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Abstract

Some linguistic inferences—e.g., inferring that
a square has four sides—seem to follow inher-
ently from what words mean, while others—e.g.,
inferring that a house has four sides—are consid-
ered to follow from “common sense” or “world
knowledge”. It has long been debated whether
such categorical distinctions, referred to in phi-
losophy as analytic vs. synthetic, can be made
and what effect they should have on theories
and models of semantic meaning. In this pa-
per, we use gender (male vs. female) as a case
study to explore whether large language models
(LLMs) differentiate analytic inferences about
gender (e.g., that a woman is female) from syn-
thetic inferences (e.g., that nurses are most of-
ten female). We find that, by and large, there
are not substantial mechanistic differences, but
rather the difference appears to be a matter
of degree—i.e., how strongly the inference is
encoded and how easily it is overwritten by
contextual information. Our study serves as a
proof-of-concept for how LLMs can be used to
revisit long-standing questions about language
representation and processing in general.

1 Introduction

In the philosophy of language, semantics, and com-
putational linguistics, a distinction is often made
between synthetic and analytic aspects of meaning
(Rey, 2023). Here, analytic refers inferences that
are inherently true given the meaning of a word
(e.g., that a square is four-sided) while synthetic
refers to properties that are perhaps inferred from
common sense or life experience (e.g., one might
infer that a house is likely four-sided, but that is
in no way required by the meaning of the word
house). There has long been debate about the ex-
tent to which this distinction is real, or whether
there is a difference between synthetic and ana-
Iytic properties in terms of how they are stored
and processed. Large language models (LLMs),
which exhibit near-human ability to generate and

process text, allow us to study this distinction in
empirical rather than philosophical terms. Using
gender (male vs. female) as a case study, we ask
whether LLMs invoke different mechanisms when
gender information is presumptively analytic (e.g.,
the inference that woman is female is built into the
English language) vs. synthetic (e.g., the inference
a nurse 1is likely female comes from world knowl-
edge, not from semantics per se). We focus on the
analysis of GPT-2 family (Radford et al., 2019) !

of models, and investigate the mechanisms used
to predict pronouns (he vs. she) and names for a
variety of types of words that indicate gender (ex-
plicitly gendered nouns, names, professions, etc).
We find that, by and large, there are no substantial
mechanistic differences between how synthetic vs.
analytic inferences about gender are processed, but
there are differences of degree. That is, in almost
all cases, gender information is primarily stored in
the word embeddings, and differences stem chiefly
from how strongly the bias is encoded and how eas-
ily it is overwritten by contextual information. Our
work serves as a proof of concept for how studying
mechanisms in LLMs can inform the study of lan-
guage more broadly and has practical implications
for work on debiasing LLMs (see Discussion §4).

2 Dataset

We curate a set of 20 grammatically gendered
nouns (e.g., man, woman) each for male and fe-
male, and a subset of 40 profession nouns from
(Vig et al., 2020) which have strong gender associa-
tions (e.g., doctor, nurse). We also construct a set of
14 templates that are designed to be gender-neutral
and bias the model toward producing a pronoun to
continue the sentence. The dataset follows the for-
mat of “The {noun} {verb} that” or “The {noun}
{verb} because”. We switch the {noun} with ex-

'We focus on GPT2-medium in the main paper. GPT2
small and large are included in the appendix



Predictions of "The <noun>
<verb> that" to "he"/"she"

1.01 0.02 5%
o) i
G
£ 0.8
o
=
% 0.6
2 1.00 0.98 1.00 b
5 04] 0.88
2
5]
é 0.21 predict("he")
A redict("she"
0o p ( ) 0.06
Iwoma“’ (or/nurse” <person”
™e 42?&; that  The “\\;ibot\\at T\\ever‘;) that

Figure 1: Percentage of predicting “he/she” for ex-
plicitly gendered nouns, profession, and gender-neutral
nouns. The left bars are stereotypical male gender nouns
and the right bars are for female nouns. Blue means
preferring “he” over “she” and pink means vice versa.

plicitly gendered nouns and professions. The full
list of the templates and nouns can be found in
Appendix A.

