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Abstract
Encoder-decoder CNNs, such as the U-Net are
the de-facto approach for image segmentation.
Despite their good properties, U-Net-like mod-
els are often treated as black boxes, which hides
the signal processing performed to the images, as
well as their potential downsides/limitations. To
address these disadvantages, this paper studies
the signal processing performed by segmentation
models such as the U-Net by employing a proxy
CNN, in which its linear behavior can be analyzed.
The suggested proxy model has been trained for
image segmentation and its impulse response is
computed for different training and test settings.
The impulse and frequency responses show that
the processing of U-Net-like models trained for
segmentation are similar to sparse modeling tech-
niques employed in image denoising and in signal
detection. Furthermore, this simple approach of
using a proxy CNN can indicate also properties
of the filter banks that compose the CNN.

1. Introduction
Convolutional neural networks (CNNs) are the de-facto
approach for many pixel-level tasks in image processing
and computer vision, such as image denoising (Zhang et al.,
2017), image super-resolution (Wang et al., 2020), image
segmentation (Ronneberger et al., 2015), etc. The reason for
this broad adoption can be attributed to a few factors, such
as data availability, the high performance of DNNs and the
ability of standard CNNs (e.g. the U-Net (Ronneberger et al.,
2015)) to be repurposed to new tasks by simply re-training
with different data and/or by performing minor architectural
changes.

Despite the numerous advantages of conventional CNN ap-
proaches for image processing and computer vision, CNNs
also have disadvantages that should be considered. For
example, CNNs have high model complexity (McCann
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et al., 2017), they can be easily misled by adversarial at-
tacks (Khamaiseh et al., 2022), they are prone to overfitting
and their internal operation is often unknown. In addition,
it has been found that producing marginal gains in per-
formance comes at the cost of an exponential increase in
computational complexity (Thompson et al., 2020).

The aforementioned disadvantages of CNNs have not re-
mained unnoticed. Over the past years, significant efforts
have been made to better understand CNNs employed for
image processing and computer vision. Among these efforts,
the studies of the signal processing behavior of denoising
CNNs are particularly remarkable, since they have provided
feasible explanations of the operation of CNNs based on
concepts, such as wavelets (Zavala-Mondragón et al., 2023),
low-rank approximation (Ye et al., 2018), convolutional
sparse coding (Papyan et al., 2017), etc. These studies ex-
plain that U-Net-like models applied for image denoising
have the following signal processing behavior. First, the
convolution filters in the encoder separate the input signal
into multiple bands. Second, the nonlinear part of the model
(e.g. ReLUs or shrinkage functions), suppress parts of the
signal in the bands, which are associated with the noise.
Finally, the convolution filters in the decoder map the sig-
nal back to the original domain. It should be noted that
this simple abstraction of the cognitive bias of U-Net-like
models for this task has been exploited for performance
improvements (Han & Ye, 2018), and for improving the
interpretability of CNN models (Zavala-Mondragón et al.,
2022).

In contrast with noise reduction, the signal processing ex-
ecuted by segmentation models is less understood. This is
sensible because the connection of this task with other signal
processing algorithms is less obvious, since segmentation
models perform a more complex mapping of the input signal
than denoising CNNs. However, we hypothesize that, just
as denoising CNNs, the behavior of segmentation models is
similar to noise reduction algorithms based on sparse model-
ing. Specifically, we hypothesize, that segmentation models
learn multi-channel (sparse) representations, in which the
image sections associated to the background are suppressed,
while the signal of interest is preserved and/or boosted.

It should be noted that we are not the first in highlight-
ing the possibility that denoising encoder-decoder mod-
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els are related to segmentation. For example, Kascenas
and O’Neil (Kascenas et al., 2022) have employed a U-
Net-based denoising autoencoder for anomaly detection.
Their model is trained in such way that it would reject low-
frequency noise from anomaly-free brain MRI slices. The
reasoning behind this approach is based on the assumption
that anomalies for that application have similarities with
low-frequency noise. As a consequence, it can be observed
that the specified signal modeling causes that the CNN is un-
able to reconstruct anomalies and the difference between the
input and denoised images resemble a segmentation mask.
Finally, it should be noted that this model is unsupervised
and no further connections with supervised segmentation
are made.

