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Abstract

The fairness of clustering algorithms has gained widespread attention across
various areas in machine learning. In this paper, we study fair k-means clus-
tering in Euclidean space. Given a dataset comprising several groups, the
fairness constraint requires that each cluster should contain a proportion
of points from each group within specified lower and upper bounds. Due to
these fairness constraints, determining the locations of k centers and find-
ing the induced partition are quite challenging tasks. We propose a novel
“Relax and Merge” framework that returns a (1+4ρ+O(ϵ))-approximate so-
lution, where ρ is the approximate ratio of an off-the-shelf vanilla k-means
algorithm and O(ϵ) can be an arbitrarily small positive number. If equipped
with a PTAS of k-means, our solution can achieve an approximation ratio of
(5 +O(ϵ)) with only a slight violation of the fairness constraints, which im-
proves the current state-of-the-art approximation guarantee. Furthermore,
using our framework, we can also obtain a (1 + 4ρ + O(ϵ))-approximate
solution for the k-sparse Wasserstein Barycenter problem, which is a fun-
damental optimization problem in the field of optimal transport, and a
(2 + 6ρ)-approximate solution for the strictly fair k-means clustering with
no violation, both of which are better than the current state-of-the-art
methods. In addition, the empirical results demonstrate that our proposed
algorithm can significantly outperform baseline approaches in terms of clus-
tering cost.

1 Introduction

Clustering is one of the most fundamental problems in the area of machine learning. A wide
range of practical applications rely on effective clustering algorithms, such as feature engi-
neering (Glassman et al., 2014; Alelyani et al., 2018; Yuan et al., 2023; Zhang et al., 2023),
image processing (Coleman & Andrews, 1979; Chang et al., 2017), and bioinformatics (Ro-
nan et al., 2016; Nugent & Meila, 2010). In particular, the k-means clustering problem has
been extensively studied in the past decades (Jain, 2010). Given an input dataset P ⊂ Rd,
the goal of the k-means problem is to find a set S of at most k points for minimizing the
clustering cost, which is the sum of the squared distances from every point of P to its nearest
neighbor in S. In recent years, motivated by various fields like education, social security,
and cultural communication, the study on fairness of clustering has in particular attracted
a great amount of attention (Chierichetti et al., 2017; Bera et al., 2019; Huang et al., 2019;
Chen et al., 2019; Ghadiri et al., 2021).
In this paper, we consider the problem of (α, β)-fair k-means clustering that was initially
proposed by Chierichetti et al. (2017) and then generalized by Bera et al. (2019). Informally
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speaking, we assume that the given dataset P consists of m groups of points, and the
“fairness” constraint requires that in each obtained cluster, the points from each group should
take a fraction between pre-specified lower and upper bounds. Bera et al. (2019) showed that
a ρ-approximate algorithm for vanilla k-means can provide a (2+

√
ρ)2- approximate solution

1 for (α, β)-fair k-clustering with a slight violation on the fairness constraints, where the
“violation” is formally defined in Section 2. Regarding the no violation scenario, Dai et al.
(2022) and Wu et al. (2024) both obtained a O(logk)-approximate solution for fair k-median.
Wu et al. (2024) achieved a quasi-polynomial-time approximate scheme. Furthermore, Böhm
et al. (2021) studied the “strictly” fair k-means clustering problem, where it requires that
the number of points from each group should be uniform in every cluster; they obtained
a (2 +

√
ρ)2 approximate solution without violation. These fair k-means algorithms can

also be accelerated by using the coreset techniques, such as (Huang et al., 2019; Braverman
et al., 2022; Bandyapadhyay et al., 2024). There also exist polynomial-time approximation
scheme (PTAS) for fair k-means, such as the algorithms proposed in (Böhm et al., 2021;
Schmidt et al., 2020; Bandyapadhyay et al., 2024), but their methods have an exponential
time complexity in k. We are also aware of several other different definitions of fairness for
clustering problems, such as the proportionally fair clustering (Chen et al., 2019; Micha &
Shah, 2020) and socially fair k-means clustering (Ghadiri et al., 2021; Abbasi et al., 2021;
Makarychev & Vakilian, 2021; Chlamtáč et al., 2022).
Another problem closely related to fair k-means is the so-called “k-sparse Wassertein
Barycenter (WB)” (Agueh & Carlier, 2011) (the formal definition is shown in Section 2).
The Wasserstein Barycenter is a fundamental concept in optimal transport theory, and it
represents the “average” or central distribution of a set of probability distributions. It plays
a crucial role in various applications such as image processing (Bonneel et al., 2015; Cuturi &
Doucet, 2014), data analysis (Rabin et al., 2012), and machine learning (Backhoff-Veraguas
et al., 2022; Metelli et al., 2019). Given m > 1 discrete distributions, the goal of the k-sparse
WB problem is to find a discrete distribution (i.e., the barycenter) that minimizes the sum
of the Wasserstein distances (Villani, 2021) between itself to all the given distributions, and
meanwhile the support size of the barycenter is restricted to be no larger than a given in-
teger k ≥ 1. If relaxing the “k-sparse” constraint (i.e., the barycenter is allowed to take a
support size larger than k), Altschuler & Boix-Adsera (2021) presented an algorithm based
on linear programming, which can compute the WB within fixed dimensions in polynomial
time. If the locations of the WB supports are given, the problem is called “fixed support
WB”, which can be solved by using several existing algorithms (Claici et al., 2018; Cuturi &
Doucet, 2014; Cuturi & Peyré, 2016; Lin et al., 2020). If we keep the “k-sparse” constraint,
it has been proved that the problem is NP-hard (Borgwardt & Patterson, 2021). To the
best of our knowledge, the current lowest approximation ratio of k-sparse WB problem is
also (2 +

√
ρ)2 (same with the aforementioned approximation factor for fair k-means), as

recently studied by Yang & Ding (2024). In fact, we can regard this problem as a special
case of fair k-means clustering, where each input distribution is an individual group and
the unique cost measured by “Wasserstein distance” is implicitly endowed with a kind of
fairness. This observation from Yang & Ding (2024) inspires us to consider solving the
k-sparse WB problem under our framework.
Why fair k-means is so challenging? Though the fair k-means clustering has been extensively
studied in recent years, their current state-of-the-art approximation qualities are still not
that satisfying. The major difficulty arises from the lack of “locality property” (Ding & Xu,
2020; Bhattacharya et al., 2018) caused by fair constraints. More precisely, in a clustering
result of vanilla k-means, each client point obviously belongs to its closest center. That is, a
k-means clustering implicitly forms a Voronoi diagram, where the cell centers are exactly the
k cluster centers, and the client points in each Voronoi cell form a cluster. However, when
we add some fair constraints, such as requiring that the proportion of points of each group
should be equal in each cluster, the situation becomes more complicated. Given a set of
cluster center locations, because the groups of client points within a Voronoi cell may not be
equally distributed, some points are forced to be assigned to other Voronoi cells. This loss of
locality introduces significant uncertainty for the selection of cluster center positions. The

1In their paper, the approximate ratio is written as (2 + ρ) because they added a squared root
to the k-means cost function.

2



Published as a conference paper at ICLR 2025

previous works (Bera et al., 2019; Böhm et al., 2021) do not pay much attention on how to
handle this locality issue when searching for the cluster centers, instead, they directly apply
vanilla k-means algorithms to the entire input dataset or a group, and use the obtained
center locations as the center locations for fair k-means. It is easy to notice that their
methods could result in a certain gap with the optimal fair k-means solution. To narrow
this gap, we attempt to design some more effective way to determine the center locations,
where the key part that we believe, should be how to encode the fair constraints into the
searching algorithm.
Our key ideas and main results. Our key idea relies on an important observation, where
we find that the fair k-means problem is inherently related to a classic geometric structure,
“ϵ-approximate centroid set”, which was firstly proposed by Matoušek (2000). Roughly
speaking, given a dataset, an ϵ-approximate centroid set should contain at least one point
that approximately represents the centroid location of any subset of this given dataset.
It means that the ϵ-approximate centroid set contains not only the approximate centroids
based on the Voronoi diagram, but also the approximate centroids of those potential fairness-
preserving clusters.
Inspired by the above observation, we illustrate the relationship between fair k-means and
ϵ-approximate centroid set first, and then propose a novel Relax-and-Merge framework. In
this framework, we relax the constraints on the number of clusters k; we focus on utilizing
fair constraints to cluster the data into small and fair clusters, which are then merged
together to determine the positions of k cluster centers. As shown in Table 1, our result
is better than the state of the art works (Bera et al., 2019; Böhm et al., 2021). Equipped
with a PTAS for k-means problem (e.g., the algorithm from Cohen-Addad et al. (2019)), our
algorithm yields a 5 +O(ϵ) approximation factor. We also present two important extensions
from our work. The first extension is an (1 + 4ρ + O(ϵ)) solution for k-sparse Wasserstein
Barycenter. The second one is about strictly fair k-means. We give a refined algorithm of
Relax and Merge that yields a no-violation solution with a (2 + 6ρ) approximation factor,
which is better than the state of the art work (Böhm et al., 2021).