3 Experiments and Results

Strength of Inference: If there is a difference
between how the LLM processes synthetic vs. an-
alytic gender inferences, we might expect to see
that words like woman take female pronouns with-
out exception, while words like nurse show a more
balanced mix of pronouns. Thus, we first compare
the consistency of pronoun predictions for two tem-
plates: “The {profession word} verb that” vs. “The
{gendered word} verb that”. We calculate the con-
sistency by examining the probability difference
between the tokens “he” and “she” at the final layer.
Consistently positive difference implies the model
favors “he”, and negative implies favoring ““she”.
Our results are in Figure 1. Note that, at base-
line, the model has a strong bias for “he” over
“she”: 93% of the time the model will predict “he”
given the templates populated with neutral nouns
(person, child, member).2 Overall, the results are
in line with our expectations. The explicitly gen-
dered words’ predictions are highly consistent; in
all 40 words (20 male and 20 female), 39 of them
exhibit perfect consistency. All the definitionally
male nouns prefer “he” over “she”. Among the
female nouns, 19 of them prefer “she” over “he”.

’The exceptions might be due to gender-biased verbs. E.g.,
the model predicts “she” when the template includes cried.

The only exception is the word miss.> We speculate
that this is due to the fact that miss is rather rare
to be used by itself as a noun, and thus the LLM
might not have learned a strong gender signal.

In the case of profession nouns, the pronoun
predictions are more dependent on the template.
Among twenty female profession nouns (Vig et al.,
2020), seven of them (clerk, secretary, teacher, ther-
apist, stylist, hairdresser, violinist) show high vari-
ance depending on the verb that appears in the
template. For example, all show a preference for
“he” in the template *The {noun} drove because’.
We speculate that this is because the verb drove
has a stronger male gender signal, overriding the
signal sent by the profession nouns.

Location of Gender Information: We might ex-
pect that analytic inferences are encoded on the
word itself (e.g., femaleness is part of the context-
independent meaning of woman) while synthetic
inferences might occur later in processing, as part
of contextual inference. We thus investigate where
in the model (at which layer) the inference about
gender is made. We use Minimum Description
Length (MDL) (Voita and Titov, 2020), which intu-
itively captures how accurately a feature can be de-
coded and the amount of effort required to decode
it (i.e., the codelength). We compute codelength
for predicting the (assumed) gender of a word for
every hidden state to determine where the model
most readily commits to the inference that a given
noun, e.g., nurse or woman, is female.

Figure 2 shows MDL # at each layer for two to-
kens: 1) the last token in the template and 2) the
token corresponding just to the noun of interest. We
see that, for both explicitly gendered words and pro-
fession words, the codelength (right) drops sharply
to near O after the first layer, suggesting that the in-
ference about gender is readily encoded within the
embedding of the noun itself both for analytic infer-
ences about gender as well as for inferences which
should be synthetic. However, when we look at the
MDL at the final token in the sentence (a way of
approximating the inference made over the whole
sentence), it is more difficult to extract the gender
representation for the profession nouns compared
to the explicitly gendered nouns. To investigate this
further, we employ early decoding (nostalgebraist,

3In “The miss said that”, “The miss yelled that”, “The
miss ran because”, “The miss drove because”, “he” is more
probable than “she”.

*The detailed description is shown in E
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Figure 2: Codelength of probes to differentiate gender information. The left graph (covering 560 examples) decodes
the hidden states on the final tokens of “that”. The right graph (covering 40 examples) decodes the hidden states on
the tokens of the noun directly. Probes at every layer are trained for 20 epochs.
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Figure 3: Rank of the pronouns through early decoding.

2020) to determine at which layer the model com-
mits to the pronoun prediction (“he” vs. “she”). For
both analytic and synthetic inferences, the model
appears to form the pronoun predictions around the
same layer at inference time in Figure 3. That is, it
takes the same number of layers for both “woman”
and “nurse” to build up the meaning of the female
and generate the prediction of “she”.

Together, these results imply that there is no
distinction in the lexicon between analytic vs. syn-
thetic inferences about gender, nor in how quickly
(in terms of number of layers) the inferences are
made. However, synthetic inferences might inter-
act differently with contextual information, perhaps
because they are more readily overwritten by com-
peting semantic cues.

Circuit Analysis: We attempt to drill down fur-
ther and localize the components that process gen-
der information for each type of inference. To do
this, we employ causal mediation analysis (Vig
et al., 2020; Chan et al., 2022; Geiger et al., 2021,
2023; Meng et al., 2023; Wang et al., 2023; Chan
et al., 2023; Cohen et al., 2023; Merullo et al.,
2024). The contrasting pairs are formed by “The
{male nouns} verb that” and “The {female nouns}
verb that” for the clean and corrupted inputs, re-
spectively (see Vig et al. (2020) for a full descrip-
tion of the method). We perform the patching exper-
iments manually and also utilize automated circuit
discovery from Conmy et al. (2023); Bills et al.
(2023); Syed et al. (2023); Hanna et al. (2024) to
obtain the top 50 edges in the computation sub-
graphs.

