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Abstract—Social anxiety is a common mental health condition
linked to significant challenges in academic, social, and occupa-
tional functioning. A core feature is elevated momentary (state)
anxiety in social situations, yet little prior work has measured
or predicted fluctuations in this anxiety throughout the day.
Capturing these intra-day dynamics is critical for designing real-
time, personalized interventions such as Just-In-Time Adaptive
Interventions (JITAIs). To address this gap, we conducted a
study with socially anxious college students (N=91; 72 after
exclusions) using our custom smartwatch-based system over an
average of 9.03 days (SD = 2.95). Participants received seven
ecological momentary assessments (EMAs) per day to report
state anxiety. We developed a base model on over 10,000 days of
external heart rate data, transferred its representations to our
dataset, and fine-tuned it to generate probabilistic predictions.
These were combined with trait-level measures in a meta-learner.
Our pipeline achieved 60.4% balanced accuracy in state anxiety
detection in our dataset. To evaluate generalizability, we applied
the training approach to a separate hold-out set from the
TILES-18 dataset—the same dataset used for pretraining. On
10,095 once-daily EMAs, our method achieved 59.1% balanced
accuracy, outperforming prior work by at least 7%.

I. INTRODUCTION

Social anxiety, or anxiety tied to social situations in which
one may be evaluated negatively, is a prevalent mental health
problem. An estimated 12.1% of individuals in the U.S. meet
the criteria for social anxiety disorder at some point in their
life [1]. Social anxiety often limits individuals’ lives and is
associated with avoiding potentially meaningful careers that
require social interactions, avoiding romantic relationships,
and delaying starting families [2]. Existing research shows
that helping people respond to state anxiety in more effective
ways (e.g., by challenging anxious thinking and approaching
rather than avoiding feared situations) can reduce overall
levels of social anxiety [3]. However, much of the existing
research using passive sensing to detect anxiety has focused on
predicting between-person differences in anxiety levels—most
commonly trait anxiety, a stable and enduring tendency to
experience anxiety across time and situations (e.g., [4])—or
general anxiety symptoms [5]. While predicting trait anxiety
through passive sensing can be useful for early identification
of mental health conditions, advancing toward the detection
of within-person fluctuations in anxiety (i.e., state anxiety)
is essential for enabling real-time, adaptive interventions that
address anxiety in the moment.

Past studies have used passive sensing to predict within-
person anxiety level at the daily timescale (e.g., [6]), but only a
handful of studies (e.g., [7]) have attempted to estimate within-
person fluctuations in anxiety measured at the timescale of
hours or minutes, with most such research conducted in con-
trolled laboratory settings. Only one study to our knowledge
has attempted to predict within-person fluctuations in anxiety
measured multiple times per day outside of a controlled lab
setting [8]. However, in [8], the authors used R2 as the
evaluation metric, which does not directly reflect predictive
accuracy, leaving the model’s effectiveness in identifying mo-
ments of state anxiety unclear. Moreover, their models relied
on smartphone sensor data, which may be less effective for
detecting momentary anxiety, as smartphones are not always
carried as frequently as smartwatches [9].

For our study, we developed WatchAnxiety, a smartwatch-
based system that advances wearable computing and pervasive
health by using transfer learning to predict state anxiety. Vali-
dated on 2,742 real-world EMA responses, the model achieved
60.4% balanced accuracy and F1 score. To assess general-
izability, we then applied our meta-learning approach to an
independent dataset of 10,095 state-anxiety EMAs—bringing
the total labeled samples to over 12,000, the largest evaluation
to date. This scale is noteworthy given that wearable mental-
health research is often hampered by limited labeled data,
which can impede robust validation and real-world deploy-
ment.

II. METHODOLOGY

A. Dataset Construction

1) System Design: We developed a smartwatch system
(expected to be compatible with any Wear OS-based smart-
watch) for real-time collection of physiological, behavioral,
and acoustic data. To protect participants’ privacy, data collec-
tion is disabled between 12 AM and 8 AM and automatically
pauses when the watch is removed. The system operates
on a 5-minute duty cycle, capturing data for 1 minute per
cycle. Data are uploaded to secure Amazon S3 storage either
manually (via button press) or automatically when the watch
is charging and connected to Wi-Fi. Although the system
supports multiple sensing modalities, this study focuses ex-
clusively on heart rate (HR)—a widely available physiological



Fig. 1: WatchAnxiety system for identifying state anxiety. FC: Fully Connected, BN: Batch Normalization.

marker on commercial smartwatches with strong relevance to
health monitoring.

