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ABSTRACT

Distributed Acoustic Sensing (DAS) is an emerging technology that transforms
standard optical fibers into dense arrays of acoustic sensors, offering unprece-
dented opportunities for smart city applications, indoor monitoring of human ac-
tivity, and surveillance without compromising privacy. In this paper, we integrate
DAS with Physics-Informed Neural Networks (PINNs) for indoor sound source
localization. By embedding the acoustic wave equation and impedance bound-
ary conditions into the neural network architecture, we exploit physical laws to
guide the learning process, improving accuracy and generalization. We propose
two strategies for real-time sound source localization using DAS data. The first
strategy involves training the PINN on all available data simultaneously, while the
second strategy incrementally feeds data over time, simulating real-time data ac-
quisition. Using real indoor DAS measurements, we demonstrate the effectiveness
of our approach in deciphering complex room acoustics and accurately inferring
sound source locations under both strategies. Our framework provides a novel
solution for real-time indoor positioning and human activity surveillance, offer-
ing significant advantages over traditional camera-based systems by preserving
individual privacy.

1 INTRODUCTION

Distributed Acoustic Sensing (DAS) is an emerging technology that transforms standard optical
fibers into dense arrays of acoustic sensors, offering unprecedented opportunities for environmental
monitoring, urban infrastructure analysis, and indoor activity surveillance in smart cities (Lindsey &
Martin, |2021; L1 et al.} [2022). DAS technology has been further advanced by recent research, which
demonstrates its potential for monitoring power cable systems over ultra-long distances without the
need for inline amplification (Cedilnik & Lees, |2019). This significant advancement allows for a
measurement range exceeding 112 km, pushing the limits of commercial DAS systems and enabling
more extensive coverage for power cable monitoring applications. By capturing acoustic signals
along the length of optical fibers, DAS enables the detection and localization of acoustic events
without the need for traditional sensor networks, providing a cost-effective and privacy-preserving
solution for monitoring applications. The application of DAS in volcanic event monitoring (Jousset
et al., 2020) was used to remotely identify volcanic events and image hidden near-surface volcanic
structural features. This study underscores the potential of DAS in improving volcano monitoring
and hazard assessment by detecting small volcanic events related to fluid migration and degassing.
Furthermore, the detection capabilities of underwater DAS (Lior et al.,|2021)), showing that it can be
effectively used to transform standard telecommunication cables into seismo-acoustic sensors, thus
filling the observational gap in underwater seismological research and contributing to earthquake
early warning systems.

Physics-Informed Neural Networks (PINNs) have gained attention as a powerful computational
framework for solving forward and inverse problems governed by partial differential equations
(PDEs) (Raissi et al.L [2019). By embedding physical laws directly into the neural network training
process, PINNs leverage both data and governing equations to model complex phenomena without
requiring large labeled datasets or computational meshes. This approach has been successfully ap-
plied in various fields, including fluid dynamics, heat transfer, and wave propagation. Subsequent
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research has introduced various modifications to PINNs to enhance their accuracy, efficiency, and
scalability (Lu et al., 2021), (Cuomo et al.,[2022). Variational hp-VPINN extends the PINN frame-
work by incorporating domain decomposition methods, allowing for more efficient and accurate
solutions, especially for problems with complex geometries or high-dimensional PDEs (Kharazmi
et al., [2021)). Conservative PINN (CPINN) focuses on preserving the conservation laws inherent
in certain PDEs, ensuring that the learned solutions respect these fundamental physical principles,
which is crucial for applications involving conservation of mass, momentum, or energy (Jagtap et al.,
2020). Each of these variants aims to enhance the versatility and robustness of PINNs, making them
more suitable for a wider range of scientific computing problems. There are a couple of drawbacks
for many PINNs with soft constraints for boundary conditions (BCs)BEs and initial conditions (ICs)
1Cs. The selection of weights and samples for BCs and ICs cannot certainly be determined and re-
quires many trial-and-error tests. Even when the loss function is minimized, the BCs and ICs are
not strictly satisfied. A recent analysis of PINNs has revealed potential failure modes, particularly
when dealing with complex problems involving convection, reaction, and diffusion operators (Kr-
ishnapriyan et al) 2021). To target the scaling problems of general PDEs and take advantage of
parallel computing, XPINNs and FBPINNs have been developed based on domain decomposition
methods (Jagtap & Karniadakis, [2020; |Shukla et al., 2021; Moseley et al., 2023)).

