents the distribution of the entire column,
while the dashed line shows the distribution when randomly selecting half of the data from that
column. These visualizations highlight that while different columns exhibit unique distributions,
the distributions within the same column are quite consistent, pointing towards the necessity for
distribution-aware quantization strategies.

Traditional quantization methods, which typically assume a homogeneous distribution across all
elements, often yield suboptimal results when applied to these heterogeneous matrices, ignoring the
diverse nature of real-world data.

Existing matrix quantization algorithms, such as Product Quantization (PQ), RTN, and its variations,
have demonstrated promising performance. Nevertheless, they do not explicitly consider hetero-
geneity in data distributions. These methods typically apply uniform quantization without adapting
to the diverse nature of the data. This uniform approach can lead to suboptimal performance when
dealing with matrices that exhibit heterogeneous data distributions across their dimensions.

In this paper, we introduce HyperChr (HyperChromosome), a novel algorithm tailored to exploit
the heterogeneity in data distributions across matrix columns. Recognizing that data exhibit diverse
distributions along each column, HyperChr strategically partitions high-dimensional subspaces ac-
cording to the distribution properties of each column. This approach allows for the grouping of
vectors with similar distribution ranges into the same subspace, enhancing the efficacy of the quan-
tization process. Additionally, we propose a method to dynamically determine the compression ratio
(number of centroids) for each subspace based on its characteristics.

Under review as a conference paper at ICLR 2025

We validate the effectiveness of HyperChr across a range of datasets, demonstrating that it consis-
tently achieves lower quantization errors compared to conventional methods. The results show that
the HyperChr algorithm exhibits significant improvements at lower compression ratio @ =2-38),
reducing MAE by an average of 55.3% and MSE by 75.3% compared to PQ. However, for higher
compression ratios (§ = 10 — 16), the improvements are more moderate, with an average reduc-
tion of 14.9% in MAE and 25.9% in MSE compared to PQ. In addition, our algorithm reduces the
average dequantization time by 62.9%. Fast dequantization is crucial for large Language model
inference. Our code has been open-sourced [}

Our contributions in this work are threefold:

* We identify the heterogeneous distribution characteristics of matrices in different application
scenarios.

* Leveraging the heterogeneous distribution properties of matrices, we design the HyperChr al-
gorithm to improve the performance of matrix compression.

* We dynamically adjust the intervals according to the varying distribution characteristics of the
data.

2 PROBLEM SETTING

In this section, we formally define the problem of heterogeneous matrix quantization. We then
discuss the feasibility of utilizing these heterogeneous distributions to enhance the effectiveness of
matrix quantization.

We define the matrix to be quantized as X, the quantized matrix as X9, and the matrix recovered
through dequantization as X'. Both X and X’ are n X d matrices, While X9 depends on the quanti-

zation method. The elements of the matrices are denoted as z; ;, 1 3 and xL PR respectively.
The memory usage of a matrix is given by memory(), and the memory constraint is denoted as
mem_constraint.

Definition 1 (Heterogeneous Matrix Quantization). The goal of Heterogeneous Matrix Quantization
is to minimize the following objective function, which balances the Mean Squared Error (MSE) and
the memory used by the quantized matrix:

minimize MSE(X, X’) + A - memory(X1),
where the MSE between X and X' is defined as:

n

d
2
E:E:x%] zy .

The quantization process is subject to a memory constraint:

MSE(X, X')

‘ -
&.

memory(X?) < mem_constraint,
and considers the column-wise heterogeneous distribution of the matrix, such that:
X.;j~D; for j=1,2,...,d,
where D; represents the distinct distribution governing the values in column j of matrix X.
Here, X is a regularization parameter that adjusts the trade-off between minimizing MSE and the

memory footprint of X9.

For datasets with column-wise heterogeneous distributions, directly applying quantization algo-
rithms can lead to inefficiencies for two main reasons. On the one hand, the value ranges in different
columns can vary significantly. For example, in the RTN (Round-to-Nearest) algorithm, a column
a might have values ranging from —10 to 10, while another column b might only span from —1
to 1. Applying a uniform quantization over the range [—10, 10] would lead to wasted quantization

Space occupied by the matrix before quantization
Space occupied by the matrix after quantization

https://github.com/HyperChr-release/HyperChr-release

! Compression ratio =

https://github.com/HyperChr-release/HyperChr-release

Under review as a conference paper at ICLR 2025

Matrix partition

0 OO0 OO0 N e
[Subspace 2] [Subspace 4] [Subspace 9]

subspaces [Subspace 1] [Subspace 2] [Subspace 7]

OO0y 1) (opece) (Sobpoce7) (Eopace 1

nxd dimensional matrix *

/ Subspace generation \ [Matrix quantization \
Intervals [Subspace 1] [Subspace 2] [Subspace 3]

a b c d
[() 2] [2,3] [3 5] [5,8]

L'_'_H 0.2] [2 4 [4 6] I() 8] Clustering and quantization for each subspace
O - Lo gy i ¥ i

