
Learning to Win Lottery Tickets in BERT Transfer via Task-agnostic Mask
Training

Anonymous ACL submission

Abstract

Recent studies on the lottery ticket hypothesis001
(LTH) show that pre-trained language models002
(PLMs) like BERT contain matching subnet-003
works that have similar transfer learning perfor-004
mance as the original PLM. These subnetworks005
are found using magnitude-based pruning. In006
this paper, we find that the BERT subnetworks007
have even more potential than these studies008
have shown. Firstly, we discover that the suc-009
cess of magnitude pruning can be attributed to010
the preserved pre-training performance, which011
correlates with the downstream transferability.012
Inspired by this, we propose to directly opti-013
mize the subnetwork structure towards the pre-014
training objectives, which can better preserve015
the pre-training performance. Specifically, we016
train binary masks over model weights on the017
pre-training tasks, with the aim of preserving018
the universal transferability of the subnetwork,019
which is agnostic to any specific downstream020
tasks. We then fine-tune the subnetworks on021
the GLUE benchmark and the SQuAD dataset.022
The results show that, compared with magni-023
tude pruning, mask training can effectively find024
BERT subnetworks with improved overall per-025
formance on downstream tasks. Moreover, our026
method is also more efficient in searching sub-027
networks and more advantageous when fine-028
tuning within a certain range of data scarcity.029
Our code will be released upon publication.030

1 Introduction031

The NLP community has witnessed a remarkable032

success of pre-trained language models (PLMs).033

After being pre-trained on unlabelled corpus in034

a self-supervised manner, PLMs like BERT (De-035

vlin et al., 2019) can be fine-tuned as a universal036

text encoder on a wide range of downstream tasks.037

However, the growing performance of BERT is038

driven, to a large extent, by scaling up the model039

size, which hinders the fine-tuning and deployment040

of BERT in resource-constrained scenarios.041

0.5 0.6 0.7 0.8 0.9
Sparsity

40

50

60

70

80

Av
g
Sc
or
e

Downstream Performance

full bert
Rand
OMP

0.5 0.6 0.7 0.8 0.9
Sparsity

0

2

4

6

8

10

M
LM
 L
os
s

Pre-training Performance

5

10

15

20

25

Sc
or
e
Ga
p

−3

−2

−1

0

1

2

3

M
LM

 L
os
s G

ap

Gap between OMP & Rand

Figure 1: Average downstream performance (left) and
pre-training performance (right) of OMP and random
subnetworks of BERTBASE. See Appendix A for the
downstream results of each task.