Algorithms Approximation
ratio

When
ρ = 1 +O(ϵ)

Note on the quality

Bera et al. (2019) (2 +
√
ρ)2 9 +O(ϵ) general case

Schmidt et al. (2020) 5.5ρ+ 1 6.5 +O(ϵ) two groups only
Böhm et al. (2021) (2 +

√
ρ)2 9 +O(ϵ) strictly only, no violation

Yang & Ding (2024) (2 +
√
ρ)2 9 +O(ϵ) k-sparse WB

Algorithm 1, now 1 + 4ρ+O(ϵ) 5 +O(ϵ) general case
Algorithm 2, now 2 + 6ρ 8 +O(ϵ) strictly only, no violation

Table 1: Comparison of the approximation ratios for fair k-means and k-sparse WB. The
“general case” includes (α, β)-fair k-means, strictly (α, β)-fair k-means and k-sparse WB.

Other Related Works on k-Means The vanilla k-means problem is a topic that has been
widely studied in both theory and practice. It has been proved that k-means clustering is
NP-hard even in 2D if k is large (Mahajan et al., 2012). In high dimensions, even if k is fixed,
say k = 2, the k-means problem is still NP-hard (Drineas et al., 2004). Furthermore, Lee
et al. (2017) proved the APX-hardness result for Euclidean k-means problem, which implies
that it is impossible to approximate the optimal solution of k-means below a factor 1.0013
in polynomial time under the assumption of P ̸= NP. Therefore, a number of approximation
algorithms have been proposed in theory. If the dimension d is fixed, Kanungo et al. (2002)
obtained a (9 + O(ϵ))-approximate solution by using the local search technique. Roughly
speaking, the idea of local search is swapping a small number of points in every iteration, so
as to incrementally improve the solution until converging at some local optimum. Following
this idea, Cohen-Addad et al. (2019) and Friggstad et al. (2019) proposed the PTAS for
k-means in low dimensional space. For high-dimensional case with constant k, Kumar et al.
(2010) proposed an elegant peeling algorithm that iteratively finds the k cluster centers and
eventually obtain the PTAS.
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2 Preliminaries
Notations. In this paper, we always assume that the dimensionality d of the Euclidean space
is constant. Let P denote the set of n client points located in Euclidean space Rd. The set
P consists of m different groups (not necessarily disjoint), i.e., P = ∪m

i=1P
(i), and each

group has the size |P (i)| = n(i) (we use the superscript “(i)” to denote the group’s index).
The Euclidean distance between two points a, b ∈ Rd is denoted by ∥a − b∥; the distance
between a point a and any set Q ⊂ Rd is denoted by dist(a,Q) = minq∈Q ∥a− q∥, and the
nearest neighbor of a in Q is denoted as N (a,Q). The centroid of a set Q is denoted by
Cen(Q).
For the vanilla k-means problem, the client points are always assigned to their nearest
center. However, if the fairness constraint is considered, the assignment may not be that
straightforward. To describe the fair k-means clustering more clearly, we introduce the
“assignment matrix” first. Given any candidate set of k cluster centers S, we define the
assignment matrix ϕS : P × S → R+ to indicate the assignment relation between the client
points and cluster centers. For every p ∈ P and s ∈ S, ϕS(p, s) denotes the proportion that is
assigned to center s (e.g., we may respectively assign 30% and 70% to two different centers).
Obviously, we have

∑
s∈S ϕS(p, s) = 1. For each center s ∈ S, we use w(s) =

∑
p∈P ϕS(p, s)

to denote the amount of weight assigned to s; for each group P (i), we similarly define the
function w(i)(s) =

∑
p∈P (i) ϕS(p, s). Let Cost(P, S, ϕS) denote the cost of input instance P

with given S and ϕS :
Cost(P, S, ϕS) =

∑
p∈P

∑
s∈S

∥p− s∥2ϕS(p, s). (1)

Problem 1 ((α, β)-fair k-means clustering (Bera et al., 2019)). Given an instance P as
described above and two parameter vectors α, β ∈ [0, 1]m, the goal of the (α,β)-fair k-
means clustering is to find the set S consisting of k points and an assignment matrix ϕS ,
such that the clustering cost (1) is minimized, and meanwhile each cluster center s ∈ S
should satisfy the fairness constraint: βiw(s) ≤ w(i)(s) ≤ αiw(s) for every i ∈ {1, 2, · · · ,m}.
Here, we use αi, βi to denote the i-th entry of α and β, respectively.
Moreover, if the m groups are disjoint with equal size (i.e., n(i) = n/m for any i), and
αi = βi = 1/m for each group P (i), we say this is a strictly (α,β)-fair k-means clustering
problem.
For Problem 1, we can specify two types of solutions: fractional and integral. Their difference
is only from the restriction on the assignment matrix ϕS . For the first one, each entry ϕS(p, s)
can be any real number between 0 and 1; but for the latter one, we require that the value
of ϕS(p, s) should be either 0 or 1, that is, the whole weight of p should be assigned to only
one cluster center.
How to round a fractional solution into integral while preserving fairness constraints is still
an open problem. Bera et al. (2019) introduced the violation factor to measure the violations
of fairness constraints after rounding: an assignment matrix ϕS is a λ-violation solution if
βi

∑
p∈P ϕS(p, s) − λ ≤

∑
p∈P (i) ϕS(p, s) ≤ αi

∑
p∈P ϕS(p, s) + λ, ∀s ∈ S, ∀i ∈ [m]. In

their paper, a fractional solution can always be rounded to integral, but it introduces some
violations , which will be discussed in Section 3.1. In this paper, we use OPT to denote the
optimal integral cost of Problem 1. We use Sopt = {s̃1, s̃2, · · · , s̃k} to denote the optimal
solution of integral fair k-means problem and its assignment matrix is denoted by ϕSopt

. For
each s̃j , let Cj = {p ∈ P | ϕSopt

(p, s̃j) > 0} be the corresponding cluster, i.e., the set of
point assigned to it. A simple observation is that, if given a fixed candidate cluster centers
set S, the assignment matrix ϕS can be obtained via solving a linear programming (we can
view the n× k entries of ϕS as the variables):

min
ϕS

∑
p∈P

∑
s∈S

∥p− s∥2ϕS(p, s)

s.t. βi

∑
p∈P

ϕS(p, s) ≤
∑

p∈P (i)

ϕS(p, s) ≤ αi

∑
p∈P

ϕS(p, s), ∀s ∈ S, ∀i ∈ [m],

∑
s∈S

ϕS(p, s) = 1, ∀p ∈ P.

(2)
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If we want to compute an integral solution, the above (2) should be an integer LP. Given
a set S, ϕ∗

S denotes the optimal solution of (2) and ϕ̃S denotes the corresponding optimal
integral solution.
The following proposition is a folklore result that has been used in many articles on clustering
algorithms (e.g., (Kanungo et al., 2002)). We will also repeatedly use it in our proofs.
Proposition 1. Given a finite weighted point set Q ⊂ Rd, for any point a,

∑
q∈Q w(q)∥a −

q∥2 =
∑

q∈Q w(q)∥q − Cen(Q)∥2 + w(Q) · ∥a− Cen(Q)∥2, where w(Q) is the total weight of
Q.

Next we introduce an important geometric structure “ϵ-approximate centroid set”, which
was firstly proposed by Matoušek (2000). Roughly speaking, the ϵ-approximate centroid set
approximately covers the centroids of any subset of given data, even though the subsets do
not align with the “Voronoi diagram” structure (as discussed in Section 1).
Definition 1. Given a finite set P ⊂ Rd and a small parameter ϵ > 0, we use CSϵ(P ) to denote
an ϵ-approximate centroid set of P that satisfies: for any nonempty subset Q ⊆ P , there
always exists a point v ∈ CSϵ(P ) such that ∥v − Cen(Q)∥ ≤ ϵ

3

√
1

|Q|
∑

q∈Q ∥q − Cen(Q)∥2.

Remark 1. Matoušek (2000) also presented a construction algorithm based on the space
partitioning technique “quadtree” (Finkel & Bentley, 1974). In Appendix A, we briefly
illustrate the role of the ϵ-approximate centroid set in preserving fairness constraints and
how to construct it. The size of the obtained ϵ-approximate centroid set is O(|P |ϵ−d log(1/ϵ))
and the construction time complexity is O(|P | log |P |+ |P |ϵ−d log(1/ϵ)).

Next, we give the formal definition of k-sparse Wasserstein Barycenter problem.
Definition 2 (Wasserstein Distance). Let P and Q be weighted point sets supported in Rd.
Wasserstein distance is the minimum transportation cost between P and Q: W(P,Q) =

minF
√∑

p∈P

∑
q∈Q F (p, q)∥p− q∥2, where the transport matrix F : P ×Q → [0, 1] should

satisfy:
∑

p∈P F (p, q) = w(q) for any q ∈ Q, and
∑

q∈Q F (p, q) = w(p) for any p ∈ P .

