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Abstract

While large language models (LLMs) are dom-001
inating the field of natural language processing,002
with GPT being one of the leaders, it remains an003
open question how well these models can per-004
form spatial reasoning. Contrary to recent stud-005
ies suggesting that LLMs struggle with spatial006
reasoning tasks, we demonstrate in this paper007
that a novel prompting technique, termed Pa-008
tient Visualization of Thought (PATIENT-VOT),009
can boost GPTs’ spatial reasoning abilities.010
The core idea behind PATIENT-VOT is to tackle011
(1) spatial understanding and (2) spatial reason-012
ing, each through a two-step approach, where013
each process is guided by key trigger words:014
bullet list and coordinate, respectively. By ap-015
plying PATIENT-VOT, we achieve an average016
accuracy improvement of up to 35% (absolute)017
compared to the state-of-the-art visual prompt-018
ing technique, Visualization-of-Thought. Our019
findings show that GPTs are indeed much more020
proficient in spatial tasks than commonly be-021
lieved, when effectively prompted.022

1 Introduction023

Large language models (LLMs) are massive neu-024

ral networks trained on a vast and diverse range025

of corpora, that are currently leading the field of026

natural language processing (NLP) (Brown, 2020;027

Achiam et al., 2023). Beyond their remarkable028

achievements in NLP, researchers are gradually fo-029

cusing on broader goals, such as artificial general030

intelligence, where they envision the development031

of versatile, if not universal, AI assistants (Zheng032

et al., 2024). In this context, LLMs play a pivotal033

role due to their strong reasoning capabilities, their034

characteristics as general pattern machines (Mir-035

chandani et al., 2023), and their capacity to produce036

human-friendly explanations. However, spatial rea-037

soning ability, one of the key requirements for these038

assistants, is known to be lacking in LLMs (Bang039

et al., 2023; Sharma, 2023). Multiple recent studies040

point out that even the top-performing LLMs, such 041

as GPT4, struggle significantly with spatial reason- 042

ing tasks (Li et al., 2024; Yamada et al., 2023). 043

Among various efforts to enhance LLMs’ spatial 044

reasoning abilities, a notable approach is prompt 045

engineering (Bommasani et al., 2021), which aims 046

to trigger and maximize the model’s spatial rea- 047

soning capabilities by designing effective prompts. 048

One major advantage of prompt engineering is that 049

it does not require additional training or external 050

resources, making it a cost-effective and generally 051

applicable approach. While some recent studies 052

have emerged in this field (Wu et al., 2024; Li et al., 053

2024; Yasunaga et al., 2023), we believe this area 054

remains under-explored. 055

Our Objective and Approach In this paper, we 056

aim to tackle the following research question from 057

a prompt engineering perspective: How can we ef- 058

fectively trigger and improve the spatial reasoning 059

abilities of GPT models? 060

To this end, we introduce Patient Visualization- 061

of-Thought (PATIENT-VOT), a simple yet effec- 062

tive prompting technique designed to enhance the 063

spatial reasoning skills of GPT models. PATIENT- 064

VOT is built on the Visualization-of-Thought ap- 065

proach (Wu et al., 2024) with adding two novel 066

ideas: (1) Patient Spatial Understanding (PSU), 067

which involves a two-step process of summarizing 068

information into a bullet list before converting it 069

into a visualization, rather than using direct visu- 070

alization as in prior methods. PSU is especially 071

beneficial for tasks that provide textual information 072

without accompanying visual elements. (2) Patient 073

Spatial Reasoning (PSR), which also employs a 074

two-step process, guides LLMs to generate two 075

types of visualizations during the reasoning phase, 076

with the first being based on coordinates. 077

We show that PSU significantly reduces the er- 078

rors GPT models make when visualizing an initial 079

image from the given text information (see Fig- 080
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ure 2). Furthermore, PSR activates an additional081