At the same time, the lottery ticket hypothesis 042

(LTH) (Frankle and Carbin, 2019) emerges as an 043

active sub-field of model compression. The LTH 044

states that randomly initialized dense networks con- 045

tain sparse matching subnetworks, i.e., winning 046

tickets (WTs), that can be trained in isolation to 047

similar test accuracy as the full model. The original 048

work of LTH and subsequent studies have demon- 049

strated that such WTs do exist at random initial- 050

ization or an early point of training (Frankle et al., 051

2019, 2020). This implicates the feasibility of re- 052

ducing training and inference cost via LTH. 053

Recently, Chen et al. (2020) extend the original 054

LTH to the pre-training and fine-tuning paradigm, 055

exploring the existence of matching subnetworks 056

in pre-trained BERT. Such subnetworks are smaller 057

in size, while they can preserve the universal trans- 058

ferability of the full model. Encouragingly, Chen 059

et al. (2020) demonstrate that BERT indeed con- 060

tains matching subnetworks that are transferable to 061

multiple downstream tasks without compromising 062

accuracy. These subnetworks are found using itera- 063

tive magnitude pruning (IMP) (Han et al., 2015) on 064

the pre-training task of masked language modeling 065

(MLM), or by directly compressing BERT with 066

oneshot magnitude pruning (OMP), both of which 067

are agnostic to any specific task. 068

In this paper, we follow Chen et al. (2020) to 069

study the question of LTH in BERT transfer learn- 070

1

ing. We find that there is a correlation, to cer-071

tain extent, between the performance of a BERT072

subnetwork on the pre-training task (right after073

pruning), and its downstream performance (after074

fine-tuning). As shown by Fig. 1, the OMP sub-075

networks significantly outperform random subnet-076

works at 50% sparsity in terms of both MLM loss077

and downstream score. However, with the increase078

of model sparsity, the downstream performance and079

pre-training performance degrade simultaneously.080

This phenomenon suggests that we might be able081

to further improve the transferability of BERT sub-082

networks by discovering the structures that better083

preserve the pre-training performance.084

To this end, we propose to search transfer-085

able BERT subnetworks via Task-Agnostic Mask086

Training (TAMT), which learns selective binary087

masks over the model weights on pre-training088

tasks. In this way, the structure of a subnetwork089

is directly optimized towards the pre-training ob-090

jectives, which can preserve the pre-training per-091

formance better than heuristically retaining the092

weights with large magnitudes. The training ob-093

jective of the masks is a free choice, which can094

be designed as any loss functions that are agnostic095

to the downstream tasks. In particular, we inves-096

tigate the use of MLM loss and a loss based on097

knowledge distillation (KD) (Hinton et al., 2015).098

To examine the effectiveness of the proposal, we099

train the masks on the WikiText dataset (Merity100

et al., 2017) for language modeling and then fine-101

tune the searched subnetworks on a wide variety of102

downstream tasks, including the GLUE benchmark103

(Wang et al., 2019) for natural language understand-104

ing (NLU) and the SQuAD dataset (Rajpurkar et al.,105

2016) for question answering (QA). The empirical106

results show that, through mask training, we can in-107

deed find subnetworks with lower pre-training loss108

and better downstream transferability than OMP109

and IMP. Compared with IMP, which also involves110

training (the weights) on the pre-training task, mask111

training requires much fewer training iterations to112

reach the same performance. Moreover, the sub-113

networks found by mask training is generally more114

robust when being fine-tuned with reduced data, as115

long as the training data is not extremely scarce.116

In summary, our contributions are:117

• We find that the pre-training performance of118

a BERT subnetwork correlates with its down-119

stream transferability, which provides a useful120

insight for the design of searching methods to121

find transferable BERT subnetworks. 122

• Based on the above finding, we propose to 123

search subnetworks by learning binary masks 124

over the weights of BERT, which can directly 125

optimize the subnetwork structure towards the 126

given pre-training objective. 127

• Experiments on a variety of NLP tasks show 128

that subentworks found by mask training have 129

better downstream performance than magni- 130

tude pruning. This suggests that BERT subnet- 131

works have more potential, in terms of univer- 132

sal downstream transferability, than existing 133

work has shown, which can facilitate our un- 134

derstanding and application of LTH on BERT. 135

2 Related Work 136

The lottery ticket hypothesis (Frankle and Carbin, 137

2019) suggests the existence of matching subnet- 138

works, at random initialization, that can be trained 139

in isolation to reach the performance of the original 140

network. However, the matching subnetworks are 141

found using IMP, which typically requires more 142

training cost than the full network. To overcome 143

this problem, Morcos et al. (2019) proposed to 144

transfer the WT structure from source tasks to re- 145

lated tasks in the computer vision (CV) field. 146

Some recent works extend the LTH from random 147

initialization to pre-trained initialization. There are 148

two typical setups. The first one searches WTs for 149

each downstream task separately (Prasanna et al., 150

2020; Chen et al., 2020; Liang et al., 2021). Like 151

the conventional LTH, this setting may suffer from 152

additional searching cost for every new task. The 153

second setup investigates the transfer of WTs be- 154

tween tasks (Chen et al., 2020; Liang et al., 2021). 155

Particularly, Chen et al. (2020) find that WTs ob- 156

tained in downstream tasks generally underperform 157

WTs derived from the pre-training taks of MLM, 158

which is universally transferable to other tasks. The 159

same question of transferring WTs found in pre- 160

training tasks is also explored in the CV field by 161

Chen et al. (2021); Caron et al. (2020). In this work, 162

we follow this question and seek to further improve 163

the transferability of BERT subnetworks. 164

In the literature of BERT compression, prun- 165

ing (LeCun et al., 1989; Han et al., 2015) and KD 166

(Hinton et al., 2015) are two widely-studied tech- 167

niques. BERT can be pruned in either unstructured 168

(Gordon et al., 2020; Sanh et al., 2020; Mao et al., 169

2020) or structured (Michel et al., 2019; Hou et al., 170

2

2020) ways. Although unstructured pruning is not171

hardware-friendly for speedup purpose, it is a com-172

mon setup in LTH, and some recent efforts have173

been made to support sparse tensor acceleration174

(Elsen et al., 2020; Xu et al., 2021). In BERT KD,175

an important question is the selection of knowledge,176

which includes the soft-labels (Sanh et al., 2019),177

the hidden state knowledge (Sun et al., 2019; Hou178

et al., 2020; Liu et al., 2021) and the attention rela-179

tions (Jiao et al., 2020), among others. In this paper,180

the hidden state knowledge is used in TAMT.181

Binary mask training was first proposed by182

Mallya et al. (2018) to adapt a learned model to183

multiple tasks. For each new task the binary masks184

are trained and stored instead of the weights, so185

as to save the memory footprint. Recently, Zhao186

et al. (2020) extend this idea to BERT fine-tuning.187

The difference between our work and these works188

is two-fold. First, they learn masks at low sparsity,189

since their focus is not on model pruning. In com-190

parison, we specially focus on the subnetworks at191

high sparsities. Moreover, their goal is to save stor-192

age through task-specific mask training on every193

new task, while we perform task-agnostic mask194

training to search subnetworks with universal trans-195

ferability to multiple downstream tasks.196

Another way to obtain more efficient BERT with197

the same transferability as the original one is to pre-198

train a compact model from scratch. This model199

can be trained either with the MLM objective (Turc200

et al., 2019) or using pre-trained BERT as the201

teacher to perform KD (Wang et al., 2020; Sun202

et al., 2020; Jiao et al., 2020). By contrast, the LTH203

extracts subentworks from BERT, which is about204

exposing the knowledge already learned by BERT,205

rather than learning new knowledge from scratch.206

Compared with training a new PLM, the LTH in207

BERT is still underexplored in the literature.208

3 Methodology209

3.1 BERT Architecture210

BERT consists of an embedding layer and L Trans-211

former layers (Vaswani et al., 2017). Each Trans-212

former layer has two sub-layers: the self-attention213

layer and the feed-forward network (FFN).214

The self-attention layer contains Nh parallel at-215

tention heads and each head can be formulated as:216

217

Self-Atth(H) = softmax

(
(HWQh

)(HWKh
)⊤

√
dh

)
HWVh

(1)218

where H ∈ R|x|×dH is the input; dH and |x| are 219

the hidden size and the length of input x, respec- 220

tively. WQh,Kh,Vh
∈ RdH×dh are the query, key 221

and value matrices, and dh = dH
Nh

. In practice, the 222

matrices for different heads will be combined into 223

three large matrices WQ,K,V ∈ RdH×dH . The out- 224

puts of the Nh heads are then concatenated and 225

linearly projected by WAO ∈ RdH×dH to obtain 226

the final output of the self-attention layer. 227

The FFN consists of two weight matrices 228

WFI ∈ RdH×dI , WFO ∈ RdI×dH with a ReLU 229

activation in between, where dI is the hidden di- 230

mension of FFN. Dropout (Srivastava et al., 2014), 231

residual connection (He et al., 2016) and layer nor- 232

malization (Ba et al., 2016) are also applied fol- 233

lowing each sub-layer. Eventually, for each down- 234

stream task, a classifier is used to give the final 235

prediction based on the output of the Transformer 236

module. 237

3.2 Subnetwork and Magnitude Pruning 238

Consider a model f(·;θ) with weights θ, we can 239

obtain its subnetwork f(·;M ⊙ θ) by applying 240

a binary mask M ∈ {0, 1}|θ| to θ, where ⊙ de- 241

notes element-wise multiplication. In terms of 242

BERT, we extract the subnetwork from the pre- 243

trained weights θ0. Specifically, we consider the 244

matrices of the Transformer sub-layers and the 245

word embedding matrix, i.e., θ0 = {WEmb} ∪ 246{
Wl

Q,W
l
K ,Wl

V ,W
l
AO,W

l
F I ,W

l
FO

}L

l=1
. 247

Magnitude pruning (Han et al., 2015) is initially 248

used to compress a trained neural network by set- 249

ting the low-magnitude weights to zero. It can be 250

conducted in two different ways: 1) Oneshot mag- 251

nitude pruning (OMP) directly prunes the trained 252

weights to target sparsity while 2) iterative mag- 253

nitude pruning (IMP) performs pruning and re- 254

training iteratively until reaching the target spar- 255

sity. OMP and IMP are also widely studied in the 256

literature of LTH as the method to find the match- 257

ing subnetworks, with an additional operation of 258

resetting the weights to initialization. 259

3.3 Problem Formulation: Transfer BERT 260

Subnetwork 261

As depicted in Fig. 2, given NT downstream tasks 262

T = {Ti}NT
i=1, the subnetwork f

(
·;M⊙ θ0, CTi0

)
263

is fine-tuned on each task, together with the ran- 264

domly initialized task-specific linear classifier CTi0 . 265

We formulate the training algorithm for task Ti as a 266

3

𝐖𝑬𝒎𝒃⊙𝐌𝑬𝒎𝒃

𝐿 ×

𝐖𝑸⊙𝐌𝑸

Self-Att

FFN

𝐖𝑬𝒎𝒃

𝐿 ×

𝐖𝑸 𝐖𝑲 𝐖𝑽

𝐖𝑨𝑶Self-Att

𝐖𝑭𝑰

FFN 𝐖𝑭𝑶

𝐖𝑸⊙𝐌𝑸 𝐖𝑸⊙𝐌𝑸

𝐖𝑨𝑶⊙𝐌𝑨𝑶

𝐖𝑭𝑰⊙𝐌𝑭𝑰

𝐖𝑭𝑶⊙𝐌𝑭𝑶

𝓒𝒎𝒍𝒎

𝓛𝑚𝑙𝑚

𝓛𝑑𝑖𝑠𝑡𝑖𝑙𝑙

𝓣𝒊
…

𝐖𝑬𝒎𝒃⊙𝐌𝑬𝒎𝒃

𝐖𝑸⊙𝐌𝑸

Self-Att

FFN

𝐖𝑸⊙𝐌𝑸 𝐖𝑸⊙𝐌𝑸

𝐖𝑨𝑶⊙𝐌𝑨𝑶

𝐖𝑭𝑰⊙𝐌𝑭𝑰

𝐖𝑭𝑶⊙𝐌𝑭𝑶

𝓒𝓣𝒊

𝓛𝓣𝒊

Pre-training
Data

𝓣𝟏 𝓣𝑵𝒯
…

Task-agnostic Mask Training (TAMT) Task-specific Fine-tuning

𝐿 ×

Full BERT Subnetwork

Figure 2: Illustration of the BERT subnetwork transfer problem and the proposed TAMT. We search the subnetworks
by training binary masks on the pre-training dataset, using either the MLM loss or the KD loss (left). The identified
subnetwork is then fine-tuned on a range of downstream tasks (right). The colored weights/masks are trainable and
the black ones are frozen. The residual connection and layer normalization are omitted for simplicity.

