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LINFUSION: 1 GPU, 1 MINUTE, 16K IMAGE
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Figure 1: A 16384 × 8192-resolution example in the theme of Black Myth: Wukong generated
by LinFusion on a single GPU with Canny-conditioned ControlNet. The textual prompt is “the
back view of the Monkey King holding a rod in hand stands, 16k,
high quality, best quality, style of a 3A game, fantastic style”.
The original picture and the extracted Canny edge are shown in Fig. 5.

ABSTRACT

Modern diffusion models, particularly those utilizing a Transformer-based UNet
for denoising, rely heavily on self-attention operations to manage complex spa-
tial relationships, thus achieving impressive generation performance. However,
this existing paradigm faces significant challenges in generating high-resolution
visual content due to its quadratic time and memory complexity with respect to
the number of spatial tokens. To address this limitation, we aim at a novel linear
attention mechanism as an alternative in this paper. Specifically, we begin our ex-
ploration from recently introduced models with linear complexity, e.g., Mamba2,
RWKV6, Gated Linear Attention, etc, and identify two key features—attention
normalization and non-causal inference—that enhance high-resolution visual gen-
eration performance. Building on these insights, we introduce a generalized linear
attention paradigm, which serves as a low-rank approximation of a wide spec-
trum of popular linear token mixers. To save the training cost and better leverage
pre-trained models, we initialize our models and distill the knowledge from pre-
trained StableDiffusion (SD). We find that the distilled model, termed LinFusion,
achieves performance on par with or superior to the original SD after only mod-
est training, while significantly reducing time and memory complexity. Extensive
experiments on SD-v1.5, SD-v2.1, and SD-XL demonstrate that LinFusion en-
ables satisfactory and efficient zero-shot cross-resolution generation, accommo-
dating ultra-resolution images like 16K on a single GPU. Moreover, it is highly
compatible with pre-trained SD components and pipelines, such as ControlNet,
IP-Adapter, DemoFusion, DistriFusion, etc, requiring no adaptation efforts.

1 INTRODUCTION

Recent years have witnessed significant advancements in AI-generated content (AIGC) with diffu-
sion models Croitoru et al. (2023); Yang et al. (2023a). On the one hand, unlike classic models like
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GAN Goodfellow et al. (2014), diffusion models refine noise vectors iteratively to produce high-
quality results with fine details Nichol & Dhariwal (2021); Dhariwal & Nichol (2021); Rombach
et al. (2022); Ho et al. (2020). On the other hand, having trained on large-scale data pairs, these
models exhibit satisfactory alignment between input conditions and output results. These capabil-
ities have spurred recent advancements in text-to-image generation Balaji et al. (2022); Ding et al.
(2022); Nichol et al. (2021); Ramesh et al. (2022); Betker et al. (2023); Rombach et al. (2022);
Saharia et al. (2022). Benefiting from the impressive performance and the open-source community,
Stable Diffusion (SD) Rombach et al. (2022) stands out as one of the most popular models.

The success of models like SD can be largely attributed to their robust backbone structures for de-
noising. From UNet architectures with attention layers Ronneberger et al. (2015); Rombach et al.
(2022) to Vision Transformers Peebles & Xie (2023); Bao et al. (2023); Chen et al. (2023); Esser
et al. (2024), existing designs rely heavily on self-attention mechanisms to manage complex relation-
ships between spatial tokens. Despite their impressive performance, the quadratic time and memory
complexity inherent in self-attention operations poses significant challenges for high-resolution vi-
sual generation. For instance, as illustrated in Fig. 2(a), using FP16 precision, SD-v1.5 fails to
generate 2048-resolution images on A100, a GPU with 80GB of memory, due to out-of-memory
errors, making higher resolutions or larger models even more problematic1.

To address these issues, in this paper, we aim at a novel token-mixing mechanism with linear com-
plexity to the number of spatial tokens, offering an alternative to the classic self-attention approach.
Inspired by recently introduced models with linear complexity, such as Mamba Gu & Dao (2023)
and Mamba2 Dao & Gu (2024), which have demonstrated significant potential in sequential gener-
ation tasks, we first investigate their applicability as token mixers in diffusion models.

However, there are two drawbacks of Mamba diffusion models. On the one hand, when a diffusion
model operates at a resolution different from its training scale, our theoretical analysis reveals that
the feature distribution tends to shift, leading to difficulties in cross-resolution inference. On the
other hand, diffusion models perform a denoising task rather than an auto-regressive task, allowing
the model to simultaneously access all noisy spatial tokens and generate denoised tokens based on
the entire input. In contrast, Mamba is fundamentally an RNN that processes tokens sequentially,
meaning that the generated tokens are conditioned only on preceding tokens, a constraint termed
causal restriction. Applying Mamba directly to diffusion models would impose this unnecessary
causal restriction on the denoising process, which is both unwarranted and counterproductive. Al-
though bi-directional scanning branches can somewhat alleviate this issue, the problem inevitably
persists within each branch.

Focusing on the above drawbacks of Mamba for diffusion models, we propose a generalized linear
attention paradigm. Firstly, to tackle the distribution shift between training resolution and larger
inference resolution, a normalizer for Mamba, defined by the cumulative impact of all tokens on the
current token, is devised to the aggregated features, ensuring that the total impact remains consistent
regardless of the input scale. Secondly, we aim at a non-causal version of Mamba. We start our
exploration by simply removing the lower triangular causal mask applied on the forget gate and find
that all tokens would end up with identical hidden states, which undermines the model’s capacity.
To address this issue, we introduce distinct groups of forget gates for different tokens and propose
an efficient low-rank approximation, enabling the model to be elegantly implemented in a linear-
attention form. We analyze the proposed approach technically alongside recently introduced linear-
complexity token mixers such as Mamba2 Dao & Gu (2024), RWKV6 Peng et al. (2024), and Gated
Linear Attention Yang et al. (2023b) and reveal that our model can be regarded as a generalized
non-causal version of these popular models.

The proposed generalized linear attention module is integrated into the architectures of SD, replacing
the original self-attention layers, and the resultant model is termed as Linear-Complexity Diffusion
Model, or LinFusion in short. By only training the linear attention modules for 50k iterations in
a knowledge distillation framework, LinFusion achieves performance on par with or even superior
to the original SD, while significantly reducing time and memory complexity, as shown in Fig. 2.
Meanwhile, it delivers satisfactory zero-shot cross-resolution generation performance and can gen-
erate images at 16K resolution on a single GPU. It is also compatible with existing components and

1PyTorch 1.13 is adopted here for evaluation to reflect the theoretical complexity of various architectures.
On higher versions of PyTorch, block-wise strategies are applied for memory efficient attention. However, the
time efficiency is still a problem. Please refer to the appendix for more discussions on efficient implementations.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d)
Figure 2: (a) and (b): Comparisons of the proposed LinFusion with original SD-v1.5 under various
resolutions in terms of generation speed using 8 steps and GPU memory consumption. The dashed
lines denote estimated values using quadratic functions due to out-of-memory error. (c) and (d):
Efficiency comparisons on various architectures under their default resolutions.

pipelines for SD, such as ControlNet Zhang et al. (2023), IP-Adapter Ye et al. (2023), DemoFu-
sion Du et al. (2024), DistriFusion Li et al. (2024), etc, allowing users to achieve various purposes
with the proposed LinFusion flexibly without any additional training cost. As shown in Fig. 1, ex-
tensive experiments on SD-v1.5, SD-v2.1, and SD-XL validate the effectiveness of the proposed
model and method. Our contributions can be summarized as follows:

• We investigate the non-causal and normalization-aware version of Mamba and propose a
novel linear attention mechanism that addresses the challenges of high-resolution visual
generation with diffusion models.

