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Abstract
There is growing interest in extending average
treatment effect (ATE) estimation to incorporate
non-tabular data, such as images and text, which
may act as sources of confounding. Neglecting
these effects risks biased results and flawed sci-
entific conclusions. However, incorporating non-
tabular data necessitates sophisticated feature ex-
tractors, often in combination with ideas of trans-
fer learning. In this work, we investigate how la-
tent features from pre-trained neural networks can
be leveraged to adjust for sources of confounding.
We formalize conditions under which these latent
features enable valid adjustment and statistical in-
ference in ATE estimation, demonstrating results
along the example of double machine learning.
We discuss critical challenges inherent to latent
feature learning and downstream parameter esti-
mation arising from the high dimensionality and
non-identifiability of representations. Common
structural assumptions for obtaining fast conver-
gence rates with additive or sparse linear models
are shown to be unrealistic for latent features. We
argue, however, that neural networks are largely
insensitive to these issues. In particular, we show
that neural networks can achieve fast convergence
rates by adapting to intrinsic notions of sparsity
and dimension of the learning problem.

1. Introduction
Causal inference often involves estimating the average treat-
ment effect (ATE), which represents the causal impact of
an exposure on an outcome. Under controlled study se-
tups of randomized controlled trials (RCTs), valid inference
methods for ATE estimation are well established (Deaton
& Cartwright, 2018). However, RCT data is usually scarce
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and in some cases even impossible to obtain, either due
to ethical or economic reasons. This often implies relying
on observational data, typically subject to (unmeasured)
confounding—(hidden) factors that affect both the exposure
and the outcome. To overcome this issue of confounding
and to obtain unbiased estimates, several inferential methods
have been developed to properly adjust the ATE estimation
for confounders. One approach that has garnered significant
attention in recent years is the debiased/double machine
learning (DML) framework (Chernozhukov et al., 2017;
2018), which allows the incorporation of machine learning
methods to adjust for non-linear or complex confounding
effects in the ATE estimation. DML is usually applied in
the context of tabular features and was introduced for ML
methods tailored to such features. However, confounding
information might only be present in non-tabular data, such
as images or text.

Non-tabular Data as Sources of Confounding Espe-
cially in medical domains, imaging is a key component
of the diagnostic process. Frequently, CT scans or X-rays
are the basis to infer a diagnosis and a suitable treatment
for a patient. However, as the information in such medical
images often also affects the outcome of the therapy, the
information in the image acts as a confounder. Similarly,
treatment and health outcomes are often both related to a pa-
tient’s files, which are typically in text form. Consequently,
ATE estimation based on such observational data will likely
be biased if the confounder is not adequately accounted
for. Typical examples would be the severity of a disease
or fracture. The extent of a fracture impacts the likelihood
of surgical or conservative therapy, and the severity of a
disease may impact the decision for palliative or chemother-
apy. In both cases, the severity will likely also impact the
outcome of interest, e.g., the patient’s recovery rate. An-
other famous example is the Simpson’s Paradox observed
in the kidney stone treatment study of Charig et al. (1986).
The size of the stone (information inferred from imaging)
impacts both the treatment decision and the outcome, which
leads to flawed conclusions about the effectiveness of the
treatment if confounding is not accounted for (Julious &
Mullee, 1994).

Contemporary Applications While the DML framework
provides a solution for non-linear confounding, previous
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Figure 1. Schematic (left) and DAG visualization (right) of the
effect of a treatment T on outcome Y that is confounded by non-
tabular data W (e.g. information from medical imaging).

examples demonstrate that modern data applications require
extending ATE estimation to incorporate non-tabular data.
In contrast to traditional statistical methods and classical
machine learning approaches, information in non-tabular
data usually requires additional feature extraction mecha-
nisms to condense high-dimensional inputs to the relevant
information in the data. This is usually done by employing
neural network-based approaches such as foundation mod-
els or other pre-trained neural networks. While it may seem
straightforward to use such feature extractors to extract la-
tent features from non-tabular data and use the resulting
information in classical DML approaches, we show that
this necessitates special caution. In particular, incorporat-
ing such features into ATE estimation requires overcoming
previously unaddressed theoretical and practical challenges,
including non-identifiability, high dimensionality, and the
resulting limitations of standard assumptions like sparsity.

Problem Setup Given n independent and identically dis-
tributed (i.i.d.) observations of (T,W, Y ), we are interested
in estimating the ATE of a binary variable T ∈ {0, 1} on
some outcome of interest Y ∈ R while adjusting for some
source of confounding W ∈ W (cf. Figure 1). W is pre-
treatment data from some potentially complex sampling
space W that is assumed to be sufficient for adjustment. The
definition of sufficiency will be formalized in Section 3.1.
Under positivity and consistency assumption—the standard
assumptions in causality—the target parameter of interest
can be identified as

ATE := E[E[Y |T = 1,W ]− E[Y |T = 0,W ]]. (1)

While there are many well-known ATE estimators, most
require to estimate either the outcome regression function

g(t, w) := E[Y |T = t,W = w] (2)

or the propensity score

m(t|w) := P[T = t|W = w] (3)

at parametric rate
√
n. Doubly robust estimators such as

the Augmented Inverse Probability Weighted, the Targeted

Maximum Likelihood Estimation or the DML approach es-
timate both nuisance functions g and m. These methods
thus only require the product of their estimation errors to
converge at

√
n-rate (Robins & Rotnitzky, 1995; van der

Laan & Rubin, 2006; van der Laan & Rose, 2011; Cher-
nozhukov et al., 2017; 2018). However, even this can be
hard to achieve, given the curse of dimensionality when
considering the high-dimensionality of non-tabular data W
such as images. Especially given the often limited number
of samples available in many medical studies involving im-
ages, estimatingm and g as a function ofW , e.g., via neural
networks, might not be feasible or overfit easily. To cope
with such issues, a common approach is to adopt ideas from
transfer learning and use pre-trained neural networks.

Our Contributions In this paper, we discuss under what
conditions pre-trained representationsZ := φ(W ) obtained
from pre-trained neural networks φ can replace W in the
estimation of nuisance functions (2) and (3). Although the
dimensionality of Z is usually drastically reduced compared
to W , one major obstacle from a theoretical point of view is
that representations can only be learned up to invertible lin-
ear transformations (e.g., rotations). We argue that common
assumptions allowing fast convergence rates, e.g., sparsity
or additivity of the nuisance function, are no longer reason-
able in such settings. In contrast, we build on the idea of low
intrinsic dimensionality of the pre-trained representations.
Combining invariance of intrinsic dimensions and functional
smoothness with structural sparsity, we establish conditions
that allow for sufficiently fast convergence rates of nuisance
function estimation and, thus, valid ATE estimation and
inference. Our work, therefore, not only advances the the-
oretical understanding of causal inference in this context
but also provides practical insights for integrating modern
machine learning tools into ATE estimation.

2. Related Work
The DML framework was initially proposed for tabular fea-
tures in combination with classical machine learning meth-
ods (Chernozhukov et al., 2017; 2018). Several theoretical
and practical extensions to incorporate neural networks have
been made with a focus on tabular data (Shi et al., 2019;
Farrell et al., 2021; Chernozhukov et al., 2022; Zhang &
Bradic, 2024). Additionally, there is a growing body of
research that aims to incorporate non-tabular data as adjust-
ment into DML (Veitch et al., 2019; 2020; Klaassen et al.,
2024). While the latter directly incorporates the non-tabular
data in the estimation, none of them discuss conditions that
would theoretically justify fast convergence rates necessary
for valid inference. A different strand of research instead
uses either derived predictions (Zhang et al., 2023; Battaglia
et al., 2024; Jerzak et al., 2022; 2023a;b) or proxy variables
(Kuroki & Pearl, 2014; Kallus et al., 2018; Miao et al., 2018;
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Mastouri et al., 2021; Dhawan et al., 2024) in downstream
estimation. In contrast to these proposals, we consider the
particularly broad setup of using pre-trained representations
for confounding adjustment. Given the increasing popular-
ity of pre-trained models, Dai et al. (2022) and Christgau
& Hansen (2024) establish theoretical conditions justify-
ing the use of derived representations in downstream tasks,
which we will review in the next section. The idea of a low
intrinsic dimensionality of non-tabular data and its latent
representations to explain the superior performance of deep
neural networks in non-tabular data domains has been ex-
plored and validated both empirically (Gong et al., 2019;
Ansuini et al., 2019; Pope et al., 2021; Konz & Mazurowski,
2024) and theoretically (Chen et al., 2019; Schmidt-Hieber,
2019; Nakada & Imaizumi, 2020). By connecting several
of those theoretical ideas and empirical findings, our work
establishes a set of novel theoretical results and conditions
that allow to obtain valid inference when using pre-trained
representations in adjustment for confounding.

3. Properties of Pre-Trained Representations
Given the high dimensional nature of non-tabular data, to-
gether with the often limited number of samples available
(especially in medical domains), training feature extractors
such as deep neural networks from scratch is often infeasi-
ble. This makes the use of latent features from pre-trained
neural networks a popular alternative (Erhan et al., 2010).
In order to use pre-trained representations for adjustment in
the considered ATE setup, certain conditions regarding the
representations are required.

