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Abstract

Some linguistic inferences–e.g., inferring that001
a square has four sides–seem to follow inher-002
ently from what words mean, while others–e.g.,003
inferring that a house has four sides–are consid-004
ered to follow from “common sense” or “world005
knowledge”. It has long been debated whether006
such categorical distinctions, referred to in phi-007
losophy as analytic vs. synthetic, can be made008
and what effect they should have on theories009
and models of semantic meaning. In this pa-010
per, we use gender (male vs. female) as a case011
study to explore whether large language models012
(LLMs) differentiate analytic inferences about013
gender (e.g., that a woman is female) from syn-014
thetic inferences (e.g., that nurses are most of-015
ten female). We find that, by and large, there016
are not substantial mechanistic differences, but017
rather the difference appears to be a matter018
of degree–i.e., how strongly the inference is019
encoded and how easily it is overwritten by020
contextual information. Our study serves as a021
proof-of-concept for how LLMs can be used to022
revisit long-standing questions about language023
representation and processing in general.024

1 Introduction025

In the philosophy of language, semantics, and com-026

putational linguistics, a distinction is often made027

between synthetic and analytic aspects of meaning028

(Rey, 2023). Here, analytic refers inferences that029

are inherently true given the meaning of a word030

(e.g., that a square is four-sided) while synthetic031

refers to properties that are perhaps inferred from032

common sense or life experience (e.g., one might033

infer that a house is likely four-sided, but that is034

in no way required by the meaning of the word035

house). There has long been debate about the ex-036

tent to which this distinction is real, or whether037

there is a difference between synthetic and ana-038

lytic properties in terms of how they are stored039

and processed. Large language models (LLMs),040

which exhibit near-human ability to generate and041

process text, allow us to study this distinction in 042

empirical rather than philosophical terms. Using 043

gender (male vs. female) as a case study, we ask 044

whether LLMs invoke different mechanisms when 045

gender information is presumptively analytic (e.g., 046

the inference that woman is female is built into the 047

English language) vs. synthetic (e.g., the inference 048

a nurse is likely female comes from world knowl- 049

edge, not from semantics per se). We focus on the 050

analysis of GPT-2 family (Radford et al., 2019) 1 051

of models, and investigate the mechanisms used 052

to predict pronouns (he vs. she) and names for a 053

variety of types of words that indicate gender (ex- 054

plicitly gendered nouns, names, professions, etc). 055

We find that, by and large, there are no substantial 056

mechanistic differences between how synthetic vs. 057

analytic inferences about gender are processed, but 058

there are differences of degree. That is, in almost 059

all cases, gender information is primarily stored in 060

the word embeddings, and differences stem chiefly 061

from how strongly the bias is encoded and how eas- 062

ily it is overwritten by contextual information. Our 063

work serves as a proof of concept for how studying 064

mechanisms in LLMs can inform the study of lan- 065

guage more broadly and has practical implications 066

for work on debiasing LLMs (see Discussion §4). 067

2 Dataset 068

We curate a set of 20 grammatically gendered 069

nouns (e.g., man, woman) each for male and fe- 070

male, and a subset of 40 profession nouns from 071

(Vig et al., 2020) which have strong gender associa- 072

tions (e.g., doctor, nurse). We also construct a set of 073

14 templates that are designed to be gender-neutral 074

and bias the model toward producing a pronoun to 075

continue the sentence. The dataset follows the for- 076

mat of “The {noun} {verb} that” or “The {noun} 077

{verb} because”. We switch the {noun} with ex- 078

1We focus on GPT2-medium in the main paper. GPT2
small and large are included in the appendix
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Figure 1: Percentage of predicting “he/she” for ex-
plicitly gendered nouns, profession, and gender-neutral
nouns. The left bars are stereotypical male gender nouns
and the right bars are for female nouns. Blue means
preferring “he” over “she” and pink means vice versa.