For a weighted set S, we use supp(S) to denote its support, i.e., the set that shares the same
location of S but not weighted. The number of points is supp(S) is denoted by |supp(S)|.
Problem 2 (k-sparse Wassertein Barycenter (k-sparse WB)). Given m discrete probability
distributions P (1), · · · , P (m) supported on Rd, WB is the probability distribution S mini-
mizing the sum of squared Wasserstein distances to them, i.e., argminS

∑m
i=1 W2(P (i), S).

The problem is called k-sparse Wasserstein Barycenter if we restrict |supp(S)| ≤ k

In Section 3.2, we explain why this problem can be regarded as a fair k-means clustering.

3 Our “Relax and Merge” Framework
In general, there are two stages in clustering with fair constraints. The first stage is to find
the proper locations of clustering centers, and the second stage is to assign all the client
points to the centers by solving LP (2). The previous approaches often use the vanilla
k-means in the first stage to obtain the location of centers, and then take the fairness
into account in the second stage (Bera et al., 2019; Böhm et al., 2021). In our proposed
framework, we aim to shift the consideration of fair constraints to the first stage, so as to
achieve a lower approximation factor in the final result. The following theorem is our main
result.
Theorem 1. Given an instance of Problem 1 and a ρ-approximate vanilla k-means clustering
algorithm, there exists an algorithm that can return a fractional (1 + 4ρ + O(ϵ)) approxi-
mate solution for Problem 1. Further, one can apply a rounding method to transform this
fractional solution to an integral one with a constant violation factor while ensuring the cost
does not increase.

The details for computing the fractional solution are shown in Algorithm 1. The set T in
Algorithm 1 contains the approximate centroids of all the potential clusters with preserving
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fair constraints. Then we solve a linear program to obtain the relaxed solution (T, ϕ∗
T ) that

also preserves the fair constraints. Because of that, the following k-means procedure is able
to determine the appropriate locations for the cluster centers of Problem 1.

Algorithm 1: Fractional Fair k-means
Input: The dataset P , k, α, β, and ϵ > 0

1 Relax: Construct a relaxed solution T , i.e., an ϵ-approximate centroid set, such that
Cost(P, T, ϕ∗

T ) ≤ (1 +O(ϵ)) ·OPT (see Lemma 2). Here, we relax the size constraint
of centers to be polynomial of n rather than exactly k, so as to achieve a sufficiently
low cost.

2 Solve LP (2) on T to obtain the optimal assignment matrix ϕ∗
T . T and ϕ∗

T can be
viewed as a relaxed solution for (α, β)-fair k-means, i.e., the number of centers may be
more than k, and meanwhile, the cost is bounded and the fairness constraints are also
preserved.

3 Adjust the location of T . For each t ∈ T , we update the location of t to be the
corresponding cluster centroid π(t) =

∑
p∈P p·ϕ∗

T (p,t)

w(t) . The adjusted T is denoted by
π(T ).

4 Merge: Run a ρ-approximate k-means algorithm on π(T ) to obtain centers set S. Then,
solve LP (2) on S to obtain the optimal assignment matrix ϕ∗

S .
5 return S and ϕ∗

S

3.1 Algorithm for (α, β) Fair k-means Problem

In this section, we mainly focus on the fractional version of (α, β)-fair k-means problem.
More precisely, we allow the value of the assignment function ϕS to be a real number in [0, 1]
rather than {0, 1}. To prove Theorem 1, we need the following lemmas first. Specifically,
Lemma 1 provides the bound for the cost from the merged solution S; Lemma 2 shows that
the ϵ-approximate centroid set provides a satisfied relaxed solution with a cost no more than
(1 +O(ϵ))OPT . Combining with the rounding methods, Theorem 1 can be obtained.
Lemma 1. Let η be any positive number. If we suppose Cost(P, T, ϕ∗

T ) ≤ η · OPT , then
the solution (S, ϕ∗

S) returned by Algorithm 1 is an
(
η+ (2η+2)ρ

)
-approximate solution for

Problem 1.

Proof. According to the definition of fractional fair k-means problem, the cost can be written
as

Cost(P, S, ϕ∗
S) =

∑
p∈P

∑
s∈S

∥p− s∥2ϕ∗
S(p, s). (3)

Now we consider another assignment strategy: we firstly assign P to T according to ϕ∗
T (

recall that ϕ∗
T is the optimal fractional assignment matrix from P to T ), and then we assign

every weighted point in T to some s ∈ S such that s is closest point to π(t). Since ϕ∗
S is the

optimal assignment matrix from P to S, the cost of this assignment strategy should have:∑
p∈P

∑
t∈T

∥p−N (π(t), S)∥2ϕ∗
T (p, t) ≥ Cost(P, S, ϕ∗

S). (4)

Since π(t) is the centroid of the weighted points assigned to t, according to Proposition 1,
we know the left-hand side of (4) should have the upper bound∑

t∈T

[∑
p∈P

∥p− π(t)∥2ϕ∗
T (p, t) + ∥π(t)−N (π(t), S)∥2w(t)

]
=

∑
p∈P

∑
t∈T

∥p− π(t)∥2ϕ∗
T (p, t)︸ ︷︷ ︸

(a)

+
∑
t∈T

∥π(t)−N (π(t), S)∥2w(t)︸ ︷︷ ︸
(b)

. (5)
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Then we bound (a) and (b) separately.

(a) =
∑
p∈P

∑
t∈T

∥p− π(t)∥2ϕ∗
T (p, t) ≤

∑
p∈P

∑
t∈T

∥p− t∥2ϕ∗
T (p, t) ≤ η ·OPT. (6)

The first inequality holds because π(t) is the centroid of the weighted points assigned to t,
minimizing the weighted sum of the squared distances between them. The second inequality
holds because Cost(P, T, ϕ∗

T ) ≤ η · OPT . Next, we focus on (b). Suppose Smeans is the
optimal k-means solution of T . Then we have:

(b) =
∑
t∈T

∥π(t)−N (π(t), S)∥2w(t) ≤ ρ
∑
t∈T

∥π(t)−N (π(t), Smeans)∥2w(t)

= ρ
∑
p∈P

∑
t∈T

∥π(t)−N (π(t), Smeans)∥2ϕ∗
T (p, t)

= ρ
∑
p∈P

∑
t∈T

[ ∑
s̃∈Sopt

∥π(t)−N (π(t), Smeans)∥2ϕ∗
Sopt

(p, s̃)
]
ϕ∗
T (p, t)

≤ ρ
∑
p∈P

∑
t∈T

[ ∑
s̃∈Sopt

∥π(t)− s̃∥2ϕ∗
Sopt

(p, s̃)
]
ϕ∗
T (p, t).

(7)

Further, according to squared triangle inequality, we have

(b) ≤ ρ
∑
p∈P

∑
t∈T

[ ∑
s̃∈Sopt

[
∥π(t)− p∥+ ∥p− s̃∥

]2
ϕ∗
Sopt

(p, s̃)
]
ϕ∗
T (p, t)

≤ ρ
∑
p∈P

∑
t∈T

∑
s̃∈Sopt

2∥π(t)− p∥2ϕ∗
Sopt

(p, s̃)ϕ∗
T (p, t)

+ ρ
∑
p∈P

∑
t∈T

∑
s̃∈Sopt

2∥p− s̃∥2ϕ∗
Sopt

(p, s̃)ϕ∗
T (p, t)

= 2ρ
∑
p∈P

∑
t∈T

∥π(t)− p∥2ϕ∗
T (p, t) + 2ρ

∑
p∈P

∑
s̃∈Sopt

∥p− s̃∥2ϕ∗
Sopt

(p, s̃).

(8)

The last equality holds because for any p ∈ P ,
∑

s̃∈Sopt
ϕ∗
Sopt

(p, s̃) = 1. The first term is
exactly 2ρ times of (a) and the second term equals 2ρ · OPT . Through combining (a) and
(b), we can obtain an approximation factor of η + (2η + 2)ρ.

Algorithm 1 reduces the fair k-means problem to computing the set T . The following lemma
shows that an ϵ-approximate centroid set is a good candidate for T .
Lemma 2. If T is an ϵ-approximate centroid set of P , then Cost(P, T, ϕ∗

T ) ≤ (1+O(ϵ))OPT .

Proof. According to Definition 1, let ti ∈ T denote the point such that ∥ti − Cen(Ci)∥ ≤
ϵ
3

√
1

|Ci|
∑

p∈Ci
∥p− Cen(Ci)∥2. Let T ′ = {t1, · · · , tk}. A key observation is that each opti-

mal center s̃i is always the centroid of Ci, i.e., cen(Ci) = s̃i, so we have ∥ti − Cen(Ci)∥2 ≤
ϵ2

9|Ci|
∑

p∈Ci
∥p− s̃i∥2 = ϵ2

9|Ci|OPTi, where OPTi =
∑

p∈Ci
∥p− s̃i∥2.