2) Participants: All study procedures were approved by
IRB of the University of Virginia (UVA). We recruited par-
ticipants with moderate-to-severe levels of social anxiety,
operationalized as a score of at least 34 on the Social In-
teraction Anxiety Scale (SIAS) following prior research [10].
Each participant was provided with either a Samsung Galaxy
Watch 5 or 5 Pro pre-installed with our system. Moreover,
participants installed the Sensus [11] app on their personal
smartphone to receive the EMA surveys. It is worthwhile to
mention that early participants received an earlier version of
our on-watch system with a duty cycle around 10 minutes,
while later participants mostly used the improved version with
a 5-minute cycle.

We recruited 91 undergraduate students at UVA. Nineteen
participants were excluded due to limited data from the initial
version of the system, early withdrawal, or missing watch
data within the analysis window. The final sample included
72 participants used for model development.

3) Baseline Data Collection: During the initial study visit,
participants completed baseline surveys that captured trait-
level mental health characteristics: SIAS, Brief Fear of Neg-
ative Evaluation (BFNE), Difficulties in Emotion Regulation
(DERS), Depression, Anxiety, and Stress Scales-21 (DASS-
21), Adult Rejection Sensitivity Questionnaire (A-RSQ), and
Cambridge Depersonalization Scale 2-item version (CDS-
2). For missing items (57 item-level responses; 0.59%), we
imputed missing values using the mean of the remaining
valid responses of the participant on the corresponding scale.
For reverse-scored items, reverse coding was applied prior
to both imputation and scale score aggregation. Importantly,
imputation was performed independently for each participant,
using only their own responses, thereby avoiding the use of
data from other participants and preventing data leakage.

4) Measuring State Anxiety: Following the initial study
visit, participants reported their state anxiety via ecological
momentary assessments (EMAs) delivered through the Sensus
smartphone app up to seven times daily for 10 days. EMAs
were randomly scheduled every two hours between either 8
AM–10 PM or 10 AM–12 AM, based on participant prefer-
ence. Each EMA asked, “I feel...,” with responses recorded on
a slider from 1 (“not at all anxious”) to 10 (“very anxious”).
For classification, responses were binarized: a rating of 1 was
coded as class 0 (no anxiety) and all values greater than 1 as

class 1 (any level of anxiety).
Among the 72 participants, HR data were available for 650

total participant-days (mean = 9.03 days, SD = 2.95), with
a total of 3,663 state anxiety EMA responses (mean = 50.88
EMAs, SD = 15.91). However, the number of EMA responses
included for model development varied based on the explored
time window. Specifically, at least 50 HR samples were
available within the 1-hour, 1.5-hour, and 2-hour windows for
74.94%, 75.87%, and 76.41% of the EMA responses, respec-
tively. Selecting the appropriate window therefore is critical:
larger windows improve data availability but increase overlap
between EMAs, while shorter windows may better capture
transient physiological markers relevant to state anxiety but
increase the chance for data missingness within windows. To
balance these trade-offs, we set a 50-sample threshold—an
empirically supported cutoff, as nearly all sensor probe start
times produced at least 50 HR readings within a one-minute
period at ∼1 Hz sampling. In other words, if at least one probe
occurred within the relevant time window prior to an EMA
submission, we included that EMA for model development.

B. Model Development

1) Feature Space: To construct the input feature space,
we first estimate R-R intervals (RRI) from HR using the
formula RRI = 60

HR [12]. We also excluded HR values outside
the physiologically plausible range: above the age-adjusted
maximum (220 - age) and below 40 bpm, a threshold reflecting
the resting HR of very fit individuals. We then estimated the
corresponding RRI timestamps using the cumulative sum of
the RRI values, consistent with implementations in widely
used packages (e.g., NeuroKit2). Using the inferred RRI and
the corresponding timestamps, we performed a recurrence
quantification analysis (RQA) of HR variability using the
NeuroKit2 package [13]. To take advantage of pre-trained
ResNet-18 in our base model, we adopted an image-based
approach by transforming HR into recurrence plots. These
plots are based on time-delayed embeddings of physiological
signals, revealing dynamic patterns that can be useful for
predicting anxiety.