In the context of acoustics, PINNs offer the potential to model sound wave propagation and solve
inverse problems such as source localization. Previous studies have explored the use of PINNs for
solving the Helmholtz equation and other wave equations, demonstrating the capability of PINNs to
capture wave phenomena (Jagtap & Karniadakis| [2020; [Shukla et al., 2021} Moseley et al., [2023).
However, challenges persist in applying PINNs to real-world acoustic problems, including:

* Sensitivity to Hyperparameters: The performance of PINNSs is highly sensitive to the choice
of hyperparameters, such as the weights assigned to different loss terms, which can affect
convergence and accuracy.

* Difficulty in Enforcing Boundary and Initial Conditions: When boundary and initial con-
ditions are imposed as soft constraints in the loss function, PINNs may struggle to satisfy
these conditions accurately, leading to suboptimal solutions.

* Scalability Issues: Scaling PINNs to complex or large-scale domains remains challenging
due to computational constraints and optimization difficulties.

To address these challenges, various modifications to the PINN framework have been proposed.
Extended PINNs (XPINNs) and Finite Basis PINNs (FBPINNG5) utilize domain decomposition and
parallel computing to enhance scalability and efficiency (Jagtap & Karniadakis| 2020; [Shukla et al.|
2021;|Moseley et al.,[2023)). These approaches aim to improve training performance and enable the
application of PINNs to more complex problems.

Contribution In this paper, we integrate DAS technology with PINNSs to develop a framework for
indoor sound source localization and spatiotemporal wave field recovery. Our main contributions
are:

* We propose a PINN framework tailored for modeling room acoustics, incorporating the
acoustic wave equation and impedance boundary conditions to guide the learning process.

* We demonstrate the simultaneous localization of sound sources and recovery of the spa-
tiotemporal acoustic field using real DAS measurements, highlighting the effectiveness of
our approach in complex indoor environments.

* We explore the effects of different training strategies—including incremental data feed-
ing—and fiber array configurations on localization accuracy, providing insights into opti-
mal system design and deployment.

Related Work Recent advancements have seen the application of PINNs to various wave-related
phenomena. For instance, [Moseley et al.| (2023) employed PINNs for solving wave equations in
heterogeneous media, while Mao et al.| (2020) addressed high-speed flows and shock wave modeling
using PINNSs. In acoustics, (Olivieri et al.|(2024) utilized PINNs for sound field reconstruction but
did not consider impedance boundary conditions. Furthermore, the work by [Borrel-Jensen et al.
(2024) presents a novel approach to sound propagation in realistic interactive 3D scenes using deep
neural operators, which is particularly relevant to the challenges faced in virtual acoustics.
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In terms of source localization, traditional methods often rely on time-of-arrival or beamforming
techniques, which require extensive sensor networks and can be computationally intensive (Dibiase}
2000). |[Zhai et al.| (2023) proposed an innovative approach to enhance localization accuracy in
reverberant environments by developing a grid-free global optimization algorithm that combines the
image source model and state transition algorithm.

Our work differentiates itself by integrating DAS with a physics-informed learning framework, re-
ducing the dependence on labeled data and leveraging the underlying physics for improved general-
ization. By addressing the challenges associated with PINNs in real-world applications, we advance
the state-of-the-art in acoustic source localization and provide a foundation for future research in
this area.

2 DATA FROM DISTRIBUTED ACOUSTIC SENSING

Distributed Acoustic Sensing (DAS) leverages the sensitivity of optical fibers to external perturba-
tions to detect acoustic signals along the length of the fiber. When a laser pulse is sent through
an optical fiber, imperfections and variations within the fiber cause backscattering of light through
Rayleigh scattering. External acoustic vibrations induce strain in the fiber, leading to changes in the
backscattered light intensity, phase, or polarization, which can be detected and related to the external
disturbances (Hartog), 2017)).