plicitly gendered nouns and professions. The full079

list of the templates and nouns can be found in080

Appendix A.081

3 Experiments and Results082

Strength of Inference: If there is a difference083

between how the LLM processes synthetic vs. an-084

alytic gender inferences, we might expect to see085

that words like woman take female pronouns with-086

out exception, while words like nurse show a more087

balanced mix of pronouns. Thus, we first compare088

the consistency of pronoun predictions for two tem-089

plates: “The {profession word} verb that” vs. “The090

{gendered word} verb that”. We calculate the con-091

sistency by examining the probability difference092

between the tokens “he” and “she” at the final layer.093

Consistently positive difference implies the model094

favors “he”, and negative implies favoring “she”.095

Our results are in Figure 1. Note that, at base-096

line, the model has a strong bias for “he” over097

“she”: 93% of the time the model will predict “he”098

given the templates populated with neutral nouns099

(person, child, member).2 Overall, the results are100

in line with our expectations. The explicitly gen-101

dered words’ predictions are highly consistent; in102

all 40 words (20 male and 20 female), 39 of them103

exhibit perfect consistency. All the definitionally104

male nouns prefer “he” over “she”. Among the105

female nouns, 19 of them prefer “she” over “he”.106

2The exceptions might be due to gender-biased verbs. E.g.,
the model predicts “she” when the template includes cried.

The only exception is the word miss.3 We speculate 107

that this is due to the fact that miss is rather rare 108

to be used by itself as a noun, and thus the LLM 109

might not have learned a strong gender signal. 110

In the case of profession nouns, the pronoun 111

predictions are more dependent on the template. 112

Among twenty female profession nouns (Vig et al., 113

2020), seven of them (clerk, secretary, teacher, ther- 114

apist, stylist, hairdresser, violinist) show high vari- 115

ance depending on the verb that appears in the 116

template. For example, all show a preference for 117

“he” in the template ’The {noun} drove because’. 118

We speculate that this is because the verb drove 119

has a stronger male gender signal, overriding the 120

signal sent by the profession nouns. 121

Location of Gender Information: We might ex- 122

pect that analytic inferences are encoded on the 123

word itself (e.g., femaleness is part of the context- 124

independent meaning of woman) while synthetic 125

inferences might occur later in processing, as part 126

of contextual inference. We thus investigate where 127

in the model (at which layer) the inference about 128

gender is made. We use Minimum Description 129

Length (MDL) (Voita and Titov, 2020), which intu- 130

itively captures how accurately a feature can be de- 131

coded and the amount of effort required to decode 132

it (i.e., the codelength). We compute codelength 133

for predicting the (assumed) gender of a word for 134

every hidden state to determine where the model 135

most readily commits to the inference that a given 136

noun, e.g., nurse or woman, is female. 137

Figure 2 shows MDL 4 at each layer for two to- 138

kens: 1) the last token in the template and 2) the 139

token corresponding just to the noun of interest. We 140

see that, for both explicitly gendered words and pro- 141

fession words, the codelength (right) drops sharply 142

to near 0 after the first layer, suggesting that the in- 143

ference about gender is readily encoded within the 144

embedding of the noun itself both for analytic infer- 145

ences about gender as well as for inferences which 146

should be synthetic. However, when we look at the 147

MDL at the final token in the sentence (a way of 148

approximating the inference made over the whole 149

sentence), it is more difficult to extract the gender 150

representation for the profession nouns compared 151

to the explicitly gendered nouns. To investigate this 152

further, we employ early decoding (nostalgebraist, 153

3In “The miss said that”, “The miss yelled that”, “The
miss ran because”, “The miss drove because”, “he” is more
probable than “she”.

4The detailed description is shown in E
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Figure 2: Codelength of probes to differentiate gender information. The left graph (covering 560 examples) decodes
the hidden states on the final tokens of “that”. The right graph (covering 40 examples) decodes the hidden states on
the tokens of the noun directly. Probes at every layer are trained for 20 epochs.

Figure 3: Rank of the pronouns through early decoding.