functionATi
t

(
f
(
·;M⊙ θ0, CTi0

))
(e.g., Adam or267

SGD), which trains the model for t steps and pro-268

duces f
(
·;M⊙ θt, CTit

)
. After fine-tuning, the269

model is evaluated against the metric ETi(f(·;M⊙270

θt, CTit)) (e.g., Accuracy or F1) for task Ti.271

In this work, we focus on finding a BERT subnet-272

work, that maximally preserves the overall down-273

stream performance given a particular sparsity S,274

especially at the sparsity that magnitude pruning275

performs poorly. This can be formalized as:276

max
M

(
1

NT

NT∑
i=1

ETi
(
ATi

t

(
f
(
·,M · θ0, CTi0

))))

s.t.
∥M∥0
|θ0|

= (1− S)
(2)277

where ∥M∥0 and |θ0| are the L0 norm of the mask278

and the total number of model weights respectively.279

3.4 Task-agnostic Mask Training280

3.4.1 Mask Training with Binarization and281

Gradient Estimation282

In order to learn the binary masks, we adopt the283

technique for training binarized neural networks284

(Hubara et al., 2016), following Zhao et al. (2020);285

Mallya et al. (2018). This technique involves mask286

binarization in the forward pass and gradient esti-287

mation in the backward pass.288

As shown in Fig. 2, each weight matrix W ∈289

Rdin×dout is associated with a binary mask M ∈290

{0, 1}din×dout , which is derived from a real-valued 291

matrix M ∈ Rdin×dout via binarization: 292

Mi,j =

{
1 if Mi,j ≥ ϕ

0 otherwise
(3) 293

where ϕ is the threshold that controls the sparsity. 294

In the forward pass of a subnetwork, W ⊙M is 295

used in replacement of the original weights W. 296

Since Mi,j are discrete variables, the gradient 297

signals cannot be back-propagated through the bi- 298

nary mask. We therefore use the straight-through 299

estimator (Bengio et al., 2013) to approximate the 300

gradients and update the real-valued mask: 301

M←M− η
∂L
∂M

(4) 302

where L is the loss function and η is the learning 303

rate. In other words, the gradients of M is esti- 304

mated using the gradients of M. In the process of 305

mask training, all the original weights are frozen. 306

3.4.2 Mask Initialization and Sparsity Control 307

The real-valued masks can be initialized in various 308

forms, e.g., random initialization. Considering that 309

magnitude pruning can preserve the pre-training 310

knowledge to some extent, and OMP is easy to 311

implement with almost zero computation cost, we 312

directly initialize M using OMP: 313

Mi,j =

{
α× ϕ if MOMP

i,j = 1

0 otherwise
(5) 314

4

where MOMP is the binary mask derived from315

OMP and α ≥ 1 is a hyper-parameter. In this way,316

the weights with large magnitudes will be retained317

at initialization according to Eq. 3, because the318

corresponding Mi,j = α× ϕ ≥ ϕ. In practice, we319

perform OMP over the weights locally based on320

the given sparsity, which means the magnitudes are321

ranked inside each weight matrix.322

As M being updated, some of its entries with323

zero initialization will gradually surpass the thresh-324

old, and vice versa. If the threshold ϕ is fixed325

throughout training, there is no guarantee that the326

binary mask will always satisfy the given sparsity.327

Therefore, we rank Mij according to their absolute328

values during mask training, and dynamically ad-329

just the threshold to satisfy the sparsity constraint.330

3.4.3 Mask Training Objectives331

We explore the use of two objectives for mask train-332

ing, namely the MLM loss and the KD loss.333

The MLM is the original task used in BERT pre-334

training. It randomly replaces a portion of the input335

tokens with the [MASK] token, and requires the336

model to reconstruct the original tokens based on337

the entire masked sequence. Concretely, the MLM338

objective is computed as cross-entropy loss on the339

predicted masked tokens. During MLM learning,340

we allow the token classifier (i.e., the Cmlm in Fig.341

2) to be trainable, in addition to the masks.342

In KD, the compressed model (student) is trained343

with supervision from the original model (teacher).344

Under our framework of mask training, the train-345

ing signal can also be derived from the unpruned346

BERT. To this end, we design the KD objective by347

encouraging the subnetwork to mimic the represen-348

tations of the original BERT, which is shown to be349

a useful source of knowledge in BERT KD (Sun350

et al., 2019; Hou et al., 2020). Specifically, the dis-351

tillation loss is formulated as the cosine similarity352

between the teacher’s and student’s representations:353

354

Ldistill =
1

L|x|

L∑
l=1

|x|∑
i=1

(1−cos
(
HT

l,i,H
S
l,i

)
) (6)355

where Hl,i is the hidden state of the ith token at the356

lth layer; T and S denote the teacher and student357

respectively; cos(·, ·) is the cosine similarity.358

4 Experiments 359

4.1 Experimental Setups 360

4.1.1 Models 361

We examine two PLMs from the BERT fam- 362

ily, i.e., BERTBASE (Devlin et al., 2019) and 363

RoBERTaBASE (Liu et al., 2019). They have basi- 364

cally the same structure, while differ in the vocab- 365

ulary size, which results in approximately 110M 366

and 125M parameters respectively. The the main 367

results of Section 4.2.1 study both two models. For 368

the analytical studies, we only use BERTBASE. 369

4.1.2 Baselines, Datasets and Evaluation 370

We compare our mask training method with IMP, 371

OMP as well as subnetworks with random struc- 372

tures. Following Chen et al. (2020), we use the 373

MLM loss druing IMP training. 374

We build our pre-training set using the WikiText- 375

103 dataset (Merity et al., 2017) for language mod- 376

eling. For downstream fine-tuning, we use six 377

datasets, i.e., CoLA, SST-2, RTE, MNLI, MRPC 378

and STS-B from the GLUE benchmark for NLU 379

and the SQuAD v1.1 dataset for QA. 380

Evaluations are conducted on the dev sets. For 381

the downstream tasks, we follow the standard 382

evaluation metrics (Wang et al., 2019). For the 383

pre-training tasks, we calculate the dev loss of 384

MLM/KD for the subnetworks f(·,M⊙θ0). More 385

information about the datasets and evaluation met- 386

rics can be found in Appendix B. 387

4.1.3 Implementation Details 388

Both TAMT and IMP are conducted on the pre- 389

training dataset. For mask training, we initialize 390

the mask using OMP as described in Section 3.4.2. 391

The threshold ϕ and α are set to 1e−2 and 2 respec- 392

tively, which work well in our experiments. For 393

IMP, we increase the sparsity by 10% every 1/10 394

of total training iterations, until reaching the target 395

sparsity, following Chen et al. (2020). Every prun- 396

ing operation in IMP is followed by resetting the 397

remaining weights to θ0. In the fine-tuning stage, 398

all the subnetworks and the full PLMs are trained 399

using the same set of hyper-parameters unless oth- 400

erwise specified. 401

For TAMT, IMP and random pruning, we gener- 402

ate three subnetworks with different seeds, and the 403

result of each subnetwork is also averaged across 404

three runs, i.e., the result of every method is the 405

average of nine runs in total. For OMP, we can 406

only generate one subnetwork, which is fine-tuned 407

5

0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

Co
LA

 M
cc

0.5 0.6 0.7 0.8 0.9
50.0

52.5

55.0

57.5

60.0

62.5

65.0

RT
E

Ac
c

0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

ST
S-

B
Pe

ar
so

n

0.5 0.6 0.7 0.8 0.9

77.5

80.0

82.5

85.0

87.5

90.0

92.5

SS
T-

2
Ac

c

0.5 0.6 0.7 0.8 0.9
Sparsity

70.0

72.5

75.0

77.5

80.0

82.5

M
RP

C
Ac

c

OMP
IMP
TAMT-MLM
TAMT-KD
Rand
full BERT
90% full BERT

0.5 0.6 0.7 0.8 0.9
Sparsity

50

55

60

65

70

75

80

85

M
NL

I A
cc

0.5 0.6 0.7 0.8 0.9
Sparsity

20

40

60

80

SQ
uA

D
F1

0.5 0.6 0.7 0.8 0.9
Sparsity

40

50

60

70

80

Av
g

Sc
or

e

0.2 0.4 0.6 0.8

0

10

20

30

40

50

60

Co
LA

 M
cc

OMP
IMP
TAMT-MLM
TAMT-KD
Rand
full RoBERTa
90% full RoBERTa

0.2 0.4 0.6 0.8

50

55

60

65

70

RT
E

Ac
c

0.2 0.4 0.6 0.8

20

40

60

80

ST
S-

B
Pe

ar
so

n

0.2 0.4 0.6 0.8

75

80

85

90

95

SS
T-

2
Ac

c

0.2 0.4 0.6 0.8
Sparsity

70

75

80

85

90

M
RP

C
Ac

c

0.2 0.4 0.6 0.8
Sparsity

50

60

70

80

90

M
NL

I A
cc

0.2 0.4 0.6 0.8
Sparsity

20

40

60

80
SQ

uA
D

F1

0.2 0.4 0.6 0.8
Sparsity

40

50

60

70

80

Av
g

Sc
or

e
Figure 3: Downstream performance of BERTBASE subnetworks (upper) and RoBERTaBASE subnetworks (lower).
Shadowed areas denote standard deviations.