2) Transfer Learning Approach: Transfer learning (TL) has
shown promise across diverse prediction tasks and is particu-
larly beneficial in scenarios with limited data [14]. Given our
relatively small sample size (N = 72), TL is well-suited. To
develop the base model for TL, we used the TILES-18 dataset
[15], which includes sensor data from 212 hospital workers



collected via multiple devices, including Fitbit. Each day,
participants responded to a state anxiety EMA ”Please select
the response that shows how anxious you feel at the moment”
on a scale of 1 to 5. We used the same approach (section
II-A4) as used for our dataset to create the target variable for
classification task. After pre-processing and filtering for entries
with at least 50 HR samples, a total of 10,278 EMA responses
were available for modeling, with 38.35% labeled as class 1
and 61.65% as class 0. However, to explore generalization
(section III-A), the dataset was reduced to 10,095 EMAs
due to missing aggregated trait scores in TILES-18 for some
participants.

For the model, we adopted ResNet-18 [16] without its
classification head and initialized it with ImageNet-pretrained
weights to leverage transferable representations. We added a
residual block, a global average pooling layer, and a final
output layer with a single neuron to predict the probability
of state anxiety. To address class imbalance, we applied class
weights and used the weighted binary focal loss as the loss
function. The model was trained with an SGD optimizer with a
learning rate of 1e−4 and trained for a maximum of 20 epochs
to obtain reasonable weights for the new layers. We then
restored the weights corresponding to the lowest validation
loss and fine-tuned the entire model using a reduced learning
rate of 1e − 8. To prevent overfitting, early stopping was
applied if validation loss did not improve for 3 consecutive
epochs.

To reduce computational overhead, we employed a leave-
five-out cross-validation (LFOCV) strategy, holding all state
anxiety responses of five participants for testing in each fold.
Of the remaining participants, two were selected for validation
(i.e., used for model selection and early stopping) while the
rest were used for training. In some cases, a validation par-
ticipant reported only one class of state anxiety, which could
bias the model. To address this and improve generalization,
validation participants were chosen, when available, such that
the ratio of class 1 to class 0 was within 10% of that in the
training set.

3) Model Tuning: A key difference between the TILES-18
dataset, used for base model development, and our target task
lies in the EMA protocol: TILES-18 collected state anxiety
once a day, while our study administered EMA seven times
a day to capture intraday fluctuations. TILES-18 also relied
on Fitbit devices with continuous data collection, while our
custom system employed a duty-cycled sampling strategy
to support real-time processing and conserve battery life -
enabling both data collection and future on-device interven-
tions. Furthermore, the study populations differed: TILES-18
involved hospital shift workers, while our participants were
undergraduate students.

Since the base models were trained using LFOCV on
TILES-18 data, multiple models were generated. We selected
the one with the highest balanced accuracy in its respective
test set. To adapt the model, we removed the top classification
layer and used the 512-neuron global average pooling layer
as output. We then added a 32-unit fully connected layer,

followed by batch normalization and a ReLU activation func-
tion. A final dense layer with a single neuron produced the
predicted probabilities. This architecture was inspired by the
squeeze-and-excitation (SE) block from SENet, where a low-
dimensional representation is learned post-global pooling to
enhance generalizable feature learning. The weights of the
base model were frozen and the new layers were trained
using the Nadam optimizer (learning rate = 1e − 5), as SGD
yielded suboptimal results in this context. To avoid overfitting
or underfitting, we employed a custom callback that restored
the best model based on training dynamics. Specifically, we
allowed up to a 3% tolerance between training and validation
loss, restoring the weights with the smallest difference if the
validation loss dropped below the training loss or exceeded the
tolerance. Training, validation, and testing followed the same
LFOCV protocol described in Section II-B2.

4) Meta-learner Development and Evaluation: After gen-
erating predicted probabilities from the fine-tuned model, we
incorporated trait measures (Section II-A3) to train a meta-
learner. This approach is practical for real-world deployment,
as trait assessments need to be completed only once prior to
system use. To retain only relevant characteristics, we applied
feature selection based on information gain to identify the most
predictive traits. We then trained lightweight classifiers, K-
Nearest Neighbors (KNN), Logistic Regression (Logit), and
Decision Tree, as meta-learners for classifying state anxiety.
The use of lightweight models was motivated by the goal of
minimizing overfitting.

Given that our meta-learner is lightweight and fast to train,
we applied leave-one-out cross-validation (LOOCV) at the
final evaluation stage. This setup, in which the intermediate
stage uses LFOCV and the final stage uses LOOCV, avoids
information leakage. In contrast, using LFOCV in the final
stage and LOOCV earlier could introduce leakage by allowing
a participant seen during training in intermediate stage to
possibly reappear in the test sets of the meta-learner. For model
evaluation, we report balanced accuracy, precision, recall,
F1-score, and specificity. To address class imbalance, both
precision and F1-score were computed as weighted metrics.