3.1. Sufficiency of Pre-Trained Representations

Given any pre-trained model φ, trained independently of W
on another dataset, we denote the learned (last-layer) rep-
resentations as Z := φ(W ). Due to the non-identifiability
of Z up to certain orthogonal transformations, further dis-
cussed in Section 3.2, we define the following conditions
for the induced equivalence class of representations Z fol-
lowing Christgau & Hansen (2024). For this, we abstract
the adjustment as conditioning on information in the ATE
estimation, namely conditioning on the uniquely identifiable
information contained in the sigma-algebra σ(Z) generated
by any Z ∈ Z (see also Appendix A.1 for a special case).

Definition 3.1. [Christgau & Hansen (2024)] Given the
joint distribution P of (T,W, Y ), sigma-algebra σ(Z) of Z,
and t ∈ {0, 1}, we say that any Z ∈ Z is

(i) P -valid if:

EP [EP [Y |T = t, σ(Z)]] = EP [EP [Y |T = t,W ]]

(ii) P -OMS (Outcome Mean Sufficient) if:

EP [Y |T = t, σ(Z)] = EP [Y |T = t,W ] (P -a.s.)

(iii) P -ODS (Outcome Distribution Sufficient) if:

Y ⊥P W |T,Z.

Remark 3.2. If Z ∈ Z is P -ODS, it is also called a sufficient
embedding in the literature (Dai et al., 2022).

The three conditions in Definition 3.1 place different restric-
tions on the nuisance functions (2) and (3). While P -ODS
is most restrictive (followed by P -OMS) and thus guaran-
tees valid downstream inference more generally, the strictly
weaker condition of P -validity is already sufficient (and in
fact necessary) to guarantee that Z ∈ Z is a valid adjust-
ment set in the ATE estimation (Christgau & Hansen, 2024).
Thus, any pre-trained representation Z considered in the
following is assumed to be at least P -valid.

Figure 2. Schematic visualization of a pre-trained neural network
φ(·) and representations Z = φ(W ).

3.2. Non-Identifiability under ILTs

In practice, the representation Z = φ(W ) is extracted from
some layer of a pre-trained neural network φ. This infor-
mation does not change under bijective transformations of
Z, so the representation Z itself is not identifiable. We ar-
gue that, in this context, non-identifiability with respect to
invertible linear transformations (ILTs) is most important.
Suppose Z = φ(W ) is extracted from a deep network’s ℓth
layer. During pre-training the network further processes Z
through a model head ϕ(Z), as schematically depicted in
Figure 2. The model head usually has the form ϕ>ℓ(AZ+b)
where A, b are the weights and biases of the ℓth layer, and
ϕ>ℓ summarizes all following computations. Due to this
structure, any bijective linear transformation Z 7→ QZ can
be reversed by the weights A 7→ Ã = AQ−1 so that the
networks ϕ>ℓ(A · +b) and ϕ>ℓ(ÃQ · +b) have the same
output.

Definition 3.3 (Invariance to ILTs). Given a latent rep-
resentation Z, we say that a model (head) ϕξ with pa-
rameters ξ ∈ Ξ is non-identifiable up to invertible lin-
ear transformations if for any invertible matrix Q ∈ Rd×d
∃ξ̃ ∈ Ξ : ϕξ(QZ) = ϕξ̃(Z).

Important examples of ILTs are rotations, permutations, and
scalings of the feature space as well as compositions thereof.
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Smoothness + Additivity + Sparsity & Linearity Intrinsic Dimension

Stone (1982) Stone (1985) Raskutti et al. (2009) Bickel & Li (2007)

O(n−
s

2s+d ) O(n−
s

2s+1 ) O(
√
p log(d)/n), p≪ d O(n

− s
2s+dM ), dM≪ d

Table 1. Assumptions and related minimax convergence rates of the estimation error

4. Estimation using Pre-Trained
Representations

The previous section discussed sufficient and necessary (in-
formation theoretic) conditions for pre-trained representa-
tions, justifying their usage for adjustment in downstream
tasks. The following section will discuss aspects of the func-
tional estimation in such adjustments. Valid statistical infer-
ence in downstream tasks usually requires fast convergence
of nuisance function estimators. However, obtaining fast
convergence rates in high-dimensional estimation problems
is particularly difficult. We argue that some commonly made
assumptions are unreasonable due to the non-identifiability
of representations. We discuss this in the general setting of
nonparametric estimation as described in the following.

The Curse of Dimensionality The general problem in
nonparametric regression is to estimate some function f in
the regression model

Y = f(X) + ϵ (4)

with outcome Y ∈ R, features X ∈ Rd, and error
ϵ ∼ N (0, σ2). The minimax rate for estimating Lipschitz
functions is known to be n−

1
2+d (Stone, 1982). This rate

becomes very slow for increasing d, known as the curse
of dimensionality. Several additional structural and distri-
butional assumptions are commonly encountered to obtain
faster convergence rates in high dimensions.

4.1. Structural Assumption I: Smoothness

A common structural assumption is the smoothness of the
function f in (4), i.e., the existence of s bounded and contin-
uous derivatives. Most convergence rate results assume at
least some level of smoothness (see Table 1). The following
lemma verifies that this condition is also preserved under
ILTs.

Lemma 4.1 (Smoothness Invariance under ILTs). Let D ⊆
Rd be an open set, f : D → R be an s-smooth-function on
D, and Q by any ILT. Then h = f ◦ Q−1 : Q(D) → R is
also s-smooth on the transformed domain Q(D).

The proof of Lemma 4.1 and subsequent lemmas of this
section are given in Appendix A.

The lemma shows that a certain level of smoothness of a
function defined on latent representations may reasonably be

assumed due to its invariance to ILTs. If the feature dimen-
sion is large, however, an unrealistic amount of smoothness
would be required to guarantee fast convergence rates (e.g.,
of order n−1/4). This necessitates additional structural or
distributional assumptions.

4.2. Structural Assumptions II: Additivity & Sparsity

The common structural assumption is that f is additive,
f(x) =

∑d
j=1 fj(xj), i.e., the sum of univariate s-smooth

functions. In this case, the minimax convergence rate re-
duces to n−

s
2s+1 (Stone, 1985). Another common approach

is to rely on the idea of sparsity. Assuming that f is p-sparse
implies that it only depends on p < min(n, d) features.
In case one further assumes the univariate functions to be
linear in each feature, i.e. f(x) =

∑p
j=1 βjxj with coef-

ficient βj ∈ R, the optimal convergence rate reduces to√
p log(d/p)/n (Raskutti et al., 2009).

It can easily be shown that the previously discussed condi-
tions are both preserved under permutation and scaling. But
as the following lemma shows, sparsity and additivity of f
are (almost surely) not preserved under generic ILTs such
as rotations.

Lemma 4.2 (Non-Invariance of Additivity and Sparsity
under ILTs). Let f : Rd → R be a function of x ∈ Rd. We
distinguish between two cases:

(i) Additive: f(x) =
∑d
j=1 fj(xj), with univariate func-

tions fj : R → R, and at least one fj being non-linear.

(ii) Sparse Linear: f(x) =
∑d
j=1 βjxj , where βj ∈ R

and at least one (but not all) βj = 0.

Then, for almost every Q drawn from the Haar measure on
the set of ILTs, it holds:

(i) If f is additive, then h = f ◦Q−1 is not additive.

(ii) If f is sparse linear, then h = f ◦Q−1 is not sparse.

Given the non-identifiability of representations with respect
to ILTs and the non-invariance result of Lemma 4.2, any
additivity or sparsity assumption about the target function
f of the latent features seems unjustified. An example of
this rotational non-invariance of sparsity is given in Fig-
ure 3. This also implies that learners such as the lasso (with
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Figure 3. Non-zero coefficients of a linear classifier on latent fea-
tures, showing that sparsity is lost with an increasing number of
random feature rotations.

underlying sparsity assumption), tree-based methods that
are based on axis-aligned splits (including corresponding
boosting methods), and most feature selection algorithms
are not ILT-invariant. Further examples can be found in Ng
(2004).

4.3. Distributional Assumption: Intrinsic Dimension

While the previous conditions are structural assumptions
regarding the function f itself, faster convergence rates can
also be achieved by making distribution assumptions about
the support of f . A popular belief is that the d-dimensional
data X ∈ Rd lie on or close to a low-dimensional manifold
M with intrinsic dimension dM. This relates to the famous
manifold hypothesis that many high-dimensional data con-
centrate on low-dimensional manifolds (Fefferman et al.,
2016, e.g.,). There is strong empirical support for this as-
sumption, especially for non-tabular modalities such as text
and images, see Appendix B.1. Given that dM ≪ d, and
again assuming f to be s-smooth, this can lead to a much
faster convergence rate of n−

s
2s+dM (Bickel & Li, 2007), as

it is independent of the dimension d of the ambient space.

Similarly to Lemma 4.1, the following lemma shows the
invariance of the intrinsic dimension of a manifold with
respect to any ILT of the coordinates in the d-dimensional
ambient space.

Lemma 4.3 (Intrinsic Dimension Invariance under ILTs).
Let M ⊂ Rd be a smooth manifold of dimension dM ≤ d.
For any ILT Q, the transformed set

Q(M) = {Qx | x ∈ M} .

is also a smooth manifold of dimension dM.

Remark 4.4. Put differently, in case the latent representa-
tions Z ∈ Rd lie on a dM-dimensional smooth manifold
M, then the IL-transformed representations Q(Z) also lie
on a smooth manifold Q(M) of dimension dM.