modality, coordinate-based reasoning, that signifi-082

cantly enhances GPTs’ spatial reasoning abilities083

when combined with visualization (see Table 2).084

PATIENT-VOT consistently boosts the performance085

of various GPT models (GPT-4o, GPT-4o-mini,086

and GPT-4-turbo) on a variety of challenging spa-087

tial reasoning tasks (Wu et al., 2024).088

2 Related Work089

Spatial Reasoning in LLMs Several recent stud-090

ies have examined the spatial reasoning capabilities091

of LLMs, consistently finding that LLMs continue092

to struggle with spatial reasoning tasks (Li et al.,093

2024; Bang et al., 2023). Existing research on094

spatial reasoning in LLMs can be broadly catego-095

rized into three approaches: (1) Analyzing LLM be-096

havior to gain insights into their underlying mech-097

anisms (Xie et al., 2023; Cohn and Hernandez-098

Orallo, 2023), (2) Augmenting spatial reasoning099

abilities by conducting additional training on cu-100

rated datasets (Hong et al., 2023; Cheng et al.,101

2024), and (3) Inproving spatial reasoning perfor-102

mance using effective prompting methods instead103

of further training (Wu et al., 2024; Sharma, 2023).104

Our paper focuses on the prompting approach,105

particularly with GPT models, due to their106

widespread use and strong performance.107

Prompt engineering approaches to LLM spa-108

tial reasoning Recently, various prompting tech-109

niques have been introduced, such as chain-of-110

thought (Wei et al., 2022), self-consistency (Wang111

et al., 2022), and tree-of-thought (Yao et al., 2024).112

However, these methods are primarily designed for113

general reasoning tasks. Given the unique chal-114

lenges of spatial reasoning, some prompting tech-115

niques have been specifically tailored for this pur-116

pose (Wu et al., 2024; Sharma, 2023). Among117

those, visualization-of-thought (VoT) (Wu et al.,118

2024) has demonstrated promising results with a119

unified prompt. Our work builds on the foundation120

of VoT, aiming to develop an enhanced version.121

3 PATIENT-VOT122

3.1 Motivation123

The goal of this paper is to discover a universal124

prompt that can effectively trigger and enhance spa-125

tial reasoning performance across the GPT model126

family. Our work is largely inspired by Wu et al.127

(2024), which demonstrated that the straightfor-128

ward prompt “Visualize the state after each reason- 129

ing step.” can substantially boost the spatial rea- 130

soning performance of GPT models. Identifying a 131

universally effective prompt across different mod- 132

els and datasets is crucial, as it not only provides 133

a generalizable approach but also offers valuable 134

insights into how modern LLMs perform spatial 135

reasoning. While the recent results in this area are 136

impressive, we believe there is room for further 137

improvement. 138

With this motivation in mind, we present 139

PATIENT-VOT, designed to unlock LLMs’ latent 140

spatial reasoning abilities through two novel ideas: 141

(1) Patient spatial understanding, where LLMs are 142

guided to first translate the information into a bullet 143

list before creating the final visualization; (2) Pa- 144

tient spatial reasoning, which activates two modal- 145

ities (visual and coordinate) in LLMs to improve 146

visual reasoning performance. 147

3.2 Patient Spatial Understanding 148

In our preliminary study, we found that GPT mod- 149

els struggle with seemingly simple tasks, such as 150

converting a natural language description of a grid 151

into a visual representation (see Figure 2). To ad- 152

dress these mistakes, we propose a simple yet ef- 153

fective approach: First translating the provided in- 154

formation into a bullet list before converting it into 155

a visualization. This method significantly reduces 156

the error rate from 52% to 8% when visualizing 157

the initial grid. Specifically, we use the following 158

prompt: “Before starting, convert the initial infor- 159

mation into a detailed bullet list to effectively grasp 160

the map’s information.” 161

3.3 Patient Spatial Reasoning 162

Visualizing the state has been shown to be ef- 163

fective for spatial reasoning in LLMs (Wu et al., 164

2024). We propose activating an additional modal- 165

ity: Coordinate-based reasoning. While LLMs 166

may naturally engage in this type of reasoning, 167

our observations indicate that explicitly prompt- 168

ing it is highly effective. Additionally, combining 169

coordinate-based reasoning with visual-based rea- 170

soning results in a synergistic effect, leading to an 171

additional increase in performance. Consequently, 172

we incorporate the following sentence into our final 173

prompt: “Solve the problem twice with the follow- 174

ing approach: ‘Visualize the state after each rea- 175

soning step’. In the first attempt, use coordinates 176

instead of visualization. In the second attempt, use 177

direct visualization and fix any errors in the first 178
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attempt.”179

Figure 1: The overall template of PATIENT-VOT.
Key trigger words, “bullet list” and “coordinates”, are
marked in blue, while the VoT prompt element is high-
lighted in yellow.