• Our theoretical analysis indicates that the proposed model is technically a generalized and
efficient low-rank approximation of existing popular linear-complexity token mixers.

• Extensive experiments on SD demonstrate that the proposed LinFusion can achieve even
better results than the original SD and exerts satisfactory zero-shot cross-resolution genera-
tion performance and compatibility with existing components and pipelines for SD. To the
best of our knowledge, this is the first exploration of linear-complexity token mixers on the
SD series model for text-to-image generation.

2 METHODOLOGY

2.1 PRELIMINARY

Diffusion Models. As a popular model for text-to-image generation, Stable Diffusion Rombach
et al. (2022) (SD) first learns an auto-encoder (E ,D), where the encoder E maps an image x to a
lower dimensional latent space: z ← E(x), and the decoder D learns to decode z back to the image
space x̂← D(z) such that x̂ is close to the original x. In the inference time, a Gaussian noise in the
latent space zT is sampled randomly and denoised by a UNet ϵθ for T steps. The denoised latent
code after the final step z0 is decoded by D to derive a generated image. In training, given an image
x and its corresponding text description y, E is utilized to obtain its corresponding latent code, and
we add a random Gaussian noise ϵ for its noisy version zt with respect to the t-th step. The UNet is
trained via the noise prediction loss Lsimple Ho et al. (2020); Nichol & Dhariwal (2021):

θ = argmin
θ

Ez∼E(x),y,ϵ∼N (0,1),t[Lsimple] Lsimple = ∥ϵ− ϵθ(zt, t, y)∥22. (1)

The UNet in SD contains multiple self-attention layers as token mixers to handle spatial-wise re-
lationships and multiple cross-attention layers to handle text-image relationships. Given an input
feature map in the UNet backbone X ∈ Rn×d and weight parameters WQ,WK ∈ Rd×d′

and
WV ∈ Rd×d, where n is the number of spatial tokens, d is the feature dimension, and d′ is the
attention dimension, self-attention can be formalized as:

Y = MV, M = softmax(QK⊤/
√
d′), Q = XWQ, K = XWK , V = XWV . (2)

We can observe from Eq. 2 that the complexity of self-attention is quadratic with respect to n since
the attention matrix M ∈ Rn×n, we mainly focus on its alternatives in this paper and are dedicated
on a novel module for token mixing with linear complexity.
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Mamba. As an alternative to Transformer Vaswani et al. (2017), Mamba Gu & Dao (2023) is
proposed to handle sequential tasks with linear complexity with respect to the sequence length. At
the heart of Mamba lies the State Space Model (SSM), which can be written as:

Hi = Ai ⊙Hi−1 +B⊤
i Xi =

i∑
j=1

{(
i∏

k=j+1

Ak)⊙ (B⊤
j Xj)}, Yi = CiHi, (3)

where i is the index of the current token in a sequence, Hi denotes the hidden state, Xi and Yi are
row vectors denoting the i-th rows of the input and output matrices respectively, Ai, Bi, and Ci are
input-dependent variables, and ⊙ indicates element-wise multiplication.

2.2 OVERVIEW

SelfAttn

SelfAttn

SelfAttn

…

𝑧!

𝑧!"#

LinFusion
Module…

LinFusion
Module

LinFusion
Module

𝑧!"#$
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UNet UNet

Figure 3: Overview of Lin-
Fusion. We replace self-
attention layers in the orig-
inal SD with our LinFusion
modules and adopt knowl-
edge distillation to optimize
the parameters.

In the latest version, i.e., Mamba2 Dao & Gu (2024), Ai is a scalar,
Bi, Ci ∈ R1×d′

, Xi, Yi ∈ R1×d, and Hi ∈ Rd′×d. According to
State-Space Duality (SSD), the computation in Eq. 3 can be refor-
mulated as the following expression, referred to as 1-Semiseparable
Structured Masked Attention:

Y = ((CB⊤)⊙ Ã)X, (4)

where Ã is a n × n lower triangular matrix and Ãij =
∏i

k=j+1 Ak

for j ≤ i. Such a matrix Ã is known as 1-semiseparable, ensuring
that Mamba2 can be implemented with linear complexity in n.

In this paper, we aim at a diffusion backbone for the general text-
to-image problems with linear complexity with respect to the num-
ber of image pixels. To this end, instead of training a novel model
from scratch, we initialize and distill the model from pre-trained SD.
Specifically, we utilize the SD-v1.5 model by default and substitute
its self-attention—the primary source of quadratic complexity—with our proposed LinFusion mod-
ules. Only the parameters in these modules are trainable, while the rest of the model remains frozen.
We distill knowledge from the original SD model into LinFusion such that given the same inputs,
their outputs are as close as possible. Fig. 3 provides an overview of this streamline.

This approach offers two key benefits: (1) Training difficulty and computational overhead are sig-
nificantly reduced, as the student model only needs to learn spatial relationships, without the added
complexity of handling other aspects like text-image alignment; (2) The resulting model is highly
compatible with existing components trained on the original SD models and their fine-tuned varia-
tions, since we only replace the self-attention layers with LinFusion modules, which are trained to
be functionally similar to the original ones while maintaining the overall architecture.

Technically, to derive a linear-complexity diffusion backbone, one simple solution is to replace
all the self-attention blocks with Mamba2, as shown in Fig. 4(a). We apply bi-directional SSM
to ensure that the current position can access information from subsequent positions. Moreover,
the self-attention modules in Stable Diffusion do not incorporate gated operations Hochreiter &
Schmidhuber (1997); Cho (2014) or RMS-Norm Zhang & Sennrich (2019) as used in Mamba2. As
shown in Fig. 4(b), we remove these structures to maintain the consistency and result in a slight
improvement in performance. In the following parts of this section, we delve into the issues of
applying SSM, the core module in Mamba2, to diffusion models and accordingly introduce the key
features in LinFusion: normalization and non-causality in Secs. 2.3 and 2.4 respectively. Finally, in
Sec. 2.5, we provide the training objectives to optimize parameters in LinFusion modules.

2.3 NORMALIZATION-AWARE MAMBA

In practice, we find that SSM-based structure shown in Fig. 4(b) can achieve satisfactory perfor-
mance if the training and inference have consistent image resolutions. However, it fails when their
image scales are different. We refer readers to Sec. 3.2 for the experimental results. To identify
the cause of this failure, we examine the channel-wise means of the input and output feature maps,
which exhibit the following proposition:
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Figure 4: (a) The architecture of Mamba2. Bi-directional SSM is additionally involved here. (b)
Mamba2 without gating and RMS-Norm. (c) Normalization-aware Mamba2. (d) The proposed
LinFusion module with generalized linear attention.

Proposition 1. Assuming that the mean of the j-th channel in the input feature map X is µj , and
denoting (CB⊤)⊙ Ã as M , the mean of this channel in the output feature map Y is µj

∑n
k=1 Mik.

The proof is straightforward. We observe through Fig. 4(b) that there is non-negative activation
applied on X , B, and C. Given that A is also non-negative in Mamba2, according to Prop. 1, the
channel-wise distributions would shift if n is inconsistent in training and inference, which further
leads to distorted results.

Solving this problem requires unifying the impact of all tokens on each one to the same scale, a
property inherently provided by the Softmax function. In light of this, we propose normalization-
aware Mamba in this paper, enforcing that the sum of attention weights from each token equals 1,
i.e.,

∑n
k=1 Mik = 1, which is equivalent to applying the SSM module one more time to obtain the

normalization factor Z:

Zi = Ai ⊙ Zi−1 +Bi, C ′
ij =

Cij∑d′

k=1{Cik ⊙ Zik}
. (5)

The operations are illustrated in Fig. 4(c). Experiments indicate that such normalization substantially
improve the performance of zero-shot cross-resolution generalization.