[0,3] [3,6] [6 7] [7 8]
Eluster Centroia Eluster Cemm@ Eluster Cemm@
High-dimensional subspace

K (a a a c) \Eluster Cemro@ Eluster Cemm@ Eluster Cemro@]

Figure 2: Overview of the HyperChr algorithm.

levels for column b, as the regions [—9, —1] and [1, 9] would contain no data points, reducing the
efficiency of the quantization process. On the other hand, even when columns ¢ and d have similar
ranges, such as [—10, 10], their data densities within that range may differ. For instance, column d
may have very few or no data points in the range [—9, 9], which would again result in inefficiencies
for quantization algorithms that do not account for these distributional differences. Thus, leveraging
the heterogeneous nature of data distributions across columns to optimize matrix compression is
both feasible and beneficial. By adapting the quantization strategy to the unique distribution of each
column, it is possible to achieve more efficient and accurate compression, preserving memory while
minimizing quantization error.

3 METHODS

The core idea of HyperChr is to leverage the characteristic that data within the matrix column have
similar distributions, while the distributions differ across columns. By partitioning data within each
column based on their distribution, different column intervals form high-dimensional subspaces.
The vectors within each high-dimensional subspace exhibit similarity, leading to more effective
quantization results.

3.1 ALGORITHM LoOGIC

The design and operations of the HyperChr algorithm are illustrated in Figure 2} which provides a
conceptual overview of the algorithm’s workflow and its key components. The algorithm is struc-
tured into four main parts: matrix partition, subspace generation, subspace ID generation, and matrix
quantization. Each component plays a crucial role in optimizing the quantization process.

Matrix Partition: Firstly, during the matrix partition phase, we pre-partition the columns of the
original matrix to reduce the computational complexity of subsequent operations and to avoid the
exponential explosion associated with high-dimensional subspaces. Specifically, we divide the ma-
trix’s columns into several groups, such as grouping every four columns together as shown in Fig-
ure [2] This strategy helps reduce computational and storage overhead when dealing with large-scale
data.

Subspace Generation: During the subspace generation phase, we generate intervals for columns in
the same position across different groups based on their combined data distribution. For example,
as illustrated in Figure 2] the first column of the first group and the first column of the second group
are considered together. Considering each column’s data distribution separately would increase the

Under review as a conference paper at ICLR 2025

storage space of intervals and lead to suboptimal results; in the example shown, it would triple the
storage space. These intervals reflect the range and distribution characteristics of the data in each
column. By combining intervals from different columns, we generate high-dimensional subspaces.

Subspace ID Generation: In the subspace ID generation phase, we map each vector in the origi-
nal matrix using the intervals generated in the subspace generation step. Specifically, we determine
the combination of intervals where each vector’s elements fall, thereby assigning it a unique sub-
space identifier. This process maps data from the original high-dimensional space into predefined
subspaces, facilitating subsequent quantization operations.

Matrix Quantization: Finally, in the Matrix Quantization phase, we perform independent quanti-
zation for the set of vectors within each subspace. Since vectors within a subspace exhibit similar
features, the quantization algorithm can improve quantization effectiveness and accuracy. We com-
press the vectors in each subspace into several centroids using a clustering algorithm, and then use
the indices of the centroids to replace the data in the original matrix.

3.2 HyperChr QUANTIZATION

Algorithm 1 Matrix Quantization Algorithm

1: Input: Matrix X € R™*? number of subgroups m, number of intervals [for each dimension
2: Output: Quantized matrix X ¢, Codebook C

3: Step 1: Matrix Partition

4: Partition X into m column groups {G1,Ga, ..., Gy}, where each group has s = % columns
5. Step 2: Subspace Generation

6: for each dimension k = 1 to s do

7 Collect columns {Gik), Gék), ce Ggf)} > GZ(»k) is the k-th column of group G;
3: Combine data from these columns to determine [intervals {Ij, 1, I) 2, . . ., I } based on the

[-quantiles of their distribution
9: Ik%{]’k,la]‘k,%-u,]}c,l}
10: I+ 1IUl,
11: Step 3: Subspace ID Generation
12: for each group G, in {G1,G>,...,Gy,} do

13: for each data point g; ; in group G; do > g;,; is the j-th row vector of group G;
14: for each dimension £ = 1 to s do

15: Assign interval index idx; ; j, such that g; ; . € Iy ida; ;0

16: Concatenate indices idx; j = [idx; j1,1idx; j 2, . . ., idT; j]

17: Compute subspace ID S; ; = ComputeSubspacelD(idx; ;) > In matrix S, the j-th row

and 4-th column correspond to group G; and row j
18: Step 4: Matrix Quantization
19: for each unique subspace identifier s in set S do
20: Collect the vector Vy = {g; ;| Sji = s}

21: Calculate the number of centroids ks, ks = calcCentroids(V;)

22: Apply clustering to V; to obtain k4 centroids, Cg

23: Add centroids C; to the global codebook C, and assign new indices for each centroid in C
24: for each vector g; ; in subspace V, do

25: X!, « argming, ||lgi; — ¢l > Quantize to nearest centroid within group
26: Replace the centroid index in X;{ , with the new index in the global codebook C

27: return Quantized matrix X ¢, Codebook C

As shown in Algorithm [I] the matrix quantization process begins by partitioning the input matrix
X € R™? into m column groups, each containing s = % columns. For each dimension & within
these groups, subspace intervals are generated based on the data distribution’s quantiles, and these
intervals are stored in I. Each data point within the matrix is then assigned a subspace ID by
determining the interval indices across all dimensions for the corresponding group.