Summarizing previous results, the structural and distribution
assumptions of smoothness and low intrinsic dimensionality
are invariant with respect to any ILT of the features. Hence,
as opposed to additivity or sparsity, the two conditions hold
not only for a particular instantiation of a latent representa-

tion Z but for the entire equivalence class of latent represen-
tations induced by the class of ILTs. This is crucial given
the non-identifiability of latent representations, highlighting
the importance of low intrinsic dimensions (IDs).

Deep Networks Can Adapt to Intrinsic Dimensions Re-
cently, several theoretical works have shown that DNNs
can adapt to the low intrinsic dimension of the data and
thereby attain the optimal rate of n−

s
2s+dM (Chen et al.,

2019; Schmidt-Hieber, 2019; Nakada & Imaizumi, 2020;
Kohler et al., 2023). In Section 5, we present a new conver-
gence rate result that builds on the ideas of low ID and a
hierarchical composition of functions particularly suited for
DNNs.

5. Downstream Inference
The manifold assumption alone, however, cannot guarantee
sufficient approximation rates in our setting. Even if the
manifold dimension dM is much smaller than the ambient
dimension d (for example, dM ≈ 30), an unreasonably
high degree of smoothness would need to be assumed to
allow for convergence rates below n−1/4. In what follows,
we give a more realistic assumption to achieve such rates.
In particular, we combine the low-dimensional manifold
structure in the feature space with a structural smoothness
and sparsity assumption on the target function.

5.1. Structural Sparsity on the Manifold

Kohler & Langer (2021) recently derived convergence rates
based on the following assumption.

Definition 5.1 (Hierarchical composition model, HCM).

(a) We say that f : Rd → R satisfies a HCM of level 0, if
f(x) = xj for some j ∈ {1, . . . , d}.

(b) We say that f satisfies a HCM of level k ≥ 1, if there
is a s-smooth function h : Rp → R such that

f(x) = h
(
h1(x), . . . , hp(x)

)
,

where h1, . . . , hp : Rd → R are HCMs of level k − 1.

The collection P of all pairs (s, p) ∈ R× N appearing in
the specification is called the constraint set of the HCM.

An illustration of Definition 5.1 is given in Appendix B.2.
The assumption includes the case of sparse linear and (gen-
eralized) additive models as a special case but is much
more general. Kohler & Langer (2021) and Schmidt-Hieber
(2020) exploit such a structure to show that neural networks
can approximate the target function at a rate that is only
determined by the worst-case pair (s, p) appearing in the
constraint set. It already follows from Lemma 4.2 that the
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constraint set of such a model is not invariant to ILTs of
the input space. Furthermore, the assumption does not ex-
ploit the potentially low intrinsic dimensionality of the input
space. To overcome these limitations, we propose a new
assumption combining the input space’s manifold structure
with the hierarchical composition model.

Assumption 5.2. The target function f0 can be decom-
posed as f0 = f ◦ ψ, where M is a smooth, compact,
dM-dimensional manifold, ψ : M → Rp is sψ-smooth, and
f is a HCM of level k ∈ N with constraint set P .

Whitney’s embedding theorem (e.g., Lee & Lee, 2012, Chap-
ter 6) allows any smooth manifold to be smoothly embedded
into R2dM . This corresponds to a mapping ψ with sψ = ∞
and p = 2dM in the assumption above. If not all informa-
tion in the pre-trained representation Z is relevant, however,
p can be much smaller. Importantly, Assumption 5.2 is not
affected by ILTs.

Lemma 5.3 (Invariance of Assumption 5.2 under ILTs). Let
Q be any ILT. If f0 satisfies Assumption 5.2 for a given P
and (sψ, dM), then f̃0 = f0 ◦Q−1 satisfies Assumption 5.2
with the same P and (sψ, dM),

5.2. Convergence Rate of DNNs

We now show that DNNs can efficiently exploit this struc-
ture. Let (Yi, Zi)ni=1 be i.i.d. observations and ℓ be a loss
function. Define

f0 = argmin
f : Rd→R

E[ℓ(f(Z), Y )],

f̂ = argmin
f∈F(Ln,νn)

1

n

n∑
i=1

ℓ(f(Zi), Yi),

where F(L, ν) is the set of feed-forward neural networks
with L layers and ν neurons per layer. Let Z ∼ PZ and
define the L2(PZ)-norm of a function f as ∥f∥2L2(PZ) =∫
f(z)2dP (z). We make the following assumption on the

loss function ℓ.

Assumption 5.4. There is a, b ∈ (0,∞) such that

E[ℓ(f(Z), Y )]− E[ℓ(f0(Z), Y )]

∥f − f0∥2L2(PZ)

∈ [a, b].

Assumption 5.4 is satisfied for the squared and logistic loss,
among others (e.g., Farrell et al., 2021, Lemma 8).

Theorem 5.5. Suppose Assumption 5.2 and Assumption 5.4
hold. There are sequences Ln, νn and a corresponding
sequence of neural network architectures F(Ln, νn) such
that (up to log n factors)

∥f̂ − f0∥L2(PZ) = Op

(
max

(s,p)∈P∪(sψ,dM)
n−

s
2s+p

)
.

The result shows that the convergence rate of the neural
networks is only determined by the worst-case pair (s, p)
appearing in the constraint set of the HCM and the embed-
ding map ψ. The theorem extends the results of Kohler &
Langer (2021) in two ways. First, it allows for more gen-
eral loss functions than the square loss. This is important
since classification methods are often used to adjust for con-
founding effects. Second, it explicitly exploits the manifold
structure of the input space, which may lead to much sparser
HCM specifications and dramatically improved rates.

5.3. Validity of DML Inference

In the previous sections, we explored plausible conditions
under which the ATE is identifiable, and DNNs can estimate
the nuisance functions with fast rates. We now combine
our findings to give a general result for the validity of DML
from pre-trained representations.

For binary treatment T ∈ {0, 1} and pre-trained representa-
tions Z, we define the outcome regression function

g(t, z) := E[Y |T = t, Z = z],

and the propensity score

m(z) := P[T = 1|Z = z].

Suppose we are given an i.i.d. sample (Yi, Zi, Ti)ni=1. DML
estimators of the ATE are typically based on a cross-fitting
procedure. Specifically, let

⋃K
k=1 Ik = {1, . . . , n} be a

partition of the sample indices such that |Ik|/n → 1/K.
Let ĝ(k) and m̂(k) denote estimators of g and m computed
only from the samples (Yi, Zi, Ti)i/∈Ik . Defining

ÂTE
(k)

=
1

|Ik|
∑
i∈Ik

ρ(Ti, Yi, Zi; ĝ
(k), m̂(k)),

with orthogonalized score

ρ(Ti,Yi, Zi; g,m) = g(1, Zi)− g(0, Zi)

+
Ti(Yi − g(1, Zi))

m(Zi)
+

(1− Ti)(Yi − g(0, Zi))

1−m(Zi)
,

the final DML estimate of ATE is given by

ÂTE =
1

K

K∑
k=1

ÂTE
(k)
.

We need the following additional conditions.

Assumption 5.6. It holds

max
t∈{0,1}

E[|g(t, Z)|5] <∞, E[|Y |5] <∞,

E[|Y − g(T,Z)|2] > 0, Pr(m(Z) ∈ (ε, 1− ε)) = 1,

for some ε > 0.
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The first two conditions ensure that the tails of Y and g(t, Z)
are not too heavy. The second two conditions are required
for the ATE to be identifiable.

Theorem 5.7. Suppose the pre-trained representation is P -
valid, Assumption 5.6 holds, and the outcome regression and
propensity score functions g and m satisfy Assumption 5.2
with constraints Pg∪(sψ, dM) and Pm∪(s′ψ, dM), respec-
tively. Suppose further

min
(s,p)∈Pg∪(sψ,dM)

s

p
× min

(s′,p′)∈Pm∪(s′ψ,dM)

s′

p′
>

1

4
, (5)

and the estimators ĝ(k) and m̂(k) are DNNs as specified in
Theorem 5.5 with the restriction that m̂(k) is clipped away
from 0 and 1. Then

√
n(ÂTE−ATE) → N (0, σ2),

where σ2 = E[ρ(Ti, Yi, Zi; g,m)2].

Condition (5) is our primary regularity condition, ensuring
sufficiently fast convergence for valid DML inference. It
characterizes the necessary trade-off between smoothness
and dimensionality of the components in the HCM. In par-
ticular, it is satisfied when each component function in the
model has input dimension less than twice its smoothness.

6. Experiments
In the following, we will complement our theoretical results
from the previous section with empirical evidence from
several experiments. The experiments include both images
and text as non-tabular data, which act as the source of
confounding in the ATE setting. Further experiments can be
found in Appendix D.

6.1. Validity of ATE Inference from Pre-Trained
Representations

Text Data We utilize the IMDb Movie Reviews dataset
from Lhoest et al. (2021) consisting of 50,000 movie re-
views labeled for sentiment analysis. The latent features
Z as representations of the movie reviews are computed
using the last hidden layer of the pre-trained Transformer-
based model BERT (Devlin et al., 2019). More specifically,
each review results in a 768-dimensional latent variable Z
by extracting the [CLS] token that summarizes the entire
sequence. For this, each review is tokenized using BERT’s
subword tokenizer (bert-base-uncased), truncated to a maxi-
mum length of 128 tokens, and padded where necessary.