across three runs. More implementation details and408

computing budgets can be found in Appendix C.409

4.2 Results and Analysis410

4.2.1 Main Results411

Fig. 3 presents the downstream performance of412

BERT and RoBERTa subnetworks across sparsities.413

We can derive the following observations:414

There is a clear gap between random subnet-415

works and the other ones found with certain in-416

ductive bias. At 50% sparsity for BERT and 20%417

for RoBERTa, all the methods, except for “Rand”,418

maintain 90% of the full model’s overall perfor-419

mance. As sparsity grows, the OMP subnetworks420

degrade significantly. IMP, which is also based on421

magnitude, exhibits relatively mild declines.422

TAMT further outperforms IMP with perceiv-423

able margin. At 60% ∼ 70% sparsity for BERT424

and 40% ∼ 60% for RoBERTa, both TAMT-425

MLM and TAMT-KD have advantage over IMP. At426

higher sparsity level (e.g., 80%), the performance427

of TAMT-KD is undesirable, which is only com-428

parable with IMP. In comparison, TAMT-MLM429

consistently surpasses the other methods.430

At 90% sparsity, all the methods perform poorly,431

with average scores approximately half of the full 432

model. On certain tasks like RTE and MRPC, such 433

failure of all methods can even be observed at lower 434

sparsity (e.g., 60% ∼ 80%). This is probably be- 435

cause the number of training data is too scarce in 436

RTE and MRPC for sparse PLMs to perform well. 437

However, we find that the strength of TAMT is 438

more significant within a range of data scarsity, 439

which will be discussed in Section 4.2.5. 440

We also note that RoBERTa, although outper- 441

forms BERT as a full model, is more sensitive to 442

task-agnostic pruning. A direct comparison be- 443

tween the two PLMs is provided in Appendix D. 444

4.2.2 The Effect of Pre-training Performance 445

As we discussed in Section 1, our motivation of 446

mask training is to improve downstream transfer- 447

ability by preserving the pre-training performance. 448

To examine whether the effectiveness of TAMT, 449

is indeed derived from the improvement on pre- 450

training tasks, we calculate the MLM/KD dev loss 451

for the subnetworks obtained from the mask train- 452

ing process, and associate it with the downstream 453

performance. The results of TAMT, IMP, OMP, 454

random pruning and the full BERT, are shown in 455

Fig. 4, from which we can see that: 456

6

2 3 4 5 6 7 8
MLM Loss

40

50

60

70

80

Av
g

Sc
or

e

Sparsity = 0.5

2 4

78

79

80

TAMT-MLM
TAMT-KD
IMP
Rand
OMP
full bert

2 4 6 8
MLM Loss

40

50

60

70

80

Sparsity = 0.6

2 4 6 8
MLM Loss

30

40

50

60

70

80

Sparsity = 0.7

2 4 6 8 10
MLM Loss

30

40

50

60

70

80

Sparsity = 0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6
KD Loss

40

50

60

70

80

Av
g

Sc
or

e

0.1 0.2 0.3

78

79

80

0.0 0.2 0.4 0.6
KD Loss

40

50

60

70

80

0.0 0.2 0.4 0.6
KD Loss

30

40

50

60

70

80

0.0 0.2 0.4 0.6 0.8
KD Loss

30

40

50

60

70

80

Figure 4: The pre-training loss and downstream results. The results of TAMT are from the masks along the training
process, and the results of IMP and Rand are from different seeds. Appendix E shows the results on each task.

There is a positive correlation between the pre-457

training and downstream performance, and this458

trend can be observed for subnetworks across differ-459

ent sparsities. Compared with random pruning, the460

magnitude pruning subnetworks and TAMT sub-461

networks reside in an area with lower MLM/KD462

loss and higher downstream score at 50% sparsity.463

As sparsity increases, OMP subnetworks gradually464

move from the upper-left to the lower-right area of465

the plots. In comparison, IMP is better at preserv-466

ing the pre-training performance, even though it467

is not deliberately designed for this purpose. For468

this reason, hypothetically, the downstream perfor-469

mance of IMP is also better than OMP.470

TAMT-MLM and TAMT-KD have the lowest471

MLM and KD loss respectively, which demon-472

strates that the masks are successfully optimized473

towards the given objectives. As a result, the down-474

stream performance is also elevated from the OMP475

initialization, which justifies our motivation. More-476

over, training the mask with KD loss can also op-477

timize the performance on MLM, and vice versa,478

suggesting that there exists some consistency be-479

tween the objectives of MLM and KD.480

It is also worth noting that the correlation be-481

tween pre-training and fine-tuning performance482

is not ubiquitous. For example, among the sub-483

networks of OMP, IMP and TAMT at 50% spar-484

sity, the decrease in KD/MLM loss produces little485

or no downstream improvement; at 60% ∼ 80%486

sparsity, OMP underperforms random pruning in487

MLM, while its downstream performance is better.488

These phenomenons suggest that some properties489

about the BERT winning tickets are still not well-490

understood by us.491

8.4x fewer 8.7x fewer

Figure 5: The downstream performance of masks at
70% sparsity with increased pre-training cost. The train-
ing time is computed excluding evaluation. Shadowed
areas denote standard deviations. Results for each task
and more sparsities are shown in Appendix F.

4.2.3 The Effect of Pre-training Cost 492

We have shown that mask training is more effec- 493

tive than magnitude pruning. Now let us take a 494

closer look at the results of TAMT and IMP with 495

different iterations of pre-training, to evaluate their 496

efficiency in subnetwork searching. For TAMT, we 497

directly obtain the subnetworks from varied pre- 498

training iterations. For IMP, we change the pruning 499

frequency to control the number of training itera- 500

tions before reaching the target sparsity. 501

Fig. 5 presents the downstream results with in- 502

creased pre-training iterations and time. We can 503

see that for all the methods, the fine-tuning perfor- 504

mance steadily improves as pre-training proceeds. 505

Along this process, TAMT advances at a faster 506

pace, reaching the best score achieved by IMP with 507

8.4× fewer iterations and 8.7× fewer time. This 508

indicates that directly optimizing the pre-training 509

objectives is more efficient than the iterative pro- 510

cess of weight pruning and re-training. 511

7

0.00 0.05 0.10 0.15 0.20 0.25
Mask Distance from OMP

55

60

65

70

75

Av
g

Sc
or

e

TAMT-MLM
TAMT-KD
IMP

OMP

TAMT-KD-1

TAMT-KD-2

TAMT-KD-3

TAMT-MLM-1

TAMT-MLM-2

TAMT-MLM-3
IMP-1

IMP-2
IMP-3

OMP

TAMT-KD-1

TAMT-KD-2

TAMT-KD-3

TAMT-MLM-1

TAMT-MLM-2

TAMT-MLM-3

IMP-1

IMP-2

IMP-3
0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
ask Sim

ilarity

Figure 6: Left: The downstream results of masks with
varying distances from the OMP mask. Shadowed areas
denote standard deviations. Right: The similarity be-
tween the masks used to report the main results at 70%
sparsity. The suffix numbers indicate different seeds.
Results of more sparsities are shown in Appendix G.

4.2.4 Similarity between Subnetworks512

The above results show that the subnetworks found513

by different methods perform differently. We are514

therefore interested to see how they differ in the515

mask structure. To this end, we compute the simi-516

larity between OMP mask and the masks derived517

during the training of TAMT and IMP. Following518

Chen et al. (2020), we define the similarity between519

two binary masks Mi and Mj as Mi∩Mj

Mi∪Mj
, and the520

mask distance as 1− Mi∩Mj

Mi∪Mj
.521

From the results of Fig. 6, we can find that:522

1) With different objectives, TAMT produces dif-523

ferent mask structures. The KD loss results in524

masks in the close proximity of OMP initialization,525

while the MLM masks deviate away from OMP. 2)526

Among the four methods, IMP and TAMT-MLM527

have the highest degree of dissimilarity, despite528

the fact that they both involve MLM training. 3)529

Although IMP, TAMP-KD and TAMT-MLM are530

different from each other in terms of subnetwork531

structure, all of them clearly improves over the532

OMP baseline. Therefore, we hyphothesize that533

the high-dimensional binary space {0, 1}|θ| might534

contain multiple regions of winning tickets that are535

disjoint with each other. Searching methods with536

different inductive biases (e.g., mask training ver-537

sus pruning and KD loss versus MLM loss) are538

inclined to find different regions of interest.539

4.2.5 Results of Reducing Fine-tuning Data540

To test the fine-tuning results with reduced data,541

we select four tasks (CoLA, SST-2, MNLI and542

SQuAD) with the largest data sizes and shrink them543

from original training set to 1,000 samples.544

Fig. 7 summarizes the results. We can see that545

the four datasets present different patterns. For546

2000 4000 6000 8000

0

5

10

15

20

25

30

35

40

Co
LA

 M
cc

OMP
IMP
TAMT-MLM
TAMT-KD

0 20000 40000 60000
72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

SS
T-

2
Ac

c

103 104 105

Num of Fine-tuning Data

10

20

30

40

50

60

70

80

SQ
uA

D
F1

103 104 105

Num of Fine-tuning Data

40

50

60

70

80

M
NL

I A
cc

5

0

5

10

15

20

25

30

M
cc

 G
ap

1

2

3

4

5

6

7

8

Ac
c

Ga
p

Gap between TAMT-MLM & IMP
Gap between TAMT-KD & IMP

5

0

5

10

15

20

25

30

F1
 G

ap

6

4

2

0

2

4

6

8

10

Ac
c

Ga
p

Figure 7: The downstream results of 70% sparse subnet-
works with varying numbers of fine-tuning data. Shad-
owed areas and error bars denote standard deviations.