In this study, we strategically deployed a 2-kilometer-long optical fiber network within a five-story
building located on the campus of Tsinghua University (Figure [I). The network spans each level
of the structure, ranging from the roof, at an elevation of 17.45 m, down to the basement at —3.5m
below ground level. A segment of the fiber optic cable, extending 400 m in length, was buried
at a depth of approximately 0.5 m in the building’s adjacent yard. This strategic placement facili-
tates comprehensive four-dimensional (4D) spatio-temporal monitoring of the building’s structural
integrity and dynamic responses.

To achieve high-resolution spatio-temporal monitoring, the DAS system was configured with a
gauge length of 3.2m and a spatial resolution of 1.6 m, effectively creating a network of 1,250
distinct monitoring channels. This setup ensures high-fidelity capture of structural dynamics, with a
data acquisition rate of 1,000 Hz. The precise positioning of each channel was determined through
a tap test experiment, further validated against the architectural floor plans of the building.

The fiber layout and channel distribution are depicted in Figure[I] illustrating the extensive coverage
achieved within the building. The developed PINN framework, integrating the governing acoustic
wave equations with the DAS strain measurements, provides a powerful tool for interpreting real
DAS data. By embedding physical laws into the neural network, we reduce the dependence on
extensive labeled datasets and enhance the generalization capabilities of the model.

Developing a PINN framework to decipher DAS data collected from the building, we can recon-
struct the spatio-temporal acoustic pressure fields and accurately localize sound sources within the
structure. This capability is crucial for monitoring human activities, detecting structural anomalies,
and enhancing surveillance without compromising privacy.

3  GOVERNING EQUATIONS AND TRAINING STRATEGIES

The propagation of acoustic waves in a three-dimensional domain 2 C R?® with boundary 99 is
governed by the acoustic wave equation:

1 *p(x,t)
2 ot?
where p(x, t) is the acoustic pressure at position x = (x, y, z) and time ¢, and ¢ is the speed of sound
in the medium.

V2p(x,t) — =0, x€Q,tel0,T], (1)

To fully describe the problem, we impose the following initial conditions (ICs):

p(x,0) =1 (x), x€Q, )
o
8—f(x, 0) = L(x), x€Q 3)
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Figure 1: (a) 3D model illustrating the layout of fiber optic arrays across multiple floors. (b) A
100-meter-long fiber optic array on a single floor. The black square denotes the room we detected
human walking trajectory. (c) A person entering a room of size 15 m by 15 m, tracked through
the fiber optic sensing system. The fibers in this squared room is shown in red lines. Locations of
Channle 0, 9, 22, 27 are marked with blue circles. (d) Recorded acoustic waves induced by human
footprints. The signal appears sequentially from channel 27 (near the door) to channel 7 (close to
the DAS interrogator), reflecting multiple sources of a moving target.

where I (x) and I5(x) represent the initial pressure distribution and its time derivative, respec-
tively. Specifically, we model the initial pressure distribution as a Gaussian function centered at the
unknown source location xg = (g, Yo, 20):

|2
I(x) = Aexp (—M) ; 4)

where A is the amplitude and o controls the width of the Gaussian.

The boundary conditions (BCs) are given by the impedance boundary condition:

dp dp B
Z%(X,t) +po§(x,t) =0, x€0Q,tel0,T], Q)

where Z is the acoustic impedance of the boundary, pg is the ambient density, and Op/9n denotes
the normal derivative at the boundary.

Physics-Informed Neural Network Framework We employ a Physics-Informed Neural Net-
work (PINN) to approximate the acoustic pressure p(x, t) and to infer the unknown source location
Xg. The neural network takes spatial coordinates and time as inputs and outputs the predicted pres-
sure:

Do (X, t) = NNy (X, t)) (6)

where 6 represents the trainable parameters of the neural network.

To enforce the governing equations, initial conditions, and boundary conditions, we define the fol-
lowing residuals:
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The total loss function £(¢) combines the residuals using mean squared errors:

L = Apdge - Lpde + Aic - Lic + Aoe - Loe + Adata - Ldata
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where Apge, Aie, Abes and Agq are positive weighting coefficients that balance the contributions
of each loss component during training. The terms ﬁpde, Lic, Lo, and Ly, represent the losses
associated with the governing partial differential equation (PDE), initial conditions (ICs), boundary
condltlons (BCS) and observatlonal data, respectlvely Aﬁdﬁ—l,—ﬁﬁ\bc—,ﬂﬂd—ﬁma—ﬂfe—wetghﬁﬂg