Image Data We further use the dataset from Kermany
et al. (2018) that contains 5,863 chest X-ray images of chil-
dren. Each image is labeled according to whether the lung
disease pneumonia is present or not. The latent features are
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Figure 4. Label Confounding: Comparison of ATE estimators on
the IMDb dataset. DML and S-Learner use pre-trained represen-
tations. Point estimates and 95% CIs are depicted.

obtained by passing the images through a pre-trained convo-
lutional neural network and extracting the 1024-dimensional
last hidden layer features of the model. We use the pre-
trained Densenet-121 model from the TorchXRayVision
library (Cohen et al., 2022), which was trained on several
publicly available chest X-ray datasets (Cohen et al., 2020).
Further details on the datasets and pre-trained models used
in our experiments are provided in Appendix C.1.

Confounding Setup For both data applications, we sim-
ulate treatment and outcome variables while inducing con-
founding based on the labels. As an example, for the modi-
fied image dataset, children with pneumonia have a higher
chance of receiving treatment compared to healthy children.
In contrast, pneumonia negatively impacts the outcome vari-
able. The same confounding is present in our modified text
dataset. Hence, the label creates a negative bias in both ATE
settings if not properly accounted for. Further details about
the confounding setups are provided in Appendix C.2.

ATE Estimators We compare the performance of DML
using three types of nuisance estimators: linear models with
and without L1-penalization (Lasso/ Linear), as well as ran-
dom forest (RF). For comparison, we also include another
common causal estimator, called S-Leaner, which only esti-
mates the outcome function (2) (details in Appendix C.3). In
each of the simulations, estimators facilitate the information
contained in the non-tabular data to adjust for confounding
by using the latent features from the pre-trained models in
the estimation. As a benchmark, we compare the estimate
to the ones of a Naive estimator (unadjusted estimation) and
the Oracle estimator (adjusts for the true label).

Label Confounding Results The results for the IMDb
experiment over 5 simulations are depicted in Figure 4.
As expected, the naive estimator shows a strong negative
bias. The same can be observed for the S-Learner (for
all nuisance estimators) and for DML using lasso or ran-
dom forest. In contrast, DML using linear nuisance es-
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Figure 5. Complex Confounding: Comparison of ATE estimators
on the X-ray dataset. DML and S-Learner use pre-trained repre-
sentations. Point estimates and 95% CIs are depicted.

timators (without sparsity-inducing penalty) yields unbi-
ased estimates with good coverage, as can be seen by the
confidence intervals (CIs). First, these results indicate that
DML seems to benefit from the doubly robust estimation.
Second, DML fails when using ILT non-invariant nuisance
estimators such as lasso or random forest. This is because
neither of the two can achieve sufficiently fast convergence
rates without structural assumptions, such as sparsity or
additivity. The latter being unlikely to hold given that rep-
resentations were shown to be identifiable only up to ILTs.
The results for image-based experiment are given in Ap-
pendix D.1, where the same phenomenon can be observed.

6.2. Neural Networks Adapt to Functions on Low
Dimensional Manifolds

In a second line of experiments, we investigate the ability of
neural network-based nuisance estimation to adapt to low
intrinsic dimensions. The features in our data sets already
concentrate on a low-dimensional manifold. For example,
Figure 6 shows that the intrinsic dimension of the X-ray im-
ages is around dM = 12, whereas the ambient dimension is
d = 1024. To simulate complex confounding with structural
smoothness and sparsity, we first train an autoencoder (AE)
with 5-dimensional latent space on the pre-trained represen-
tations. These low-dimensional encodings from the AE are
then used to simulate confounding. Due to this construc-
tion of confounding, the true nuisance functions correspond
to encoder-then-linear functions, which are multi-layered
hierarchical compositions and therefore align with Assump-
tion 5.2. We refer to this as complex confounding.

Complex Confounding Results We again compare DML
and the S-Learner with different nuisance estimators. In con-
trast to the previous section, we now use a neural network
(with ReLU activation, 100 hidden layers with 50 neurons
each) instead of a linear model in the outcome regression
nuisance estimation. The results are depicted in Figure 5.
Similar to the previous experiments, we find that the naive
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Figure 6. Different Intrinsic Dimension (ID) estimates of pre-
trained representations obtained from different pre-trained models.
Representations are based on the X-Ray dataset.

estimate is strongly biased similar to the random forest-
based estimators. In contrast, the neural network-based
estimators exhibit much less bias. While the S-Learner’s
confidence intervals are too optimistic, the DML estimator
shows high coverage and is therefore the only estimator that
enables valid inference. The results for the IMDb dataset
with complex confounding are given in Appendix D.1.

Low Intrinsic Dimension We also investigate the low
intrinsic dimension hypothesis about pre-trained represen-
tations. Using different intrinsic dimension (ID) estima-
tors such as the Maximum Likelihood (MLE) (Levina &
Bickel, 2004), the Expected Simplex Skewness (ESS), and
the local Principal Component Analysis (lPCA) we esti-
mate the ID of different pre-trained representations of the
X-ray dataset obtained from different pre-trained models
from the TorchXRayVision library (Cohen et al., 2022). The
results in Figure 6 indicate that the intrinsic dimension of
the pre-trained representations is much smaller than the di-
mension of the ambient space (1024). A finding that is in
line with previous research, which is further discussed in
Appendix B.1. Additional information on the experiment
and the estimators used can be found in Appendix C.4.

6.3. The Power of Pre-Training for Estimation

In another line of experiments, we explore the benefits of
pre-training in our setup. In particular, we are investigating
whether pre-trained neural feature extractors actually out-
perform non-pre-trained feature extractors in the nuisance
estimation of DML-based ATE estimation. We conduct
the experiments in the context of the previously introduced
image-based Label Confounding setup. To adjust for con-
founding in this setup, nuisance estimators must extract
the relevant information from the X-rays. For this pur-
pose, we compare DML using pre-trained feature extractors
against DML using neural feature extractors that are trained
on downstream data from scratch. While the former uses
the same pre-trained Densenet-121 model that was used
in previous image-based experiments, the latter incorpo-
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Figure 7. Comparison of DML using pre-trained representations
“DML (Pre-trained)” and DML without pre-training “DML (CNN)”
for ATE estimation. Experiment is based on the X-Ray dataset.
Point estimates and 95% CIs are depicted.

rates Convolutional Neural Networks (CNNs) as nuisance
estimators into the DML ATE estimation routine. The fol-
lowing experiment is based on 500 sampled images from
the X-Ray dataset, where five-layer CNNs are used in the
non-pre-trained DML version. Further details about the
training and architecture of the utilized CNNs can be found
in Appendix C.5.

The results are depicted in Figure 7. For illustrative pur-
poses, we also show the estimates of the Naive and Oracle
estimators, which match those of previous experiments. The
key finding of Figure 7 is that DML using pre-trained fea-
ture extractors (DML (Pre-trained)) yields unbiased ATE
estimates and well-calibrated confidence intervals, while
DML without pre-training (DML (CNN)) does not. The
same phenomenon can be observed in experiments with
varying sample sizes and CNN architecture. These experi-
ments are discussed in Appendix D.2. Overall, the results
emphasize the benefits of using DML in combination with
pre-trained models when utilizing non-tabular data such as
images, for confounding adjustment in ATE estimation.

Further Experiments Further experiments on the asymp-
totic normality of DML-based ATE estimation as well as
the role of the HCM structure of the nuisance functions are
given and discussed in Appendix D.3 and D.4.

7. Discussion
In this work, we explore ATE estimation under confounding
induced by non-tabular data. We investigate conditions un-
der which pre-trained neural representations can effectively
be used to adjust for such kind of confounding. While the
representations typically have lower dimensionality, their in-
variance under orthogonal transformations challenges com-
mon assumptions to obtain fast nuisance function conver-
gence rates, like sparsity and additivity. Instead, the study
leverages the concept of low intrinsic dimensionality, com-
bining it with invariance properties and structural sparsity to

establish conditions for fast convergence rates in nuisance
estimation. This ensures valid ATE estimation and inference,
contributing both theoretical insights and practical guidance
for integrating machine learning into causal inference.

Limitations and Future Research In this work, we focus
on a single source of confounding from a non-tabular data
modality. A potential future research direction is to study
the influence of multiple modalities on ATE estimation. In
particular, having multiple modalities requires further causal
and structural assumptions on the interplay of the modalities.
For example, this could mean that each modality is best
processed by a separate network or that the confounding
information can only be extracted through a joint network
that correctly fuses modalities at some point. We note,
however, that this is more of a technical aspect and a matter
of domain knowledge, and thus being of minor relevance
for the discussion and theoretical contributions of our study.

Moreover, we focused on the estimation of the ATE in this
paper, given its popularity in both theory and practice. How-
ever, our approach could also be extended to cover other
target parameters such as the average treatment effect on
the treated (ATT) or the conditional ATE (CATE). While
each of these would require a dedicated discussion of the
necessary assumptions, we believe that many of the core
ideas and results presented here—such as the convergence
rates for neural network-based estimation—could also be
transferred and used in a theoretical investigation in those
settings.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Proofs and Additional Results
A.1. Equivalence Class of Representations

Lemma A.1 (Equivalence Class of Representations). Let (Ω,F , P ) be a probability space, and let Z : Ω → Rd be a
measurable map (a random representation). Then for each ILT Q the random variable Q(Z) satisfies

σ
(
Q(Z)

)
= σ(Z),

where σ(Z) denotes the σ-algebra generated by the random variable Z. Consequently,

Z =
{
Q(Z) | Q ∈ Q

}
forms an equivalence class of representations that are indistinguishable from the viewpoint of measurable information.