If we assign all points of Ci to ti, the cost of every Ci can be written as
∑

p∈Ci
∥ti − p∥2 =∑

p∈Ci

∥ti − s̃i∥2 +
∑
p∈Ci

∥p− s̃i∥2 ≤ ϵ2

9
OPTi +OPTi = (1 +O(ϵ))OPTi. (9)

The first equality holds due to Proposition 1. Since ϕ∗
T ′ is the optimal assignment matrix

of T ′, Cost(P, T ′, ϕ∗
T ′) ≤

∑k
i=1

∑
p∈Ci

∥ti − p∥2 ≤ (1 +O(ϵ))
∑k

i=1 OPTi ≤ (1 +O(ϵ))OPT .
Finally, since T ′ is a subset of T , we have Cost(P, T, ϕ∗

T ) ≤ Cost(P, T ′, ϕ∗
T ′) ≤ (1 +

O(ϵ))OPT .

Through combining Lemma 1 and Lemma 2, we can immediately obtain Lemma 3.
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Lemma 3. Equipped with the ϵ-approximate centroid set by Matoušek (2000), the cost of the
solution returned by Algorithm 1 is at most (1+4ρ+O(ϵ))OPT . Furthermore, by utilizing
the PTAS of vanilla k-means algorithm, the cost of the solution is at most (5+O(ϵ))OPT .

Rounding for integral solution. Note that Lemma 3 only guarantees a fractional solution.
Recall the “violation factor” introduced in Section 2. According to the rounding method
proposed in (Bera et al., 2019), a fractional solution of Problem 1 can be rounded to be
integral with (3∆ + 4) violation, where ∆ is the maximum number of groups a point can
join in (e.g., if a point can belong to three groups, ∆ should be equal to 3). Their main
idea is to reduce the fair assignment problem to the minimum degree-bounded matroid basis
(MBDMB) problem, and then solve the MBDMB by iteratively solving a linear program
(LP). In the current article, we further propose a new rounding method that can improve
this violation factor to “2” when assuming ∆ = 1, i.e., the groups are mutually disjoint, and
the each point belongs to exactly one group (if using the method of (Bera et al., 2019), the
factor should be 7). Actually, it is natural to assume that the groups are disjoint, e.g., each
person may belong to one race. Fair clustering problem in disjoint groups has also been
studied in Bercea et al. (2018); Wu et al. (2022); Chierichetti et al. (2017). Our key idea is
building a “hub-guided” minimum cost circulation problem. Roughly speaking, we utilize
a set of carefully designed “hubs” in a transportation network, for guiding the integral fair
matching between the input points and the obtained cluster centers. We show the result in
Lemma 4, and place the proof to Appendix C due to the space limit.
Lemma 4. If the groups are mutually disjoint, one can round the fractional solution returned
by Algorithm 1 to be integral with at most 2-violation, while the cost does not increase.

Finally, Theorem 1 can be obtained by combining either the rounding method from (Bera
et al., 2019) for general case, or Lemma 4 for disjoint case.
Overall time complexity. As we mentioned in Remark 1, computing an ϵ-approximate
centroid set of P needs O(n log n+ nϵ−d log(1/ϵ)) time. The adjustment of the location of
T can be completed in O(kn) time. Suppose the time complexities of linear programming,
vanilla k-means are denoted by TLP and Tmeans, respectively. The overall time complexity
of Algorithm 1 is O(n log n + nϵ−d log(1/ϵ)) + TLP + O(kn) + Tmeans. It is worth noting
the the complexity can be further reduced by using the assignment preserving coreset ideas
(Huang et al., 2019; Braverman et al., 2022; Bandyapadhyay et al., 2024). By doing this,
we need to introduce an extra running time for coreset construction, which is linear to n,
but we can compress the data size from n to poly(k, ϵ).
3.2
A cute property of Algorithm 1 is that it can be easily extended to address the k-sparse
WB problem. Recall the definition of k-sparse WB in Problem 2. The given m distributions
can be viewed as m groups of weighted points. And the sum of Wasserstein distances
between barycenter and given distributions can be rewritten as the sum of squared Euclidean
distances from P to the centers. Moreover, the flows induced by Wasserstein distances
between barycenter and the given distributions can implicitly ensure the fairness, i.e., for
each point s in barycenter, w(i)(s) = 1

mw(s) for any i ∈ [m]. Namely, we can directly
perform our “Relax and Merge” framework by setting αi = βi = 1/m. First, we calculate
the ϵ-approximate centroid (here we ignore the weight of points) set to obtain T , then we
use T as the support of the Barycenter to run a “fixed support” WB algorithm (Claici
et al., 2018; Cuturi & Doucet, 2014; Cuturi & Peyré, 2016; Lin et al., 2020) to obtain the
weights of T (due to the space limit, we leave some details on fixed support WB algorithms
to Appendix D). Finally, we run a vanilla k-means algorithm on T to obtain the k-sparse
solution.
Theorem 2. If T is an ϵ-approximate centroid set of ∪m

i=1P
(i), Algorithm 1 returns a (1 +

4ρ+O(ϵ))-approximate solution for k-sparse Wasserstein Barycenter problem.

3.3 Strictly Fair k-means without Violation

Since the strictly fair k-means is a special case of (α, β)-fair k-means, by using Algorithm 1
and the rounding technique introduced by Section 3.1, we can obtain an integral solution
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but with certain violation. In this section, we consider how to obtain an integral solution
with no violation. Specifically, we compute the fairlet decomposition (Chierichetti et al.,
2017) for the input groups and use its centroids as the relaxed solution T rather than ϵ-
approxiamte centroid set. First, we give the definition of fairlet decomposition for multiple
groups, which extends the original definition of (Chierichetti et al., 2017) from two groups
to multiple groups.
Definition 3 (Fairlet Decomposition). Given a dataset P that has m equal-sized disjoint
groups, We say a set G of m points is a fairlet of P , if G contains exactly one point from
each group of P . A set G of n/m fairlets is a fairlet decomposition of P , if all fairlets in G
are disjoint, where n/m is the number of points in each group of P .

We define the cost of fairlet decomposition G as Costfairlet(G) =
∑

G∈G
∑

p∈G ∥p−Cen(G)∥2.
It is easy to know that fairlet decomposition is indeed a solution of strictly fair n/m-means.
Hence, we can still use the “Relax and Merge” technique: regard the centroids of fairlets
in fairlet decomposition as a relaxed solution, and then run ρ-approximate vanilla k-means
algorithm on these centroids. So, we reduce the strictly fair k-means problem to the fairlet
decomposition problem. We propose Algorithm 2, which first computes a 2-approximate
fairlet decomposition and then generates a (2+6ρ)-approximate integral solution for strictly
fair k-means.

Algorithm 2: Stricytly Fair k-means
Input: The dataset P = ∪m

i=1P
(i), k

1 for i = 1 to m do
2 for j = 1 to m and i ̸= j do
3 Compute the perfect one-to-one matching τij between P (i) and P (j) by using

the Hungarian algorithm (Kuhn, 1955). For each point p ∈ P (i), the point
matched with p in P (j) is denoted as τij(p).

4 end
5 Construct a fairlet decomposition Gi (initially empty) according to the matchings:

for each point p ∈ P (i), add the fairlet {τi1(p), τi2(p), · · · , τim(p)} to Gi.
6 end
7 Choose Gv where v = argmini

∑
p∈P (i)

∑m
j=1 ∥p− τij(p)∥2 as G.

8 Construct the relaxed solution T = {Cen(G) | G is any fairlet of G}.
9 Run a ρ-approximate k-means algorithm on T , and obtain the solution S.

10 Integral assignment: Assign all the points according to the fairlet decomposition G, i.e.,
if a point p belongs to some fairlet G, then assign p to N (Cen(G), S).

11 return S and the obtained integral assignment

Theorem 3. Algorithm 2 returns a (2 + 6ρ)-approximate integral solution of strictly fair
k-means.

To prove Theorem 3, we need to prove the following lemma, which shows that G is a 2-
approximate fairlet decomposition. Then, we can use the same idea of Lemma 1 to obtain
Theorem 3. Recall that Lemma 1 shows that if we have a relaxed solution T with a bounded
cost η · OPT , then the merged solution will have constant approximate ratio. Here, T
obtained by Algorithm 2 also provides a relaxed solution whose cost does not exceed 2OPT .
Hence, after we merge T and obtain S, the approximate ratio should no more than (η +
(2η + 2)ρ) = 2 + 6ρ. Furthermore, if we use PTAS for k-means, the overall approximate
ratio of Algorithm 2 is 8 +O(ϵ).
Lemma 5. If G is the fairlet decomposition obtained by Algorithm 2, then Costfairlet(G) ≤
2OPT .