It can be observed that studying the signal processing be-
havior in U-Net-like segmentation models is challenging,
because these models perform arbitrary scaling factors and
they have normalization layers that can introduce offsets to
the signal and have signal-dependent behavior. In addition,
ReLU activations and max-pooling operations impede to
independently study the linear part of the model (the convo-
lutions) from the nonlinear sections (ReLU and max-pooling
operations). The reason for this issue is that eliminating the
nonlinearities from ReLU-based CNNs changes drastically
the behavior of the model. In this paper, we are interested
to understand the effect of both the linear and nonlinear pro-
cesses that the CNN applies to the input signal in order to
map it to a segmentation mask. This understanding should
be realized by modeling these processes in a network that is
suited for image segmentation.

In order to study the signal processing behavior of segmen-
tation U-Net-like models, this paper introduces a simpli-
fied CNN in which the signal processing behavior can be
more easily studied. This CNN is referred to as simplified
U-Net-proxy model (SUM) and it is a model that avoids
normalization layers and employs soft shrinkage activations
as nonlinearities. These design choices allow the model
to behave as a linear function when the threshold is set to
zero, which allows to independently study the linear and
nonlinear processes within the model (Zavala-Mondragón
et al., 2022).

Our experiments based on the SUM model confirm our hy-
pothesis that encoder-decoder models, such as the U-Net,
achieve segmentation in a process that is reminiscent of
wavelet/framelet approaches for image denoising. Specif-
ically, the convolution filters of the encoder separate the
signal into multiple bands and shrinkage functions are ap-
plied to remove/boost sections of the decomposed signal,
while the decoder reconstructs the processed signal. The
result of this operation is a signal which that is highly corre-
lated to the area delimited by the segmentation mask, while
other non-relevant parts are attenuated. Finally, the output

layer is limited to saturate the previously referred signal to
generate a final segmentation mask.

The structure of this paper is as follows. Section 3 discusses
the method applied for investigating the signal processing
behavior in the SUM model. Section 4 describes the dataset,
experiments and their results. Moreover, Section 5 provides
a discussion on the outcomes of the results. Finally, Sec-
tion 6 highlights the main findings and contributions of this
paper.

2. Background: Encoder-decoder CNNs for
noise reduction

This section introduces the signal model involved in data-
driven noise reduction and a high-level description of the
operation of noise reduction encoder-decoder CNNs. Prior
to addressing these concepts, the notation is first introduced.
The notation follows the paper by Zavala-Mondragón et
al. (Zavala-Mondragón et al., 2023) and it is briefly dis-
cussed here for self containment. In this paper, scalars are
represented by lowercase letters (e.g. a), vectors by lower-
case underlined letters (e.g. b), matrices –i.e. images– by
boldface lowercase letters (e.g. x) and tensors –i.e. con-
volution kernels– by uppercase boldface letters (e.g. K).
Moreover, the convolution between two 2D signals (e.g. f
and x) is represented by k ∗ f , the convolution between
two tensors F and K by FK and, finally, the convolution
between a tensor K and an image x is shown as Kx.

In noise reduction problems, it is common to describe a
noisy observed signal x by

x = y + η, (1)

where, y is a noiseless signal and η represents noise.
It is common to estimate the noiseless signal in Eq. (1)
with encoder-decoder CNNs. Akin to other work (Zavala-
Mondragón et al., 2023), we assume that the simplest
encoder-decoder module is defined by

G(x) = A(b̃)(K̃
⊺A(Kx)(b)), (2)

in which G(·) is a generic encoder-decoder block, while
K̃⊺ and K are the decoder and encoder convolution kernels,
respectively. Furthermore, A(b)(·) and A(b̃)(·) are arbitrary

activations that depend on their bias vectors b and b̃. In
Eq. (2), the encoded/latent representation E is defined by

E = Kx, (3)

which is sparsified with the activation A(b)(·). It can
be observed that G(·) is a single encoder-decoder block
and deeper models are achieved by nesting multiple basic
encoder-decoder blocks. This is expressed by

ED(x) = GN−1 ◦GN−2 . . .G1 ◦G0(x), (4)
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where Gn(·) is the n-th shallow encoder-decoder network
and ED(·) is a deep CNN. It should be noted that this iter-
ative approach has drawn analogies between deep CNNs
and iterative soft shrinkage algorithms (Jin et al., 2017;
Daubechies et al., 2004; Gregor & LeCun, 2010).