2020) to determine at which layer the model com-154

mits to the pronoun prediction (“he” vs. “she”). For155

both analytic and synthetic inferences, the model156

appears to form the pronoun predictions around the157

same layer at inference time in Figure 3. That is, it158

takes the same number of layers for both “woman”159

and “nurse” to build up the meaning of the female160

and generate the prediction of “she”.161

Together, these results imply that there is no162

distinction in the lexicon between analytic vs. syn-163

thetic inferences about gender, nor in how quickly164

(in terms of number of layers) the inferences are165

made. However, synthetic inferences might inter-166

act differently with contextual information, perhaps167

because they are more readily overwritten by com-168

peting semantic cues.169

Circuit Analysis: We attempt to drill down fur- 170

ther and localize the components that process gen- 171

der information for each type of inference. To do 172

this, we employ causal mediation analysis (Vig 173

et al., 2020; Chan et al., 2022; Geiger et al., 2021, 174

2023; Meng et al., 2023; Wang et al., 2023; Chan 175

et al., 2023; Cohen et al., 2023; Merullo et al., 176

2024). The contrasting pairs are formed by “The 177

{male nouns} verb that” and “The {female nouns} 178

verb that” for the clean and corrupted inputs, re- 179

spectively (see Vig et al. (2020) for a full descrip- 180

tion of the method). We perform the patching exper- 181

iments manually and also utilize automated circuit 182

discovery from Conmy et al. (2023); Bills et al. 183

(2023); Syed et al. (2023); Hanna et al. (2024) to 184

obtain the top 50 edges in the computation sub- 185

graphs. 186

We compute top components (e.g., attention 187

heads and MLPs) that are involved in the pronoun 188

prediction for the analytic and synthetic gender in- 189

ferences, as well as those that are involved with 190

the prediction of pronouns in neutral contexts. We 191

examine whether there are components that are 192

uniquely active in the computation of synthetic or 193

analytic gender inferences, which are not explained 194

by their involvement in pronoun prediction more 195

generally. Figure 4 shows our results. We find that 196

the circuits are highly overlapping but not identical 197

(Jaccard similarity between these two circuits is 198

0.73)5. While much of the overlap is due to com- 199

ponents that are involved in the general pronoun 200

5As a control: we find a 0.09 Jaccard similarity with the
IOI circuit (Wang et al., 2023).
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input
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m12
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m18

m20

m23
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Figure 4: Abstraction of circuit overlap across the
dataset. The pink nodes appear in both the synthetic and
analytical noun circuits. The blue nodes appear only in
the explicitly gendered nouns while the red nodes ap-
pear only in the profession nouns. We compare with the
input “The <noun> and me said that” which predicts
the pronoun of they-we. The lighter color (pink, blue)
nodes also appear in the circuit that predicts they-we in
Table 1 while the darker color nodes only appear in the
synthetic/analytical noun circuits.