4 Experiments

In this section, we perform the empirical evaluation on our algorithms. Our experiments
are conducted on a server equipped with Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz
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CPU and 512GB memory. We implement our algorithms in C++ and python (with lin-
ear programming solver gurobi (Gurobi Optimization, LLC, 2023)). We use the follow-
ing datasets which are commonly used in previous works: Bank (Moro et al., 2014)(4522
points with 5 groups), Adult (Becker & Kohavi, 1996) (32561 points with 7 groups), Cen-
sus (Zhou & Chen, 2002)(50000 points with 10 groups), creditcard (Yeh & Lien, 2009) (30000
points with 8 groups), Biodeg (Mansouri et al., 2013) (1055 points with 2 groups), Breast-
cancer (Wolberg,William, Mangasarian,Olvi, Street,Nick, and Street,W., 1995) (570 points
with 2 groups), Moons (scikit-learn developers, 2007-2023) (200 points with 2 groups), Hy-
percube(200 points with 2 groups), Cluto (Karypis et al., 1999) (800 points with 8 groups),
and Complex (800 points with 8 groups). The last four datasets consist of disjoint and
equal sized groups, so we can perform strictly fair k-means algorithms on them. We place
the detailed information of these datasets in Appendix F. Regarding the selection of α and
β, we set αi = βi =

|P (i)|
|P | and we also discuss more choices for α and β, and provide more

experimental results, including the part of k-sparse Wasserstein Barycenter, in the Section F
of the appendix. We use k-means++ (Ostrovsky et al., 2013) as the k-means solver in our
Algorithm 1.
Results on (α, β)-Fair k-means. We compared the cost of (α, β)-fair k-means of our Algo-
rithm 1 and baselines. We choose the algorithm proposed by Bera et al. (2019) (denoted by
NIPS19) and Böhm et al. (2021) (denoted by ORL21) as the baselines. The construction
of an ϵ-approximate centroid set is a theoretical algorithm that can be replaced by some
efficient methods in practice. In our experiments, we adopted the alternative implementa-
tion of Kanungo et al. (2002), which combines the kd-tree (Friedman et al., 1977) and a
sampling technique. Figure 1 shows that our algorithm gives the lowest cost of (α, β)-fair
k-means, indicating that Algorithm 1 can find better center locations. This improvement is
possible due to that our method considers the fairness information of groups when choosing
the locations of centers.

Figure 1: The cost obtained by the algorithms with different k.

5 Conclusion
In this paper, we utilize the insight on the relationship between the fair k-means problem
and a classic geometric structure, ϵ-approximate centroid set, for developing a novel “Relax
and Merge” framework. It can achieve a (1 + 4ρ + O(ϵ)) approximation ratio of fair k-
means and k-sparse Wasserstein Barycenter problems, which improves the current state-of-
the-art approximation guarantees. There still exists some open problems: how to obtain an
integral approximate solution of general case without violation? In addition, is it possible to
extend our ‘Relax and Merge” framework to other types of clustering problems, such as the
proportionally fair clustering (Chen et al., 2019) and socially fair k-means clustering (Ghadiri
et al., 2021).
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A ϵ-approximate centroid set

The algorithm of constructing an ϵ-approximate centroid set is proposed by Matoušek (2000).
Here we briefly introduce the idea. First, we use a quadtree to partition the space into
hierarchical cubes. At each level of the tree, we construct a grid. The length of the grid is
set to ensure that the grid points can always cover all approximate centroids of all cubes at
this level. The approximate centroid set is the union of all grid points across all levels.
In Figure 2, we visually illustrate the difference between the k-means clustering center and
the fair k-means clustering center. The vanilla k-means induces a Voronoi diagram, so
that every k-means center is located at the centroid of a k-means cluster. However, a fair
k-means center can be located at the centroid of any potential cluster that satisfies the
fairness constraints. The ϵ-approximate centroid set structure can help us to find these
potential centroids and preserves the fairness constraints for the later procedures.

Figure 2: The difference between the location of k-means clustering centers and the fair
k-means clustering centers. The input dataset contains 3 different groups represented by
orange, blue, and green points respectively. The red diamonds represent the cluster centers
under different assumptions for the clustering problem. (a) shows the clustering result of
k-means, while (b) shows the clustering result of fair k-means.

B Omitted Proofs

Theorem 2 If T is an ϵ-approximate centroid set of ∪m
i=1P

(i), Algorithm 1 returns a (1 +
4ρ+O(ϵ))-approximate solution for k-sparse Wasserstein Barycenter problem.
To prove this theorem, we need the following lemmas.
Lemma 6. If T is an ϵ-approximate centroid set of ∪m

i=1P
(i) and w(t) for each t ∈ T is

obtained by solving LP(2), then T is a (1 +O(ϵ))-approximate Wasserstein Barycenter.

Proof. A critical fact is that there exist an optimal Wasserstein Barycenter T ∗ such that
all points of T ∗ located in the centroid of some fairlet of P . This claim has been proved in
(Anderes et al., 2016) (Section 2, Equation 4). Therefore, if we calculate an ϵ-approximate
centroid set T , then T can always cover the locations of T ∗, i.e., Cost(P, T, ϕ∗

T ) ≤ (1 +
O(ϵ))Cost(P, T ∗, ϕ∗

T∗) ≤ (1 + O(ϵ))OPT . So using the same proof idea with Lemma 2, we
can obtain the conclusion of Lemma 6.

Combine Lemma 6 and Lemma 1, we arrive at Theorem 2.

Lemma 5 If G is the fairlet decomposition obtained by Algorithm 2, then Costfairlet(G) ≤
2OPT .

Proof. Suppose G is a fairlet, and we use G(i) to denote the point in G and belongs to
group P (i), i.e., G(i) = G ∩ P (i). We use GOPT to denote the optimal fairlet decomposition
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that has the lowest cost (we cannot obtain GOPT in reality, and here we just use it for
conducting our analysis). For each p ∈ P , let GOPT (p) denote the fairlet of GOPT that p
belongs to, i.e., p ∈ GOPT . Suppose that P (u) is the “closest” group to GOPT , i.e. u =
argmini∈[m]

∑
p∈P (i) ∥Cen(GOPT (p))− p∥2. We have

Costfairlet(G) =
∑
G∈G

∑
p∈G

∥p− Cen(G)∥2

≤
∑
G∈G

∑
p∈G

∥p− Cen(G)∥2 +m
∑
G∈G

∥G(v) − Cen(G)∥2
(10)

According to Proposition 1, the right side of (10) equals to
∑

p∈P (v)

∑m
j=1 ∥p− τvj(p)∥2, so

we have Costfairlet(G) ≤∑
p∈P (v)

m∑
j=1

∥p− τvj(p)∥2 ≤
∑

p∈P (u)

m∑
j=1

∥p− τuj(p)∥2 ≤
∑

p∈P (u)

m∑
j=1

∥p− (GOPT (p))
(j)∥2. (11)

The first inequality holds because v = argmini
∑

p∈P (i)

∑m
j=1 ∥p − τij(p)∥2. And the last

inequality holds because τ is the perfect one-to-one matching. Using Proposition 1 again,
we have CostOPT (G) ≤∑

p∈P (u)

m∑
j=1

∥Cen(GOPT (p))− (GOPT (p))
(j)∥2 +m

∑
p∈P (u)

∥Cen(GOPT (p))− p∥2. (12)

Note that G is the optimal fairlet decomposition, as well as the optimal strictly fair n/m-
means solution, so the first term of (12) should be at most OPT . As for the second term,
since P (u) is the “closest” group to G, it should be no larger than m · 1

mOPT ≤ OPT (be-
cause the minimum distance “

∑
p∈P (u) ∥Cen(GOPT (p))−p∥2” should not exceed the average

distance 1
mOPT ). Overall, we complete the proof of Lemma 5.

C The Rounding Technique

Our rounding algorithm consists of three steps: constructing a network structure of Mini-
mum Cost Circulation Problem (MCCP), setting the parameters of each edge based on a
fractional solution obtained by Algorithm 1, and solving the MCCP above. This reduction
to MCCP is inspired by Ding & Xu (2015) (Section 4.3), while having some fundamental
differences with their method. Our algorithm has different objectives compared to theirs,
as it is based on a different approach to setting network parameters, and our method offers
better time complexity guarantees. Our rounding algorithm requires only a single call to the
minimum-cost circulation algorithm, and it can be completed in O(n3k2) time even when
using the vanilla Edmonds-Karp algorithm (Dinitz, 1970; Edmonds & Karp, 1972).
The process of our algorithm is described as follows. Recall that the dataset P consists
of m different groups, i.e., P = ∪m

i=1P
(i) and we assume that the groups are disjoint. By

executing the Algorithm 1, we obtain a center set S and corresponding fractional assignment
matrix ϕ∗

S . Now, in order to build a minimum cost circulation instance, we need to construct
a network structure as Figure 3 and for each arc (u, v), we should set the lower/upper bound
of the flow f(u, v) and its cost c(u, v). We create a copy of S, denoted by S(i), for each group
P (i). Each S(i) is a ”hub” used for transit, specifically to receive weights from group P (i)

and transmit them to S. To facilitate understanding, we can imagine that each s
(i)
l ∈ S(i),

where l ∈ [k], and its corresponding sl ∈ S are in the same position, but only accepts the
weights from group P (i). We set c(p

(i)
j , s

(i)
l ), i.e., the cost of the arc from any p

(i)
j ∈ P (i),

where j ∈ [n(i)], to an s
(i)
l ∈ S(i) to be ||p(i)j − s

(i)
l ||2. The cost of the remaining arcs are 0.