We compute top components (e.g., attention
heads and MLPs) that are involved in the pronoun
prediction for the analytic and synthetic gender in-
ferences, as well as those that are involved with
the prediction of pronouns in neutral contexts. We
examine whether there are components that are
uniquely active in the computation of synthetic or
analytic gender inferences, which are not explained
by their involvement in pronoun prediction more
generally. Figure 4 shows our results. We find that
the circuits are highly overlapping but not identical
(Jaccard similarity between these two circuits is
0.73)°. While much of the overlap is due to com-
ponents that are involved in the general pronoun

5As a control: we find a 0.09 Jaccard similarity with the
10I circuit (Wang et al., 2023).



Figure 4: Abstraction of circuit overlap across the
dataset. The pink nodes appear in both the synthetic and
analytical noun circuits. The blue nodes appear only in
the explicitly gendered nouns while the red nodes ap-
pear only in the profession nouns. We compare with the
input “The <noun> and me said that” which predicts
the pronoun of they-we. The lighter color (pink, blue)
nodes also appear in the circuit that predicts they-we in
Table 1 while the darker color nodes only appear in the
synthetic/analytical noun circuits.

prediction case, some are unique to the gendered
inference. Importantly, we also find two attention
heads which are only involved in the processing of
explicitly gendered words, and two MLPs which
are only involved in the processing of profession
nouns. While it is too early to draw strong conclu-
sions, this presents an interesting avenue for future
work, as it might be suggestive of different mecha-
nisms governing analytic vs. synthetic inferences.

4 Discussion

Our analyses suggest that, within LLMs, the
synthetic-analytic distinction is less of a categor-
ical distinction than variation along a continuum.
Specifically, we find evidence that inferences about
gender, whether categorical or analytic, are stored
primarily in the embeddings (i.e., the lexicon) and
that the model does not require any more process-
ing (i.e., the number of layers) to make synthetic
inferences compared to analytic ones. That said,
we do see consistent evidence that synthetic in-

ferences are encoded less strongly (measured by
MDL) and are more easily overwritten, e.g., when
other words in the context carry competing signals
about gender. However, our circuit analysis, while
preliminary, does suggest that there might be differ-
ent computational units involved in the processing
of synthetic vs. analytic inferences. Further work
could yield significant revision to our above inter-
pretation, possibly providing evidence of a more
explicitly categorical difference between how these
inferences are processed.

Our findings have practical implications for work
on debiasing LL.Ms. The high similarities in these
two mechanisms suggest that it might not be pos-
sible to remove synthetic inferences about gender
(which are generally deemed “bias”) without dam-
aging analytical inferences (which are necessary
for correct English language generation). As many
existing debiasing methods intervene with gender
information by either fine-tuning the model weights
or editing the representations at inference time, our
analysis suggests that will hurt the performance of
analytical gendered nouns since the weights and
representations are shared.

5 Related Work

Our work contributes to a recent line of work that
asks if and how LLMs can inform the study of
language and cognition more broadly (Mahowald
et al., 2024). Often, arguments are made that LLMs
inform linguistic theory by serving as wholesale re-
placements for existing explanatory models (Pianta-
dosi, 2023). Our proof of concept study aligns with
an alternative position, arguing that understanding
of the mechanisms in play in LLMs can lead to
refinement, rather than replacement, of existing
theories (Pavlick, 2023; McGrath et al., 2023).

Our experiments are also highly related to work
on gender bias in LLMs. Many previous efforts
(Stanczak and Augenstein, 2021) have been made
in identifying gender bias as well as intervening
in gender bias in language models. Approaches
include modifying the training data (Guo et al.,
2022; Ranaldi et al., 2023), intervening on the
word embeddings (Kaneko and Bollegala, 2019),
fine-tuning specific parts of the model (Lauscher
et al., 2021; Gira et al., 2022; Xie and Lukasiewicz,
2023), or employing model-editing and causal me-
diation techniques (Belrose et al., 2023; Ravfogel
et al., 2022, 2020; Cai et al., 2024; Chintam et al.,
2023; Limisiewicz et al., 2024).