2.4 NON-CAUSAL MAMBA

While bi-directional scanning enables a token to receive information from subsequent tokens—a
crucial feature for diffusion backbones—treating feature maps as 1D sequences compromises the
intrinsic spatial structures in 2D images and higher-dimensional visual content. To address this
dilemma more effectively, we focus on developing a non-causal version of Mamba in this paper.

Non-causality indicates that one token can access to all tokens for information mixing, which can
be achieved by simply removing the lower triangular causal mask applied on Ã. Thus, the recursive
formula in Eq. 3 would become Hi =

∑n
j=1{(

∏n
k=j+1 Ak) ⊙ (B⊤

j Xj)}. We observe that Hi

remains invariant with respect to i in this formula. This implies that the hidden states of all tokens
are uniform, which fundamentally undermines the intended purpose of the forget gate A. To address
this issue, we associate different groups of A to various input tokens. In this case, A is a n×n matrix
and Hi =

∑n
j=1{(

∏n
k=j+1 Aik) ⊙ (B⊤

j Xj)}. The Ãij in Eq. 4 becomes
∏n

k=j+1 Aik. Compared
with that in Eq. 4, Ã here is not necessarily 1-semiseparable. To maintain linear complexity, we
impose the assumption that Ã is low-rank separable, i.e., there exist input-dependent matrices F
and G such that Ã = FG⊤. In this way, the following proposition ensures that Eq. 4 under this
circumstance can be implemented via linear attention:

Proposition 2. Given that Ã = FG⊤, F,G ∈ Rn×r, and B,C ∈ Rn×d′
, denoting Ci = c(Xi),

Bi = b(Xi), Fi = f(Xi), and Gi = g(Xi), there exist corresponding functions f ′ and g′ such that
Eq. 4 can be equivalently implemented as linear attention, expressed as Y = f ′(X)g′(X)⊤X .
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The proof can be found in the appendix. In practice, we adopt two MLPs to mimic the functionalities
of f ′ and g′. Combining with the normalization operations mentioned in Sec. 2.3, we derive an
elegant structure shown in Fig. 4(d).

Not only that, we further demonstrate that the form of linear attention described in Proposition 2 can
be extended to the more general case where Ãij is a d′-dimension vector rather than a scalar:

Proposition 3. Given that Ã ∈ Rd′×n×n, if for each 1 ≤ u ≤ d′, Ãu is low-rank separable: Ãu =
FuG

⊤
u , where Fu, Gu ∈ Rn×r, Fuiv = f(Xi)uv , and Gujv = g(Xj)uv , there exist corresponding

functions f ′ and g′ such that the computation Yi = CiHi = Ci

∑n
j=1{Ã:ij ⊙ (B⊤

j Xj)} can be
equivalently implemented as linear attention, expressed as Yi = f ′(Xi)g

′(X)⊤X , where Ã:ij is a
column vector and can broadcast to a d′ × d matrix.

The proof is provided in the appendix. From this point of view, the proposed structure can be deemed
as a generalized linear attention and a non-causal form of recent linear-complexity sequential mod-
els, including Mamba2 Dao & Gu (2024), RWKV6 Peng et al. (2024), GLA Yang et al. (2023b),
etc. In Tab. 1, we provide a summary of the parameterization in recent works for Ai.

2.5 TRAINING OBJECTIVES
Model Parameterization of Ai Causal

Mamba2 Dao & Gu (2024) Ai ∈ R Yes
mLSTM Beck et al. (2024); Peng et al. (2021) Ai ∈ R Yes

Gated Retention Sun et al. (2024) Ai ∈ R Yes
GateLoop Katsch (2023) Ai ∈ Rd′ Yes
HGRN2 Qin et al. (2024) Ai ∈ Rd′ Yes

RWKV6 Peng et al. (2024) Ai ∈ Rd′ Yes
Gated Linear Attention Yang et al. (2023b) Ai ∈ Rd′ Yes

MLLA Han et al. (2024) Aij = 1 No
VSSD Shi et al. (2024) Aij ∈ R No

Generalized Linear Attention Ãij ∈ Rd′ No

Table 1: A summary of the parameterization in recent linear to-
ken mixers for Ai, partially adapted from Yang et al. (2023b).

In this paper, we replace all
self-attention layers in the origi-
nal SD with LinFusion modules.
Only the parameters within these
modules are trained, while all
others remain frozen. To en-
sure that LinFusion closely mim-
ics the original functionality of
self-attention, we augment the
standard noise prediction loss
Lsimple in Eq. 1 with additional
losses. Specifically, we introduce a knowledge distillation loss Lkd to align the final outputs of the
student and teacher models and a feature matching lossLfeat to match the outputs of each LinFusion
module and the corresponding self-attention layer. The training objectives can be written as:

θ = argmin
θ

Ez∼E(x),y,ϵ∼N (0,1),t[Lsimple + αLkd + βLfeat],

Lkd = ∥ϵθ(zt, t, y)− ϵθorg (zt,t, y)∥22, Lfeat =
1

L

L∑
l=1

∥ϵ(l)θ (zt, t, y)− ϵ
(l)
θorg

(zt, t, y)∥22,
(6)

where α and β are hyper-parameters controlling the weights of the respective loss terms, θorg rep-
resents parameters of the original SD, L is the number of LinFusion/self-attention modules, and the
superscript (l) refers to the output of the l-th one in the diffusion backbone.

3 EXPERIMENTS

3.1 IMPLEMENTATION DETAILS

We present qualitative results on SD-v1.5, SD-v2.1, and SD-XL in Fig. 5 and mainly conduct ex-
periments on SD-v1.5 in this section. There are 16 self-attention layers in SD-v1.5 and we replace
them with LinFusion modules proposed in this paper. Functions f ′ and g′ mentioned in Proposi-
tion 2 are implemented as MLP, which consists of a linear branch and a non-linear branch with one
Linear-LayerNorm-LeakyReLU block. The number of newly introduced parameters by them
is less than 6% and 1% of UNets in SD-v1.5 and SD-XL, respectively. Their results are added to
form the outputs of f ′ and g′. The parameters of the linear branch in f ′ and g′ are initialized as WQ

and WK respectively, while the outputs of the non-linear branch are initialized as 0. We use only
169k images in LAION Schuhmann et al. (2022) with aesthetics scores larger than 6.5 for training
and adopt the BLIP2 Li et al. (2023) image captioning model to regenerate the textual descriptions,
which is significantly less than the amount of data required for training the original text-to-image

6
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Figure 5: Qualitative text-to-image results by LinFusion based on various architectures.
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ID Setting FID(↓) CLIP-T(↑) GPU Memory (GB) Time (sec./image)
A Original SD (v1.5) 12.86 0.321 5.17 2.32
B Distilled Diffusion Model (Base) Kim et al. (2023a) 16.63 0.315 4.62 1.58
C Distilled Diffusion Model (Small) Kim et al. (2023a) 18.58 0.297 4.45 1.44
D Distilled Diffusion Model (Tiny) Kim et al. (2023a) 18.82 0.295 4.13 1.32
E EfficientViT Cai et al. (2023) 17.54 0.310 4.62 4.33
F DiG Zhu et al. (2024a) 17.51 0.309 4.86 2.41
G Vision Mamba Zhu et al. (2024b) 18.36 0.307 4.80 4.18
H Bi-Directional Mamba2 18.90 0.307 4.70 4.54
I H - Gating - RMS Norm 17.30 0.309 4.69 4.33
J I + Normalization 17.60 0.308 4.73 6.51
K J - SSM + Linear Attn. 17.63 0.307 4.09 2.07
L J - SSM + Generalized Linear Attn. 17.07 0.309 4.43 2.07
M L + Lkd + Lfeat 12.57 0.323 4.43 2.07

Table 2: Performance and efficiency comparisons with various baselines on the COCO benchmark.