Next, we set the lower bound and the upper bound of the flow on each arc, as shown in
Figure 3. First, the flow from the ”Source” node to each p ∈ P is restricted to 1, which
means that each point p ∈ P (1) has a weight of 1 to assign to S(1). Then, between each
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Figure 3: The instance of the minimum cost circulation problem established through (S, ϕ∗
S).

The upper and lower bounds of the flow for each arc are annotated in the graph.

P (i) and its ”hub” S(i), the flow from each p
(i)
j ∈ P (i) to each s

(i)
l ∈ S(i) is bounded by

[0, 1]. Here, the flow f(p
(i)
j , s

(i)
l ) denotes the amount of the weight that assigned from p

(i)
j

to sl ∈ S in an (α, β)-fair k-means solution. Subsequently, recall that in the solution (S, ϕ∗
S)

we obtained before, the weight received by a center sl ∈ S from group P (i) is w(i)(sl). We
bound the flow f(s

(i)
l , sl) by

[
⌊w(i)(sl)⌋, ⌈w(i)(sl)⌉

]
. Finally, the flow from each sl ∈ S to

the ”Sink” node is bounded by
[
⌊w(sl)⌋, ⌈w(sl)⌉

]
, and we set f(Sink, Source) = n to form a

circulation. At this point, we have established an instance of the minimum cost circulation
problem, denoted by MCCP (S, ϕ∗

S). Obviously, we have the following observation:
Observation 1. ϕ∗

S induces a feasible solution of MCCP (S, ϕ∗
S).

The observation is straightforward because the flow induced by ϕ∗
S meet all the bounds

applied to the flow. Then, we give the proof of Lemma 4 mentioned in Section 3.1.

Lemma 4. There exists an algorithm that can round a fractional solution of (α, β)-fair
k-means to integral with at most 2-violation while the cost does not increase.

Proof. It is known that the minimum cost circulation problem has an integrality prop-
erty (Cormen et al., 2009), which guarantees that if the arcs have integer capacities, there
will always be an optimal solution with integer flow values on each arc. Utilizing an al-
gorithm for minimum cost circulation problem or minimum cost flow problem (the two
problems are equivalent), which converges to an integer solution like Ford-Fulkerson (Ford
& Fulkerson, 1956), we can obtain an integer optimal solution of MCCP (S, ϕ∗

S), which has
a cost no larger than the solution induced by ϕ∗

S .
Next, we prove that the assignment matrix, say ϕ′

S , induced by the integer optimal solution
of MCCP (S, ϕ∗

S) is a 2-violation assignment from P to S. Recall that we presented the
definition of the violation factor in Section 2: An assignment matrix ϕS is a λ-violation
solution if βi

∑
p∈P ϕS(p, s) − λ ≤

∑
p∈P (i) ϕS(p, s) ≤ αi

∑
p∈P ϕS(p, s) + λ, ∀s ∈ S, ∀i ∈

[m]. According to the construction procedure of MCCP (S, ϕ∗
S), the lower bound of the flow

f(s
(i)
l , sl) is ⌊w(i)(sl)⌋, which satisfies:
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⌊w(i)(sl)⌋ ≥ ⌊α(i)(⌈w(sl)⌉ − 1)⌋
= ⌊αi⌈w(sl)⌉ − αi⌋
≥ ⌈αi⌈w(sl)⌉ − αi⌉ − 1

≥
(
αi⌈w(sl)⌉ − αi

)
− 1.

(13)

Note that the upper bound of the flow f(sl, Sink) is ⌈w(sl)⌉ so we have:

⌊w(i)(sl)⌋ ≥ αi⌈w(sl)⌉ − αi − 1

≥ αi⌈w(sl)⌉ − 2,
(14)

and similarly,
⌈w(i)(sl)⌉ ≤ βi⌊w(sl)⌋+ βi + 1

≤ βi⌊w(sl)⌋+ 2,
(15)

which indicates that ϕ′
S is a 2-violation assignment and complete the proof of Lemma 4.

D Fixed Support Wasserstein Barycenter

Given m discrete distributions (weighted point sets, each set has total weight sum to 1)
P (1), · · · , P (m) and a set T of WB, the objective of fixed support WB as follows:

min
x

1

m

m∑
l=1

n(i)∑
i=1

n(j)∑
j=1

∥P (l)
i − Tj∥2x(l)

ij

s.t.

|T |∑
j=1

x
(l)
ij = 1, ∀l ∈ [m], ∀i ∈ [n(l)]

n(l)∑
i=1

x
(l)
ij w(P

(w)
i ) = yj , ∀l ∈ [m], ∀j ∈ [|T |]

|T |∑
j=1

yj = 1,

x
(l)
ij ≥ 0, ∀l ∈ [m], ∀i ∈ [n(l)], ∀j ∈ [|T |]

yj ≥ 0, ∀j ∈ [|T |]

(16)

It is easy to see that fixed support WB problem can be solved using linear programming
method. Several existing works on solving LP (16) including (Claici et al., 2018; Cuturi &
Doucet, 2014; Cuturi & Peyré, 2016; Lin et al., 2020).
For the sake of completeness, we need to clarify how the solution to the k-sparse Wasserstein
barycenter solution is guaranteed to be a distribution. After we run Algorithm 1, we obtain
the support S (the locations of centers) of the returned solution and the assignment matrix
ϕ∗
S (the transportation weight from p = P

(l)
i to f = Sj is denoted by ϕ∗

S(p, f) = x
(l)
ij in

(16)). The key question is how to ensure that the summation of the weight of points in S is
equal to 1. Let us consider an arbitrary given distribution (or ”group” in the context of fair
k-means), e.g., P (l). For every facility f in S, we define its weight w(f) =

∑
p∈P (l) ϕ∗

S(p, f).
This ensures that the total weight of S must be equal to the total weight of P (l), which is
1 because P (l) is a distribution. The choice of P (l) can be arbitrary because, recall that
k-sparse WB can be seen as a special fractional version of strictly fair k-means, meaning no
matter which given distribution you choose, you will obtain the same weight distribution
of S. The optimization will not change by setting the weight of S because the weight of S
does not affect the cost.
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E Extend Algorithm 1 to k-Median and k-Means in General Metric Space

Although we mainly consider the fair k-means problem in Euclidean space in this paper,
for the sake of completeness, in this section, we illustrate how to extend our framework to
solve k-median and k-means in general metric space. In summary, if the potential facility
set is given, our framework achieves a (1+ 2ρ)-approximate solution for k-median ((2+ 8ρ)-
approximate solution for k-means) in metric space, where ρ is the approximation ratio
for vanilla k-median (k-means) with a constant violation factor. If the metric space has
a fixed doubling dimension (Gupta et al., 2003), then equipped with existing PTAS for
metric k-median and k-means (Cohen-Addad et al., 2021; 2019; Friggstad et al., 2019), the
best approximation ratios our framework can achieve are (3 + O(ϵ)) for fair k-median and
(10 +O(ϵ)) for fair k-means.
Unfortunately, our theoretical guarantees in general metric space are weaker than those
of Bera et al. (2019), in which they obtained a (ρ + 2)-approximation for k-median and a
(
√
ρ + 2)2-approximation for k-means. The obstacle to achieving a better approximation

ratio for our framework is the ”candidate set”. In Euclidean space, we have an approximate
centroid set. However, in general metric space, how can we obtain a candidate set that
has similar properties to Proposition 1, which provides a more powerful tool than the basic
triangle inequality? This is not only a potential future work of our framework but also an
important open theoretical problem.

k-Median in metric space. Firstly, we consider fair k-median in general metic space. We
use dist(·, ·) to denote the distance between two points. We assume that the potential
facility set T is given. Therefore, in Algorithm 1, we just use the given facility set T rather
than computing the approximate centroid set. The cost of fair k-median can be written as

Cost(P, S, ϕ∗
S) =

∑
p∈P

∑
s∈S

dist(p, s)ϕ∗
S(p, s). (17)

Similar to Lemma 1, we have the following lemma.
Lemma 7. Let η be any positive number. If we suppose Cost(P, T, ϕ∗

T ) ≤ η ·OPT , then the
solution (S, ϕ∗

S) returned by Algorithm 1 (the construction of T should be slightly changed)
is an

(
η + (η + 1)ρ

)
-approximate solution for fair k-median problem in metric space, where

ρ is the approximation ratio of vanilla k-median.