MNLI and SQuAD, the advantage of TAMT first 547

increases and then decreases with the reduction 548

of data size. The turning point appears at around 549

10,000 samples, after which the performance of all 550

methods degrade drastically. For SST-2, the perfor- 551

mance gap is enlarged continuously until we have 552

only 1,000 data. With regard to CoLA, the per- 553

formance of TAMT is not desirable as we reduce 554

the data size. This is in part because the Mcc of 555

IMP is already quite low with the full dataset, and 556

thus the performance decrease of IMP is limited 557

compared with TAMT. However, as we discussed 558

in the main results, the fundamental reason of the 559

results on CoLA, as well as the results on MNLI 560

and SQuAD under extreme data scarsity, is proba- 561

bly the inherent difficulty of learning with limited 562

data for subnetworks at high sparsity. 563

5 Conclusions 564

In this paper, we address the problem of searching 565

transferable BERT subnetworks. We first show that 566

there exist correlations between the pre-training 567

performance and downstream transferablility of a 568

subnetwork. Motivated by this, we devise a sub- 569

network searching method based on task-agnostic 570

mask training (TAMT). We empirically show that 571

TAMT with MLM loss or KD loss achieve better 572

pre-training and downstream performance than the 573

magnitude pruning, which is recently shown to be 574

successful in finding universal BERT subnetworks. 575

TAMT is also more efficient in mask searching 576

and produces more robust subnetworks when being 577

fine-tuned within a certain range of data scarsity. 578

8

References579

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E.580
Hinton. 2016. Layer normalization. CoRR,581
abs/1607.06450.582

Yoshua Bengio, Nicholas Léonard, and Aaron C.583
Courville. 2013. Estimating or propagating gradients584
through stochastic neurons for conditional computa-585
tion. CoRR, abs/1308.3432.586

Mathilde Caron, Ari Morcos, Piotr Bojanowski, Julien587
Mairal, and Armand Joulin. 2020. Pruning convolu-588
tional neural networks with self-supervision. CoRR,589
abs/2001.03554.590

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia591
Liu, Yang Zhang, Michael Carbin, and Zhangyang592
Wang. 2021. The lottery tickets hypothesis for super-593
vised and self-supervised pre-training in computer594
vision models. In CVPR, pages 16306–16316.595

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia596
Liu, Yang Zhang, Zhangyang Wang, and Michael597
Carbin. 2020. The lottery ticket hypothesis for pre-598
trained BERT networks. In NeurIPS.599

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and600
Kristina Toutanova. 2019. BERT: pre-training of601
deep bidirectional transformers for language under-602
standing. In NAACL-HLT (1), pages 4171–4186.603

Erich Elsen, Marat Dukhan, Trevor Gale, and Karen604
Simonyan. 2020. Fast sparse convnets. In CVPR,605
pages 14617–14626. Computer Vision Foundation /606
IEEE.607

Jonathan Frankle and Michael Carbin. 2019. The lottery608
ticket hypothesis: Finding sparse, trainable neural609
networks. In ICLR. OpenReview.net.610

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M.611
Roy, and Michael Carbin. 2019. The lottery ticket612
hypothesis at scale. CoRR, abs/1903.01611.613

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M.614
Roy, and Michael Carbin. 2020. Linear mode con-615
nectivity and the lottery ticket hypothesis. In ICML,616
volume 119 of Proceedings of Machine Learning617
Research, pages 3259–3269. PMLR.618

Mitchell A. Gordon, Kevin Duh, and Nicholas An-619
drews. 2020. Compressing BERT: studying the ef-620
fects of weight pruning on transfer learning. In621
RepL4NLP@ACL, pages 143–155.622

Song Han, Jeff Pool, John Tran, and William Dally.623
2015. Learning both weights and connections for624
efficient neural network. In Advances in Neural In-625
formation Processing Systems 28, pages 1135–1143.626
Curran Associates, Inc.627

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian628
Sun. 2016. Deep residual learning for image recog-629
nition. In CVPR, pages 770–778. IEEE Computer630
Society.631

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. 632
2015. Distilling the knowledge in a neural network. 633
CoRR, abs/1503.02531. 634

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao 635
Chen, and Qun Liu. 2020. Dynabert: Dynamic BERT 636
with adaptive width and depth. In NeurIPS. 637

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran 638
El-Yaniv, and Yoshua Bengio. 2016. Binarized neu- 639
ral networks. In NIPS, pages 4107–4115. 640

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao 641
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020. 642
Tinybert: Distilling BERT for natural language under- 643
standing. In EMNLP (Findings), pages 4163–4174. 644

Yann LeCun, John S. Denker, and Sara A. Solla. 1989. 645
Optimal brain damage. In NIPS, pages 598–605. 646
Morgan Kaufmann. 647

Chen Liang, Simiao Zuo, Minshuo Chen, Haoming 648
Jiang, Xiaodong Liu, Pengcheng He, Tuo Zhao, and 649
Weizhu Chen. 2021. Super tickets in pre-trained 650
language models: From model compression to im- 651
proving generalization. In ACL/IJCNLP (1), pages 652
6524–6538. Association for Computational Linguis- 653
tics. 654

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 655
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 656
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 657
Roberta: A robustly optimized BERT pretraining 658
approach. CoRR, abs/1907.11692. 659

Yuanxin Liu, Fandong Meng, Zheng Lin, Weiping 660
Wang, and Jie Zhou. 2021. Marginal utility dimin- 661
ishes: Exploring the minimum knowledge for BERT 662
knowledge distillation. In ACL/IJCNLP (1), pages 663
2928–2941. 664

Ilya Loshchilov and Frank Hutter. 2019. Decoupled 665
weight decay regularization. In ICLR (Poster). Open- 666
Review.net. 667

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. 668
2018. Piggyback: Adapting a single network to mul- 669
tiple tasks by learning to mask weights. In ECCV (4), 670
volume 11208 of Lecture Notes in Computer Science, 671
pages 72–88. Springer. 672

Yihuan Mao, Yujing Wang, Chufan Wu, Chen Zhang, 673
Yang Wang, Quanlu Zhang, Yaming Yang, Yunhai 674
Tong, and Jing Bai. 2020. Ladabert: Lightweight 675
adaptation of BERT through hybrid model compres- 676
sion. In COLING, pages 3225–3234. 677

Stephen Merity, Caiming Xiong, James Bradbury, and 678
Richard Socher. 2017. Pointer sentinel mixture mod- 679
els. In ICLR (Poster). OpenReview.net. 680

Paul Michel, Omer Levy, and Graham Neubig. 2019. 681
Are sixteen heads really better than one? In NeurIPS, 682
pages 14014–14024. 683

9

Ari S. Morcos, Haonan Yu, Michela Paganini, and Yuan-684
dong Tian. 2019. One ticket to win them all: general-685
izing lottery ticket initializations across datasets and686
optimizers. In NeurIPS, pages 4933–4943.687

Sai Prasanna, Anna Rogers, and Anna Rumshisky. 2020.688
When BERT plays the lottery, all tickets are winning.689
In EMNLP (1), pages 3208–3229.690