Query Point

Image Original SD Bi-dir. 
Mamba2Ours Linear Attn.Bi-dir. Mamba2 w/o 

Gating & RMS-Norm
Figure 6: Visualization of attention maps by various architectures. The prompt is “Astronaut
in a jungle, cold color palette, muted colors, detailed, 8k”.
models. Both hyper-parameters, α and β, are set as 0.5, following the approach taken in Kim et al.
(2023a), which also focuses on the architectural distillation of SD. The model is optimized using
AdamW Loshchilov & Hutter (2017) with a learning rate of 10−4. Training is conducted on 8
RTX6000Ada GPUs with a total batch size of 96 under 512 × 512 resolution for 100k iterations,
requiring∼ 1 day to complete. The efficiency evaluations are conducted on a single NVIDIA A100-
SXM4-80GB GPU.

3.2 MAIN RESULTS

Ablation Studies. To demonstrate the effectiveness of the proposed LinFusion, we report the com-
parison results with alternative solutions such as those shown in Fig. 4(a), (b) and (c). We follow the
convention in previous works focusing on text-to-image generation Kang et al. (2023) and conduct a
quantitative evaluation on the COCO benchmark Lin et al. (2014) containing 30k text prompts. The
metrics are FID Heusel et al. (2017) against the COCO2014 test dataset and the cosine similarity in
the CLIP-ViT-G feature space Radford et al. (2021). We also report the running time per image with
50 denoising steps and the GPU memory consumption during inference for efficiency comparisons.
Results under 512× 512 resolution are shown in Tab. 2.

Mitigating Structural Difference. We begin our exploration from the original Mamba2 struc-
ture Dao & Gu (2024) with bi-directional scanning, i.e., Fig. 4(a), and try removing the gating and
RMS-Norm, i.e., Fig. 4(b), to maintain a consistent holistic structure with the self-attention layer in
the original SD. In this way, the only difference with the original SD lies in the SSM or self-attention
for token mixing. We observe that such structural alignment is beneficial for performance.

Normalization and Non-Causality. We then apply the proposed normalization operation and the
non-causal treatment sequentially, corresponding to Fig. 4(c) and (d). Although results in Tab. 2
indicate that normalization would slightly hurt the performance, we will show in the following Tab. 3
that it is crucial for generating images with resolutions unseen during training. Further adding the
proposed non-causal treatment, we obtain results better than Fig. 4(b).

We also compare the proposed non-causal operation with the simplified case mentioned in Sec. 2.4,
achieved by directly removing the lower triangular causal mask applied on Ã, which results in a
1-rank matrix, i.e., various tokens share the same group of forget gates. The inferior results demon-
strate the effectiveness of the proposed generalized linear attention.

Attention Visualization. In Fig. 6, we visualize the self-attention maps yielded by various methods,
including the original SD, bi-directional SSM, linear attention with shared forget gates, and gener-
alized linear attention in LinFusion. Results indicate that our method works better for capturing a
broader range of spatial dependency and best matches the predictions of the original SD.

Knowledge Distillation and Feature Matching. We finally apply loss terms Lkd and Lfeat in
Eq. 6, which enhance the performance further and even surpass the SD teacher.
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Setting FID(↓) CLIP-T(↑)
Original SD (v1.5) 32.71 0.290

Bi-Directional Mamba2 196.72 0.080
+Normalization 37.02 0.273

Bi-Directional Mamba2
w/o Gating & RMS-Norm 134.78 0.158

+Normalization 50.30 0.263
Generalized Linear Attention 359.64 0.069

+Normalization 36.33 0.285

Table 3: Normalization is crucial for
cross-resolution generation as demon-
strated by the results on the COCO
benchmark under 1024 × 1024 reso-
lution, which is unseen in training.

(c) Generalized Linear Attention

(b) Bi-directional Mamba2 w/o Gating & RMS-Norm 

(a) Bi-directional Mamba2

w/o Normalization w. Normalization

Figure 7: Qualitative studies of normalization on various
architectures. The resolution is 4096×512 and the prompt
is “A group of golden retriever puppies
playing in snow. Their heads pop out
of the snow covered in”.

Cross-Resolution Inference. It is desirable for diffusion model to generate images of unseen
resolutions during training–a feature of the original SD. Since modules other than LinFusion are
pre-trained and fixed in our work, normalization is a key component for this feature to maintain
consistent feature distributions for training and inference. We report the results of 1024 × 1024
resolution in Tab. 3, which indicate that the conclusion holds for all the basic structures such as
Mamba2, Mamba2 without gating and RMS-Norm, and the proposed generalized linear attention.
Fig. 7 shows a qualitative example, where results without normalization are meaningless.

3.3 EMPIRICAL EXTENSIONS

The proposed LinFusion is highly compatible with various components/pipelines for SD, such as
ControlNet Zhang et al. (2023), IP-Adapter Ye et al. (2023), LoRA Hu et al. (2022), DemoFusion Du
et al. (2024), DistriFusion Li et al. (2024), etc, without any further training or adaptation. We present
some qualitative results in Fig. 5 and refer readers to the appendix for more results. The overall
performance of LinFusion is comparable with the original SD.

ControlNet. ControlNet Zhang et al. (2023) introduces plug-and-play components to SD for ad-
ditional conditions, such as edge, depth, and semantic map. We substitute SD with the proposed
LinFusion and compare the FID, CLIP score, and the similarity between the input conditions and
the extracted conditions from generated images of diffusion models with the original SD. The results
are shown in Tab. 4.

IP-Adapter. Personalized text-to-image generation Gal et al. (2022) is a popular application of
SD, which focuses on generating images simultaneously following both input identities and textual
descriptions. IP-Adapter Ye et al. (2023) offers a zero-shot solution that trains a mapper from the
image space to the condition space of SD so that it can handle both image and text conditions. We
demonstrate that IP-Adapter trained on SD can be used directly on LinFusion. The performance on
the DreamBooth dataset Ruiz et al. (2023), containing 30 identities and 25 text prompts to form 750
test cases in total, is shown in Tab. 6. We use 5 random seeds for each case and report the averaged
CLIP image similarity, DINO Caron et al. (2021) image similarity, and CLIP text similarity.

LoRA. Low-rank adapters (LoRA) Hu et al. (2022) aim at low-rank matrices applied on the weights
of a basic model such that they can be adapted for different tasks or purposes. For instance, Luo
et al. (2023b) introduce LCM-LoRA such that the pre-trained SD can be used for LCM inference
with only a few denoising steps Luo et al. (2023a). Here, we directly apply LoRA in the LCM-LoRA
model to LinFusion. The performance on the COCO benchmark is shown in Tab. 7. Since LCM
adopts different training objectives with the original diffusion model, the generalization performance
measured by FID is relatively worse in this case compared to other settings.

Ultrahigh-Resolution Generation. As discussed in Huang et al. (2024); He et al. (2024), directly
applying diffusion models trained on low resolutions for higher-resolution generation can result
in content distortion and duplication. A series of works are dedicated to higher-resolution image
generation by leveraging off-the-shelf diffusion models Du et al. (2024); Lin et al. (2024a;b); Haji-
Ali et al. (2024). However, limited by the quadratic-complexity self-attention, when applied for
ultrahigh-resolution generation, existing approaches turn to patch-wise strategies to overcome the
heavy computation burden Bar-Tal et al. (2023), which leads to inferior results, as shown in Settings
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Type Canny Edge Depth
Method F1(↑) CLIP-T(↑) RMSE(↓) CLIP-T(↑)

Original SD (v1.5) 0.210 0.296 9.364 0.300
LinFusion 0.247 0.303 9.460 0.294

Table 4: Results of ControlNet on the original SD-
v1.5 and LinFusion.