prediction case, some are unique to the gendered201

inference. Importantly, we also find two attention202

heads which are only involved in the processing of203

explicitly gendered words, and two MLPs which204

are only involved in the processing of profession205

nouns. While it is too early to draw strong conclu-206

sions, this presents an interesting avenue for future207

work, as it might be suggestive of different mecha-208

nisms governing analytic vs. synthetic inferences.209

4 Discussion210

Our analyses suggest that, within LLMs, the211

synthetic-analytic distinction is less of a categor-212

ical distinction than variation along a continuum.213

Specifically, we find evidence that inferences about214

gender, whether categorical or analytic, are stored215

primarily in the embeddings (i.e., the lexicon) and216

that the model does not require any more process-217

ing (i.e., the number of layers) to make synthetic218

inferences compared to analytic ones. That said,219

we do see consistent evidence that synthetic in-220

ferences are encoded less strongly (measured by 221

MDL) and are more easily overwritten, e.g., when 222

other words in the context carry competing signals 223

about gender. However, our circuit analysis, while 224

preliminary, does suggest that there might be differ- 225

ent computational units involved in the processing 226

of synthetic vs. analytic inferences. Further work 227

could yield significant revision to our above inter- 228

pretation, possibly providing evidence of a more 229

explicitly categorical difference between how these 230

inferences are processed. 231

Our findings have practical implications for work 232

on debiasing LLMs. The high similarities in these 233

two mechanisms suggest that it might not be pos- 234

sible to remove synthetic inferences about gender 235

(which are generally deemed “bias”) without dam- 236

aging analytical inferences (which are necessary 237

for correct English language generation). As many 238

existing debiasing methods intervene with gender 239

information by either fine-tuning the model weights 240

or editing the representations at inference time, our 241

analysis suggests that will hurt the performance of 242

analytical gendered nouns since the weights and 243

representations are shared. 244

5 Related Work 245

Our work contributes to a recent line of work that 246

asks if and how LLMs can inform the study of 247

language and cognition more broadly (Mahowald 248

et al., 2024). Often, arguments are made that LLMs 249

inform linguistic theory by serving as wholesale re- 250

placements for existing explanatory models (Pianta- 251

dosi, 2023). Our proof of concept study aligns with 252

an alternative position, arguing that understanding 253

of the mechanisms in play in LLMs can lead to 254

refinement, rather than replacement, of existing 255

theories (Pavlick, 2023; McGrath et al., 2023). 256

Our experiments are also highly related to work 257

on gender bias in LLMs. Many previous efforts 258

(Stanczak and Augenstein, 2021) have been made 259

in identifying gender bias as well as intervening 260

in gender bias in language models. Approaches 261

include modifying the training data (Guo et al., 262

2022; Ranaldi et al., 2023), intervening on the 263

word embeddings (Kaneko and Bollegala, 2019), 264

fine-tuning specific parts of the model (Lauscher 265

et al., 2021; Gira et al., 2022; Xie and Lukasiewicz, 266

2023), or employing model-editing and causal me- 267

diation techniques (Belrose et al., 2023; Ravfogel 268

et al., 2022, 2020; Cai et al., 2024; Chintam et al., 269

2023; Limisiewicz et al., 2024). 270
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6 Limitation271

Our work aims to compare how LMs process syn-272

thetic and analytical inferences. However, the con-273

clusion is limited to a few specific datasets based274

on gender information. Moreover, the analysis275

only covers the GPT2 series of models. There-276

fore, the conclusion drawn is yet limited and can277

be expanded upon models with larger sizes and278

a more diverse range of data. The results can be279

supported by more evidence that causally explains280

our observations on the strength of inference. We281

would like future work to extend the analysis be-282

yond the case of gender and propose new debias283

methods based on our results.284
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2024. Debiasing algorithm through model adaptation.371
Preprint, arXiv:2310.18913.372

Kyle Mahowald, Anna A. Ivanova, Idan A. Blank,373
Nancy Kanwisher, Joshua B. Tenenbaum, and374
Evelina Fedorenko. 2024. Dissociating language375
and thought in large language models. Preprint,376
arXiv:2301.06627.377

Sam Whitman McGrath, Jacob Russin, Ellie Pavlick,378
and Roman Feiman. 2023. How can deep neural379
networks inform theory in psychological science?380

Kevin Meng, David Bau, Alex Andonian, and Yonatan381
Belinkov. 2023. Locating and editing factual associa-382
tions in gpt. Preprint, arXiv:2202.05262.383

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. 2024.384
Circuit component reuse across tasks in transformer385
language models. Preprint, arXiv:2310.08744.386

nostalgebraist. 2020. interpreting gpt: the logit lens.387
LessWrong.388

Ellie Pavlick. 2023. Symbols and grounding in large389
language models. Philosophical Transactions of the390
Royal Society A, 381(2251):20220041.391

Steven T Piantadosi. 2023. Modern language models392
refute Chomsky’s approach to language. Lingbuzz393
Preprint, lingbuzz/007180.394

Alec Radford, Jeff Wu, Rewon Child, David Luan, 395
Dario Amodei, and Ilya Sutskever. 2019. Language 396
models are unsupervised multitask learners. 397

Leonardo Ranaldi, Elena Sofia Ruzzetti, Davide Ven- 398
ditti, Dario Onorati, and Fabio Massimo Zanzotto. 399
2023. A trip towards fairness: Bias and de-biasing in 400
large language models. Preprint, arXiv:2305.13862. 401

Shauli Ravfogel, Yanai Elazar, Hila Gonen, Michael 402
Twiton, and Yoav Goldberg. 2020. Null it out: Guard- 403
ing protected attributes by iterative nullspace projec- 404
tion. Preprint, arXiv:2004.07667. 405

Shauli Ravfogel, Michael Twiton, Yoav Goldberg, and 406
Ryan Cotterell. 2022. Linear adversarial concept 407
erasure. Preprint, arXiv:2201.12091. 408

Georges Rey. 2023. The Analytic/Synthetic Distinction. 409
In Edward N. Zalta and Uri Nodelman, editors, The 410
Stanford Encyclopedia of Philosophy, Spring 2023 411
edition. Metaphysics Research Lab, Stanford Univer- 412
sity. 413

Karolina Stanczak and Isabelle Augenstein. 2021. A 414
survey on gender bias in natural language processing. 415
Preprint, arXiv:2112.14168. 416

Aaquib Syed, Can Rager, and Arthur Conmy. 2023. 417
Attribution patching outperforms automated circuit 418
discovery. Preprint, arXiv:2310.10348. 419

