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Abstract

While large language models (LLMs) are dom-
inating the field of natural language processing,
with GPT being one of the leaders, it remains an
open question how well these models can per-
form spatial reasoning. Contrary to recent stud-
ies suggesting that LLMs struggle with spatial
reasoning tasks, we demonstrate in this paper
that a novel prompting technique, termed Pa-
tient Visualization of Thought (PATIENT-VOT),
can boost GPTs’ spatial reasoning abilities.
The core idea behind PATIENT-VOT is to tackle
(1) spatial understanding and (2) spatial reason-
ing, each through a two-step approach, where
each process is guided by key trigger words:
bullet list and coordinate, respectively. By ap-
plying PATIENT-VOT, we achieve an average
accuracy improvement of up to 35% (absolute)
compared to the state-of-the-art visual prompt-
ing technique, Visualization-of-Thought. Our
findings show that GPTs are indeed much more
proficient in spatial tasks than commonly be-
lieved, when effectively prompted.

1 Introduction

Large language models (LLMs) are massive neu-
ral networks trained on a vast and diverse range
of corpora, that are currently leading the field of
natural language processing (NLP) (Brown, 2020;
Achiam et al., 2023). Beyond their remarkable
achievements in NLP, researchers are gradually fo-
cusing on broader goals, such as artificial general
intelligence, where they envision the development
of versatile, if not universal, Al assistants (Zheng
et al., 2024). In this context, LLMs play a pivotal
role due to their strong reasoning capabilities, their
characteristics as general pattern machines (Mir-
chandani et al., 2023), and their capacity to produce
human-friendly explanations. However, spatial rea-
soning ability, one of the key requirements for these
assistants, is known to be lacking in LLMs (Bang
et al., 2023; Sharma, 2023). Multiple recent studies

point out that even the top-performing LL.Ms, such
as GPT4, struggle significantly with spatial reason-
ing tasks (Li et al., 2024; Yamada et al., 2023).

Among various efforts to enhance LLMs’ spatial
reasoning abilities, a notable approach is prompt
engineering (Bommasani et al., 2021), which aims
to trigger and maximize the model’s spatial rea-
soning capabilities by designing effective prompts.
One major advantage of prompt engineering is that
it does not require additional training or external
resources, making it a cost-effective and generally
applicable approach. While some recent studies
have emerged in this field (Wu et al., 2024; Li et al.,
2024; Yasunaga et al., 2023), we believe this area
remains under-explored.

Our Objective and Approach In this paper, we
aim to tackle the following research question from
a prompt engineering perspective: How can we ef-
fectively trigger and improve the spatial reasoning
abilities of GPT models?

To this end, we introduce Patient Visualization-
of-Thought (PATIENT-VOT), a simple yet effec-
tive prompting technique designed to enhance the
spatial reasoning skills of GPT models. PATIENT-
VOT is built on the Visualization-of-Thought ap-
proach (Wu et al., 2024) with adding two novel
ideas: (1) Patient Spatial Understanding (PSU),
which involves a two-step process of summarizing
information into a bullet list before converting it
into a visualization, rather than using direct visu-
alization as in prior methods. PSU is especially
beneficial for tasks that provide textual information
without accompanying visual elements. (2) Patient
Spatial Reasoning (PSR), which also employs a
two-step process, guides LLMs to generate two
types of visualizations during the reasoning phase,
with the first being based on coordinates.

We show that PSU significantly reduces the er-
rors GPT models make when visualizing an initial
image from the given text information (see Fig-



ure 2). Furthermore, PSR activates an additional
modality, coordinate-based reasoning, that signifi-
cantly enhances GPTs’ spatial reasoning abilities
when combined with visualization (see Table 2).
PATIENT-VOT consistently boosts the performance
of various GPT models (GPT-40, GPT-40-mini,
and GPT-4-turbo) on a variety of challenging spa-
tial reasoning tasks (Wu et al., 2024).

2 Related Work

Spatial Reasoning in LLMs Several recent stud-
ies have examined the spatial reasoning capabilities
of LLMs, consistently finding that LLMs continue
to struggle with spatial reasoning tasks (Li et al.,
2024; Bang et al., 2023). Existing research on
spatial reasoning in LLMs can be broadly catego-
rized into three approaches: (1) Analyzing LLM be-
havior to gain insights into their underlying mech-
anisms (Xie et al., 2023; Cohn and Hernandez-
Orallo, 2023), (2) Augmenting spatial reasoning
abilities by conducting additional training on cu-
rated datasets (Hong et al., 2023; Cheng et al.,
2024), and (3) Inproving spatial reasoning perfor-
mance using effective prompting methods instead
of further training (Wu et al., 2024; Sharma, 2023).
Our paper focuses on the prompting approach,
particularly with GPT models, due to their
widespread use and strong performance.