ID Setting FID(↓) CLIP-T(↑) Time(↓) (sec.)
A DemoFusion 70.01 0.343 61.36
B A - Patch 65.44 0.340 57.56
C B + SDEdit 65.15 0.344 26.98
D C + LinFusion 65.07 0.338 14.71

Table 5: Results of LinFusion on pipelines
dedicated for high-resolution generation.

Method CLIP-T(↑) CLIP-I(↑) DINO(↑)

Original SD (v1.5) 0.281 0.841 0.731
LinFusion 0.280 0.846 0.740

Table 6: Results of IP-Adapter on the original
SD-v1.5 and LinFusion.

Method FID(↓) CLIP-T(↑)

Original SD (v1.5) 23.43 0.297
LinFusion 27.14 0.294

Table 7: Results of LCM-LoRA on the original
SD-v1.5 and LinFusion.

Against Ground-Truth Against 1-GPU Results Time(↓)
(sec.) Speedup(↑)Setting LPIPS(↓) FID(↓) PSNR(↑) LPIPS(↓) FID(↓)

SD-XL 1 GPU 0.797 23.96 - - - 6.51 -
w. LinFusion 1 GPU 0.794 24.85 - - - 6.49 -
DistriFusion 2 GPUs 0.797 24.18 24.63 0.146 4.87 5.36 1.21
w. LinFusion 2 GPUs 0.795 24.96 26.45 0.113 4.09 3.85 1.69
DistriFusion 4 GPUs 0.798 24.22 23.05 0.183 5.77 4.22 1.54
w. LinFusion 4 GPUs 0.796 25.00 24.63 0.148 5.08 2.51 2.59
DistriFusion 8 GPUs 0.799 24.40 22.04 0.211 6.45 4.37 1.49
w. LinFusion 8 GPUs 0.797 24.97 22.93 0.198 6.61 2.14 3.03

Table 8: Results of distributed parallel inference on a server with 8 RTX 4090 D GPUs. Benefit-
ing from its linear complexity and constant communication cost among various patches, LinFusion
is readily for distributed parallel inference with multiple GPUs. Compared with DistriFusion, it
achieves more significant acceleration even without NVLink.
A and B of Tab. 5. Note that removing patchification can be faster than the original implementation
under 2048× 2048 resolution here since it avoids looping over each image patch sequentially.

Complementary to these methods, LinFusion addresses the computational overhead via generalized
linear attention. As shown in Settings C and D of Tab. 5, LinFusion achieves ∼ 2× acceleration
under 2048 × 2048 resolution. Instead of going through full denoising steps in the original Demo-
Fusion Du et al. (2024), tricks in SDEdit Meng et al. (2021) are additionally applied here so that the
former 60% steps are skipped, which further enhances the efficiency without scarifying the quality.
Please refer to the appendix for more analysis. Backed up by the linear-complexity LinFusion, such
strategies enable ultrahigh-resolution generation up to 16K on a single GPU as shown in Fig. 1.

Distributed Parallel Inference. LinFusion is friendly for distributed parallel inference benefiting
from its linear complexity, given that the communication cost is constant with respect to image
resolution. Specifically, unlike the original DistriFusion Li et al. (2024) requiring transmitting all the
key and value tokens for self-attention communication, the transmission in LinFusion is g′(X)⊤X ∈
Rc′×c, which is not related with the number of image tokens. In consequence, as shown in Tab. 8,
LinFusion does not require NVLink hardware to achieve satisfactory acceleration. Please refer to
the appendix for qualitative examples.

4 CONCLUSION

This paper introduces a diffusion backbone termed LinFusion for text-to-image generation with lin-
ear complexity in the number of pixels. At the heart of LinFusion lies a generalized linear attention
mechanism, distinguished by its normalization-aware and non-causal operations—key aspects over-
looked by recent linear-complexity token mixers like Mamba, Mamba2, and GLA. We reveal theo-
retically that the proposed paradigm serves as a general low-rank approximation for the non-causal
variants of recent models. Based on Stable Diffusion (SD), LinFusion modules after knowledge
distillation can seamlessly replace self-attention layers in the original model, ensuring that LinFu-
sion is highly compatible to existing components or pipelines for Stable Diffusion, like ControlNet,
IP-Adapter, LoRA, DemoFusion, DistriFusion, etc, without any further training effort. Extensive
experiments on SD-v1.5, SD-v2.1, and SD-XL demonstrate that the proposed model outperforms
existing baselines and achieves performance on par with, or better than, the original SD with signif-
icantly reduced computational overhead. On a single GPU, it can accommodate image generation
with resolutions up to 16K.
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Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the International Conference on Computer Vision (ICCV), 2021.

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
Kwok, Ping Luo, Huchuan Lu, et al. Pixart-α: Fast training of diffusion transformer for photore-
alistic text-to-image synthesis. arXiv preprint arXiv:2310.00426, 2023.

Kyunghyun Cho. Learning phrase representations using rnn encoder–decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078, 2014.

Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion models in
vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Ming Ding, Wendi Zheng, Wenyi Hong, and Jie Tang. Cogview2: Faster and better text-to-image
generation via hierarchical transformers. Advances in Neural Information Processing Systems,
35:16890–16902, 2022.

Ruoyi Du, Dongliang Chang, Timothy Hospedales, Yi-Zhe Song, and Zhanyu Ma. Demofusion:
Democratising high-resolution image generation with no $$$. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 6159–6168, 2024.

11

https://api.semanticscholar.org/CorpusID:264403242
https://api.semanticscholar.org/CorpusID:264403242


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first International Conference on Machine Learning,
2024.

Zhengcong Fei, Mingyuan Fan, Changqian Yu, and Junshi Huang. Scalable diffusion models with
state space backbone. arXiv preprint arXiv:2402.05608, 2024a.

Zhengcong Fei, Mingyuan Fan, Changqian Yu, Debang Li, and Junshi Huang. Diffusion-rwkv:
Scaling rwkv-like architectures for diffusion models. arXiv preprint arXiv:2404.04478, 2024b.

Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel
Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual
inversion. arXiv preprint arXiv:2208.01618, 2022.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

Moayed Haji-Ali, Guha Balakrishnan, and Vicente Ordonez. Elasticdiffusion: Training-free ar-
bitrary size image generation through global-local content separation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6603–6612, 2024.

Dongchen Han, Ziyi Wang, Zhuofan Xia, Yizeng Han, Yifan Pu, Chunjiang Ge, Jun Song, Shiji
Song, Bo Zheng, and Gao Huang. Demystify mamba in vision: A linear attention perspective.
arXiv preprint arXiv:2405.16605, 2024.

Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi. Neighborhood attention trans-
former. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

Yingqing He, Shaoshu Yang, Haoxin Chen, Xiaodong Cun, Menghan Xia, Yong Zhang, Xintao
Wang, Ran He, Qifeng Chen, and Ying Shan. Scalecrafter: Tuning-free higher-resolution visual
generation with diffusion models. In The Twelfth International Conference on Learning Repre-
sentations, 2024.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Vincent Tao Hu, Stefan Andreas Baumann, Ming Gui, Olga Grebenkova, Pingchuan Ma, Johannes S
Fischer, and Björn Ommer. Zigma: A dit-style zigzag mamba diffusion model. arXiv preprint
arXiv:2403.13802, 2024.