Existing research shows that at least two elements enable
noise reduction in CNNs (Zavala-Mondragón et al., 2023).
(1) Linear filtering caused by the convolution filters. (2) The
nonlinearities that remove noise by enforcing sparsity. To
illustrate the linear filtering happening within the model, it
is assumed that the activation functions are linear (i.e. =
A(·)(x) = Ã(·)(x) = x). Under these conditions, Eq. (2)
becomes

ŷ = k ∗ x = K̃⊺Kx, (5)

where the noiseless estimate ŷ is the result of minimizing the
distance between x and the ground-truth signal y through
the learned convolution filter k (i.e. a learned Wiener filter).
In contrast with the previous analysis, when studying the
effect of the sparsifying nonlinearities in denoising CNNs,
it is easier to assume that, under certain conditions, the
learned convolution kernels K and K̃ may allow for perfect
reconstruction, which is equivalent to

x = A(b̃=0)(K̃
⊺A(b=0)(Kx)). (6)

for any x. If a model complies with this condition, then
the biases b in combination with sparsifying activations
A(·)(·) (e.g. ReLUs or soft shrinkages) enable the noise
reduction behavior of the model by enforcing sparsity in
the encoded/latent representation, which is analogous to
denoising algorithms based on sparse modeling (Ye et al.,
2018; Papyan et al., 2017; Zavala-Mondragón et al., 2023).
As concluding remark, note that trained models likely em-
ploy both, linear and nonlinear filtering to achieve noise
reduction.

As a final remark, it can be observed that despite the fact that
residual models are not discussed here, similar denoising
behaviors can be attributed to them. However, in such cases,
the CNN cancels the components attributed to the signal
in such way that the signal reconstructed by the decoder
approximates the noise present in the signal and allows
it to be subtracted from the original input to generate the
final noiseless estimate. For a more detailed description
of this behavior we refer the reader to the paper of Zavala-
Mondragón et al. (Zavala-Mondragón et al., 2023).

3. Methods
3.1. Hypothesized behavior of segmentation CNNs

Segmentation CNNs estimate a binary mask m̂ of the true
segmentation m by

m̂ = C
(K̂, ˆ̃K,K̂Ω,

ˆ̃
b,b̂)

(x), (7)

where is the input image x and C(·)(·) is a segmentation
CNN. The learned encoder and decoder convolution kernels
and biases of ˆ̃K are C(·)(·), K̂, b̂ and ˆ̃

b. In addition, the
learned convolution weight of the output layer is KΩ. The
parameters of C(·)(·) are learned by minimizing

(K̂, ˆ̃K, K̂Ω,
ˆ̃
b, b̂) = argmin

(K,K̃,KΩ,b̃,b)

L{C(K,K̃,KΩ,b̃,b)(X),M},

(8)
in which L{·} is a loss function and the dataset is defined by
a set of input images X and of ground-truth segmentations
M. It should be noted that this approach, at first glance,
does not model the signal, which partly explains its lack of
interpretability.

The segmentation CNN C(·)(·) is generically described by
the model

C(x) = Ω
(
ED(x)

)
, (9)

where ED(·) is an encoding-decoding CNN, such as the
denoising model described in Section 2. Moreover, the
output layer is represented by Ω(·) and it is often composed
by a convolution layer and a saturating function (e.g. the
sigmoid).