Prompt engineering approaches to LLM spa-
tial reasoning Recently, various prompting tech-
niques have been introduced, such as chain-of-
thought (Wei et al., 2022), self-consistency (Wang
et al., 2022), and tree-of-thought (Yao et al., 2024).
However, these methods are primarily designed for
general reasoning tasks. Given the unique chal-
lenges of spatial reasoning, some prompting tech-
niques have been specifically tailored for this pur-
pose (Wu et al., 2024; Sharma, 2023). Among
those, visualization-of-thought (VoT) (Wu et al.,
2024) has demonstrated promising results with a
unified prompt. Our work builds on the foundation
of VoT, aiming to develop an enhanced version.

3 PATIENT-VOT

3.1 Motivation

The goal of this paper is to discover a universal
prompt that can effectively trigger and enhance spa-
tial reasoning performance across the GPT model
family. Our work is largely inspired by Wu et al.
(2024), which demonstrated that the straightfor-

ward prompt “Visualize the state after each reason-
ing step.” can substantially boost the spatial rea-
soning performance of GPT models. Identifying a
universally effective prompt across different mod-
els and datasets is crucial, as it not only provides
a generalizable approach but also offers valuable
insights into how modern LLMs perform spatial
reasoning. While the recent results in this area are
impressive, we believe there is room for further
improvement.

With this motivation in mind, we present
PATIENT-VOT, designed to unlock LLMs’ latent
spatial reasoning abilities through two novel ideas:
(1) Patient spatial understanding, where LLLMs are
guided to first translate the information into a bullet
list before creating the final visualization; (2) Pa-
tient spatial reasoning, which activates two modal-
ities (visual and coordinate) in LLMs to improve
visual reasoning performance.

3.2 Patient Spatial Understanding

In our preliminary study, we found that GPT mod-
els struggle with seemingly simple tasks, such as
converting a natural language description of a grid
into a visual representation (see Figure 2). To ad-
dress these mistakes, we propose a simple yet ef-
fective approach: First translating the provided in-
formation into a bullet list before converting it into
a visualization. This method significantly reduces
the error rate from 52% to 8% when visualizing
the initial grid. Specifically, we use the following
prompt: “Before starting, convert the initial infor-
mation into a detailed bullet list to effectively grasp
the map’s information.”

3.3 Patient Spatial Reasoning

Visualizing the state has been shown to be ef-
fective for spatial reasoning in LLMs (Wu et al.,
2024). We propose activating an additional modal-
ity: Coordinate-based reasoning. While LLMs
may naturally engage in this type of reasoning,
our observations indicate that explicitly prompt-
ing it is highly effective. Additionally, combining
coordinate-based reasoning with visual-based rea-
soning results in a synergistic effect, leading to an
additional increase in performance. Consequently,
we incorporate the following sentence into our final
prompt: “Solve the problem twice with the follow-
ing approach: ‘Visualize the state after each rea-
soning step’. In the first attempt, use coordinates
instead of visualization. In the second attempt, use
direct visualization and fix any errors in the first
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Figure 1: The overall template of PATIENT-VOT.
Key trigger words, “bullet list” and “coordinates”, are
marked in blue, while the VoT prompt element is high-
lighted in yellow.
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4 Experiments

4.1 Experimental Settings

Datasets We selected three spatial reasoning
tasks presented by Wu et al. (2024). These tasks
are: (1) Natural language navigation, which in-
volves visualizing a grid and tracking sequential
movements within it; (2) Route planning, where the
model must generate multi-hop navigation instruc-
tions on a 2D grid; and (3) Visual tiling, which re-
quires fitting appropriate tetrominoes into a square
grid, similar to the game Tetris. These tasks are
particularly intriguing because they demand funda-
mental spatial understanding and reasoning skills,
yet remain highly challenging for GPT models,
with baseline average accuracy hovering around
20%. Note that natural language navigation pro-
vides only text, while route planning and visual
tiling include the initial grid (using emojis) as part
of the input. For more details, see Appendix A.