% The
ﬁrst term, dee, enforces the acoustlc wave equatlon at selected Collocatlon pomts Spec1ﬁca11y, it
ensures that the predicted pressure field p(x, t) satisfies the PDE by minimizing the residual at Ny
collocation points (xéde, tf,de). The second term, Ly, enforces the boundary conditions (Equation

at Ny, boundary collocation points (x{;C, téc). The third term comprises two components, Li.;
and Li, which enforce the initial conditions at ¢ = 0 across Nj.; and Nj, collocation points
(x1C7 0), respectively. The fourth term, Lqa,, incorporates the observational data from the Distributed
Acoustic Sensing (DAS) system into the training process. It ensures that the predicted pressure field
is consistent with the measured strain rate data égc¢ at Ny, data points (x’,,, t5...). The geometry
of the DAS array is described by the equation £(x) = 0. The strain rate along the axial direction of

the fiber is 2p(x.1)

—4UpIX,

_ 8
i) ) 3

where v is Poisson’s ratio, and F is Young’s modulus. The architecture of the PINN is shown in
Figure[2]

€ee =

Traning Strategies We propose two training strategies to optimize the parameters of the neural
network 6 and to infer the location of the source xg.

Strategy 1: Simultaneous Training with All Data In this strategy, we train the PINN using all
available data across the entire time domain simultaneously. The loss function incorporates residuals
computed over the full spatial-temporal domain:

EStralegyl(e) = £<9) (9)

This approach uses all the data at once after completing data streaming corresponding to an interest-
ing acoustic event, potentially leading to significant processing time and computational resources.

Strategy 2: Incremental Time-Stepping Training Strategy 2 simulates real-time data acquisition

by incrementally feeding data over time. At each time step ¢y, we train the PINN using observed

DAS data up to the current time, updating the loss function accordingly:

‘Céﬁlmgy 2(07 XO) = )\pde : Epde + )\ic : Lic + >\bc : Ebc + /\dala . ﬁ((ilz)ta

= )\pde : dee + Aic - Lic + Moe - Love + Adata - Ex,tgtk (;00 (X7 t) - pdala(X7 t))2

(10

At each incremental step, we optimize 6 using the data available up to tj, refining the model pro-

gressively as new data become available. This strategy emulates online learning and can be more

computationally efficient per time step.
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Figure 2: A PINN architecture incorporating DAS observation data.

We jointly optimize the neural network parameters 6 and the source location xy by minimizing the
chosen loss function:
0%, x4 = argmin L(0). (11)
0,x0
To handle the unknown source location within the PINN framework, we treat x( as trainable pa-
rameters. During optimization, xg is updated alongside 6 using gradient-based methods enabled by
automatic differentiation.

4 SYNTHETIC TESTS

To validate the proposed PINN framework and its ability to localize sound sources using DAS data,
we conduct synthetic experiments in both 2D and 3D environments.

4.1 2D SQUARE ROOM

We consider a two-dimensional (2D) square room of size 1 m x 1 m. The sound speed c is set to
343 m/s, and the density pg is 1.2 kg/m3. A point source is placed at an unknown location xg =
(0.3,0.3), emitting a Gaussian pulse at ¢t = 0 with amplitude A = 1 and standard deviation o = 0.4.

We use a small neural network with two layers, each containing 64 neurons and utilizing the tanh
activation function.

Two DAS array geometries—Square and Halton—are shown in Figure[3] A total of 320 observation
stations are located along the fibers, marked with green triangles in the figure. In the square array,
the fiber forms a 2D square shape. In the Halton array, the fiber forms a curve £(z, y) such that the
spatial locations sampled ideally follow the Halton sequence.

We apply the two training strategies described in the previous section to these synthetic DAS array
observations. The inverted source location results are shown in Figure ] With the same number
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of DAS channels, we find that a more random spatial coverage results in more accurate and stable
localization. These results highlight the importance of the optimal design of DAS array deployment
given a fixed number of observation channels.