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, 420
Sharon Qian, Daniel Nevo, Simas Sakenis, Jason 421
Huang, Yaron Singer, and Stuart Shieber. 2020. 422
Causal mediation analysis for interpreting neural nlp: 423
The case of gender bias. Preprint, arXiv:2004.12265. 424

Elena Voita and Ivan Titov. 2020. Information-theoretic 425
probing with minimum description length. Preprint, 426
arXiv:2003.12298. 427

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, 428
Buck Shlegeris, and Jacob Steinhardt. 2023. Inter- 429
pretability in the wild: a circuit for indirect object 430
identification in GPT-2 small. In The Eleventh Inter- 431
national Conference on Learning Representations. 432

Zhongbin Xie and Thomas Lukasiewicz. 2023. An em- 433
pirical analysis of parameter-efficient methods for 434
debiasing pre-trained language models. In Proceed- 435
ings of the 61st Annual Meeting of the Association for 436
Computational Linguistics (Volume 1: Long Papers), 437
pages 15730–15745, Toronto, Canada. Association 438
for Computational Linguistics. 439

6

https://doi.org/10.18653/v1/2022.ltedi-1.8
https://doi.org/10.18653/v1/2022.ltedi-1.8
https://doi.org/10.18653/v1/2022.ltedi-1.8
https://doi.org/10.18653/v1/2022.acl-long.72
https://doi.org/10.18653/v1/2022.acl-long.72
https://doi.org/10.18653/v1/2022.acl-long.72
https://doi.org/10.18653/v1/2022.acl-long.72
https://doi.org/10.18653/v1/2022.acl-long.72
https://arxiv.org/abs/2403.17806
https://arxiv.org/abs/2403.17806
https://arxiv.org/abs/2403.17806
https://doi.org/10.18653/v1/P19-1160
https://doi.org/10.18653/v1/P19-1160
https://doi.org/10.18653/v1/P19-1160
https://doi.org/10.18653/v1/2021.findings-emnlp.411
https://arxiv.org/abs/2310.18913
https://arxiv.org/abs/2301.06627
https://arxiv.org/abs/2301.06627
https://arxiv.org/abs/2301.06627
https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2310.08744
https://arxiv.org/abs/2310.08744
https://arxiv.org/abs/2310.08744
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://arxiv.org/abs/2305.13862
https://arxiv.org/abs/2305.13862
https://arxiv.org/abs/2305.13862
https://arxiv.org/abs/2004.07667
https://arxiv.org/abs/2004.07667
https://arxiv.org/abs/2004.07667
https://arxiv.org/abs/2004.07667
https://arxiv.org/abs/2004.07667
https://arxiv.org/abs/2201.12091
https://arxiv.org/abs/2201.12091
https://arxiv.org/abs/2201.12091
https://arxiv.org/abs/2112.14168
https://arxiv.org/abs/2112.14168
https://arxiv.org/abs/2112.14168
https://arxiv.org/abs/2310.10348
https://arxiv.org/abs/2310.10348
https://arxiv.org/abs/2310.10348
https://arxiv.org/abs/2004.12265
https://arxiv.org/abs/2004.12265
https://arxiv.org/abs/2004.12265
https://arxiv.org/abs/2003.12298
https://arxiv.org/abs/2003.12298
https://arxiv.org/abs/2003.12298
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://doi.org/10.18653/v1/2023.acl-long.876
https://doi.org/10.18653/v1/2023.acl-long.876
https://doi.org/10.18653/v1/2023.acl-long.876
https://doi.org/10.18653/v1/2023.acl-long.876
https://doi.org/10.18653/v1/2023.acl-long.876