Models and Settings We employ the GPT-4
model family, including GPT-40, GPT-40-mini,
and GPT-4-turbo (Achiam et al., 2023). For base-
line prompts, we follow the approach from Wu
et al. (2024), using “Let’s think step by step.” for
the CoT baseline (Kojima et al., 2022) and “Visu-
alize the state after each reasoning step.” for the
VoT baseline. Experiments are conducted using a
basic greedy decoding scheme (temperature set to
0), with three different random seeds.

4.2 Results

Table 1 presents the performance of PATIENT-VOT
and the baseline methods on the three datasets. We
observe that PATIENT-VOT significantly and con-
sistently improves performance across all models
and datasets, outperforming related prompting tech-
niques by a substantial margin.

Table 2 shows the results of several ablation stud-
ies. The top section highlights the impact of each
component in PATIENT-VOT. It is evident that both
PSU and PSR independently yield consistent im-
provements, and their combination leads to even
greater performance gains.

5 Main Findings

5.1 Using a bullet list as an intermediate step
significantly reduces mistakes in LLMs

As briefly discussed in Section 3.2, even the most
advanced GPT-4 models make significant errors
in translating descriptions into accurate grids (Fig-
ure 2 is an actual example from GPT-40). This
fundamentally aligns with recent research show-
ing that LLMs often struggle with simple tasks
involving counting or retracing steps (Golovneva
etal., 2024). We believe that converting the descrip-
tion into a structured format, such as a bullet list
with clear delimiters, and then using this structured
format for visualization, helps minimize mistakes.
Quantitatively, this approach reduces the error rate
from 52% to 8% for GPT-40 in the natural language
navigation task.

5.2 Coordinate-based reasoning and
visual-based reasoning create synergy

Intuitively, LLMs can inherently use coordinates
when dealing with spatial reasoning tasks. How-
ever, our findings show that explicitly prompting
the LLM to employ coordinates is far from redun-
dant. In fact, it proves effective on its own and also
creates a synergistic effect when combined with
visual-based reasoning. The empirical evidence
supporting this claim is summarized in the bottom
section of Table 2.

We compared the following three variants: (1)
PATIENT-VOT: which incorporates both coordi-
nates and visualizations, (2) PSR (Visualization-
Only): which uses only visualizations (equivalent
to VoT), and (3) PSR (Coordinate-Only): which re-
lies solely on coordinates. The specific prompts for
each variant are detailed in Appendix B. The results
in Table 2 indicate that explicitly instructing GPT
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Figure 2: The intuition behind patient spacial understanding. The structured bullet list significantly reduces mistakes
when creating the initial visualization (highlighted in blue).

‘ Natural Language Navigation ‘ Route Planning ‘ Visual Tiling ‘ Avg. ‘

Model | Acc (%) | Acc (%) | Acc(®) | Acc(%) |
1. GPT-40 |

e CoT 850 1.32 7.273,75 28.672,02 1481 2.36

e VoT 26.17 1.6 5.150.49 29.001 59 20.44 1 08

e Ours: PATIENT-VOT 83.831.44 30.23 .37 36.33 161 50.051 19
2. GPT-40-mini

e CoT 2.67¢.29 5.150.25 17.335.03 8.381 .86

e VoT 22.171.04 5.800.14 17.673.06 15.21 141

e Ours: PATIENT-VOT 61.001 50 41.581 48 24.003 90 42.191 g9
3. GPT-4-turbo

e CoT 21.509.18 5.560.14 21.009.65 16.021 ¢6

e VoT 25.67 1.04 3.43 0.49 19.00 1.73 16.03 1.09

e Ours: PATIENT-VOT 51.671 44 7.520.93 24.331.15 27.841 17

Table 1: Effectiveness of PATIENT-VOT. Reported numbers are average and standard deviations of three runs.

Ablation #1. Effectiveness of PSU and PSR.

Baseline: GPT-40 NLN RP VT ‘
o VoT 26.17126 | 5.150.49 29.004 50
o VoT + PSU 48.83257 | 21.730.57 34.882.91
e VoT + PSR 31.330.76 | 12.17¢.75 34.331 .26

® VoT + PSU + PSR (=PATIENT-VOT) | 83.83 144 | 30.23¢.37 36.331.61

Ablation #2. The synergy between coordinate-based and visual-based reasonings.

Baseline: GPT-40 | NLN RP VT |

© PSR (Coordinate-Only) 80.502.65 | 26.060.51 35.330.76
e PSR (Visualization-Only) 48.83257 | 21.73¢.57 34.889.01
® PSR (Both) (=PATIENT-VOT) 83.831.44 | 30.230.37 36.331.61

Table 2: A summary of two ablation study results.

to perform coordinate-based reasoning is generally
more effective than relying solely on visualizations.
Most importantly, combining coordinate-based and
visual-based reasoning yields even better perfor-
mance than using either method alone.