Linjiang Huang, Rongyao Fang, Aiping Zhang, Guanglu Song, Si Liu, Yu Liu, and Hongsheng
Li. Fouriscale: A frequency perspective on training-free high-resolution image synthesis. arXiv
preprint arXiv:2403.12963, 2024.

12

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, and Taesung
Park. Scaling up gans for text-to-image synthesis. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2023.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Tobias Katsch. Gateloop: Fully data-controlled linear recurrence for sequence modeling. arXiv
preprint arXiv:2311.01927, 2023.

Bo-Kyeong Kim, Hyoung-Kyu Song, Thibault Castells, and Shinkook Choi. Bk-sdm: Architec-
turally compressed stable diffusion for efficient text-to-image generation. In Workshop on Effi-
cient Systems for Foundation Models@ ICML2023, 2023a.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning proba-
bility flow ode trajectory of diffusion. arXiv preprint arXiv:2310.02279, 2023b.

Black Forest Labs. Flux: Official inference repository for flux.1 models, 2024. URL https:
//github.com/black-forest-labs/flux. Accessed: 2024-11-12.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023.

Muyang Li, Tianle Cai, Jiaxin Cao, Qinsheng Zhang, Han Cai, Junjie Bai, Yangqing Jia, Kai Li,
and Song Han. Distrifusion: Distributed parallel inference for high-resolution diffusion models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7183–7193, 2024.

Mingbao Lin, Zhihang Lin, Wengyi Zhan, Liujuan Cao, and Rongrong Ji. Cutdiffusion: A simple,
fast, cheap, and strong diffusion extrapolation method. arXiv preprint arXiv:2404.15141, 2024a.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740–755. Springer, 2014.

Zhihang Lin, Mingbao Lin, Meng Zhao, and Rongrong Ji. Accdiffusion: An accurate method for
higher-resolution image generation. arXiv preprint arXiv:2407.10738, 2024b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models: Synthe-
sizing high-resolution images with few-step inference. arXiv preprint arXiv:2310.04378, 2023a.

Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu, Patrick von Platen, Apolinário Passos, Longbo
Huang, Jian Li, and Hang Zhao. Lcm-lora: A universal stable-diffusion acceleration module.
arXiv preprint arXiv:2311.05556, 2023b.

Nanye Ma, Mark Goldstein, Michael S. Albergo, Nicholas M. Boffi, Eric Vanden-Eijnden, and
Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. 2024a.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15762–15772, 2024b.

Huanru Henry Mao. Fine-tuning pre-trained transformers into decaying fast weights. arXiv preprint
arXiv:2210.04243, 2022.

13

https://github.com/black-forest-labs/flux
https://github.com/black-forest-labs/flux


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
Sdedit: Guided image synthesis and editing with stochastic differential equations. arXiv preprint
arXiv:2108.01073, 2021.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162–8171. PMLR, 2021.

William Peebles and Saining Xie. Scalable diffusion models with transformers. arXiv preprint
arXiv:2212.09748, 2022.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for
the transformer era. arXiv preprint arXiv:2305.13048, 2023.

Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Albalak, Eric Alcaide, Stella Biderman, Eugene
Cheah, Teddy Ferdinan, Haowen Hou, Przemysław Kazienko, et al. Eagle and finch: Rwkv with
matrix-valued states and dynamic recurrence. arXiv preprint arXiv:2404.05892, 2024.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A Smith, and Lingpeng Kong.
Random feature attention. arXiv preprint arXiv:2103.02143, 2021.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

Subhojeet Pramanik, Esraa Elelimy, Marlos C Machado, and Adam White. Recurrent linear trans-
formers. arXiv preprint arXiv:2310.15719, 2023.

Zhen Qin, Songlin Yang, Weixuan Sun, Xuyang Shen, Dong Li, Weigao Sun, and Yiran Zhong.
Hgrn2: Gated linear rnns with state expansion. arXiv preprint arXiv:2404.07904, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, pp. 234–241. Springer, 2015.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22500–
22510, 2023.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in Neural Informa-
tion Processing Systems, 35:36479–36494, 2022.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. Advances in Neural
Information Processing Systems, 35:25278–25294, 2022.

Yuheng Shi, Minjing Dong, Mingjia Li, and Chang Xu. Vssd: Vision mamba with non-casual state
space duality. arXiv preprint arXiv:2407.18559, 2024.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui Wang, Shuming Ma, Quanlu Zhang, Jianyong
Wang, and Furu Wei. You only cache once: Decoder-decoder architectures for language models.
arXiv preprint arXiv:2405.05254, 2024.

Yao Teng, Yue Wu, Han Shi, Xuefei Ning, Guohao Dai, Yu Wang, Zhenguo Li, and Xihui Liu. Dim:
Diffusion mamba for efficient high-resolution image synthesis. arXiv preprint arXiv:2405.14224,
2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
image synthesis. arXiv preprint arXiv:2306.09341, 2023.

Jing Nathan Yan, Jiatao Gu, and Alexander M Rush. Diffusion models without attention. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8239–8249,
2024.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications. ACM Computing Surveys, 56(4):1–39, 2023a.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. arXiv preprint arXiv:2312.06635, 2023b.

Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
adapter for text-to-image diffusion models. 2023.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 3836–3847, 2023.

Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity
distillation: Exponentially fast distillation of pretrained diffusion models for one-step generation.
In Forty-first International Conference on Machine Learning, 2024.

Lianghui Zhu, Zilong Huang, Bencheng Liao, Jun Hao Liew, Hanshu Yan, Jiashi Feng, and Xing-
gang Wang. Dig: Scalable and efficient diffusion models with gated linear attention. arXiv
preprint arXiv:2405.18428, 2024a.

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
mamba: Efficient visual representation learning with bidirectional state space model, 2024b.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A RELATED WORKS

In this section, we review related works from two perspectives, namely efficient diffusion architec-
tures and linear-complexity token mixers.

A.1 EFFICIENT DIFFUSION ARCHITECTURES

There are mainly two mainstreams of works aiming at more efficient diffusion models, including ef-
ficient sampling for a reduced number of sampling time-steps Song et al. (2023); Luo et al. (2023a);
Kim et al. (2023b); Ma et al. (2024b); Zhou et al. (2024) and efficient architectures for faster net-
work inference. This paper focuses on the latter, which is a bottleneck for generating high-resolution
visual results, particularly due to the self-attention token mixers in existing diffusion backbones.

To mitigate the efficiency issue triggered by the quadratic time and memory complexity, a series of
works, including DiS Fei et al. (2024a), DiM Teng et al. (2024), DiG Zhu et al. (2024a), Diffusion-
RWKV Fei et al. (2024b), DiffuSSM Yan et al. (2024), and Zigma Hu et al. (2024). These works
have successfully adapted recent state space models like Mamba Gu & Dao (2023), RWKV Peng
et al. (2023), or Linear Attention Katharopoulos et al. (2020) into diffusion architectures. However,
these architectures maintain a causal restriction for diffusion tasks, processing input spatial tokens
one by one, with generated tokens conditioned only on preceding tokens. In contrast, the diffusion
task allows models to access all noisy tokens simultaneously, making the causal restriction unnec-
essary. To address this, we eliminate the causal restriction and introduce a non-causal token mixer
specifically designed for the diffusion model.

Additionally, previous works have primarily focused on class-conditioned image generation. For
text-to-image generation, Kim et al. (2023a) propose architectural pruning for Stable Diffusion (SD)
by reducing the number of UNet stages and blocks, which is orthogonal to our focus on optimizing
self-attention layers.