Proof. Now we consider another assignment strategy: we firstly assign P to T according to
ϕ∗
T ( recall that ϕ∗

T is the optimal fractional assignment matrix from P to T ), and then we
assign every weighted point in T to some s ∈ S such that s is closest point to π(t). Since ϕ∗

S
is the optimal assignment matrix from P to S, the cost of this assignment strategy should
have:

Cost(P, S, ϕ∗
S) ≤

∑
p∈P

∑
t∈T

dist(p,N (t, S))ϕ∗
T (p, t)

≤
∑
t∈T

∑
p∈P

[
dist(p, t) + dist(t,N (t, S))

]
ϕ∗
T (p, t)

=
∑
p∈P

∑
t∈T

dist(p, t)ϕ∗
T (p, t)︸ ︷︷ ︸

(a)

+
∑
p∈P

∑
t∈T

dist(t,N (t, S))ϕ∗
T (p, t)︸ ︷︷ ︸

(b)

.

(18)

The second inequality is triangle inequality. Then we bound (a) and (b) separately. Firstly,

(a) =
∑
p∈P

∑
t∈T

dist(p, t)ϕ∗
T (p, t) = Cost(P, T, ϕ∗

T ) ≤ η ·OPT (19)
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Next, we focus on (b). Suppose Smedian is the optimal k-median solution of T . Then we
have:

(b) =
∑
p∈P

∑
t∈T

dist(t,N (t, S))ϕ∗
T (p, t)

≤ ρ
∑
p∈P

∑
t∈T

dist(t,N (t, Smedian)ϕ
∗
T (p, t)

= ρ
∑
p∈P

∑
t∈T

[ ∑
s̃∈Sopt

dist(t,N (t, Smedian))ϕ
∗
Sopt

(p, s̃)
]
ϕ∗
T (p, t)

≤ ρ
∑
p∈P

∑
t∈T

[ ∑
s̃∈Sopt

dist(t, s̃)ϕ∗
Sopt

(p, s̃)
]
ϕ∗
T (p, t).

(20)

Further, according to the triangle inequality, we have

(b) ≤ ρ
∑
p∈P

∑
t∈T

[ ∑
s̃∈Sopt

[
dist(t, p) + dist(p, s̃)

]
ϕ∗
Sopt

(p, s̃)
]
ϕ∗
T (p, t)

≤ ρ
∑
p∈P

∑
t∈T

∑
s̃∈Sopt

dist(t, p)ϕ∗
Sopt

(p, s̃)ϕ∗
T (p, t)

+ ρ
∑
p∈P

∑
t∈T

∑
s̃∈Sopt

dist(p, s̃)ϕ∗
Sopt

(p, s̃)ϕ∗
T (p, t)

= ρ
∑
p∈P

∑
t∈T

dist(t, p)ϕ∗
T (p, t) + ρ

∑
p∈P

∑
s̃∈Sopt

dist(p, s̃)ϕ∗
Sopt

(p, s̃).

(21)

The last equality holds because for any p ∈ P ,
∑

s̃∈Sopt
ϕ∗
Sopt

(p, s̃) = 1 and
∑

t̃∈T ϕ∗
T (p, t) = 1.

The first term is exactly ρ times of (a) and the second term equals ρ · OPT . Through
combining (a) and (b), we can obtain an approximation factor of η + (η + 1)ρ.

k-Means in metric space. Using the same idea of Lemma 7 with squared triangle inequality
dist2(a, b) ≤ 2dist2(a, c)+2dist2(c, b), we can immediately obtain the following corollary.
Corollary 1. Let η be any positive number. If we suppose Cost(P, T, ϕ∗

T ) ≤ η ·OPT , then the
solution (S, ϕ∗

S) returned by Algorithm 1 (slightly changed as above) is an
(
2η+ (4η+4)ρ

)
-

approximate solution for fair k-means problem in metric space, where ρ is the approximation
ratio of vanilla k-means.

When considering k-clustering problem in metric space, we usually assume that the potential
facility set is given. We just use it as our candidate set T . Hence, the η = 1 in the above
analysis, which leads a (2+ρ)-approximation for fair k-median and a (2+8ρ)-approximation
for fair k-means.

F Supplementary Experiment

F.1 Datasets

The detailed information of our datasets is shown in Table 2. The group partition of every
dataset is based on the “Group Column”. Every group column has some group values. The
set of groups is the Cartesian product of group values of all group column. For example,
the groups of Bank dataset are (married, yes), (married, no), (single, yes), (single, no),
(divorced, yes), (divorced, no). For large dataset Census and Creditcard, we sample 1000
points to make sure the LP solver works in acceptable time.

F.2 Comparison on Cost of Strictly Fair k-means

We compare our strictly fair k-means algorithm with the state-of-the-art algorithm
ORL21 (Böhm et al., 2021). Both ORL21 and Algorithm 2 can return integral solution
with no violation. Figure 4 shows that our method has significant advantage in terms of
the clustering cost.
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Dataset Size Dimension Group Column Groups Values
Bank 9999 3 marital married, single, divorced

default yes, no
Adult 4522 5 sex female, male

race Amer-ind, asian-pac-isl,
black, other, white

Creditcard 30000 5 marriage married, single, other, null
education 7 groups

Census1990 50000 12 dAge 8 groups
iSex female, male

Moons 200 2 color 2 groups
Hypercube 200 3 color 2 groups

Complex 3032 2 color 9 groups
Cluto 10000 2 color 8 groups

Breastcancer 570 31 label 2 groups
Biodeg 1055 40 label 2 groups

Table 2: Detailed Datasets Information

Figure 4: The cost of strictly fair k-means.

F.3 Comparison on Cost with different k and (α, β)

In the main paper, we set αi = βi = |P (i)|
|P | . Here, we try different α and β to compare

our algorithm to baselines. In order to make sure that the values of α and β are feasible,
we introduce the parameter δ ∈ (0, 1), which represents the degree of relaxation of fairness
constraints, with a larger δ indicating looser constraints. We set αi = |P (i)|

|P | · 1
1−δ and

βi =
|P (i)|
|P | · (1− δ). We set δ = 0.1 and 0.2 to compare the cost with baselines. The results

are shown in Figure 5 and Figure 6, respectively.
In fact, as δ increases, the fairness constraints of the (α, β)-fair k-means problem become
more relaxed, and the corresponding fair k-means problem approaches the vanilla k-means
problem. In cases where δ is large, in each cluster, the legal range of points from each group
is larger, making the protection of fairness constraints less important, thus resulting in the
optimal fair k-means center positions being very close to the centers of vanilla k-means.
In the Table 2 of (Böhm et al., 2021), it is mentioned that when δ = 0.2, the clustering
results of vanilla k-means only violate the fairness constraints by 0.4%-2%, which makes our
algorithm less advantageous under a relatively relaxed δ value.

F.4 Comparison on Cost of k-sparse Wasserstein Barycenter

We compare our algorithm with the very recent work (Yang & Ding, 2024) (denoted by
IJCAI24) who obtain (2+

√
ρ)2-approximate solution of k-sparse WB. The results are shown

in Figure 7. In most cases, our algorithm can achieve a 10%-30% cost advantage over the
previous work.
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Figure 5: Comparison on Clustering Cost with δ = 0.1

Figure 6: Comparison on Clustering Cost with δ = 0.2

F.5 Cost on Different sampling ratio

In our algorithm, the most time consuming step is to solve LP(2) on T . A key observation
during our experiment is that, after solving LP(2) on T , a large amount of points of T have
weight of 0. Therefore, it is possible to reduce the size of T while maintain the quality of
T . Meanwhile, smaller T helps to reduce the running time. In order to verify our thoughts,
we use sampling method after we obtain T . We use sampling ratio of 100%, 50%, 20% and

Figure 7: Comparison on the Cost of k-sparse Wasserstein Barycenter
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10% and calculate the final cost of Algorithm 1 with different k. The results are shown in
Figure 891011. In these figures, we can see that in most cases, the cost of sampled T do
not increase too much (50% sample yields no more than 10% cost increasing and even 10%
sample yields no more than 20% cost increasing in most cases).

Figure 8: The cost on centriod set T with different sampling ratio when k = 5

Figure 9: The cost on centriod set T with different sampling ratio when k = 10

Figure 10: The cost on centriod set T with different sampling ratio when k = 15

F.6 Running time with different sampling ratio on T

As we discussed in F.5, sampling on relaxed solution T can reduce the running time while the
overall cost not increasing too much. We also test the running time with different sampling
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Figure 11: The cost on centriod set T with different sampling ratio when k = 20

ratio. In summary, the running time of solving LP(2) on T and overall Algorithm 1, shown
in Table 3 and Table 4, can be significantly reduced by sampling.