In comparing the training strategies, the Incremental Time-Stepping Training Strategy (Strategy 1)
significantly outperforms the Simultaneous Training with All Data Strategy (Strategy 2) in achieving
stable localization. An interesting observation is that the simultaneous training strategy can lead to
final estimated source locations that are symmetric to the true location relative to the domain cen-
ter. This phenomenon is due to the similarity of acoustic wavefields after multiple wall reflections.
When we use observations overall time at once for training, the inverted source location may fall
into these symmetric locations. However, the Simultaneous Training with All Data Strategy (Strat-
egy 1) performs better for wavefield reconstruction across the entire time domain, capturing wave
propagation and reflections more accurately as shown Figure 8]in Appendix [A-T] This indicates that
Strategy 2 is advantageous for quick source localization with limited data, while Strategy 1 provides
a more comprehensive reconstruction of the wavefield when full temporal data is available.

(a) Square DAS array (b) Halton DAS array
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Figure 3: (a) 320 observation stations along the square DAS array with the FEM synthetic wave-
forms denoted by green triangles. (b) 320 observation stations along the Halton DAS array with the
FEM synthetic waveforms.
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Figure 4: The inverted source locations after 2000 epochs for (a) square DAS array with Strategy 1;
(b) Halton DAS array with Strategy 1; (c) square DAS array with Strategy 2; (d) Halton DAS array
with Strategy 2. The green squares indicate the locations pinpointed by the location of the sound
source under different initial values. The red pentagram represents the actual position of the sound
source. It can be observed that DAS-PINN either locates the sound source at its true position or at
its conjugate position, both of which result in relatively small PDE-loss and data-loss.
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4.2 3D CUBE ROOM

To evaluate the performance of the proposed sound source localization framework in three dimen-
sions, we design synthetic tests within a cube room of size 1m x 1 m x 1 m. The sound speed ¢
is set to 343 m/s, and the density po is 1.2kg/m>. A point source is placed at an unknown loca-
tion xg = (0.3,0.3,0.3), emitting a Gaussian pulse at ¢ = 0 with amplitude A = 1 and standard
deviation o = 0.4.

We use a neural network with four layers, each containing 64 neurons and utilizing the tanh activa-
tion function.

Three different DAS array geometries—Edges, Floor, and Volume—are illustrated in Figure[6] Each
array consists of 512 observation stations located along the fibers, represented by green triangles in
the figure. The Edges array places fibers along the edges of the walls, the Floor array places fibers
on the floor of the room, and the Volume array distributes fibers throughout the 3D space.

The finite-element modeling of the 3D acoustic wave propagation is shown in Figure[5} The emitted
acoustic waves propagate through the environment and are detected by the DAS arrays.

As in the 2D experiment, we apply the two trammg strategles descrlbed earher to these synthetlc
DAS array observatlons : v . hin »

stable-and-aceurateJoealization- For the training process of Strategy 2, we added data every 1000
epochs from one subsequent time snapshot, incrementally providing more temporal information to
the model. As shown in Figure[6] the Edges and Floor cases do not show good localization results
with only 2000 epochs. This is because the waves have not propagated to the receivers in these
configurations during the early time steps used for training.

In the Volume case, with comprehensive data coverage throughout the 3D space, the PINN achieves
high accuracy in source localization across all three dimensions. The pressure field reconstruction
is highly accurate, demonstrating the effectiveness of the PINN with well-distributed data. The
inverted source location results are presented in Figure [6{f).

Consistent with the 2D experiments, Strategy 2 demonstrates superior performance in the 3D local-
ization tasks. Strategy 1 often converges to incorrect locations due to the complexities introduced
by simultaneous reflections and wave interactions within the 3D space. Strategy 2, by incrementally
incorporating data over time, allows the PINN to more effectively disentangle the wave propagation
patterns and accurately infer the source location.

5 REAL DATA

We applied our method to real DAS recordings of a person entering a room, as shown in Figure
1 (c) and (d). The human footsteps are treated as a moving target. The room is a 15 m by 15 m
square with 28 DAS channels deployed along the floor, which is a subset of the entire cable system
of the building. We apply the Incremental Time-Stepping Training Strategy (Strategy 2) to locate the
moving target, as illustrated in Figure[I] Since the target is moving along the floor, we enforce the
constraint zo = 0 in the inversion.

Using the first ten time snapshots of the DAS recording, and training over 10,000 epochs (about 460
seconds using an A800 GPU), the locations of five events due to a moving target all successfully
converged, as shown in Figure Some events converged only with 2000 epochs because of a
better initial guess. This means that we can further improve the method by introducing advanced
initialization algorithms for the source locations.