A.2 LINEAR-COMPLEXITY TOKEN MIXERS

Despite the widespread adoption of Transformer Vaswani et al. (2017) across various fields due
to its superior modeling capacity, the quadratic time and memory complexity of the self-attention
mechanism often leads to efficiency issues in practice. A series of linear-complexity token mixers are
thus introduced as alternatives, such as Linear Attention Katharopoulos et al. (2020), State Space
Model Gu et al. (2021), and their variants including Mamba Gu & Dao (2023), Mamba2 Dao &
Gu (2024), mLSTM Beck et al. (2024); Peng et al. (2021), Gated Retention Sun et al. (2024),
DFW Mao (2022); Pramanik et al. (2023), GateLoop Katsch (2023), HGRN2 Qin et al. (2024),
RWKV6 Peng et al. (2024), GLA Yang et al. (2023b), etc. These models are designed for tasks
requiring sequential modeling, making it non-trivial to apply them to non-causal vision problems.
Addressing this challenge is the main focus of our paper.

For visual processing tasks, beyond the direct treatment of inputs as sequences, there are concurrent
works focused on non-causal token mixers with linear complexity. MLLA Han et al. (2024) employs
Linear Attention Katharopoulos et al. (2020) as token mixers in vision backbones without a gating
mechanism for hidden states. In VSSD Shi et al. (2024), various input tokens share the same group
of gating values. In contrast, the model proposed in this paper relaxes these gating assumptions,
offering a generalized non-causal version of various modern state-space models.

B THEORETICAL PROOF

Proposition 1. Assuming that the mean of the j-th channel in the input feature map X is µj , and
denoting (CB⊤)⊙ Ã as M , the mean of this channel in the output feature map Y is µj

∑n
k=1 Mik.

The proof is straightforward.

Proposition 2. Given that Ã = FG⊤, F,G ∈ Rn×r, and B,C ∈ Rn×d′
, denoting Ci = c(Xi),

Bi = b(Xi), Fi = f(Xi), and Gi = g(Xi), there exist corresponding functions f ′ and g′ such
that Eq. 4 of the main manuscript can be equivalently implemented as linear attention, expressed as
Y = f ′(X)g′(X)⊤X .

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Proof. Given existing conditions, we have:

(CB⊤)⊙ Ã = [(c(Xi)b
⊤(Xj))⊙ (f(Xi)g

⊤(Xj))]i,j

= [(

d′∑
u=1

{c(Xi)ub(Xj)u})(
r∑

v=1

{f(Xi)vg(Xj)v})]i,j

= [

d′∑
u=1

r∑
v=1

{(c(Xi)uf(Xi)v)(b(Xj)ug(Xj)v)}]i,j

= [(c(Xi)⊗ f(Xi))(b(Xj)⊗ g(Xj))
⊤]i,j ,

(7)

where ⊗ denotes Kronecker product. Defining f ′(Xi) = c(Xi) ⊗ f(Xi) and g′(Xi) = b(Xi) ⊗
g(Xi), we derive Y = f ′(X)g′(X)⊤X .

Proposition 3. Given that Ã ∈ Rd′×n×n, if for each 1 ≤ u ≤ d′, Ãu is low-rank separable: Ãu =
FuG

⊤
u , where Fu, Gu ∈ Rn×r, Fuiv = f(Xi)uv , and Gujv = g(Xj)uv , there exist corresponding

functions f ′ and g′ such that the computation Yi = CiHi = Ci

∑n
j=1{Ã:ij ⊙ (B⊤

j Xj)} can be
equivalently implemented as linear attention, expressed as Yi = f ′(Xi)g

′(X)⊤X , where Ã:ij is a
column vector and can broadcast to a d′ × d matrix.

Proof. Given existing conditions, we have:

Yi =

d′∑
u=1

[c(Xi)u{
n∑

j=1

r∑
v=1

(f(Xi)uvg(Xj)uvb(Xj)uXj)}]

=

d′∑
u=1

r∑
v=1

[c(Xi)uf(Xi)uv

n∑
j=1

{g(Xj)uvb(Xj)uXj}]

= vec(c(Xi) · f(Xi))[vec(b(Xj) · g(Xj))]
⊤
j X,

(8)

where f(Xi) = F:i: and g(Xj) = G:j: are d′ × r matrices, · denotes element-wise multiplica-
tion with broadcasting, and vec represents flatting a matrix into a row vector. Defining f ′(Xi) =
vec(c(Xi) · f(Xi)) and g′(Xi) = vec(b(Xj) · g(Xj)), we derive Y = f ′(X)g′(X)⊤X .

C ADDITIONAL EXPERIMENTS

Ultrahigh-Resolution Generation. We present qualitative examples to illustrate the effectiveness
of LinFusion on ultrahigh-resolution generation in Fig. 8. We build LinFusion upon DemoFusion Du
et al. (2024), a pipeline dedicated to high-resolution generation. Similar to SDEdit Meng et al.
(2021), DemoFusion also generate high-resolution images in a coarse-to-fine fashion. In the orig-
inal implementation, for efficiency, in the high-resolution upsampling stage, DemoFusion handles
a high-resolution image patch-by-patch and averages the outputs of overlapped areas Bar-Tal et al.
(2023). However, we find that such a patch-wise treatment largely ignores the holistic text-image
relationships. As shown in Fig. 8(DemoFusion), there are stars on the body of the astronaut. With
an efficient architecture introduced by LinFusion, we do not have to conduct inference patch-by-
patch. Instead, the whole image, even in the ultra-high-resolution generation stage, can be accom-
modated to a single GPU for denoising, which addresses the above limitation effectively as shown
in Fig. 8(Full Steps).

Moreover, DemoFusion has to conduct full steps in the high-resolution denoising stage, which would
introduce significant latency. Motivated from the insight in SDEdit Meng et al. (2021) that early
denoising steps tend to take over the overall image layouts, we propose to skip some initial steps
in the high-resolution stage, given that the overall image structures have been produced in the low-
resolution stage. We find that it not only improves the efficiency but also makes the pipeline more
robust to the turbulence on image layout in the high-resolution stage, as shown in Fig. 8(40% Steps).

Distributed Parallel Inference. We supplement qualitative results of distributed parallel inference
by building LinFusion upon DistriFusion Li et al. (2024) in Fig. 9. Using constant communica-

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

1024x1024
4096x4096

SD-XL w. LinFusion

DemoFusion Full Steps 40% Steps

Figure 8: LinFusion is complementary to pipelines dedicated to high-resolution generation like De-
moFusion. To enhance the performance, instead of working patch-by-patch, we handle the image
as a whole benefiting from the efficient LinFusion architecture. Moreover, we reveal that skip-
ping part of the denoising steps in the high-resolution stage can further improve the efficiency
without hurting the performance. The prompt is “An astronaut floating in space.
Beautiful view of the stars and the universe in the background.”.

1 GPU 2 GPUs, 1.69x Faster 4 GPUs, 2.59x Faster 8 GPUs, 3.03x Faster

FID: 24.85 FID: 24.96 FID: 25.00 FID: 24.97

Figure 9: LinFusion is complementary to pipelines for high-resolution generation like DistriFu-
sion. Using constant communication cost among various GPU, it achieves highly comparable
performance with single-GPU inference. The prompt is “Astronaut in a jungle, cold
color palette, muted colors, detailed, 8k”.