III. RESULTS AND DISCUSSION
Although we explored 3 meta-learners, Logit consistently

performed better; thus, we report results for Logit only. Across
the windows evaluated, the performance was relatively similar
(Table I); however, the 1.5-hour window offered a favorable
balance between recall (58.1%) and balanced accuracy
(60.4%). To assess robustness, we compared it with two
baseline models. Baseline 1 is a model based on all trait
measures, while baseline 2 is a random classifier with uniform
probability across both classes. As shown in Table I, our meta-
learner using a 1.5-hour window outperformed both baselines.
Though baseline 1 has a comparable balanced accuracy
(60.4% vs. 57.3%) with our meta learner, empirically, we
found a model based on trait measures predicted always
either class 1 or 0 for all days of each participant (section
III-B for details).



TABLE I: Performance of baseline models and our meta-
learner. BA = Balanced Accuracy, Prec = Precision, Rec =
Recall, Spec = Specificity.

Model EMAs Trait Prec. Rec. Spec. BA F1

Meta (1h) 2703 4 61.8 57.9 61.9 59.9 60.0
Meta (1.5h) 2742 4 62.3 58.1 62.7 60.4 60.4
Meta (2h) 2765 4 62.6 56.6 64.8 60.7 60.3

Baseline 1 2765 5 59.2 59.6 55.1 57.3 58.3
Baseline 2 2765 – 51.2 44.4 53.3 48.9 48.4

A. Approach Generalization

To assess the generalizability of our modeling pipeline and
benchmark it against existing methods, we conducted external
validation using the TILES-18 dataset [15]. We compared our
approach to a prior study [17] that predicted state anxiety
using features derived from Fitbit and other devices. Since our
model relies on watch-sensed heart rate (HR), we implemented
two baseline versions: one using all Fitbit-derived features
(e.g., cardio, fat burn, steps, sleep) and another using only
HR features, as in the original study. As shown in Table
II, our meta-learner model substantially outperformed both
baselines—for instance, achieving a 7.9% higher balanced
accuracy than the all-feature model.

TABLE II: TILES-18 evaluation. F = Features.

Model EMAs F. Prec. Rec. Spec. BA F1

Meta-learner (Ours) 10095 7 61.4 50.9 67.4 59.1 61.3
HR-only [17] 10095 1 51.3 3.6 95.7 49.7 49.1
All Fitbit [17] 10095 25 54.4 23.7 78.8 51.2 54.7

B. Ablation Study

To evaluate the contributions of the transfer learning (TL)
model and the meta-learner, we conducted an ablation study.
First, we assessed the TL model alone—without the meta-
learner—on both our dataset and the external TILES-18
dataset. On our dataset, the TL model achieved 58.5% recall
and 36.7% specificity. On TILES-18, it achieved 38.5% recall
and 58.9% specificity. Despite lower overall performance, the
TL model outperformed previously published approaches [17]
in recall when evaluated on 10,095 EMA responses from
TILES-18. As shown in Table II, recall for the prior models
ranged from just 3.6% (HR-only features) to 23.7% (all Fitbit
features), compared to 38.5% with our TL-only model and
50.9% with meta-learner.

We trained a trait-only model using four selected trait mea-
sures, applying the same feature selection, classifier (Logit),
and hyperparameters as the meta-learner. While overall metrics
were comparable (e.g., BA: 60.4% vs. 60.16%; F1: 60.4%
vs. 59.2%), the trait-only model failed to capture intra- and
inter-day variability, consistently predicting the same class
per participant (BA: 0%, 50%, or 100%). In contrast, our
meta-learner produced more temporally sensitive, participant-
specific predictions. For example, in our dataset, 7 participants
had per-participant BA between 50%–100% and 9 between
0%–50%, with similar results on the TILES-18 dataset. These

differences reflect the static nature of trait-only inputs versus
the temporal variation in TL-derived probabilities used by the
meta-learner.

IV. CONCLUSION AND FUTURE WORK

We propose a model that leverages watch-sensed data to
predict state anxiety. While it outperforms baseline models,
there is still considerable room for improvement to support
more precise and personalized interventions. Future work will
explore incorporating additional sensor modalities and en-
abling on-device detection of timely intervention opportunities.
In parallel, strategies such as thresholds jointly determined by
clinicians and users (e.g., lowering the threshold to increase
sensitivity) could help balance sensitivity and specificity,
thereby mitigating potential negative effects. Also, our deep
learning–based approach is limited by interpretability, which
future work could address.
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