6 Limitation

Our work aims to compare how LMs process syn-
thetic and analytical inferences. However, the con-
clusion is limited to a few specific datasets based
on gender information. Moreover, the analysis
only covers the GPT2 series of models. There-
fore, the conclusion drawn is yet limited and can
be expanded upon models with larger sizes and
a more diverse range of data. The results can be
supported by more evidence that causally explains
our observations on the strength of inference. We
would like future work to extend the analysis be-
yond the case of gender and propose new debias
methods based on our results.
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A Template

Templates "The { } said that"
"The { } yelled that"

"The { } whispered that"
"The { } wished that"

"The { } ate because"

"The { } ran because"

"The { } drove because"
"The { } slept because"

"The { } cried because"

"The { } laughed because"
"The { } went home because"
"The { } stayed up because"
"The { } yelled because"

Explicitly Gendered Nouns (Male) ’man’,
’boy’, ’father’, *brother’, ’son’, "uncle’, *nephew’,
’grandfather’, *grandson’, "husband’, *boyfriend’,
’groom’, ’gentleman’, ’sir’, ’mister’, ’prince’,
’king’, *god’, ’lad’, ’sir’

Explicitly Gendered Nouns (Female) ’woman’,
“girl’, “mother’, ’sister’, ’daughter’, *aunt’, "niece’,
’grandma’, ’granddaughter’, *wife’, ’girlfriend’,
’bride’, ’lady’, “miss’, 'maid’, *princess’, ’queen’,
’goddess’, "widow’, “mistress’

Neutral "individual", "human", "being", "child",
' n n . " " S n n ALl
9 b b 9
"adult resident participant member
" " n ”peerll

"friend", "neighbor", "partner”,

Profession (Male) ’assassin’, ’astronaut’, body-
guard’, ’boxer’, ’butcher’, ’carpenter’, ’coach’,
’colonel’, ’commissioner’, ’custodian’, ’electri-
cian’, ’farmer’, ’janitor’, ’'mathematician’, *min-
ister’, ’doctor’, "president’, ’sailor’, *warden’, *war-
rior’

Profession (Female) ’socialite’, ’librarian’,
“clerk’, ’ballerina’, ’dancer’, ’nanny’, ’whore’,
‘nun’, ‘nurse’, secretary’, ‘receptionist’, ’teacher’,
“therapist’, ’violinist’, “housekeeper’, ’hooker’,
“paralegal’, *stylist’, "housekeeper’, "hairdresser’]

B Model Sizes

C Pronoun Circuit Graph from GPT2
Models

We extend the analysis beyond GPT2-medium to
GPT2-small and GPT2-large. Regardless of the
size of the model, the overlap in the shared com-
ponents remains high. In GPT2 small, the Jaccard
Similarity between circuit components is 0.68, and
0.71 for GPT2-large.

D Name Circuit Graph for GPT2 Models

In the main paper, we focus on “The {boy/girl}
verb that” and “The {doctor/nurse} verb that”.
We extend the analysis beyond the prediction of
pronouns. We created the contrasting pairs-“The
{boy/girl}’s name is” and “The {doctor/nursel}’s
name is” querying for names in Table 1: 2 and 3. In
the prediction of names, there is also a high overlap
of pink nodes in Figure 8. The similar mechanisms
in synthetic and analytical words is not a special
case in predicting pronoun but also in predicting
names as well.

E Minimal Description Length

Formally, we separate the training data into /N sub-
sets of equal size t. We train a series of linear
classifiers p;(y|x) by giving the first i subsets of
data for a fixed number of epochs. We calculate the
cross entropy loss on p;(y|z) on a held-out test set.
A model that performs well with a limited number
of training examples will be rewarded by a lower
codelength.

N
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input output gender pronoun input type
0 The {boy/girl} verb that he/she yes yes analytical
1 The {doctor/nurse} verb that he/she yes yes synthetic
2 The {boy/girl}’s name is gendered names  yes no analytical
3 The {doctor/nurse}’s name is gendered names  yes no synthetic
4 The {doctor} and {(he/she)/me} verd that they/we no yes /
5 The {boy} and {(he/she)/me} verb that they/we no yes /

Table 1: detailed dataset examples

Figure 6: Circuit graph for GPT2 medium. Left:

explicitly gendered noun. Right: profession noun



Figure 7: Circuit graph for GPT2 large. Left: explicitly gendered noun. Right: profession noun

Model Parameters Layer Heads
GPT2-small 117m 12 12
GPT2-medium 335m 24 16
GPT2-large 762m 36 20

Table 2: model sizes

Figure 8: Circuit abstraction overlap in the prediction of
names. The pink nodes in the middle appear in both the
synthetic and analytical noun circuits. The blue nodes
appear only in the explicitly gendered nouns while the
red nodes appear only in the profession nouns. We
compare with the input “The <noun> and me said that”
which predicts the pronoun of they-we. The light pink
nodes also appear in the circuit that predicts they-we
1 while the dark pink nodes only appear in the syn-
thetic/analytical noun circuits.
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