Proof. Each Q ∈ Q is an invertible linear transformation. Consequently, Q is a Borel measurable bijection with a Borel
measurable inverse. To show σ(Q(Z)) = σ(Z), consider any Borel set B ⊆ Rd. We have

{ω ∈ Ω : Q(Z(ω)) ∈ B} = {ω ∈ Ω : Z(ω) ∈ Q−1(B)}.

Since Q−1(B) is Borel (as Q is a Borel isomorphism), the pre-image {ω : Z(ω) ∈ Q−1(B)} belongs to σ(Z). Similarly,
for any Borel set A ⊆ Rd,

{ω ∈ Ω : Z(ω) ∈ A} = {ω ∈ Ω : Q(Z(ω)) ∈ Q(A)},
which belongs to σ(Q(Z)). Therefore, σ(Q(Z)) = σ(Z).

A.2. Proof of Lemma 4.1

Proof. We consider f being Cs on the open domain D ⊆ Rd, so by definition, all partial derivatives of f up to order s
exist and are continuous on D. Further, we consider any invetible matrix Q. Such linear transformations are known to be
infinitely smooth (as all their partial derivatives of any order exist and are constant, hence continuous). Hence, the function
h = f ◦Q−1 is the composition of a Cs function f with a linear (and thus C∞) map Q−1.

Applying the multivariate chain rule, we can easily verify that the differentiability properties of h are inherited from those
of f and the linear transformation Q−1. Specifically, since Q−1 is C∞, and f is Cs, their composition h retains the Cs

smoothness. Lastly, the (transformed) domain Q(D) is also open as linear (and thus continuous) transformations preserve
the openness of sets in Rd. Therefore, h is well-defined and Cs on Q(D).

A.3. Proof of Lemma 4.2

Proof. Suppose that Q is an invertible matrix representing the linear map z 7→ Q(z). Denote by Q̃ = Q−1 its inverse and
its rows by q̃1, . . . , q̃d.

(i) Additivity

Assume that f : X → R is additive, where X ⊆ Rd, such that

f(x) =

d∑
j=1

fj(xj),

and suppose that at least one fj is nonlinear. Now consider the transformed input space X̃ := Q(X ) = {Qx | x ∈ X},
induced by the invertible linear transformation Q. Let h : X̃ → R be given by h(x̃) := f(Q−1x̃). Then h represents the
same mapping as f but expressed in the transformed coordinate system X̃ . In particular, h(x̃) = f(x), ∀ x̃ ∈ X̃ . Further,
we have

h(x̃) =

d∑
j=1

fj(q̃
⊤
j x̃).

Assume without loss of generality that f1 is nonlinear. The set of invertible matrices where q̃1 equals a multiple of a
standard basis vector has Haar measure 0. Hence, f1(q̃⊤1 x̃) is almost everywhere a nonlinear function of all coordinates of x̃,
implying that h is not additive.

13



Adjustment for Confounding using Pre-Trained Representation

(ii) Sparsity

Assume f : X → R, where X ⊆ Rd, is sparse linear of the form f(x) = β⊤x with 1 ≤ ∥β∥0 < d. We again consider
the transformed input space X̃ := Q(X ) = {Qx | x ∈ X}, induced by the invertible linear transformation Q, and define
h : X̃ → R given by h(x̃) := f(Q−1x̃). Then we have h(x̃) = f(Q−1x̃) = β⊤Q−1x̃ =: β̃⊤x̃. While the map h is still
linear, the set of matrices Q such that ∥β̃∥0 = ∥β⊤Q−1∥0 ̸= d has Haar measure zero. Hence, h is almost everywhere not
sparse.

A.4. Proof of Lemma 4.3

Proof. As in the previous proof in Appendix A.2, it is essential to note that ILTs Q are linear, invertible maps that are C∞

(infinitely differentiable) with inverses that are likewise C∞. Specifically, Q serves as a global diffeomorphism on Rd,
ensuring that both Q and Q−1 are smooth (C∞) functions.

Given that M is a dM-dimensional smooth manifold, for each point x on the manifold (x ∈M ), there exists a neighborhood
U ⊆M and a smooth chart φ : U → RdM that is a diffeomorphism onto its image. Applying the orthogonal transformation
Q to M results in the set Q(M), and correspondingly, the image Q(U) ⊆ Q(M). To construct a smooth chart for Q(M),
we can consider the map

φ̃ : Q(U) → RdM , φ̃(Q(x)) = φ(x),

where x ∈ U . Since Q is a diffeomorphism, the composition φ̃ = φ ◦ Q−1 restricted to Q(U) remains a smooth
diffeomorphism onto its image. Hence, this defines a valid smooth chart for Q(M). Covering Q(M) with such transformed
charts derived from those of M ensures that Q(M) inherits a smooth manifold structure. Each chart φ̃ smoothly maps an
open subset of Q(M) to an open subset of RdM , preserving the intrinsic dimension. Therefore, the intrinsic dimension dM
of the manifold M is preserved under any orthogonal transformation Q, and Q(M) remains a dM-dimensional smooth
manifold in Rd.

A.5. Proof of Lemma 5.3

Proof. Recall that Q is an invertible linear map, f0 = f ◦ ψ : M → R, and f̃0 = f0 ◦ ψ ◦ Q−1 : Q(M) → R. Write
f̃ = f ◦ ψ̃ with ψ̃ = ψ ◦Q−1 : Q(M) → R. Since M is a smooth manifold, Q(M) is a smooth manifold with the same
intrinsic dimension dM by Lemma 4.3. Since z 7→ Q−1 is continuous and M is compact, Q(M) is also compact. Next,
since ψ is sψ-smooth by assumption, ψ̃ is also sψ-smooth by Lemma 4.1. Finally, the HCM part f in the two models f0 and
f̃0 is the same, so they share the same constraint set P . This concludes the proof.

A.6. Proof of Theorem 5.5

We will use Theorem 3.4.1 of Van der Vaart & Wellner (2023) to show that the neural network f̂ converges at the rate stated
in the theorem. For ease of reference, we restate a slightly simplified version of the theorem adapted to the notation used in
our paper. Here and in the following, we write a ≲ b to indicate a ≤ Cb for a constant C ∈ (0,∞) not depending on n.
Proposition A.2. Let Fn be a sequence of function classes, ℓ be some loss function, f0 the estimation target, and

f̂ = argmin
f∈Fn

1

n

n∑
i=1

ℓ(f(Zi), Yi).

Define Fn,δ = {f ∈ Fn : ∥f − f0∥L2(PZ) ≤ δ} and suppose that for every δ > 0, it holds

inf
f∈Fn,δ\Fn,δ/2

E[ℓ(f(Z), Y )]− E[ℓ(f0(Z), Y )] ≳ δ2, (A.2.1)

and, writing ℓ̄f (z, y) = ℓ(f(z), y)− ℓ(f0(z), y), that

E

[
sup

f∈Fn,δ

∣∣∣∣∣ 1n
n∑
i=1

ℓ̄f (Zi, Yi)− E[ℓ̄f (Z, Y )]

∣∣∣∣∣
]
≲
ϕn(δ)√

n
, (A.2.2)

for functions ϕn(δ) such that δ 7→ ϕn(δ)/δ
2−ε is decreasing for some ε > 0. If there are f̃0 ∈ Fn and εn ≥ 0 such that

ε2n ≳ E[ℓ(f̃0(Z), Y )]− E[ℓ(f0(Z), Y )], (A.2.3)

ϕn(εn) ≲
√
nε2n, (A.2.4)
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it holds ∥f̂ − f0∥L2(PZ) = Op(εn).

Proof of Theorem 5.5. Define (s∗, d∗) = argmin(s,p)∈P∪(sψ,dM) s/p and denote the targeted rate of convergence by

εn = max
(s,p)∈P∪(sψ,dM)

n−
s

2s+p (log n)4 = n−
s∗

2s∗+d∗ (log n)4.

We now check the conditions of Proposition A.2.

Condition (A.2.1): Follows from Assumption 5.4, since

inf
f∈Fn,δ\Fn,δ/2

E[ℓ(f(Z), Y )]− E[ℓ(f0(Z), Y )] ≥ inf
f∈Fn,δ\Fn,δ/2

a∥f − f0∥2L2(PZ) ≥
a

4
δ2.

Condition (A.2.2): Let N(ε,F , L2(Q)) be the minimal number of ε-balls required to cover F in the L2(Q)-norm.
Theorem 2.14.2 of Van der Vaart & Wellner (2023) states that eq. (A.2.2) holds with

ϕn(δ) = Jn(δ)

(
1 +

Jn(δ)

δ2
√
n

)
,

where

Jn(δ) = sup
Q

∫ δ

0

√
1 + logN(ϵ,F(L, ν), L2(Q))dϵ,

with the supremum taken over all probability measures Q. Lemma A.3 in Appendix A.7 gives

Jn(δ) ≲ δ
√

log(1/δ)Lν
√
log(Lν),

which implies that δ 7→ ϕn(δ)/δ
2−1/2 is decreasing, so the condition is satisfied.