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and691
Percy Liang. 2016. Squad: 100, 000+ questions for692
machine comprehension of text. In EMNLP, pages693
2383–2392.694

Victor Sanh, Lysandre Debut, Julien Chaumond, and695
Thomas Wolf. 2019. Distilbert, a distilled version696
of BERT: smaller, faster, cheaper and lighter. CoRR,697
abs/1910.01108.698

Victor Sanh, Thomas Wolf, and Alexander M. Rush.699
2020. Movement pruning: Adaptive sparsity by fine-700
tuning. In NeurIPS.701

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky,702
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.703
Dropout: a simple way to prevent neural networks704
from overfitting. J. Mach. Learn. Res., 15(1):1929–705
1958.706

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.707
Patient knowledge distillation for BERT model com-708
pression. In EMNLP/IJCNLP (1), pages 4322–4331.709

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,710
Yiming Yang, and Denny Zhou. 2020. Mobilebert:711
a compact task-agnostic BERT for resource-limited712
devices. In ACL, pages 2158–2170. Association for713
Computational Linguistics.714

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina715
Toutanova. 2019. Well-read students learn better:716
The impact of student initialization on knowledge717
distillation. CoRR, abs/1908.08962.718

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob719
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz720
Kaiser, and Illia Polosukhin. 2017. Attention is all721
you need. In NIPS, pages 5998–6008.722

Alex Wang, Amanpreet Singh, Julian Michael, Felix723
Hill, Omer Levy, and Samuel R. Bowman. 2019.724
GLUE: A multi-task benchmark and analysis plat-725
form for natural language understanding. In ICLR726
(Poster). OpenReview.net.727

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan728
Yang, and Ming Zhou. 2020. Minilm: Deep self-729
attention distillation for task-agnostic compression730
of pre-trained transformers. In NeurIPS.731

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien732
Chaumond, Clement Delangue, Anthony Moi, Pier-733
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,734
Joe Davison, Sam Shleifer, Patrick von Platen, Clara735
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le736
Scao, Sylvain Gugger, Mariama Drame, Quentin737

Lhoest, and Alexander M. Rush. 2020. Transform- 738
ers: State-of-the-art natural language processing. In 739
Proceedings of the 2020 Conference on Empirical 740
Methods in Natural Language Processing: System 741
Demonstrations, pages 38–45, Online. 742

Dongkuan Xu, Ian En-Hsu Yen, Jinxi Zhao, and Zhibin 743
Xiao. 2021. Rethinking network pruning - under the 744
pre-train and fine-tune paradigm. In NAACL-HLT, 745
pages 2376–2382. Association for Computational 746
Linguistics. 747

Mengjie Zhao, Tao Lin, Fei Mi, Martin Jaggi, and Hin- 748
rich Schütze. 2020. Masking as an efficient alterna- 749
tive to finetuning for pretrained language models. In 750
EMNLP (1), pages 2226–2241. 751

A Single Task Downstream Performance 752

of OMP and Random Pruning 753

In Fig. 1 of the main body of paper, we show 754

that the pre-training and overall downstream perfor- 755

mance of OMP, as well as the gap between “OMP" 756

and “Rand", degrade simultaneously as sparsity in- 757

creases. The detailed results of each downstream 758

task are presented in Fig. 8. As we can see, the 759

general pattern for every task is similar, with the 760

exception that the gap between “OMP" and “Rand" 761

slightly increases before high sparsity on tasks 762

RTE, MNLI and SQuAD. 763

B More Information about Datasets and 764

Evaluation 765

For pre-training, we adopt the WikiText-103 766

dataset 1 for language modeling. WikiText-103 767

is a collection of articles on Wikipedia and has 768

over 100M tokens. Such data scale is relatively 769

small for PLM pre-training. However, we find that 770

it is sufficient for mask training and IMP to dis- 771

cover subnetworks with perceivable downstream 772

improvement. 773

For the downstream tasks, we use six datasets 774

from the GLUE benchmark and the SQuAD v1.1 775

dataset 2. The GLUE benchmark is intended to 776

train, evaluate, and analyze NLU systems. Our ex- 777

periments include the tasks of CoLA for linguistic 778

acceptability, SST-2 for sentiment analysis, RTE 779

and MNLI for natural language inference, MRPC 780

and STS-B for semantic matching/similarity. The 781

1WikiText-103 is available under the Creative Com-
mons Attribution-ShareAlike License (https://en.
wikipedia.org/wiki/Wikipedia:Text_of_
Creative_Commons_Attribution-ShareAlike_
3.0_Unported_License)

2SQuAD is available under the CC BY-SA 4.0 license.

10

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License

0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60
Co

LA
 M

cc full bert
Rand
OMP

0.5 0.6 0.7 0.8 0.9
50

55

60

65

RT
E
Ac

c

0.5 0.6 0.7 0.8 0.9

70

75

80

85

M
RP

C
Ac

c

0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

ST
S-
B
Pe

ar
so

n

0.5 0.6 0.7 0.8 0.9
Sparsity

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

SS
T-
2
Ac

c

0.5 0.6 0.7 0.8 0.9
Sparsity

50

55

60

65

70

75

80

85

M
NL

I A
cc

0.5 0.6 0.7 0.8 0.9
Sparsity

20

40

60

80

SQ
uA

D
F1

0.5 0.6 0.7 0.8 0.9
Sparsity

40

50

60

70

80

Av
g
Sc

or
e

0

10

20

30

40

M
cc
 G
ap

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ac
c
Ga

p

0

2

4

6

8

Ac
c
Ga

p

10

20

30

40

50

60

70

Pe
ar
so

n
Ga

p

2

3

4

5

6

7

8

9

Ac
c
Ga

p

OMP - Rand

8

10

12

14

Ac
c
Ga

p

0

10

20

30

40

50

60

F1
 G
ap

5

10

15

20

25

Sc
or
e
Ga

p

Figure 8: Downstream performance of OMP subnetworks and random subnetworks of BERTBASE. The error bars
denote standard deviations. The dashed red line is the performance gap between “OMP" and “Rand".

Pre-training Fine-tuning

IMP-MLM TAMT-MLM TAMT-KD MNLI SST-2 CoLA STS-B MRPC RTE SQuAD

Train Samples 103M 103M 103M 392K 67K 8.5K 5.7K 3.6K 2.4K 88K
Eval Samples 217K 217K 217K 9.8K 0.8K 1K 1.5K 0.4K 0.2K 10K
Max Epochs 2 - - 3 3 3 3 3 3 2
Eval Iter - - - 500 50 50 50 50 50 1K
Batch Size 16 16 16 32 32 32 32 32 32 16
Max Length 512 512 512 128 128 128 128 128 128 384
Lr (linear decay) 5e-5 5e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 3e-5
Optimizer AdamW (Loshchilov and Hutter, 2019)
Eval Metric Dev Loss Dev Loss Dev Loss Matched Acc Acc Matthew’s Corr Pearson Corr Acc Acc F1

Table 1: Experimental details about IMP, task-agnostic mask training (TAMT) and fine-tuning. For pre-training, we
report the number of tokens as “# of Train/Eval Samples”. “Dev Loss” denotes the loss of MLM or KD on the dev
set. During fine-tuning, evaluation is performed every “Eval Iter” training iterations.