Once the subspace IDs have been computed, the quantization process begins. For each unique
subspace identifier, the corresponding vectors are collected, and a clustering algorithm (e.g., k-
means) is applied to these vectors to determine centroids. The number of centroids ks for each

Under review as a conference paper at ICLR 2025

subspace is determined based on the distribution of the vectors within that subspace. The centroids
are stored in subspace-specific codebooks Cg, which are then merged into a global codebook C.
Each data point is quantized by replacing it with the nearest centroid, and the index of the centroid
from the global codebook is stored in the quantized matrix X 9.

Finally, the quantized matrix X9, containing indices that point to centroids in the global codebook
C, and the codebook C itself are returned.

The HyperChr algorithm optimizes the quantization process through a structured approach, as il-
lustrated in Figure 2| The matrix partition phase pre-partitions the columns of the matrix to sim-
plify computational requirements. Subspace generation then creates high-dimensional subspaces by
combining intervals from the grouped columns based on their data distribution. Subspace IDs are
generated by mapping each vector to these subspaces based on its elements’ interval locations. Fi-
nally, matrix quantization is performed within each subspace, enhancing quantization effectiveness
and reducing overall memory usage.

3.2.1 HyperChr DEQUANTIZATION

As shown in Algorithm 2] the matrix dequantization process reconstructs the original matrix X from
the quantized matrix X ¢ and the codebook C. For each element X Z ; in the quantized matrix, the
algorithm retrieves the corresponding centroid c; from the codebook C using the index stored in
X Z ;- The retrieved centroid cy, is then placed into the corresponding position in the reconstructed
matrix X, such that X; ; < ¢;. This process is repeated for all elements in X9, resulting in the full
reconstruction of the original matrix X.

Algorithm 2 Matrix Dequantization Algorithm

: Input: Quantized matrix X9, Codebook C

: Output: Reconstructed matrix X

. for each element X Lq ; in the quantized matrix X do

Retrieve the corresponding centroid ¢, from the codebook C using the index X .

Assign X; ; < ¢, > Place the centroid value into the reconstructed matrix X

A A o

return Reconstructed matrix X

3.3 THEORETICAL ANALYSIS OF HyperChr

We first present a comparison of HyperChr and PQ in terms of MSE, followed by a comparison of
the time complexity between PQ and HyperChr.

Theorem 1. (Theoretical analysis of MSE) The Mean Squared Error (MSE) of the HyperChr
algorithm is lower than that of the PQ algorithm:

MSEHyperChr =T MSEPQa (D

where 0 < I' < 1 is the effective variance reduction factor achieved by HyperChr, and the proof can
be found in Appendix [A.T]

According to Theoremm since I' < 1, it follows that:

MSEHyperChr =I- MSEPQ < MSEPQ. 2)

Thus, the MSE of the HyperChr algorithm is lower than that of the PQ algorithm.

Theorem 2. (Time Complexity for Quantization) The quantization time complexity of HyperChr
method is:

1
CgTHyperChr = ? ' QTPQ7 (3)

m - tm

where QThyperchr and QQTpq are the time complexities of our method and the PQ algorithm, respec-
tively. The proof can be found in Appendix

Under review as a conference paper at ICLR 2025

Since 11 < 1, the time complexity of HyperChr is lower than that of PQ.
m-lm
Theorem 3. (Time Complexity for Dequantization) The time complexity of the dequantization

process in the Matrix Dequantization Algorithm is:

1
DQTHyperChr = E . DQTPQ7 (4)

where DQThyperche and DQTpq represent the time complexities of the Matrix Dequantization Al-
gorithm and the PQ algorithm, respectively. The proof can be found in Appendix

The Matrix Dequantization process of HyperChr has a lower time complexity than that of PQ, as
1

<1
m

Thus, we draw three conclusions:

* The HyperChr algorithm achieves a lower Mean Squared Error (MSE) compared to the PQ
algorithm due to its effective subspace partitioning strategy.

» The quantization time complexity of the HyperChr method is lower than that of the PQ algo-
rithm.