A Template440

Templates "The { } said that"441

"The { } yelled that"442

"The { } whispered that"443

"The { } wished that"444

"The { } ate because"445

"The { } ran because"446

"The { } drove because"447

"The { } slept because"448

"The { } cried because"449

"The { } laughed because"450

"The { } went home because"451

"The { } stayed up because"452

"The { } yelled because"453

Explicitly Gendered Nouns (Male) ’man’,454

’boy’, ’father’, ’brother’, ’son’, ’uncle’, ’nephew’,455

’grandfather’, ’grandson’, ’husband’, ’boyfriend’,456

’groom’, ’gentleman’, ’sir’, ’mister’, ’prince’,457

’king’, ’god’, ’lad’, ’sir’458

Explicitly Gendered Nouns (Female) ’woman’,459

’girl’, ’mother’, ’sister’, ’daughter’, ’aunt’, ’niece’,460

’grandma’, ’granddaughter’, ’wife’, ’girlfriend’,461

’bride’, ’lady’, ’miss’, ’maid’, ’princess’, ’queen’,462

’goddess’, ’widow’, ’mistress’463

Neutral "individual", "human", "being", "child",464

"adult", "resident", "participant", "member",465

"friend", "neighbor", "partner", "peer"466

Profession (Male) ’assassin’, ’astronaut’, ’body-467

guard’, ’boxer’, ’butcher’, ’carpenter’, ’coach’,468

’colonel’, ’commissioner’, ’custodian’, ’electri-469

cian’, ’farmer’, ’janitor’, ’mathematician’, ’min-470

ister’, ’doctor’, ’president’, ’sailor’, ’warden’, ’war-471

rior’472

Profession (Female) ’socialite’, ’librarian’,473

’clerk’, ’ballerina’, ’dancer’, ’nanny’, ’whore’,474

’nun’, ’nurse’, ’secretary’, ’receptionist’, ’teacher’,475

’therapist’, ’violinist’, ’housekeeper’, ’hooker’,476

’paralegal’, ’stylist’, ’housekeeper’, ’hairdresser’]477

B Model Sizes478

C Pronoun Circuit Graph from GPT2479

Models480

We extend the analysis beyond GPT2-medium to481

GPT2-small and GPT2-large. Regardless of the482

size of the model, the overlap in the shared com-483

ponents remains high. In GPT2 small, the Jaccard484

Similarity between circuit components is 0.68, and485

0.71 for GPT2-large.486

D Name Circuit Graph for GPT2 Models 487

In the main paper, we focus on “The {boy/girl} 488

verb that” and “The {doctor/nurse} verb that”. 489

We extend the analysis beyond the prediction of 490

pronouns. We created the contrasting pairs-“The 491

{boy/girl}’s name is” and “The {doctor/nursel}’s 492

name is” querying for names in Table 1: 2 and 3. In 493

the prediction of names, there is also a high overlap 494

of pink nodes in Figure 8. The similar mechanisms 495

in synthetic and analytical words is not a special 496

case in predicting pronoun but also in predicting 497

names as well. 498

E Minimal Description Length 499

Formally, we separate the training data into N sub- 500

sets of equal size t. We train a series of linear 501

classifiers pi(y|x) by giving the first i subsets of 502

data for a fixed number of epochs. We calculate the 503

cross entropy loss on pi(y|x) on a held-out test set. 504

A model that performs well with a limited number 505

of training examples will be rewarded by a lower 506

codelength. 507

−
N∑
i=1

log2 pi(yit+1:i(t+1)|xit+1:i(t+1)) (1) 508
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input output gender pronoun input type
0 The {boy/girl} verb that he/she yes yes analytical
1 The {doctor/nurse} verb that he/she yes yes synthetic
2 The {boy/girl}’s name is gendered names yes no analytical
3 The {doctor/nurse}’s name is gendered names yes no synthetic
4 The {doctor} and {(he/she)/me} verb that they/we no yes /
5 The {boy} and {(he/she)/me} verb that they/we no yes /

Table 1: detailed dataset examples

Figure 5: Circuit graph for GPT2 small. Left: explicitly gendered noun. Right: profession noun

Figure 6: Circuit graph for GPT2 medium. Left: explicitly gendered noun. Right: profession noun
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Figure 7: Circuit graph for GPT2 large. Left: explicitly gendered noun. Right: profession noun

Model Parameters Layer Heads
GPT2-small 117m 12 12
GPT2-medium 335m 24 16
GPT2-large 762m 36 20

Table 2: model sizes

input

m0

m1

m3 m12

m14
m19

m20

m23

output

a8.6

a16.6

a13.1a11.
6

a14.13

a18.1

m5

m8

Figure 8: Circuit abstraction overlap in the prediction of
names. The pink nodes in the middle appear in both the
synthetic and analytical noun circuits. The blue nodes
appear only in the explicitly gendered nouns while the
red nodes appear only in the profession nouns. We
compare with the input “The <noun> and me said that”
which predicts the pronoun of they-we. The light pink
nodes also appear in the circuit that predicts they-we
1 while the dark pink nodes only appear in the syn-
thetic/analytical noun circuits.
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