SQuAD dataset is for the task of question answer-782

ing. It consists of questions posed by crowdworkers783

on a set of Wikipedia articles. Tab. 1 summarizes784

the dataset statistics and evaluation metrics. All the785

datasets are in English language.786

C More Information about787

Implementation788

The hyper-parameters for pre-training and fine-789

tuning are shown in Tab. 1. The pre-training setups790

of IMP basically follow (Chen et al., 2020), ex-791

cept for the number of training epochs, because we792

use different pre-training datasets. Since we aim793

at finding universal PLM subnetworks that are ag-794

nostic to the downstream tasks, we do not perform795

hyper-parameter search for TAMT based on the796

downstream performance. The pre-training hyper-797

parameters in Tab. 1 are determined as they can798

guarantee stable convergence on the pre-training799

tasks.800

For fair comparison between TAMT and IMP,801

we control the number of pre-training iterations 802

(i.e., the number of gradient descent steps) to be 803

the same. Considering that the IMP subnetworks 804

of different sparsities are obtained from different 805

pre-training iterations, we adjust the pre-training 806

iterations of TAMT accordingly. Specifically, we 807

set the maximum number of pre-training epochs to 808

2 for IMP, which equals to 27.92K training itera- 809

tions. Thus, the sparsity is increased by 10% every 810

2.792K iterations. Tab. 2 shows the number of pre- 811

training iterations for IMP and TAMT subnetworks 812

at 20% ∼ 90% sparsity. Note that the final training 813

iteration does not equal to 27.92K at 100% sparsity 814

according to Tab. 2. This is because we prune to 815

10% sparsity at the 0th iteration, which follows the 816

implementation of Chen et al. (2020). 817

The hyper-parameters for downstream fine- 818

tuning follow the standard setups of (Wolf et al., 819

2020; Chen et al., 2020). We use the same set of 820

hyper-parameters for all the subnetworks, as well 821

as the full models. We perform evaluations dur- 822

11

20% 30% 40% 50% 60% 70% 80% 90%

IMP 2.79K 5.58K 8.38K 11.17K 13.96K 16.75K 19.54K 22.34K
TAMP-MLM/KD 3K 6K 8K 11K 14K 17K 20K 22K

Table 2: Pre-training iterations for IMP and TAMT subnetworks at 20% ∼ 90% sparsity.

IMP TAMT-MLM TAMT-KD

BERTBASE 4h6m26s 3h54m58s 4h46m46s
RoBERTaBASE 4h33m9s 4h17m15s 4h51m55s

Table 3: Pre-training time (w/o evaluation during training) of IMP and TAMT on a single on a single 32GB Nvidia
V100 GPU. “h”, “m” and “s” denote hour, minute and second, respectively. The pre-training iterations are 22.34K
and 22K for IMP and TAMT respectively, which correspond to the 90% sparsity in Tab. 2.

ing the fine-tuning process, and the best result is823

reported as the downstream performance.824

Training and evaluation are implemented on825

Nvidia V100 GPU. The codes are based on the826

Pytorch framework3 and the huggingface Trans-827

formers library4 (Wolf et al., 2020). Tab. 3 shows828

the pre-training time of IMP and TAMT.829

D Comparison Between BERT and830

RoBERTa Subnetworks831

In the main results of Fig. 3, we compare the fine-832

tuning performance of subnetworks of the same833

PLM but found using different methods. In this834

section, we give a comparison between subnet-835

words of BERTBASE and RoBERTaBASE. As836

shown in Fig. 9, RoBERTa consistently outper-837

forms BERT as a full model. However, as we prune838

the pre-trained weights accroding to the magni-839

tudes, the performance of RoBERTa declines more840

sharply than BERT, leading to worse results of841

RoBERTa subnetworks when crossing a certain842

sparsity threshold. This phenomenon suggests that,843

compared with BERT, RoBERTa is less robust to844

task-agnostic magnitude pruning. More empirical845

and theoretical analysis are required to understand846

the underlying reasons.847

E Pre-training Performance and Single848

Task Downstream Performance849

The relation between pre-training performance and850

overall downstream performance is illustrated in851

Fig. 4. Here in this appendix, we provide the852

detailed results about each single downstream task,853

as shown in Fig. 10 and Fig. 11. As we can see,854

the pattern in each single task is general the same855

3https://pytorch.org/
4https://github.com/huggingface/transformers

as we discussed in Section 4.2.2. When the model 856

sparsity is higher than 50%, TAMT promotes the 857

performance of OMP in terms of both pre-training 858

tasks and downstream tasks, and improves over 859

IMP with perceivable margin. As shown in Fig. 3 860

of the main paper, both IMP and TAMT display 861

no obvious improvement over OMP on MRPC and 862

RTE (but no degradation as well). Therefore, we 863

do not report the comparison on these two datasets. 864

F Pre-training Iteration and Single Task 865

Downstream Performance 866

In Fig. 5, we show the overall downstream perfor- 867

mance at 70% sparsity with the increase of mask 868

training iterations. Here, we report the results of 869

each single downstream task from 60% ∼ 80% 870

sparsities, which are shown in Fig. 12, Fig. 13 and 871

Fig. 14. We can see that: 1) The single task perfor- 872

mance of both TAMT-MLM and TAMT-KD grows 873

faster than IMP at 60% and 70% sparsity, with the 874

only exception of STS-B, where the three methods 875

are comparable. 2) The MLM and KD objectives 876

are good at different sparsity levels and different 877

tasks. TAMT-KD performs the best at 60% spar- 878

sity, surpassing TAMT-MLM on CoLA, SST-2 and 879

MNLI. In contrast, TAMT-MLM is better at higher 880

sparsities. 3) At 80% sparsity, the searching effi- 881

ciency of the KD objective is not desirable, which 882

requires more pre-training steps to outperform IMP 883

on CoLA and SQuAD and lags behind on STS-B. 884

However, the advantage of TAMT-MLM is consis- 885

tent across the five tasks at 80% sparsity. 886

G Subnetwork Similarity at Different 887

Sparsities 888

In Section 4.2.4, we analyse the similarity between 889

subnetworks at 70% sparsity. In Fig. 15, we 890

12

present additional results of subnetworks at differ-891

ent sparsities. We can see that the general pattern,892

as discussed in Section 4.2.4, is the same across893

60%, 70% and 80% sparsities. However, as spar-894

sity grows, different searching methods becomes895

more distinct from each other. For instance, the896

similarity between TAMT-MLM and IMP subnet-897

works decreases from 0.75 at 60% sparsity to less898

than 0.6 at 80% sparsity. This is understandable899

because the higher the sparsity, the lower the prob-900

ability that two subnetworks will share the same901

weight.902

13

0.0 0.2 0.4 0.6 0.8
0

10

20

30

40

50

60

Co
LA

 M
cc

0.0 0.2 0.4 0.6 0.8

50

55

60

65

70

RT
E

Ac
c

0.0 0.2 0.4 0.6 0.8

20

40

60

80

ST
S-

B
Pe

ar
so

n

0.0 0.2 0.4 0.6 0.8

80.0

82.5

85.0

87.5

90.0

92.5

95.0

SS
T-

2
Ac

c

0.0 0.2 0.4 0.6 0.8
Sparsity

70

75

80

85

90

M
RP

C
Ac

c

0.0 0.2 0.4 0.6 0.8
Sparsity

50

60

70

80
M

NL
I A

cc

BERT OMP
RoBERTa OMP
full BERT
full RoBERTa

0.0 0.2 0.4 0.6 0.8
Sparsity

20

40

60

80

SQ
uA

D
F1

0.0 0.2 0.4 0.6 0.8
Sparsity

40

50

60

70

80

Av
g

Sc
or

e

Figure 9: Downstream performance of BERT and RoBERTa subnetworks found using OMP. Shadowed areas denote
standard deviations.

2.5 5.0 7.5

20

40

60

Co
LA
 M
cc

Sparsity = 0.5

mlm
kd
imp
rand
mag
full bert

2.5 5.0 7.5

20

40

60

80

ST
S-
B
Pe
ar
so
n

Sparsity = 0.5

2.5 5.0 7.5

85.0

87.5

90.0

92.5

SS
T-
2
Ac
c

Sparsity = 0.5

2.5 5.0 7.5

40

60

80

SQ
uA

D
F1

Sparsity = 0.5

2.5 5.0 7.5

75

80

85

M
NL

I A
cc

Sparsity = 0.5

2.5 5.0 7.5
0

20

40

60

Co
LA
 M
cc

Sparsity = 0.6

2.5 5.0 7.5

20

40

60

80

ST
S-
B
Pe
ar
so
n

Sparsity = 0.6

2.5 5.0 7.5
82.5
85.0
87.5
90.0
92.5

SS
T-
2
Ac
c

Sparsity = 0.6

2.5 5.0 7.5
20

40

60

80

SQ
uA

D
F1

Sparsity = 0.6

2.5 5.0 7.5

70

75

80

85
M
NL

I A
cc

Sparsity = 0.6

2.5 5.0 7.5
0

20

40

60

Co
LA
 M
cc

Sparsity = 0.7

2.5 5.0 7.5

20

40

60

80

ST
S-
B
Pe
ar
so
n

Sparsity = 0.7

2.5 5.0 7.5

85

90

SS
T-
2
Ac
c

Sparsity = 0.7

2.5 5.0 7.5

20

40

60

80

SQ
uA

D
F1

Sparsity = 0.7

2.5 5.0 7.5

70

80

M
NL

I A
cc

Sparsity = 0.7

5 10
MLM Loss

0

20

40

60

Co
LA
 M
cc

Sparsity = 0.8

5 10
MLM Loss

20

40

60

80

ST
S-
B
Pe
ar
so
n

Sparsity = 0.8

5 10
MLM Loss

80

85

90

SS
T-
2
Ac
c

Sparsity = 0.8

5 10
MLM Loss

20

40

60

80

SQ
uA

D
F1

Sparsity = 0.8

5 10
MLM Loss

60

70

80

M
NL

I A
cc

Sparsity = 0.8

Figure 10: MLM dev loss and single task downstream performance of BERTBASE subnetworks. The results of
TAMT are obtained from the masks along the training process, and the results of IMP and Rand are from different
seeds.