Condition (A.2.3): According to Lemma A.4 in Appendix A.7 there are sequences Ln = O(log ε−1
n ), νn = O(ε

−d∗/2s∗
n )

such that there is a neural network f̃0 ∈ F(Ln, νn) with

sup
z∈M

|f̃0(z)− f0(z)| = O(εn).

Together with Assumption 5.4, this implies

E[ℓ(f̃0(Z), Y )]− E[ℓ(f0(Z), Y )] ≤ b∥f̃0 − f0∥2L2(PZ) ≤ b sup
z∈M

|f̃0(z)− f0(z)|2 ≲ ε2n,

as required.

Condition (A.2.4): Using Ln = O(log ε−1
n ), νn = O(ε

−d∗/2s∗
n ) and our bound on Jn(δ) from Lemma A.3, we get

Jn(δ) ≲ δ log1/2(δ−1)ε
− d∗

2s∗
n log3/2(ε−1

n ).

Now observe that

ϕn(εn)

ε2n
≲ ε

− d∗
s∗ −1

n log2(ε−1
n ) +

ε
− d∗
s∗ −2

n log4(ε−1
n )√

n

= ε
− 2s∗+d∗

2s∗
n log2(ε−1

n ) + ε
− 2s∗+d∗

s∗
n log4(ε−1

n )n−1/2

≲ n1/2(log n)−2 + n1/2,

where the last step follows from our definition of εn and the fact that log(ε−1
n ) ≲ log n. In particular, εn satisfies

ϕn(εn) ≲
√
nε2n, which concludes the proof of the theorem.
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A.7. Auxiliary results

Lemma A.3. Let F(L, ν) be a set of neural networks with supf∈F(L,ν) ∥f∥∞ < ∞. For all δ > 0 sufficiently small, it
holds

sup
Q

∫ δ

0

√
1 + logN(ϵ,F(L, ν), L2(Q))dϵ ≲ δ

√
log(1/δ)Lν

√
log(Lν).

Proof. Denote by VC(F) the Vapnik-Chervonenkis dimension of the set F . By Theorem 2.6.7 in Van der Vaart & Wellner
(2023), it holds

sup
Q

logN(ε,F , L2(Q)) ≲ log(1/ε)VC(F),

for ε > 0 sufficiently small. By Theorem 7 of Bartlett et al. (2019), we have

VC(F(L, ν)) ≲ L2ν2 log(Lν).

For small ε, this gives

sup
Q

√
1 + logN(ε,F(L, ν), L2(Q)) ≲

√
log(1/ε)Lν

√
log(Lν),

Integrating the right-hand side gives the desired result.

Lemma A.4. Suppose f0 satisfies Assumption 5.2 for a given constraint set P and (sψ, dM). Define (s∗, d∗) =
argmin(s,p)∈P∪(sψ,dM) s/p. Then for any ε > 0 sufficiently small, there is a neural network architecture F(L, ν) with

L = O(log ε−1), ν = O(ε−d
∗/2s∗) such that there is f̃0 ∈ F(L, ν) with

sup
z∈M

|f̃0(z)− f0(z)| = O(ε).

Proof. The proof proceeds in three steps. We first approximate the embedding component ψ by a neural network ψ̃, then the
HCM component f by a neural network f̃ . Finally, we concatenate the networks to approximate the composition f0 = f ◦ψ
by f̃0 = f̃ ◦ ψ̃.

Approximation of the embedding component. Recall that ψ : M → Rd is a sψ-smooth mapping. Write ψ(z) =
(ψ1(z), . . . , ψd(z)) and note that each ψj : M → R is also sψ-smooth. Since M is a smooth dM-dimensional manifold, it
has Minkowski dimension dM. Then Theorem 2 of Kohler et al. (2023) (setting M = ε−1/2sψ in their notation) implies
that there is a neural network ψ̃j ∈ F(Lψ, νψ) with Lψ = O(log ε−1) and νψ = O(ε−dM/2sψ ) such that

sup
z∈M

|ψ̃j(z)− ψj(z)| = O(ε).

Parallelize the networks ψ̃j into a single network ψ̃ := (ψ̃1, . . . , ψ̃d) : M → Rd. By construction, the parallelized network
ψ̃ has Lψ layers, width d× νψ = O(νψ), and satisfies

sup
z∈M

∥ψ̃(z)− ψ(z)∥ = O(ε).

Approximation of the HCM component. Let a ∈ (0,∞) be arbitrary. By Theorem 3(a) of Kohler & Langer (2021)

(setting Mi,j = ε−1/2p
(i)
j in their notation), there is a neural network f̃ ∈ F(Lf , νf ) with Lf = O(log ε−1) and

νf = O(ε−d
∗/2s∗) such that

sup
x∈[−a,a]d

|f̃(x)− f(x)| = O(ε),
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Combined approximation. Now concatenate the networks ψ̃ and f̃ to obtain the network f̃0 = f̃ ◦ ψ̃ ∈ F(Lψ +
Lf ,max{νψ, νf}). Observe that Lψ + Lf = O(log ε−1) and νψ + νf = O(ε−d

∗/2s∗), so the network has the right size. It
remains to show that its approximation error is sufficiently small. Define

γ := sup
z∈M

∥ψ̃(z)− ψ(z)∥,

which is O(ε) by the construction of ψ̃,

a := sup
z∈M

∥ψ(z)∥+ γ,

which is O(1) by assumption, and

K := sup
x,x′

|f(x)− f(x′)|
∥x− x′∥

,

which is finite since f is Lipschitz due to min(s,d)∈P s ≥ 1 and the fact that finite compositions of Lipschitz functions are
Lipschitz. By the triangle inequality, we have

sup
z∈M

|f̃0(z)− f0(z)| ≤ sup
z∈M

|f̃(ψ̃(z))− f(ψ̃(z))|+ sup
z∈M

∥f(ψ̃(z))− f(ψ(z))∥

≤ sup
x∈[−a,a]d

|f̃(x)− f(x)|+K

= O(ε),

as claimed.

A.8. Proof of Theorem 5.7

Proof. We validate the conditions of Theorem II.1 of Chernozhukov et al. (2017). Our Assumption 5.6 covers all their
moment and boundedness conditions on g and m. By Theorem 5.5, we further know that

∥m̂(k) −m∥L2(PZ) + ∥ĝ(k) − g∥L2(PZ) = op(1).

Further, Theorem 5.5 yields

∥m̂(k) −m∥L2(PZ) × ∥ĝ(k) − g∥L2(PZ) = Op

(
max

(s,p)∈Pg∪(sψ,dM)
n−

s
2s+p × max

(s′,p′)∈Pm∪(s′ψ,dM)
n
− s′

2s′+p′

)

= Op

(
max

(s,p)∈Pg∪(sψ,dM)
max

(s′,p′)∈Pm∪(s′ψ,dM)
n
−
(

s
2s+p+

s′
2s′+p′

))
.

We have to show that the term on the right is of order op(n−1/2). Observe that

s

2s+ p
+

s′

2s′ + p′
>

1

2
⇔ 1

2 + p/s
+

1

2 + p′/s′
>

1

2

⇔ 4 + p/s+ p′/s′

(2 + p/s)(2 + p′/s′)
>

1

2

⇔ 4 + p/s+ p′/s′ > 2 + p/s+ p′/s′ +
pp′

2ss′

⇔ 4 >
pp′

ss′
.

Thus, our condition

min
(s,p)∈Pg∪(sψ,dM)

s

p
× min

(s′,p′)∈Pm∪(s′ψ,dM)

s′

p′
>

1

4
,

implies

∥m̂(k) −m∥L2(PZ) × ∥ĝ(k) − g∥L2(PZ) = op(n
−1/2),

as required.
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B. Additional Related Literature & Visualizations
B.1. Empirical Evidence of Low Intrinsic Dimensions

Using different intrinsic dimension (ID) estimators such as the maximum likelihood estimator (MLE; Levina & Bickel,
2004) on popular image datasets such as ImageNet (Deng et al., 2009), several works find clear empirical evidence for low
ID of both the image data and related latent features obtained from pre-trained NNs (Gong et al., 2019; Ansuini et al., 2019;
Pope et al., 2021). The existence of the phenomenon of low intrinsic dimensions was also verified in the medical imaging
(Konz & Mazurowski, 2024) and text-domain (Aghajanyan et al., 2020). All of the mentioned research finds a striking
inverse relation between intrinsic dimensions and (state-of-the-art) model performance, which nicely matches the previously
introduced theory about ID-related convergence rates.

B.2. Hierarchical Composition Model (HCM) Visualization
This section provides an illustration of the Hierarchical Composition Model (HCM) that was formally introduced in
Definition 5.1. As the name suggests, every HCM is a composition of HCMs of lower level. In Figure 8 we give an illustration
of a particular HCM of level 2 and constraint set P21, which we abbreviated by HCM(2,P21). Following the notation of
Definition 5.1, the HCM(2,P21) corresponds to the function f : Rd → R defined by f(x) = h

[2]
1 (h

[1]
1 (x), . . . , h

[1]
p (x)).

Each h[1]j (x) for j ∈ {1, . . . , p} corresponds to a HCM of level 1, which itself are compositions of HCMs of level 0. Each
of the latter corresponds to a feature in the data. The constraint set of each HCM corresponds to the collection of pairs of the
degree of smoothness and number of inputs of each HCM it is composed of. For example, assuming that h[2]1 is a s-smooth
function, then the constraint set of the HCM(2,P21) function f is P21 =

⋃p
j=1 P1j ∪ (s, p). The HCM framework fits

both regression and classification. In the latter, the conditional probability would need to satisfy the HCM condition, and
any non-linear link function for classification would just correspond to a simple function in the final layer of the HCM.