* The dequantization process of the HyperChr algorithm also has a lower time complexity com-
pared to the PQ algorithm.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Platform and Implementation: We performed our algorithm evaluations on a high-performance
server configured with an Intel Core 19-10980XE processor, which boasts 18 cores and 36 threads,
operating at a base frequency of 3.00 GHz. The server is equipped with 128GB of 3200MHz DDR4
memory and a 24.8MB L3 cache, ensuring robust computational capabilities. All algorithms were
implemented in Python, specifically version 3.8.10. In each experimental scenario, we repeated the
evaluation 100 times.

Dataset: To evaluate the effectiveness of our proposed algorithm, we conducted experiments using
one synthetic dataset and three real-world datasets: a synthetic normal distribution dataset, LLM
weight dataset, GIST dataset, and SIFT dataset. Below, we provide a detailed description of each
dataset. Each element in the matrix is represented with 32 bits.

(1) Synthetic normal distribution dataset: The dataset was constructed by sampling each entry of the
matrix from a truncated normal distribution, characterized by a mean of 0.5 and a standard deviation
of 0.16. Furthermore, approximately one element out of every ten thousand was substituted with an
outlier, randomly selected from the interval [-100, 100]. The matrix dimensions are set to 1,024 x
128.

(2) LLM weight dataset: This dataset includes weight matrices derived from the large language
model (LLM) LLaMA?2 (Touvron et al.|(2023))). The dimensions of the LLM weight matrices are
11,008 x 4096.

(3) GIST dataset: The GIST dataset consists of feature vectors used for image recognition and
retrieval tasks. It contains the first 100,000 features extracted from the Tiny Image dataset (Torralba
et al.|(2008)). Moreover, this dataset has been employed in|Jegou et al.|(2010) and |Oliva & Torralba
(2001)). The dimensions of the GIST dataset are 100,000 x 960.

(4) SIFT dataset: The SIFT descriptors were obtained by extracting the learning set from Flickr
images, while the database and query descriptors were sourced from the INRIA Holidays image
collection Jegou et al.|(2008)). The matrix size for the SIFT dataset is 100,000 x 128.

Metrics: We primarily assess the accuracy and time efficiency of the algorithm. Accuracy is eval-
vated using Mean Absolute Error (MAE), Mean Relative Error (MRE), and Mean Squared Error
(MSE). For time efficiency, we measure the Quantization Time (QT) and DeQuantization Time

(DQT).

Under review as a conference paper at ICLR 2025

Let x(; jy represent the elements of the original matrix to be quantized, while x’(i) denotes the
elements of the dequantized matrix.

1) 1 AN
MAE= "3 z} ’%J‘) ~Tap|s MSE=C7 z; (”’WJ) - x(“’)>

Comparative Algorithms: We compare our approach with PQ (Product Quantization)(Jegou et al.
(2010)), OPQ (Optimized Product Quantization)(|Ge et al.| (2013))), and LOPQ (Locally Optimized
Product Quantization)(|Kalantidis & Avrithis| (2014)). For the comparative algorithms, under the
same space constraints, we use the same common parameters as our algorithm, while other parame-
ters are set according to the recommended configurations from their respective papers.

Parameter Selection for HyperChr: For an n X d matrix with a bits per element and a compression
ratio 0, the number of subgroups is m. Therefore, after the matrix partition operation, the dimension
of each vector becomes . We first determine the total number of cluster centroids, ks, by solving
the following inequality using binary search to find the maximum value of k,:

nxdxa

d
, X — I <
kéxmxa+n><m>< 0g, (k) < 7

We use quantiles to divide each dimension into [intervals. Therefore, there are a total of Lo high-
dimensional subspaces. The number of centroids in each subspace is allocated based on the number
of subvectors in the subspace.

nj

d
j=1,2,3,...,0m
nXm (-] =YD))

where n; is the number of vectors in the j-th subspace. Typically, we adopted the parameters % =4
and [= 3.

4.2 MATRIX QUANTIZATION

This section primarily presents the accuracy (MAE and MSE) and computational efficiency (QT and
DQT) of the HyperChr algorithm.

MAE and MSE: The experimental results for MAE and MSE are presented in Figure The
results clearly demonstrate that HyperChr consistently outperforms PQ, OPQ, and LOPQ in most
scenarios across various datasets and compression ratios, in both MAE and MSE metrics. For lower
compression ratios (6 = 2 — 8), the HyperChr algorithm shows a significant improvement, reducing
MAE by an average of 55.3% and MSE by 75.3% compared to PQ. However, for higher compression
ratios (f = 10 — 16), the improvements are more moderate, with an average reduction of 14.9% in
MAE and 25.9% in MSE compared to PQ.

For the Synthetic dataset, HyperChr exhibits the lowest MAE and MSE across all compression
ratios, significantly outperforming the other algorithms. At lower compression ratios, compared to
the PQ algorithm, HyperChr reduces MSE by 71.2% and MAE by 47.8%. At higher compression
ratios, it still achieves reductions of 41.2% in MSE and 24.1% in MAE.