14

0.00 0.25 0.50

20

40

60

Co
LA

 M
cc

Sparsity = 0.5
mlm
kd
imp
rand
mag
full bert

0.00 0.25 0.50

20

40

60

80

ST
S-
B
Pe
ar
so
n

Sparsity = 0.5

0.00 0.25 0.50

85.0

87.5

90.0

92.5

SS
T-
2
Ac

c

Sparsity = 0.5

0.00 0.25 0.50

40

60

80

SQ
uA

D
F1

Sparsity = 0.5

0.00 0.25 0.50

75

80

85

M
NL

I A
cc

Sparsity = 0.5

0.0 0.5
0

20

40

60

Co
LA

 M
cc

Sparsity = 0.6

0.0 0.5

20

40

60

80

ST
S-
B
Pe
ar
so
n

Sparsity = 0.6

0.0 0.5
82.5
85.0
87.5
90.0
92.5

SS
T-
2
Ac

c

Sparsity = 0.6

0.0 0.5
20

40

60

80

SQ
uA

D
F1

Sparsity = 0.6

0.0 0.5

70

75

80

85

M
NL

I A
cc

Sparsity = 0.6

0.0 0.5
0

20

40

60

Co
LA

 M
cc

Sparsity = 0.7

0.0 0.5

20

40

60

80

ST
S-
B
Pe
ar
so
n

Sparsity = 0.7

0.0 0.5

85

90

SS
T-
2
Ac

c
Sparsity = 0.7

0.0 0.5

20

40

60

80

SQ
uA

D
F1

Sparsity = 0.7

0.0 0.5

70

80

M
NL

I A
cc

Sparsity = 0.7

0.0 0.5
KD Loss

0

20

40

60

Co
LA

 M
cc

Sparsity = 0.8

0.0 0.5
KD Loss

20

40

60

80

ST
S-
B
Pe
ar
so
n

Sparsity = 0.8

0.0 0.5
KD Loss

80

85

90

SS
T-
2
Ac

c

Sparsity = 0.8

0.0 0.5
KD Loss

20

40

60

80
SQ

uA
D
F1

Sparsity = 0.8

0.0 0.5
KD Loss

60

70

80

M
NL

I A
cc

Sparsity = 0.8

Figure 11: KD dev loss and single task downstream performance of BERTBASE subnetworks. The results of TAMT
are obtained from the masks along the training process, and the results of IMP and Rand are from different seeds.

0 5000 10000 15000 20000 25000

10

20

30

40

50

Co
LA

 M
cc

0 5000 10000 15000 20000 25000

81

82

83

84

85

86

ST
S-

B
Pe

ar
so

n

0 5000 10000 15000 20000 25000

90.0

90.5

91.0

91.5

92.0

92.5

93.0

SS
T-

2
Ac

c

0 5000 10000 15000 20000 25000
Pre-training Iterations

81

82

83

84

85

SQ
uA

D
F1

TAMT-MLM
TAMT-KD
IMP

0 5000 10000 15000 20000 25000
Pre-training Iterations

81.5

82.0

82.5

83.0

83.5

M
NL

I A
cc

0 5000 10000 15000 20000 25000
Pre-training Iterations

70

72

74

76

78

Av
g

Sc
or

e

Figure 12: The downstream performance of 60% sparse BERTBASE subnetworks on each single task, with increased
pre-training iterations.

15

0 5000 10000 15000 20000 25000
0

10

20

30

40

Co
LA

 M
cc

0 5000 10000 15000 20000 25000
30

40

50

60

70

80

ST
S-

B
Pe

ar
so

n
0 5000 10000 15000 20000 25000

85

86

87

88

89

90

91

92

SS
T-

2
Ac

c

0 5000 10000 15000 20000 25000
Pre-training Iterations

74

76

78

80

82

84

SQ
uA

D
F1

TAMT-MLM
TAMT-KD
IMP

0 5000 10000 15000 20000 25000
Pre-training Iterations

77

78

79

80

81

82
M

NL
I A

cc

0 5000 10000 15000 20000 25000
Pre-training Iterations

55

60

65

70

75

Av
g

Sc
or

e
Figure 13: The downstream performance of 70% sparse BERTBASE subnetworks on each single task, with increased
pre-training iterations.

0 5000 10000 15000 20000 25000

0

5

10

15

20

25

Co
LA

 M
cc

0 5000 10000 15000 20000 25000
10

20

30

40

50

60

70

80

ST
S-

B
Pe

ar
so

n

0 5000 10000 15000 20000 25000

83

84

85

86

87

88

89

90

SS
T-

2
Ac

c

0 5000 10000 15000 20000 25000
Pre-training Iterations

20

30

40

50

60

70

80

SQ
uA

D
F1

TAMT-MLM
TAMT-KD
IMP

0 5000 10000 15000 20000 25000
Pre-training Iterations

70

72

74

76

78

M
NL

I A
cc

0 5000 10000 15000 20000 25000
Pre-training Iterations

40

45

50

55

60

65

70

Av
g

Sc
or

e

Figure 14: The downstream performance of 80% sparse BERTBASE subnetworks on each single task, with increased
pre-training iterations.

16

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Mask Distance from OMP

70

72

74

76

78

Av
g

Sc
or

e

Sparsity = 0.6

TAMT-MLM
TAMT-KD
IMP

0.00 0.05 0.10 0.15 0.20 0.25
Mask Distance from OMP

55

60

65

70

75

Av
g

Sc
or

e

Sparsity = 0.7

TAMT-MLM
TAMT-KD
IMP

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Mask Distance from OMP

40

45

50

55

60

65

70

Av
g

Sc
or

e

Sparsity = 0.8
TAMT-MLM
TAMT-KD
IMP

OMP

TAMT-KD-1

TAMT-KD-2

TAMT-KD-3

TAMT-MLM-1

TAMT-MLM-2

TAMT-MLM-3
IMP-1

IMP-2
IMP-3

Mask Similarity

OMP

TAMT-KD-1

TAMT-KD-2

TAMT-KD-3

TAMT-MLM-1

TAMT-MLM-2

TAMT-MLM-3

IMP-1

IMP-2

IMP-3

OMP

TAMT-KD-1

TAMT-KD-2

TAMT-KD-3

TAMT-MLM-1

TAMT-MLM-2

TAMT-MLM-3
IMP-1

IMP-2
IMP-3

Mask Similarity

OMP

TAMT-KD-1

TAMT-KD-2

TAMT-KD-3

TAMT-MLM-1

TAMT-MLM-2

TAMT-MLM-3

IMP-1

IMP-2

IMP-3

OMP

TAMT-KD-1

TAMT-KD-2

TAMT-KD-3

TAMT-MLM-1

TAMT-MLM-2

TAMT-MLM-3
IMP-1

IMP-2
IMP-3

Mask Similarity

OMP

TAMT-KD-1

TAMT-KD-2

TAMT-KD-3

TAMT-MLM-1

TAMT-MLM-2

TAMT-MLM-3

IMP-1

IMP-2

IMP-3

0.75 0.80 0.85 0.90 0.95 1.00 0.70 0.75 0.80 0.85 0.90 0.95 1.00 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Figure 15: Upper: The downstream performance of masks with varying distances from the OMP mask. Shadowed
areas denote standard deviations. Lower: The similarity between masks searched using different methods. The
masks are the same as those used to report the main results. The suffix numbers indicate different seeds. The masks
are from BERTBASE.

17