If it is assumed that the additive noise model shown in
Eq. (1) applies to image segmentation as well, then the
observed image x is the superposition of the signal of in-
terest/foreground ySig and the background ηbg. This is
represented by the model

x = ySig + ηBG. (10)

In this paper, it is hypothesized that forward-propagating
an input image x through the the encoder-decoder module
ED(·) of C(·) results in

ĉSig + ε = ED(x). (11)

Here, signal ĉSig is correlated to the foreground ySig and ε
represents errors (e.g. signal offsets). Finally, propagating
the output of ED(·) through the output layer generates the
estimated segmentation mask, which is described by

m̂ = Ω(ĉSig + ε). (12)

It can be observed that Ω(·) is a saturating function. Con-
sequently, the error signal ε can be easily pushed outside
the dynamic range. It should be noted that under this as-
sumption, segmentation CNNs could be considered as a
nonlinear extension of matched filters (see Appendix I),
where the encoder-decoder module improves the ability to
detect the foreground signal, by suppressing the background
(or in other words, to improve the foreground-to-background
energy ratio). Finally the output layer simply performs a
threshold operation.
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Figure 1. Diagram of simplified U-Net-proxy model (SUM). Here, each encoding step is composed by a convolution layer with a kernel
Ki,l, where i ∈ [0, 1] and l represents the decomposition level. Each convolution layer is followed by a soft shrinkage, where the
threshold level/bias value is given by αbl, where α is a scalar value. After the convolution plus activation layer, the signal is down-sampled
with the discrete wavelet transform (DWT), which is implemented with the convolution kernels WH and WL that are the low-frequency
and high-frequency filter banks, respectively. The decoder has an approximately mirrored structure with respect to the encoder and its
convolution filters and biases are denoted by K̃l and b̃l, respectively. Moreover, the channel concatenation and reduction performed
in the U-Net is represented by the convolution and sum with the decoder kernels (Ku

1,0)
⊺ and (Kd

1,0)
⊺. In addition, the up-sampling

is performed with the inverse discrete wavelet transform, whose kernels are represented by W̃L and W̃H. Finally, the output layer is
given by a 1× 1 convolution which scales the output of the encoder-decoder network and saturates the value between zero and unity
with a clipping operation. Note that the model is composed by four decomposition levels, but not all of them are displayed due to space
constraints.

3.2. Simplified U-Net-proxy model

As mentioned in Section 1, to study the signal process-
ing behavior in U-Net-like models is challenging, because
this model is nonlinear and has signal-dependent behav-
ior. In order to overcome these limitations, this paper em-
ploys a simplified architecture that is addressed as simpli-
fied U-Net-proxy model (SUM). The referred SUM model,
shown in Fig. 1, is based on the tight frame U-Net (Han
& Ye, 2018) and the learned wavelet frame shrinkage net-
work (LWFSN) (Zavala-Mondragón et al., 2022). In this
model, soft shrinkage functions are employed as nonlineari-
ties and the discrete wavelet transform is employed for up
and down-sampling.

The SUM model employed here has three main advantages
when compared to the conventional U-Net for understand-
ing the operation of this type of models. (1) The SUM
employs the discrete wavelet transform (DWT) as up/down-
sampling. This operation is linear, which contrasts with
the nonlinear behavior of the max-pooling in the U-Net.
Furthermore, the DWT overcomes the limited capacity of
the pooling/unpooling in the original U-Net to propagate
high-frequency information (Han & Ye, 2018; Etmann et al.,
2020; Zavala-Mondragón et al., 2023). (2) The SUM model
does not employ normalization layers, which eliminates
signal-dependent behaviors and avoids the introduction of
offsets to the signal. (3) The SUM model employs the
soft shrinkage functions as nonlinearities, instead of the
ReLUs employed in the U-Net. This design choice allows
to independently study the linear and nonlinear processing
performed by the SUM. Specifically, shrinkage functions
become the identity operation when the threshold level/bias

is set to zero, which allows to characterize the impulse
and frequency responses of the filters of the CNN (Zavala-
Mondragón et al., 2022). Additional discussion on ReLU
and soft shrinkage functions, as well as on the impulse re-
sponse in CNNs in Appendices A and B, respectively. In
the subsequent equations, the SUM model is represented by
S(·), and its encoder-decoder module as EDS(·).
To conclude this section, note in Fig. 1 that the SUM net-
work has two outputs. The first output is the estimated
segmentation m̂, while the second output is the intermedi-
ate signal ĉ that is produced by the encoder-decoder module
EDS(α)(·), which is embedded within the SUM module. In
addition, in Fig. 1 it is visible that the threshold levels in
the activations of EDS(α)(·) are scaled by factor α ∈ [0, 1].
This variable is added to allow to modulate the sparsity-
enforcement property of the nonlinearities in the model.