Figure 8. Visualization of a HCM: The illustration depicts a HCM of level 2 and constraint set P21. The HCM of level 2 is a composition
of HCMs of level 1, i.e., h1, h2, . . . , hp. The latter are itself compositions of HCMs of level 0, each corresponding to a feature of the data.

C. Experimental Details and Computing Environment
We conduct several simulation studies to investigate the performance of different Average Treatment Effect (ATE) estimators
of a binary treatment on some outcome in the presence of a confounding induced by non-tabular data. In the experiments,
the confounding is induced by the labels, i.e., the pneumonia status or the review as well as more complex functions of the
pre-trained features. Nuisance function estimation is based on the pre-trained representations that are obtained from passing
the non-tabular data through the pre-trained neural models and extracting the last hidden layer features.

C.1. Data and Pre-trained Models
IMDb For the text data, we utilize the IMDb Movie Reviews dataset from Lhoest et al. (2021) consisting of 50,000
movie reviews labeled for sentiment analysis. For each review, we extract the [CLS] token, a 768-dimensional vector per
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review entry, of the pre-trained Transformer-based model BERT (Devlin et al., 2019). To process the text, we use BERT’s
subword tokenizer (bert-base-uncased) and truncate sequences to a maximum length of 128 tokens. We use padding if
necessary. After preprocessing and extraction of pre-trained representations, we sub-sampled 1,000 and 4,000 pre-trained
representations for the two confounding setups to make the simulation study tractable.

X-Ray For the image data simulation, we use the dataset from Kermany et al. (2018) that originally contains 5,863 chest
X-ray images of children that were obtained from routine clinical care in the Guangzhou Women and Children’s Medical
Center, Guangzhou. We preprocess the data such that each patient appears only once in the dataset. This reduces the effective
sample size to 3,769 chest X-rays. Each image is labeled according to whether the lung disease pneumonia is present or not.
The latent features are obtained by passing the images through a pre-trained convolutional neural network and extracting the
1024-dimensional last hidden layer features of the model. For this purpose, we use a pre-trained Densenet-121 model from
the TorchXRayVision library (Cohen et al., 2022). Specifically, we use the model called densenet121-res224-all, which
is a Densenet-121 model with resolution 224× 224 that was pre-trained on all chest X-ray datasets considered in Cohen
et al. (2020). We chose this model for the extraction of pre-trained representation in our experiments, based on its superior
performance in benchmark studies conducted in prior work (Cohen et al., 2020). Note that the dataset from the Guangzhou
Women and Children’s Medical Center that we use, was not used during the training of the model. This is important from a
theoretical and practical viewpoint, as the confounding simulation via labels might otherwise be too easy to adjust for given
that the model could have memorized the input data. However, using this kind of data we rule out this possibility.

C.2. Confounding

As introduced in the main text, we simulate confounding both on the true labels of the non-tabular data as well as encodings
from a trained autoencoder. While this induces a different degree of complexity for the confounding, the simulated
confounding is somewhat similar in both settings. We first discuss the simpler setting of Label Confounding. In all of the
experiments, the true average treatment effect was chosen to be two.

Label Confounding Label Confounding was induced by simulating treatment and outcome both dependent on the binary
label. In the case of the label being one (so in case of pneumonia or in case of a positive review), the probability of treatment
is 0.7 compared to 0.3 when the label is zero. The chosen probabilities guaranteed a sufficient amount of overlap between
the two groups. The outcome Y is simulated based on a linear model including a binary treatment indicator multiplied by
the true treatment effect (chosen to be 2), as well as a linear term for the label. Gaussian noise is added to obtain the final
simulated outcome. The linear term for the label has a negative coefficient in order to induce a negative bias to the average
treatment setup compared to a randomized setting. Given that the confounding simulation is only based on the labels, the
study was in fact randomized with respect to any other source of confounding.

Complex Confounding To simulate Complex Confounding with structural smoothness and sparsity, we first train an
autoencoder (AE) with 5-dimensional latent space on the pre-trained representations, both in the case of the text and image
representations. These AE-encodings are then used to simulate confounding similarly as in the previous experiment. The
only difference is that we now sample the coefficients for the 5-dimensional AE-encodings. For the propensity score, these
are sampled from a normal distribution, while the sampled coefficients for outcome regression are restricted to be negative,
to ensure a sufficiently larger confounding effect, that biases naive estimation. We choose a 5-dimensional latent space to
allow for sufficiently good recovery of the original pre-trained representations.

C.3. ATE Estimators

We estimate the ATE using multiple methods across 5 simulation iterations. In each of these, we estimate a Naive estimator
that simply regresses the outcome on treatment while not adjusting for confounding. The Oracle estimator uses a linear
regression of outcome on both treatment and the true label that was used to induce confounding. The S-Learner estimates
the outcome regression function g(t, z) = E[Y | T = t, Z = z] by fitting a single model ĝ(t, z) to all data, treating the
treatment indicator as a feature. The average treatment effect estimate of the S-Learner is then given by

ÂTES =
1

n

n∑
i=1

ĝ(1, zi)− ĝ(0, zi).
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In contrast, the Double Machine Learning (DML) estimators estimates both the outcome regression function and the
propensity score to obtain its double robustness property. In our experiments, DML estimators use the partialling-out
approach for ATE estimation, which is further discussed in the next paragraph.

In the Label Confounding experiments, both the S-Learner and DML estimators are used in combination with linear and
random forest-based nuisance estimators. DML (Linear) uses standard linear regression for the estimation of the outcome
regression function, and logistic regression with L2-penalty for the estimation of the propensity score. Both nuisance function
estimators are ILT-invariant. DML (Lasso) uses L1-penalized linear and logistic regression with cross-validated penalty
parameter selection for the outcome regression and propensity score estimation, respectively. The S-Learner (Linear) and
S-Learner (Lasso) use unpenalized and L1-penalized linear regression for the outcome regression, respectively. The random
forest-based nuisance estimation (both for DML and S-Learner) is based on the standard random forest implementation
from scikit-learn. The number of estimated trees is varied in certain experiments to improve numerical stability.

In the Complex Confounding experiments, we also use neural network-based nuisance estimators for DML and the S-Learner.
For this purpose, we employed neural networks with a depth of 100 and a width of 50 while using ReLU activation and
Adam for optimization. While DML (NN) and S-Learner (NN) use neural networks for the outcome regression, logistic
regression is employed in DML (NN) for propensity score estimation to enhance numerical stability. Generally, DML
is used with sample splitting and with two folds for cross-validation. For the S-Learner and DML the Python packages
CausalML (Chen et al., 2020) and DoubleML (Bach et al., 2022) are used, respectively.

Partially Linear Model and Orthogonal Scores In our experiments, we simulated two different types of confounding.
In both cases we use non-tabular data to adjust for this confounding, given that the confounding inducing information is
contained in this data source, but not available otherwise. However, as this information is non-linearly embedded in the
non-tabular data, the model that we aim to estimate follows the structure of a so-called partially linear model (PLM). Given
a binary treatment variable T , the PLM is a special case of the more general confounding setup that we consider in the
theoretical discussion of this paper. Specifically, the PLM considers the case where the outcome regression function in (2)
decomposes as

g(T,W ) = E[Y |T,W ] = θ0T + g̃(W ). (6)

The structure of the propensity score in (3) remains the same. The parameter θ0 in the PLM corresponds to the target
parameter considered in (1), namely the ATE. In their theoretical investigation, Chernozhukov et al. (2018) discuss ATE
estimation both in the partially linear model and in the more general setup, which they refer to as interactive model.
Given that we consider the more general case in Section 5, the orthogonalized score stated in this section matches that of
Chernozhukov et al. (2018) for the ATE in the interactive model. In case of the PLM, Chernozhukov et al. (2018) consider
two other orthogonalized scores, one of which is the so-called partialling-out score function, which dates back to Robinson
(1988). The partialling-out score corresponds to an unscaled version of the ATE score in the (binary) interactive model
in case the outcome regression decomposes as in (6). The scaling is based on certain estimated weights. Therefore, score
functions as the partialling-out score are sometimes referred to as unweighted scores (Young & Shah, 2024). While the
theoretical result in Theorem 5.7 could also be obtained for DML with partialling-out score under similar assumptions, the
key requirement being again (5), the approach may not be asymptotically efficient given that it does not use the efficient
influence function. However, the potential loss of asymptotic efficiency is often outweighed by increased robustness in
finite-sample estimation when using unweighted scores, which has contributed to the popularity of approaches such as the
partialling-out method in practice (van der Vaart (1998, §25.9), Chernozhukov et al. (2018, §2.2.4), Young & Shah (2024)).
Accordingly, we also adapted the partialling-out approach in the DML-based ATE estimation in our experiments.