In the LLM dataset, HyperChr exhibits a similar trend in maintaining lower MAE and MSE values.
At lower compression ratios, compared to the PQ algorithm, HyperChr reduces MSE by 90.3% and
MAE by 71.4%. At higher compression ratios, it still achieves reductions of 46.7% in MSE and
27.9% in MAE. It is worth noting that due to the additional space requirements of LOPQ, it was
unable to handle the compression of the LLM dataset.

The results on the GIST dataset further reinforce the strength of HyperChr, particularly in maintain-
ing lower errors across all compression ratios. While PQ and OPQ occasionally show comparable
performance, HyperChr consistently achieves better results. At lower compression ratios, compared
to the PQ algorithm, HyperChr reduces MSE by 76.8% and MAE by 58.5%. At higher compression
ratios, it still reduces MSE by 16.8% and MAE by 7.3%.

Under review as a conference paper at ICLR 2025

== HyperChr =/= PQ =gp= OPQ = I LOPQ

= -3 s
10 5><10 10210
35
3.0
25
n20
1.5
1.0
. T - 05
L 0.0t =L Dt 0.0L
24681012141'6 246810121416 2468!0]21416 246810121416
Compression Ratio Compression Ratio Compression Ratio Compression Ratio
(a) MAE of Synthetic. (b) MSE of Synthetic. (c) MAE of LLM. (d) MSE of LLM.
x10” x10* x10'
o L6 4.0 .
i‘z‘ 35
& 1o 25
0.8
Sos %g
0.4)
J 0.2 1.0
Sand 0.0E=—=" 05~ 0.0
2406 81.012141'6 246 810121416 246 810121416 24 6 810121416
Compression Ratio Compression Ratio Compression Ratio Compression Ratio
(e) MAE of GIST. (f) MSE of GIST. (2) MAE of SIFT. (h) MSE of SIFT.

Figure 3: MAE and MSE of different datasets.

Lastly, the analysis of the SIFT dataset reveals that HyperChr performs well at lower compression
ratios, but its performance is comparable to the PQ algorithm at higher compression ratios. At lower
compression ratios, compared to the PQ algorithm, HyperChr reduces MSE by 62.7% and MAE
by 43.6%. However, at higher compression ratios, it shows a slight increase of 1.2% in MSE and a
reduction of 0.5% in MAE.

=O= HyperChr =/= PQ =qp= OPQ =} LOPQ

x10 %1072 %10° élo"

6 N oo 12 7
5 /v?].o 10 76
=4 e 08 Zos e =)
~3 = 0.603 41
O 80.6 00-4%\;\ 8'3 \

A) 041N I 02 = 2l O=o
0 b OO O @@ Oan®, 0.0 O 1 O e e
246 81012141'6 246 810121416 "2 4 6 810121416 246 810121416
Compression Ratio Compression Ratio Compression Ratio ~ Compression Ratio
(a) QT of Synthetic. (b) DQT of Synthetic. (¢) QT of LLM. (d) DQT of LLM.
%10 . ex10° %10

: 1Aom > l'zm

~ 1. ~~
2’ 308% N 210
=2 = \\ =3 Eos
o o6 o2 o

1. A \ | 0 0.6 .

O*Nj: g g 04 O] o= - 04 O o
246810121416 246810121416 246 810121416 246 810121416
Compression Ratio Compression Ratio ~ Compression Ratio Compression Ratio

p p p p
(e) QT of GIST. (f) DQT of GIST. (g) QT of SIFT. (h) DQT of SIFT.

Figure 4: QT (s) and DQT (s) of different datasets.

QT and DQT: The experimental results for Quantization Time (QT) and DeQuantization Time
(DQT) are presented in Figure @ The results clearly demonstrate that HyperChr consistently out-
performs PQ, OPQ, and LOPQ in most scenarios across various datasets and compression ratios, in
both QT and DQT metrics. The impact of compression ratio on QT is significant, while its effect on

Under review as a conference paper at ICLR 2025

DQT is minimal. At low compression ratios, the QT of HyperChr is reduced by 60.2% compared
to PQ. However, at higher compression ratios, where the QT is already small, the QT of Hyper-
Chr increases by 113.4% compared to PQ. On the other hand, DQT remains relatively stable; for
lower compression ratios, the DQT of HyperChr is reduced by 60.2% compared to PQ, while at
higher compression ratios, the DQT of HyperChr is reduced by 65.7%. Specifically, for the Syn-
thetic dataset, LLM dataset, GIST dataset, and SIFT dataset, the DQT is reduced by 62.2%, 64.5%,
53.8%, and 53.6%, respectively. At low compression ratios, the QT is reduced by 40.9%, 44.8%,
71.4%, and 83.9%, respectively.

4.3 TRADE-OFF BETWEEN ACCURACY AND COMPUTATIONAL EFFICIENCY

We explored the tradeoff between accuracy and computational efficiency of the HyperChr algo-
rithm by varying the number of intervals [based on the LLM dataset. The experimental results are
shown in Figure[5] Figures[5a] [5b} [5c] and [5d|present the accuracy (MAE/MSE) and computational
efficiency (QT/DQT) for compression ratios of 2, 4, 6, and 8, respectively.