4 Experiments180

4.1 Experimental Settings181

Datasets We selected three spatial reasoning182

tasks presented by Wu et al. (2024). These tasks183

are: (1) Natural language navigation, which in-184

volves visualizing a grid and tracking sequential185

movements within it; (2) Route planning, where the186

model must generate multi-hop navigation instruc-187

tions on a 2D grid; and (3) Visual tiling, which re-188

quires fitting appropriate tetrominoes into a square189

grid, similar to the game Tetris. These tasks are190

particularly intriguing because they demand funda-191

mental spatial understanding and reasoning skills,192

yet remain highly challenging for GPT models,193

with baseline average accuracy hovering around194

20%. Note that natural language navigation pro-195

vides only text, while route planning and visual196

tiling include the initial grid (using emojis) as part197

of the input. For more details, see Appendix A.198

Models and Settings We employ the GPT-4199

model family, including GPT-4o, GPT-4o-mini,200

and GPT-4-turbo (Achiam et al., 2023). For base-201

line prompts, we follow the approach from Wu202

et al. (2024), using “Let’s think step by step.” for203

the CoT baseline (Kojima et al., 2022) and “Visu-204

alize the state after each reasoning step.” for the205

VoT baseline. Experiments are conducted using a206

basic greedy decoding scheme (temperature set to207

0), with three different random seeds.208

4.2 Results 209

Table 1 presents the performance of PATIENT-VOT 210

and the baseline methods on the three datasets. We 211

observe that PATIENT-VOT significantly and con- 212

sistently improves performance across all models 213

and datasets, outperforming related prompting tech- 214

niques by a substantial margin. 215

Table 2 shows the results of several ablation stud- 216

ies. The top section highlights the impact of each 217

component in PATIENT-VOT. It is evident that both 218

PSU and PSR independently yield consistent im- 219

provements, and their combination leads to even 220

greater performance gains. 221

5 Main Findings 222

5.1 Using a bullet list as an intermediate step 223

significantly reduces mistakes in LLMs 224

As briefly discussed in Section 3.2, even the most 225

advanced GPT-4 models make significant errors 226

in translating descriptions into accurate grids (Fig- 227

ure 2 is an actual example from GPT-4o). This 228

fundamentally aligns with recent research show- 229

ing that LLMs often struggle with simple tasks 230

involving counting or retracing steps (Golovneva 231

et al., 2024). We believe that converting the descrip- 232

tion into a structured format, such as a bullet list 233

with clear delimiters, and then using this structured 234

format for visualization, helps minimize mistakes. 235

Quantitatively, this approach reduces the error rate 236

from 52% to 8% for GPT-4o in the natural language 237

navigation task. 238

5.2 Coordinate-based reasoning and 239

visual-based reasoning create synergy 240

Intuitively, LLMs can inherently use coordinates 241

when dealing with spatial reasoning tasks. How- 242

ever, our findings show that explicitly prompting 243

the LLM to employ coordinates is far from redun- 244

dant. In fact, it proves effective on its own and also 245

creates a synergistic effect when combined with 246

visual-based reasoning. The empirical evidence 247

supporting this claim is summarized in the bottom 248

section of Table 2. 249

We compared the following three variants: (1) 250

PATIENT-VOT: which incorporates both coordi- 251

nates and visualizations, (2) PSR (Visualization- 252

Only): which uses only visualizations (equivalent 253

to VoT), and (3) PSR (Coordinate-Only): which re- 254

lies solely on coordinates. The specific prompts for 255

each variant are detailed in Appendix B. The results 256

in Table 2 indicate that explicitly instructing GPT 257
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Figure 2: The intuition behind patient spacial understanding. The structured bullet list significantly reduces mistakes
when creating the initial visualization (highlighted in blue).

Natural Language Navigation Route Planning Visual Tiling Avg.

Model Acc (%) Acc (%) Acc (%) Acc (%)

1. GPT-4o

• CoT 8.50 1.32 7.27 3.75 28.67 2.02 14.81 2.36

• VoT 26.17 1.26 5.15 0.49 29.00 1.50 20.44 1.08

• Ours: PATIENT-VOT 83.831.44 30.230.37 36.331.61 50.051.19

2. GPT-4o-mini

• CoT 2.67 0.29 5.15 0.25 17.33 5.03 8.38 1.86

• VoT 22.17 1.04 5.80 0.14 17.67 3.06 15.21 1.41

• Ours: PATIENT-VOT 61.001.50 41.581.48 24.003.00 42.191.99

3. GPT-4-turbo

• CoT 21.50 2.18 5.56 0.14 21.00 2.65 16.02 1.66

• VoT 25.67 1.04 3.43 0.49 19.00 1.73 16.03 1.09

• Ours: PATIENT-VOT 51.671.44 7.520.93 24.331.15 27.841.17

Table 1: Effectiveness of PATIENT-VOT. Reported numbers are average and standard deviations of three runs.

Ablation #1. Effectiveness of PSU and PSR.