Dataset 100% 50% 20% 10%
Bank 39.97 19.14 7.12 3.39
Adult 66.48 28.58 9.67 4.64

Creditcard 80.235 32.51 11.08 5.43
Census 76.46 37.78 13.96 6.64
Moons 3.75 1.89 0.68 0.33

Breastcancer 11.03 5.28 2.01 1.07
Cluto 192.57 91.72 36.03 18.18

Complex 49.70 24.74 9.11 4.54

Table 3: Time (seconds) of solving LP(2) on T with different sampling ratio

Dataset 100% 50% 20% 10%
Bank 42.03 21.20 9.16 5.44
Adult 69.19 31.24 12.31 7.34

Creditcard 83.42 35.62 14.20 8.57
Census 80.23 41.62 17.86 10.48
Moons 4.07 2.15 0.97 0.60

Breastcancer 11.78 6.05 2.68 1.67
Cluto 201.54 100.64 45.82 27.74

Complex 52.23 27.25 11.66 7.05

Table 4: Overall time (seconds) with different sampling ratio of T when k = 20

F.7 Comparison of Running Time with baselines

We compared the running time of our algorithm (Algorithm 1 with our rounding technique)
with the baseline NIPS19 (Bera et al., 2019). For strictly fair datasets, we also tested the
running time of Algorithm 2 and ORL21 (Böhm et al., 2021). The results are shown in
Table 5 and Table 6. Below, we provide a detailed analysis on the comparisons.

Comparison between Algorithm 1 and NIPS19 (Bera et al., 2019). Algorithm 1 and NIPS19
both have two important subprocedures: linear programming and the k-means algorithm.
These two steps are the bottlenecks for Algorithm 1 and NIPS19. Specifically, NIPS19 first
runs the k-means algorithm (i.e., k-means++), and then calls the LP solver once to compute
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the fractional assignment. A different part of our Algorithm 1 is that it calls the LP solver
twice, once to compute the weights of candidate set T and once to compute the fractional
assignment, and calls the k-means algorithm once. In Algorithm 1, we only need to run
k-means on T , which should be much smaller than the whole dataset, leading to less running
time for the k-means subprocedure compared to NIPS19. However, the first call to the LP
solver to compute the weight of T consumes more time than the second call because |T | > k
usually. We illustrate the running time of every critical subprocedure of both algorithms
in Table 5. Our k-means step is faster, but we have to run an extra LP step. Therefore,
the running time comparison between these two algorithms is complex. Generally speaking,
LP takes more time than k-means, which means our Algorithm 1 usually runs slower than
NIPS19. However, with the development of LP solvers, we can expect that the runtime of
Algorithm 1 could be further reduced with more advanced LP solvers.

Construct T LP on T k-means LP on S Rounding Total
Bank Algorithm1 0.01 2.4 <0.01 1.23 <0.01 3.78

NIPS19 / / 0.14 0.81 <0.01 1.11
Creditcard Algorithm 1 0.01 4.06 <0.01 2.27 <0.01 6.51

NIPS19 / / 0.18 2.05 <0.01 2.39
Census1990 Algorithm 1 0.01 7.51 0.02 5.19 <0.01 12.99

NIPS19 / / 0.30 3.94 <0.01 4.42
Adult Algorithm 1 0.01 4.14 <0.01 1.80 <0.01 6.12

NIPS19 / / 0.18 1.23 <0.01 1.59
Breastcancer Algorithm 1 0.01 0.19 <0.01 0.82 <0.01 1.33

NIPS19 / / 0.10 0.22 <0.01 0.45

Table 5: Running time (s) on non-strictly fair datasets

Construct T LP on T k-means LP on S Rounding Total

Moons
Algorithm 1 0.01 0.18 <0.01 0.64 <0.01 0.83

NIPS19 / / 0.07 0.70 0.01 0.78
Algorithm 2 / / <0.01 / / 0.59

ORL21 / / 0.02 / / 0.48

Cluto
Algorithm 1 0.01 1.01 <0.01 1.30 <0.01 2.36

NIPS19 / / 0.07 1.54 <0.01 1.66
Algorithm 2 / / < 0.01 / / 0.56

ORL 21 / / 0.56 / / 0.72

Complex
Algorithm 1 0.01 1.08 <0.01 0.61 <0.01 1.71

NIPS19 / / 0.05 0.72 <0.01 0.79
Algorithm 2 / / < 0.01 / / 0.58

ORL21 / / 0.56 / / 0.72

Hypercube
Algorithm 1 0.01 5.71 0.01 4.40 <0.01 10.27

NIPS19 / / 0.15 2.58 <0.01 2.87
Algorithm 2 / / < 0.01 / / 0.39

ORL21 / / 0.67 / / 0.83

Table 6: Running time (s) on strictly fair datasets

Discussion on the construction of T . According to Algorithm 1, T should be an approximate
centroid set (Matoušek, 2000). Thanks to the open-source project by (Kanungo et al., 2002),
which provides an efficient implementation of the approximate centroid set, we used their
algorithm as part of our procedure in our code. Kanungo et al. (2002) used a sampling
technique, leading to a trade-off between performance and efficiency. In our experiment, we
sampled 10% of points in the approximate centroid set as T . A higher sample rate yields
better performance (lower cost) but longer running time.
Besides, an implicit benefit of the construction of T is that it is irrelevant to the parameters
k, α, and β. So if we consider a real scenario that we need to repeatedly try different choices
for these parameters (e.g., we may want to tune the value k and select the most satisfying
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result), the step of constructing T and performing linear programming on T can be seen as
preprocessing of datasets before the tuning. Namely, we just need to run this preprocessing
one time, and consequently the amortized cost over the whole tuning procedure can be
reduced significantly.

Running time comparison on strictly fair datasets. For strictly fair datasets, we consider
Algorithm 1, NIPS19, Algorithm 2, and ORL21 . Algorithm 2 has an advantage in efficiency
in most datasets. The primary reason is that Algorithm 2 only calls the k-means algorithm
once and does not need to solve the LP. As for ORL21, it needs to run k-means for each
group and then choose the best one. As a result, ORL21 takes longer time than Algorithm 2,
especially on the datasets with large number of groups.

F.8 Experiments of Our Rounding Algorithm

In this section, we implement our rounding algorithm in Appendix C and compute the
violation factor across different datasets and parameters. For convenience, we parameterize
αi and βi for the i-th group using a single parameter δ. Specifically, we set βi =

|P (i)|(1−δ)
|P |

and αi =
|P (i)|

|P |(1−δ) . Generally speaking, the smaller the δ, the stricter the fairness constrains
are. In Table 7 8 9, the violation introduced by our rounding algorithm is less than 1 in
most of the cases and never exceeds 2, which aligns with our theoretical analysis.

dataset k=2 4 6 8 10 12 14 16 18 20 25 30
Moons 0 0 0 0 0 0 0 0 0 0 0 0

Hypercube 0 0 0 0 0 0 0 0 0 0 0 0
Complex 0.82 0.89 0.5 0.83 0.96 0.95 0.87 0.95 0.91 0.85 0.80 0.89

Cluto 0.80 0.86 0.72 1.01 1.04 0.94 1.0 1.02 0.90 0.90 1.1 0.9
Biodeg 0.05 0.66 0.65 0.63 0.64 0.62 0.63 0.68 0.77 0.79 0 0.01

Breastcancer 0.33 0.34 0.13 0.69 0.87 0.90 0.35 0.94 0.78 0.76 0.76 0.18

Table 7: Violation factor of our rounding algorithm with different k (δ = 0)

dataset k=2 4 6 8 10 12 14 16 18 20 25 30
Moons 0 0.3 0.35 0.40 0.30 0.40 0.70 0.5 0.35 0 0.20 0.40

Hypercube 0 0.94 0.98 0.94 0.83 0.95 0.85 0.91 0.80 0.88 1.02 0.83
Complex 0.67 0.98 0.66 0.87 0.88 0.97 0.76 0.77 0.89 0.97 0.67 1.03

Cluto 0.38 1.05 0.99 0.83 0.96 0.94 0.95 0.93 0.94 0.91 0.57 0.99
Biodeg 0 0.01 0.33 0.79 0.38 0.37 0.59 0.38 0.78 0.51 0.78 0.80

Breastcancer 0.18 0.23 0.40 0.23 0.39 0.89 0.53 0.33 0.47 0.51 0.34 0.68

Table 8: Violation factor of our rounding algorithm with different k (δ = 0.1)

dataset k=2 4 6 8 10 12 14 16 18 20 25 30
Moons 0 0.20 0.40 0.40 0.40 0.40 0.60 0.60 0.40 0.40 0.60 0.80

Hypercube 0 0.56 0.69 0.88 0.90 1.125 0.80 0.91 0.90 0.97 0.90 0.90
Complex 0.92 1.02 0.92 0.768 0.96 1.01 0.95 0.79 0.88 0.90 1.04 1.01

Cluto 0.85 0.90 0.90 0.88 0.83 1.024 0.85 0.86 0.90 0.88 0.96 1.00
Biodeg 0 0.50 0.56 0.39 0.51 0.69 0.19 0.57 0.56 0.64 0.75 0.65

Breastcancer 0 0.26 0.42 0.26 0.69 0.39 0.29 0.67 0.80 0.81 0.85 0.68

Table 9: Violation factor of our rounding algorithm with different k (δ = 0.2)
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