<>- Quantization Time =& Dequantization Time == MAE —/— MSE

x10° x10* x10 6><|0Z xi0t x10° x10* x10° x107¢ %10 xm: x10¢
—~15 = —~2 1.20 =15 17
KO 4.9 5.6 L 8.50 14 &z 2 z
5 g o B o w5 o m Ss0 K [sm
81,0 s (542 g el @ g L15< @ 8‘ j“ 1.6< [P
= = =23 = -k =h4= R 7 =| =
£05 S, = 13 = 247 Ras| Mg
o a7 2 O 8.00 4 1.10 4 15 |4

0.0 0 0 2.2 0.0

2345678 23456738 2345678 2345678

The number of intervals The number of intervals The number of intervals The number of intervals
(a) 0 = 2. (b) 6 = 4. (c) 8 = 6. (d) 6 =8.

Figure 5: Trade-off between accuracy and computational efficiency.

For different compression ratios 6, the algorithm exhibits a similar trade-off characteristic. As the
number of intervals increases, the DQT of the HyperChr algorithm decreases, while QT remains
relatively stable, but both MAE and MSE increase. Upon closer analysis of the algorithm, we ob-
serve that when the number of intervals increases, fewer centroids exist for each high-dimensional
subspace, resulting in faster computation. During the dequantization phase, HyperChr retrieves the
corresponding vectors from the codebook (arrays of centroids) to reconstruct the matrix, which ex-
plains the stability in QT. Additionally, increasing the number of intervals provides finer partitioning
of each dimension, thus reducing MAE and MSE.

5 CONCLUSION

Matrix quantization is essential for reducing memory usage while maintaining accuracy across vari-
ous applications, especially with the increasing scale of models like GPT-3. Traditional quantization
methods often overlook the heterogeneous distribution characteristics of real-world datasets, which
can lead to suboptimal results.

In this paper, we introduced HyperChr, a matrix quantization algorithm tailored for heterogeneous
data distributions. By partitioning high-dimensional subspaces based on column-specific distribu-
tion properties, HyperChr enhances both compression effectiveness and computational efficiency.
Our experimental results demonstrate that HyperChr significantly reduces quantization errors and
dequantization time, particularly at lower compression ratios, outperforming traditional methods.

These improvements highlight the potential of HyperChr in optimizing large-scale matrix quanti-
zation for real-world applications, especially in large language models and other machine learning
tasks.

10

Under review as a conference paper at ICLR 2025

REFERENCES

How many users does facebook have? URL https://www.oberlo.com/statistics/
how-many—-users—does—facebook—havel Accessed: 2024-09-09.

Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant Nair, Ilya Soloveychik, and Pu-
rushotham Kamath. Keyformer: Kv cache reduction through key tokens selection for efficient
generative inference. Proceedings of Machine Learning and Systems, 6:114-127, 2024.

Nieves R Brisaboa, Susana Ladra, and Gonzalo Navarro. k2-trees for compact web graph repre-
sentation. In International symposium on string processing and information retrieval, pp. 18-30.
Springer, 2009.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Francisco Claude and Susana Ladra. Practical representations for web and social graphs. In Pro-
ceedings of the 20th ACM international conference on Information and knowledge management,
pp. 1185-1190, 2011.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Haojie Duanmu, Zhihang Yuan, Xiuhong Li, Jiangfei Duan, Xingcheng Zhang, and Dahua Lin.
Skvq: Sliding-window key and value cache quantization for large language models. arXiv preprint
arXiv:2405.06219, 2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323,2022.

Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization. /EEE transac-
tions on pattern analysis and machine intelligence, 36(4):744-755, 2013.

Robert M. Gray and David L. Neuhoff. Quantization. IEEE transactions on information theory, 44
(6):2325-2383, 1998.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length 1lm inference with
kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Hamming embedding and weak geometric
consistency for large scale image search. In Computer Vision—-ECCV 2008: 10th European Con-
ference on Computer Vision, Marseille, France, October 12-18, 2008, Proceedings, Part I 10, pp.
304-317. Springer, 2008.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor
search. IEEE transactions on pattern analysis and machine intelligence, 33(1):117-128, 2010.

Yannis Kalantidis and Yannis Avrithis. Locally optimized product quantization for approximate
nearest neighbor search. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2321-2328, 2014.

Zayd Muhammad Kawakibi Zuhri, Muhammad Farid Adilazuarda, Ayu Purwarianti, and Alham
Fikri Aji. Mlkv: Multi-layer key-value heads for memory efficient transformer decoding. arXiv
e-prints, pp. arXiv—2406, 2024.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv preprint
arXiv:2306.07629, 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Prin-
ciples, pp. 611-626, 2023.