Baseline: GPT-4o NLN RP VT

• VoT 26.171.26 5.150.49 29.001.50
• VoT + PSU 48.832.57 21.730.57 34.882.21
• VoT + PSR 31.330.76 12.170.75 34.331.26
• VoT + PSU + PSR (=PATIENT-VOT) 83.83 1.44 30.23 0.37 36.33 1.61

Ablation #2. The synergy between coordinate-based and visual-based reasonings.

Baseline: GPT-4o NLN RP VT

• PSR (Coordinate-Only) 80.502.65 26.060.51 35.33 0.76

• PSR (Visualization-Only) 48.832.57 21.730.57 34.882.21
• PSR (Both) (=PATIENT-VOT) 83.83 1.44 30.23 0.37 36.33 1.61

Table 2: A summary of two ablation study results.

to perform coordinate-based reasoning is generally258

more effective than relying solely on visualizations.259

Most importantly, combining coordinate-based and260

visual-based reasoning yields even better perfor-261

mance than using either method alone.262

6 Conclusion 263

This paper introduces a new prompting technique, 264

PATIENT-VOT, designed to enhance the spatial rea- 265

soning capabilities of GPT models. PATIENT-VOT 266

incorporates two straightforward yet powerful con- 267

cepts: patient spatial understanding and patient 268

spatial reasoning. It demonstrates effectiveness 269

across all GPT-4 models on three core spatial tasks, 270

achieving up to a 35% (absolute) improvement. 271

7 Limitations 272

Our work has a few limitations. Firstly, our study 273

lies in the area of “prompt engineering” which may 274

lack strong theoretical justification for why our ap- 275

proach is effective. Additionally, we concentrated 276

on greedy decoding for computational efficiency. 277

Nevertheless, exploring the integration of PATIENT- 278
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VOT with sampling-based prompting techniques279

remains a promising area for future research.280
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A Tasks and Datasets 373

We have chosen three tasks presented by Wu et al. 374

(2024) to evaluate our method. Since the code to 375

(Wu et al., 2024)’s work is not available, we have 376

re-implemented the datasets following their paper. 377

As explained in Section 4.1, the three tasks are (1) 378

Natural language navigation, (2) Route planning, 379

and (3) Visual Tiling. Examples of each task are 380

provided below and we recommend reading the 381

original paper (Wu et al., 2024) for further details. 382
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Natural Language Navigation Example “You383

have been given a 3 by 3 square grid. Starting384

from a vertex, you will move along the edges of385

the grid. Initially, you are positioned at the bottom-386

left corner of the grid, where you will find a wool,387

then you go right, where you will find a football388

player, then you go right, where you will find a389

black-and-white colobus. Then you go up, where390

you will find a pot pie, then you go left, where you391

will find a torch, then you go left, where you will392

find a minivan. Then you go up, where you will393

find a conch, then you go right, where you will find394

an american dipper, then you go right, where you395

will find a jay.396

Now you have all the information on the map.397

The given map is a 3 by 3 map. You start at the398

position where the wool is located, then you go399

right by one step, then you go right by one step,400

then you go left by one step, then you go up by one401

step, then you go left by one step, then you go up402

by one step, and then you go right by one step. For403

your final answer, list all eight items encountered404

during the moves (including the starting item and405

any duplicates) under the title ’Final List of Items406

Encountered’ as a bullet list.”407

Route Planning Example Provided in Figure 3408

below.409

Figure 3: Route planning example.

Visual Tiling Example Provided in Figure 4 be-410

low.411

B Prompt Templates Used in Ablation412

Study #2413

Variant 1: (=PATIENT-VOT)414

• “Before starting, convert the initial informa-415

tion into a detailed bullet list to effectively416

grasp the map’s information. Then, solve the417

problem twice with the following approach:418

‘Visualize the state after each reasoning step’.419

In the first attempt, use coordinates instead420

of visualization. In the second attempt, use421

Figure 4: Visual tiling example.

direct visualization and fix any errors in the 422

first attempt.” 423

Variant 2: PSR (Visualization-Only) 424

• “Before starting, convert the initial informa- 425

tion into a detailed bullet list to effectively 426

grasp the map’s information. Then, solve the 427

problem with the following approach: ‘Visu- 428

alize the state after each reasoning step’.” 429

Variant 3: PSR (Coordinate-Only) 430

• “Before starting, convert the initial informa- 431

tion into a detailed bullet list to effectively 432

grasp the map’s information. Then, solve the 433

problem with the following approach: ‘Visu- 434

alize the state after each reasoning step’. Use 435

coordinates instead of visualization.” 436
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