Setting FID(↓) CLIP-T(↑)
SD-v1.5 12.86 0.321

w. LinFusion 12.57 0.323
SD-v2.1 12.84 0.333

w. LinFusion 13.84 0.329
SD-XL 14.74 0.340

w. LinFusion 15.72 0.338
PixArt-Sigma 26.32 0.334

w. 75% LinFusion 24.32 0.327

Table 9: Performance of LinFusion built upon various models on the COCO benchmark.

tion cost among various GPUs, it achieves highly comparable performance with single-GPU in-
ference. Unlike the original DistriFusion, LinFusion offers significant acceleration using multiple
GPUs without the dependency on NVLink.

Results on More Architectures. We conduct experiments on a variety of diffusion architectures
in this paper, including SD-v1.5, SD-v2.1 Rombach et al. (2022), SD-XL Podell et al. (2023), and
PixArt-Sigma Chen et al. (2023). The former three adopt transformer-based UNet while the last one
is based on DiT Peebles & Xie (2022), a pure-Transformer structure. Their quantitative results are
listed in Tab. 9.

We find that on SD-v2.1 and SD-XL, LinFusion leads to slightly inferior results. We speculate that
the reason lies in the training data used for LinFusion, which consists of only ∼160K relatively
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PixArt-Sigma PixArt-Sigma
w. 100% LinFusion

PixArt-Sigma
w. 75% LinFusion

Figure 10: By default, LinFusion replaces all self-attention layers in a diffusion backbone. When
applied to DiT-based structures like PixArt-Sigma, this configuration often struggles to generate
smooth results. Leaving a small part of original self-attention layers unmoved, e.g., 25%, could
largely alleviate this challenge. The prompts are “A photo of beautiful mountain
with realistic sunset and blue lake, highly detailed, masterpiece”
and “dog” respectively.

Add 
Noise

Query

Original ImageAttention Maps w.r.t. QueryFull Attention Maps

Figure 11: Visualization of attention maps by various heads for an intermediate denoising step on
FLUX-1.dev. Attention in pre-trained DiTs is not low-rank and is largely conducted in a local
fashion.

low-resolution samples, the majority of which are below 512 × 512 resolution. Involving more
high-quality samples can benefit the performance.

On PixArt-Sigma, we find that replacing all the self-attention layers in the DiT would result in
unnatural results, as shown in Fig. 10. We speculate that the challenge arises because self-attention
is the core and sole mechanism for managing token relationships in DiT. Replacing these layers
entirely with LinFusion may create a significant divergence from the original architecture, leading
to difficulties during training. As shown in Fig. 10, we leave a small part of the original self-
attention layers unchanged, e.g., 25% by evenly preserving 1 self-attention layer of every 4 layers,
which could largely alleviate this challenge.

Adaptation to MM-DiT. Most state-of-the-art text-to-image models, like SD-3 Esser et al. (2024)
and FLUX Labs (2024), adopt multi-model joint attention modules, which conduct self-attention
operations on the concatenation of text and image tokens. For these models, we find that directly
replacing all the joint attention layers with LinFusion modules may not produce reasonable images.
We delve into the underlying reasons by visualizing the attention maps. As shown in Fig. 11, we
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w. Local Attentionwo. Local Attention

traditional Chinese street at night, red lanterns illuminating the cobblestone road, wooden storefronts 
with calligraphy signs, vendors selling snacks, soft mist in the air, ultra-detailed, photorealistic, 

ultra HD, 8K, vivid lighting, nostalgic atmosphere, intricate details of lanterns and signs

Figure 12: On Diffusion Transformers based on multi-modal joint attention, e.g., FLUX 1.dev, native
LinFusion would generate meaningless results if all attention layers are replaced by linear attention.
Local attention with a fixed window size, e.g., 15, can largely alleviate the problem.

(a) (b)
Figure 13: Comparisons of LinFusion with the original SD-v1.5 under various resolutions in terms
of forward speed using 8 steps and backward speed over 1 layer, when FlashAttention 2 Dao (2023)
is adopted for the original architecture and Triton implementation is applied for LinFusion.

find that the attention maps do not exhibit a low-rank property. As the core mechanism for token
interaction, linear attention solely is inherently incapable of mimicking the functionalities of the
vanilla attention mechanism.

Fortunately, we also find in Fig. 11 that most attention interactions demonstrate local patterns: to-
kens tend to aggregate information more from local neighborhoods. We thus augment the native
LinFusion with local attention mechanisms similar to Hassani et al. (2023). In this way, local inter-
actions can be handled the local attention layers effectively, while global interactions are processed
by linear attention. Since the local window size would not vary with the increasing of image res-
olutions, this hybrid model is still linear-complexity. As shown in Fig. 12, such a local operator
with window size 15 largely addresses the problem. We provide more high-resolution examples in
Fig. 15.

Efficient Implementation. Fig. 2 in the main manuscript demonstrates the performance of LinFu-
sion with a naive implementation. Here, we report the efficiency performance with fused operators
implemented by Triton and compare the running speed with FlashAttention 2 Dao (2023) on a sin-
gle RTX6000Ada GPU, as shown in Fig. 13. The conclusion is consistent with that in the main
manuscript, that LinFusion achieves more significant acceleration at higher resolutions.

Performance of Training from Scratch. To demonstrate the potential of the LinFusion architecture
introduced in this paper, we include the performance of training from scratch here. Specifically, we
replace the self-attention layers in the SiT-B Ma et al. (2024a) model with the generalized linear
attention layer in LinFusion and train both models on ImageNet1k-256×256 Deng et al. (2009) from
scratch for 400k iterations following the convention. Results in Tab. 11 indicate at least comparable
performance of LinFusion with the vanilla attention mechanism.
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Figure 14: Results of grid search on the loss weights of knowledge distillation and attention feature
matching.

Setting Concept-art Paintings Photo Anime Average
SD-v1.5 24.00 23.89 25.00 24.82 24.43

w. LinFusion 24.38 24.36 24.92 25.16 24.71

Table 10: Performance on the HPSv2 benchmark Wu et al. (2023).

Setting IS(↑) FID(↓) sFID(↓) Precision(↑) Recall(↑)
SiT-B 146.56 8.15 5.65 0.72 0.58

w. LinFusion 157.16 7.09 5.75 0.73 0.59

Table 11: Performance of training from scratch. We replace self-attention layers in SiT-B Ma et al.
(2024a) with the proposed LinFusion layers and train from scratch on ImageNet1k-256× 256 Deng
et al. (2009). The scale of classifier-free guidance is 1.8 here.

Broader Evaluation. We additionally evaluate the proposed LinFusion approach on the HPSv2
benchmark Wu et al. (2023), which measures the capability of text-to-image models given 4 vari-
ous styles of generation contents. Results in Tab. 10 demonstrate the performance of LinFusion is
comparable to or even better than the original SD-v1.5 model.

Analysis of Hyper-parameters. The distillation objective for LinFusion defined in Eq. 6 introduces
two hyper-parameters: α and β, denoting the loss weights of knowledge distillation and attention
feature matching respectively. Here we study their impacts on the final performance through a grid
search. As shown in Fig. 14, we try 3 various values, 0.05, 0.5, and 5, for each of them and report
the FID and CLIP-T metrics. Overall, the performance is not sensitive to the specific values of
these hyper-parameters in a large range. Too small values may result in insufficient effects of these
loss terms, while too large values would not benefit performance, either. The default setting, i.e.,
α = β = 0.5, is a suitable choice.

D LIMITATIONS

The motivation of LinFusion is to explore a linear-complexity diffusion architecture by experimen-
tally replacing all the self-attention layers with the proposed generalized linear attention. This may
not be the optimal configuration in practice. For example, it could be promising to explore hybrid
structures and apply attention to deep features with a relatively smaller number of tokens but a large
number of feature channels, which could be a meaningful future direction.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 15: More high-resolution samples generated by LinFusion built on top of FLUX-1.dev.
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