11

https://www.oberlo.com/statistics/how-many-users-does-facebook-have
https://www.oberlo.com/statistics/how-many-users-does-facebook-have

Under review as a conference paper at ICLR 2025

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. {InfiniGen}: Efficient generative
inference of large language models with dynamic {KV} cache management. In /8th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 24), pp. 155-172, 2024.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq:
Activation-aware weight quantization for Ilm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device 1lm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87-100, 2024.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36, 2024.

Qingqun Ning, Jianke Zhu, Zhiyuan Zhong, Steven CH Hoi, and Chun Chen. Scalable image
retrieval by sparse product quantization. IEEE Transactions on Multimedia, 19(3):586-597, 2016.

Aude Oliva and Antonio Torralba. Modeling the shape of the scene: A holistic representation of the
spatial envelope. International journal of computer vision, 42:145-175, 2001.

Wengqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. arXiv preprint arXiv:2308.13137, 2023.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu, Alec
Radford, Gretchen Krueger, Jong Wook Kim, Sarah Kreps, et al. Release strategies and the social
impacts of language models. arXiv preprint arXiv:1908.09203, 2019.

Antonio Torralba, Rob Fergus, and William T Freeman. 80 million tiny images: A large data set for
nonparametric object and scene recognition. IEEE transactions on pattern analysis and machine
intelligence, 30(11):1958-1970, 2008.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In Infernational
Conference on Machine Learning, pp. 38087-38099. PMLR, 2023.

Donna Xu, Ivor W Tsang, and Ying Zhang. Online product quantization. IEEE Transactions on
Knowledge and Data Engineering, 30(11):2185-2198, 2018.

Tan Yu, Junsong Yuan, Chen Fang, and Hailin Jin. Product quantization network for fast image
retrieval. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 186-201,
2018.

Yuxuan Yue, Zhihang Yuan, Haojie Duanmu, Sifan Zhou, Jianlong Wu, and Liqiang Nie. Wkvquant:
Quantizing weight and key/value cache for large language models gains more. arXiv preprint
arXiv:2402.12065, 2024.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H20: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36, 2024.

12

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 THE PROOF OF THEOREM [I]

Lemma 1. Suppose each element in the matrix is independently sampled with a mean y and variance
o2, After quantization by the PQ algorithm, the Mean Squared Error (MSE) is given by:

1
MSEpq = o2 (1 -) :

N

Proof. Let c(; ;) denote the cluster centroid matrix, and let ny, be the number of vectors in the cluster.
Define the residual matrix as s; jy.

The expectation of the residual matrix is:
Elsigpl = Eleag) —capl=p—n=0.
The Mean Squared Error (MSE) can be expressed as the variance of the residual matrix:

MSEPQ = Var[S(i’j)] = Var[a:(i’j)] + Var[C(i,j)] -2 COV(.I‘(Z‘J‘), C(z,]))

Given that c(; jy is the centroid within the cluster:

1 &
(ﬂf(i,j) —) (m Zl“(i,j) - M)]
=1

2
MSEpq = 0% + — — 2E
ng

2

o 1
=0+ Pkl [(@ag) — 0] + DB (@) — 1) (@i —)]

i#i’
Since x(; ;) and x;; (for # i') are independent:
2 2 1
MSEPQZUQ—FU—Q-U:(l—)Uz. 5)
ng ni ng

O

Theorem 1. (Theoretical analysis of MSE) The Mean Squared Error (MSE) of the HyperChr
algorithm is lower than that of the PQ algorithm:

MSEnyperche = I' - MSEpq, (6)

where 0 < I' < 1 is the effective variance reduction factor achieved by HyperChr.

Proof. We assume that each element x; ; in the matrix X is independently sampled from a distribu-

tion with mean g and variance o2.

From Lemma the MSE of the PQ algorithm is: MSEpq = o (1 - %)
The HyperChr algorithm reduces quantization error through two main techniques:

Subspace Partitioning: Partitioning the data into subspaces based on interval indices, effectively
grouping similar data points together.

Localized Clustering: Clustering within each subspace allows for more precise centroids tailored
to the local data distribution.

Within each subspace s, the variance of the data o2 is less than the global variance o2

Uf =702, with 0<~, < 1. 7

13

Under review as a conference paper at ICLR 2025

This variance reduction occurs because the data within a subspace are more homogeneous due to
the partitioning based on interval indices.

The MSE for HyperChr can be expressed as the weighted sum of the MSEs within each subspace:

MSEHyperChr = Zps - MSE;, 3

S

where p; is the proportion of data points in subspace s and MSE; is the MSE within subspace s.

1 1
MSE, = o2 <1 — > = .02 (1 —) , 9)
nks nks

where ny, is the number of data points per centroid in subspace s.