C.4. Intrinsic Dimensions of Pre-trained Representations

In Section 6.2 we also provide empirical evidence that validates the hypothesis of low intrinsic dimensions of pre-trained
representations. For this, we use different pre-trained models from the from the TorchXRayVision library (Cohen et al.,
2022). All of these are trained on chest X-rays and use a Densenet-121 (Huang et al., 2017) architecture. Given the same
architecture of the models, the dimension of the last layer hidden features is 1024 for all models. The different names of
the pre-trained models on the x-axis in Figure 6 indicate the dataset they were trained on. We use the 3,769 chest X-rays
from the X-rays dataset described above and pass these through each pre-trained model to extract the last layer features of
each model, which we call the pre-trained representations of the data. Subsequently, we use standard intrinsic dimension
estimators such as the Maximum Likelihood Estimator (MLE) (Levina & Bickel, 2004), the Expected Simplex Skewness
(ESS) estimator (Johnsson et al., 2015), and the local Principal Component Analysis (lPCA) estimator (Fukunaga & Olsen,
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1971), with a choice of number of neighbors set to 5, 25 and 50, respectively. While the intrinsic dimension estimates vary
by the pre-trained model and the intrinsic dimension estimator used, the results indicated that the intrinsic dimension of the
pre-trained representations is much smaller than the dimension of the ambient space (1024).

C.5. Double Machine Learning with Convolutional Neural Networks as Nuisance Estimators

In Section 6.3, we compare DML with pre-trained neural networks against DML without pre-trained neural networks. This
experiment investigates the benefits of pre-training for nuisance estimation in the context of DML-based ATE estimation.
Experiments are conducted on the X-Ray dataset, and confounding is simulated based on Label Confounding. DML (Pre-
trained) uses the same pre-trained Densenet-121 from the TorchXRayVision library (Cohen et al., 2022) that was previously
used as pre-trained neural feature extractors in the other image-based experiments. Building on this pre-trained feature
extractor, DML (Pre-trained) then uses linear models on the pre-trained features for the nuisance function estimation. In
contrast, DML without a pre-trained feature extractor uses standard Convolutional Neural Networks (CNNs) to estimate the
nuisance functions directly on top of the images. The experiment of Figure 7 uses a five-layer CNN with 3×3 convolutions,
batch normalization, ReLU activation, and max pooling, followed by a model head consisting of fully connected layers with
dropout. Training uses Adam optimization with early stopping. When the network is utilized for propensity score estimation,
the outputs are converted to probabilities via a sigmoid activation. Both DML with and without pre-trained feature extractors
use the “partialling-out” approach in combination with sample-splitting for doubly-robust ATE estimation.

C.6. Computational Environment

All computations were performed on a user PC with Intel(R) Core(TM) i7-8665U CPU @ 1.90GHz, 8 cores, and 16 GB
RAM. Run times of each experiment do not exceed one hour. The code to reproduce the results of the experiments can be
found at https://github.com/rickmer-schulte/Pretrained-Causal-Adjust.

D. Further Experiments
This section provides additional results from experiments that extend those discussed in the main body of the paper.

D.1. Comparison of ATE Estimators

The results depicted in Figure 9 and Figure 10 complement Figure 4 and Figure 5 that are discussed in Section 6.

Label Confounding (X-Ray) The results for the Label Confounding simulation based on the X-Ray dataset over 5
simulations are depicted in Figure 9. As before, the naive estimator shows a strong negative bias. Similarly, the S-Learner
(for all three types of nuisance estimators) and for DML using random forest or lasso exhibit a negative bias and too narrow
confidence intervals. In contrast, DML using linear nuisance estimator (without sparsity-inducing penalty) yields less biased
estimates with good coverage due to its properly adapted confidence intervals.
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Figure 9. Label Confounding (X-Ray): Comparison of ATE estimators on the X-Ray dataset. DML & S-Learner use pre-trained
representations and three types of nuisance estimators: linear models without L1-penalization (Linear), linear models with L1-
penalization (Lasso), as well as random forest (RF). Point estimates and 95% CIs are depicted.
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Complex Confounding (IMDb) A similar pattern can be observed for the Complex Confounding setting on the IMDb
data depicted in Figure 10. The naive estimator and both of the random forest-based ATE estimators exhibit strong bias. In
contrast, both neural network-based estimators show very little bias. This provides further evidence that neural networks can
adapt to the low intrinsic dimension of the data. However, unlike the DML estimator, the S-Learner still produces overly
narrow confidence intervals and thus has poor coverage. As in the example discussed in the main body of the text, the DML
(NN) estimator is the only one that yields unbiased estimates and valid inference.
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Figure 10. Complex Confounding (IMDb): Comparison of ATE estimators on the IMDb dataset. DML & S-Learner use pre-trained
representations and either neural network (NN) or random forest (RF) based nuisance estimators. Point estimates and 95% CIs are
depicted.

D.2. DML with and without Pre-Training

The experiment on DML with and without pre-trained representations explored the benefits of pre-training for DML and
was discussed in Section 6.3. We extend this line of experiment by considering different sample sizes, as well as neural
network architectures for the non-pre-trained model. While the DML (CNN) estimator in Figure 7 uses five-layer CNNs
for the nuisance function estimation, the DML (CNN) estimator in Figure 11 uses a slightly simpler model architecture of
two-layer CNNs with ReLU activation and max-pooling, followed by fully connected layers as model head. The slightly
less complex model architecture requires fewer neural network parameters to be trained, which might be beneficial in the
context of the X-Ray dataset, considering the comparably small sample size available for model training.

Overall, Figure 11 confirms the previous finding that DML with pre-trained representations performs much better than DML
without pre-training. While the former yields unbiased ATE estimates, the ATE estimates of the latter show a strong negative
bias. As the two plots show, this result is independent of the model architecture and sample size used.
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Figure 11. DML with/out Pre-Training: Comparison of DML using pre-trained representations “DML (Pre-trained)” and DML without
pre-training “DML (CNN)” for ATE estimation using 500 (Left) and all 3769 (Right) images from the X-Ray dataset. Point estimates and
95% CIs are depicted.
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D.3. Asymptotic Normality of DML ATE Estimation

This line of experiments explores the asymptotic normality of the DML estimator. For this purpose, we extend the ATE
estimation experiments of Figure 9 with Label Confounding and Figure 5 with Complex Confounding that are based on the
X-Ray dataset. While the two figures depict the estimates of different ATEs over 5 simulation iterations, we repeat both
experiments with 200 iterations and collect the ATE estimates. We standardize each estimate and plot the corresponding
empirical distribution. The results are shown in Figure 12. The left plot depicts the empirical distribution of the 200
standardized point estimates of the Oracle and Naive estimator, as well as DML with linear nuisance estimator in the Label
Confounding experiment. The right plot displays the empirical distribution of the 200 standardized point estimates of the
Naive, S-Learner, and DML estimator in the Label Confounding experiment. The latter two use neural network-based
nuisance estimation. While the distributions of the Naive and S-Learner estimators show a strong bias, the distribution of
the DML approach matches the theoretical standard normal distribution in both experiments.
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Figure 12. Asymptotic Normality of DML: Comparison of the empirical distributions of standardized point estimates of different ATE
estimators on the X-ray dataset. Left: Distribution of 200 standardized point estimates of the Naive, Oracle, and DML with linear nuisance
estimation from the Label Confounding experiment. Right: Distribution of 200 standardized point estimates of the Naive, S-Learner with
NN-based nuisance estimation (S-Learner) and DML with NN-based nuisance estimation from the Complex Confounding experiment.

D.4. Effects of the Hierarchical Composition Model (HCM) Structure on Estimation

In this experiment, we investigate the effect of the Hierarchical Composition Model (HCM) structure in the context of ATE
estimation. The HCM was formally introduced in Definition 5.1 and later used in Theorem 5.5 to derive convergence rates
of neural network-based estimation. This result showed that the convergence rate of neural networks is determined by
the worst-case pair that appeared in the constraint set of the HCM. The core benefit of the HCM in our context is, that it
constitutes a very flexible class of functions, while at the same time, it enables to obtain fast convergence rates in case the
target function factors favorably according to the hierarchical structure of the HCM. The latter could be fulfilled in case each
composition in the hierarchical structure only depends on a few prior compositions. This structural sparsity would improve
the worst-case pair in the constraint set and thereby could allow for obtaining fast convergence rates.

Now, in the DML ATE estimation, one might be interested in what happens when the nuisance functions do not factor
according to the HCM structure, such that sufficiently fast convergence rates for the nuisance estimation, required in the
ATE estimation, can be achieved. We simulate such a scenario by extending the previously introduced setup of Complex
Confounding. Instead of simulating confounding based on low-dimensional encodings from a AE trained on the pre-trained
representations from the X-Ray experiments (as done in some of the previous experiments), we do this directly based on the
pre-trained representations. For this purpose, we define the nuisance functions (outcome regression and propensity score) to
depend on the product of all features in each pre-trained representation. Hence, the nuisance functions depend on all 1024
features, thereby mimicking the curse of dimensionality scenario discussed in Section 4. Further, the nuisance functions are
constructed such that bias is introduced in the ATE estimation. In the following, we estimate the same set of ATE estimators
that were previously used in the Complex Confounding experiments.
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The results are depicted in Figure 13. All estimators show substantial bias (even the DML approach), given that none of the
estimators is able to properly adapt to this complex type of confounding structure. The results are a validation of the fact that
no (nuisance) estimator can escape the curse of dimensionality without utilizing certain beneficial structural assumptions.
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Figure 13. Comparison of ATE estimators: DML & S-Learner use pre-trained representations and either neural network (NN) or random
forest (RF) based nuisance estimators. Point estimates and 95% CIs are depicted.
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