6 CONCLUSION

The synthetic tests conducted in Sections [f.1] and [4.2] are designed to emulate the conditions of
real-world DAS data acquisition in building rooms. By modeling acoustic wave propagation and
interaction with boundaries in controlled environments, we establish a foundation for interpreting
the complex wavefields captured by the DAS system in the building.
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Figure 5: 3D acoustic wave propagation in a cube room. The sound source is located at g = yo =
zZ0 = 0.3.
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Figure 6: DAS arrays and source localization trajectories for 3D synthetic tests.(a)-(c): Different
fiber optic array configurations: (a) Case Edge — fibers are placed along the edges of the room’s
walls; (b) Case Floor — fibers are deployed on the floor of the room; (c) Case Volume — fibers are
distributed throughout the 3D volume of the space. (d)-(f): Localization results for the respective
configurations: (d) Case Edge, (e) Case Floor, and (f) Case Volume. The red star marks the true
source location, green triangles represent the data points (fiber locations), black circles indicate
initial estimates, and green squares represent final estimates after optimization. Blue curves show
the trajectories of the estimates converging to the final solution.
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Figure 7: Real DAS data analysis of a moving target. The top-left panel shows the floor plan of
the 15 m by 15 m squared room with 28 DAS channels, where the red lines represent the fiber
deployment. The moving target (human footsteps) is treated as a source of acoustic signals, with
channels labeled from 0 to 27. The remaining panels display the convergence of the normalized x
and yo coordinates of the target location over 10,000 training epochs using the Incremental Time-
Stepping Training Strategy (Strategy 2). Each plot corresponds to a specific segment of the DAS
recording, with the blue line representing x( and the orange line representing y.

The synthetic tests demonstrate that the PINN framework can effectively localize sound sources
using DAS measurements. The accuracy depends on the spatial distribution of data points. Incor-
porating the source location as trainable parameters allows simultaneous inversion of the source
position and pressure field.

Beyond synthetic data, we applied our method to real DAS recordings of a person entering a room,
treating human footsteps as a moving target. Using the Incremental Time-Stepping Training Strategy
(Strategy 2) and enforcing the constraint zy = 0, we successfully located the moving target within a
15 m by 15 m room equipped with 28 DAS channels. The target’s location converged using only a
couple early DAS recording, demonstrating the practical applicability of our approach to real-world
scenarios.

Our synthetic experiments , both synthetic and real, validate the proposed PINN framework’s capa-
b111ty to accurately localrze sound sources and reconstruct pressure ﬁelds usrng DAS data The

seﬂsmgappheaﬁeﬂs—Thls novel framework that s1multaneously constructs the acoustlc waveﬁeld
and performs inversion without requiring labeled data. This capability highlights the potential of in-
tegrating PINNs with DAS technology for advanced indoor sensing applications, such as real-time
tracking of moving targets.

10
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A APPENDIX

A.1 RECONSTRUCTED WAVEFIELDS

We compared the reconstructed wavefields using two training strategies. As shown in Figure [§]
Strategy 1 (Simultaneous Training with All Data) performs better for wavefield reconstruction. The
reconstructed wavefields closely resemble the true wavefields across all time steps, accurately cap-
turing wave propagation and reflections; however, the location is accurate. In contrast, Strategy
2 (Incremental Time-Stepping Training Strategy) performs better for localization using data from
early time steps. By focusing on early time snapshots, Strategy 2 enables rapid convergence of the
source location parameters. However, the wavefield reconstruction quality is somewhat compro-
mised compared to Strategy 1, especially at later time steps, due to the limited temporal information
used during training. These observations highlight a trade-off between accurate source localization
and comprehensive wavefield reconstruction when choosing between the two strategies.
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(a) Reconstructed 2D wavefield for strategy 1
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(b) Reconstructed 2D wavefield for strategy 2
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Figure 8: (a) and (b) illustrate the reconstructed 2D wavefields for strategies 1 and 2 at different time
steps. The first row in each panel shows the true wavefield for reference. Each subplot corresponds
to a specific time step ¢ = 0.00,0.10,...,1.00. Rows represent the evolution of the wavefield
reconstruction across training epochs. The true location is at xo = (0.3,0.3).
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