Within each subspace s:

Assuming that the average ny,_ across subspaces is approximately equal to nj in PQ, we can compare
the MSEs:

1
MSEnyperchr = Zsjps 50 (1 —~ nk) (10)
9 1
~ Zps% o |ll—— (11)
S nk
1
=To? (1 -) , (12)
ng

where we define the effective variance reduction factor:+

F:Zps%, with 0<T < 1. (13)

A.2 THE PROOF OF THEOREM[2]

Lemma 2. Assuming the same compression ratio, the number of centroids k; per subspace in the
PQ algorithm is approximately equal to %:

ky ~ ke, (14)
m

Proof. The compressed memory size of the PQ algorithm is:

Memorypg = nm log, (k1) + k1d, (15)
where n is the number of data points, m is the number of subspaces, and d is the dimensionality of
the data.

In our method, since the total number of centroids across all subspaces is ks, the average number of
centroids per subspace is % Thus, the compressed memory size for our method is:

k d
Memoryyype,cn, = nm log, (nj) + k'ga. (16)

Assuming both methods achieve the same compression ratio, we set the compressed memory sizes
equal:
ko d
nmlogy (k1) + kid = nmlogy [— | + ka—. (17)
m m

14

Under review as a conference paper at ICLR 2025

Given that k; and % represent the respective centroid counts per subspace in each method, we can

deduce that for the equality to hold, k1 ~ % Therefore,
k
kl ~ i
m

O

Theorem 2. (Time Complexity for Quantization) The quantization time complexity of HyperChr
method is:

1
QTHyperChr = ﬁ . QTPQ7 (18)

m -

where QThyperchr and QQTpq are the time complexities of our method and the PQ algorithm, respec-
tively. The proof can be found in Appendix

Proof. We will compare the time complexity of our method with that of the PQ algorithm by ana-
lyzing both grouping and clustering steps.

The time complexity of the PQ algorithm is:
QTPQ = O(nkld), (19)

where n is the number of data points, k; is the number of centroids per subspace, and d is the data
dimensionality.

In our method, each data point is divided into % dimensions, and each dimension is segmented into
! intervals. Determining the appropriate group for each data point involves assigning it to one of
I groups. The time complexity per data point for this assignment is O (% log l), due to sorting or
searching through the intervals.

Therefore, the total grouping time complexity for all data points is:
d
QTgroup = O (n log l) .
m

Since [is assumed to be a constant and ks > [, the grouping time Q7 group is negligible compared
to the clustering time, which dominates the overall time complexity.

n

d
l'm
Assuming the number of centroids in each group is proportional to the number of data points, each
group will have about %2 centroids.

Ilm

After grouping, there are % groups in total. Each group contains approximately

data points.

The clustering time complexity per group is:
n]{72 d ﬂde
(it £)-o(3)
% 1% m mi2w
Multiplying by the total number of groups [7, the total clustering time complexity becomes:

kod kod
inusterli'O(nl§d> O(n ;)

d
m mlm

Combining both grouping and clustering times, the total time complexity of our method is:

d nkod
QTHyperChr = QTgroup + QTcluster =0 |n— IOgl +0 2d .
m

mlm

Since QT group is negligible compared to Q7 ¢ygier, We can simplify:

QTxypercnr = O (nde) .

d
milm

15

Under review as a conference paper at ICLR 2025

From Lemma we have k1 ~ % Substituting ko = mk; into the expression for Q7 typerchr, We

get:
ki)d kid
QTHyperChr =0 (W) =0 (nldl) .

d
milm

Comparing this with QTpq:
0] (nkld)
QTHyperChr _ l% _
QTPQ O(nkld) l% '

However, since PQ processes m subspaces and our method effectively reduces computations by a
factor of m - [, the actual ratio is:

QTHyperChr o 1

QTpq m-lw

Thus, the total time complexity of our method is approximately —- times that of the PQ algorithm.

m-lm

This completes the proof, showing that our method is significantly more efficient compared to the
PQ algorithm when m is large and I is constant.

O

A.3 THE PROOF OF THEOREM[3]

Theorem 3. (Time Complexity for Dequantization) The time complexity of the dequantization
process in the Matrix Dequantization Algorithm is:

1
DQTHyperChr = E . DQTPQ7 (20)

where DQThyperchr and DQTpq represent the time complexities of the Matrix Dequantization Al-
gorithm and the PQ algorithm, respectively.

Proof. For the Matrix Dequantization Algorithm, the time complexity for retrieving the correspond-
ing centroid is:

THyperChr - 0(1)7 (21)
as the centroid is directly accessed via an index lookup.
For the PQ algorithm, since it divides the vector into m sub-vectors and retrieves the corresponding
sub-centroid from each sub-codebook, the time complexity is:
Tpq = O(m). (22)

Therefore, the time complexity of HyperChr relative to PQ can be expressed as:

1
THyperChr = ool Tpq. (23)

16

	Introduction
	PROBLEM SETTING
	METHODS
	Algorithm Logic
	HyperChr Quantization
	HyperChr Dequantization

	Theoretical Analysis of HyperChr

	Experiments
	Experiment setup
	Matrix Quantization
	Trade-off between accuracy and computational efficiency

	Conclusion
	Appendix
	The proof of theorem 1
	The proof of Theorem 2
	The proof of Theorem 3