6 Conclusion

This paper introduces a new prompting technique,
PATIENT-VOT, designed to enhance the spatial rea-
soning capabilities of GPT models. PATIENT-VOT
incorporates two straightforward yet powerful con-
cepts: patient spatial understanding and patient
spatial reasoning. It demonstrates effectiveness
across all GPT-4 models on three core spatial tasks,
achieving up to a 35% (absolute) improvement.

7 Limitations

Our work has a few limitations. Firstly, our study
lies in the area of “prompt engineering” which may
lack strong theoretical justification for why our ap-
proach is effective. Additionally, we concentrated
on greedy decoding for computational efficiency.
Nevertheless, exploring the integration of PATIENT-



VOT with sampling-based prompting techniques
remains a promising area for future research.
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A Tasks and Datasets

We have chosen three tasks presented by Wu et al.
(2024) to evaluate our method. Since the code to
(Wu et al., 2024)’s work is not available, we have
re-implemented the datasets following their paper.
As explained in Section 4.1, the three tasks are (1)
Natural language navigation, (2) Route planning,
and (3) Visual Tiling. Examples of each task are
provided below and we recommend reading the
original paper (Wu et al., 2024) for further details.



Natural Language Navigation Example “You
have been given a 3 by 3 square grid. Starting
from a vertex, you will move along the edges of
the grid. Initially, you are positioned at the bottom-
left corner of the grid, where you will find a wool,
then you go right, where you will find a football
player, then you go right, where you will find a
black-and-white colobus. Then you go up, where
you will find a pot pie, then you go left, where you
will find a torch, then you go left, where you will
find a minivan. Then you go up, where you will
find a conch, then you go right, where you will find
an american dipper, then you go right, where you
will find a jay.

Now you have all the information on the map.
The given map is a 3 by 3 map. You start at the
position where the wool is located, then you go
right by one step, then you go right by one step,
then you go left by one step, then you go up by one
step, then you go left by one step, then you go up
by one step, and then you go right by one step. For
your final answer, list all eight items encountered
during the moves (including the starting item and
any duplicates) under the title ’Final List of Items
Encountered’ as a bullet list.”

Route Planning Example
below.

Provided in Figure 3

Navigation Task: for a provided map, % is the home as starting point, Ml is the
office as the destination. means the road, “# means the obstacle. There exists
one and only one viable route for each map. Each step you choose a direction and
move to the end of the continuous road or the destination

map:

Starting from %, provide the steps to navigate to .

Figure 3: Route planning example.

Visual Tiling Example Provided in Figure 4 be-
low.

B Prompt Templates Used in Ablation
Study #2

Variant 1: (=PATIENT-VOT)

* “Before starting, convert the initial informa-
tion into a detailed bullet list to effectively
grasp the map’s information. Then, solve the
problem twice with the following approach:
‘Visualize the state after each reasoning step’.
In the first attempt, use coordinates instead
of visualization. In the second attempt, use

Task: given a set of polyominoes and corresponding variations of each polyomino, fit them into the empty square
(") in the target rectangle without overlapping any existing polyomi or going outside the rectangle. The varia
tions allow only translation, not rotation or reflection

Target rectangle with 8 empty squares
[ L

——

[(EEm

Provided polyominoes:
1. Tetromino L (M)

. mino I (1)

s for Tetromino
1 fitting into its bounding box:

=

ariation 2 fitting into its bounding box:
]

Variants for Tetromino I:
Variation 3 fitting into its bounding box:

Variation 4 fitting into its bounding box:

To fit all the provided polyominoes into the empty squares (), what's the correct variations of Tetromino L and
I, respectively?

A 1and 3
B. 1and 4
C.2and3
D. 2 and 4
E. neither

Figure 4: Visual tiling example.

direct visualization and fix any errors in the
first attempt.”

Variant 2: PSR (Visualization-Only)

* “Before starting, convert the initial informa-
tion into a detailed bullet list to effectively
grasp the map’s information. Then, solve the
problem with the following approach: ‘Visu-
alize the state after each reasoning step’.”

Variant 3: PSR (Coordinate-Only)

* “Before starting, convert the initial informa-
tion into a detailed bullet list to effectively
grasp the map’s information. Then, solve the
problem with the following approach: ‘Visu-
alize the state after each reasoning step’. Use
coordinates instead of visualization.”
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