3.3. Training the proposed model

The loss term L employed to train the models in this paper
is defined by

L = LSeg(m̂,m) + λRecRRec(x̂,x). (13)

Here, LSeg(·) stands for the segmentation loss, which in this
paper is the soft intersection over union (IoU) (Huang et al.,
2019). The second term is the reconstruction regularization
RRec(·). This term is is employed to highlight the similarity
between the operation of denosing and segmentation models,
by forcing the encoder and decoder filters of EDS(·)(·) to
only decompose and reconstruct the signal, just as sparse
denoising models do (Donoho & Johnstone, 1994; Chang
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et al., 2000). The term RRec(·) is defined by

RRec = ∥x− x̂∥1, (14)

in which ∥·∥1 is the L1 norm and x̂ is defined by

x̂ = EDS(α=0)(x). (15)

Here, as specified in Section 3.2, the scalar α modulates the
sparsity-enforcing properties of the soft shrinkage function.
Consequently, setting α = 0 causes that the biases within
the activation layers are set to zero, which disables their
sparsifying behavior. On the other hand, a value of α = 1
means that the model operates with the bias values that have
been learned during training.

4. Experiments and results
This section defines the experiments performed in
this paper. The code used for training the models
and to generate the tables and figures is available
at https://github.com/LuisAlbertZM/
ICML-segmentation-CNNs-are-denoising.

4.1. Dataset

The experiments employ a toy dataset based on slices of the
training set of the BRATS 2021 dataset (Baid et al., 2021;
Menze et al., 2014; Bakas et al., 2017), which has been
employed for segmentation of lesions in multi-modal brain
MRI images. The dataset contains T1, T2, T1 post-contrast-
weighted and T2-FLAIR images. The scope of this paper is
limited to explore networks with single input/output chan-
nels. Consequently, we have selected T2-FLAIR images
as input only and all label lesions have been merged into
a single anomalous class. As pre-processing step, all the
scans are resized to 128×128×128 voxels and the inten-
sity is normalized within the range 0-255 and quantized to
8 bits. In addition, for this dataset, two slices of each of the
1,251 patients have been extracted, one where the largest
part of the tumor is shown and a slice that contains only a
few tumor voxels. The patients are split in about one third
for training, validation and testing, which results in a total of
834 slices for training, 834 for validation and 832 for testing,
the data splits do not have overlapping patients. Prior to
propagating the slices through the CNNs, the image data are
scaled between zero and unity.

4.2. Experiment description and reference models

In this paper, two main experiments are conducted. The
first experiment has the purpose to show that segmentation
models follow the signal processing behavior described in
Section 3.1. For this test, two SUM model instances are
trained, the first instance is trained only with the segmenta-
tion loss (i.e. λRec=0) and it is referred to as SUMSeg, while

the filters of the second SUM model are regularized to re-
construct the input signal by setting λRec=0.35 (referred to
as SUMRec). Finally, the U-Net and its version without nor-
malization layers (U-NetNoBN) have been added as baseline
reference and are trained with the segmentation loss.

In order to provide more evidence for our claim that denois-
ing and segmentation models behave operate in a similar
way, the second experiment in this paper considers to train
the SUM CNN for image denoising. In this case, the input
to the network is a slice contaminated with Gaussian noise
with standard deviation equal to 10% of the dynamic range
of the image, while the ground-truth is the noise-free picture.
For this experiment, the loss function is the L1 loss between
the processed and noise-free images.

All the models implemented in his paper contain 4 down/up-
sampling stages, the SUM models have 8 feature maps after
the first convolution layer, while the U-Net models have
16 feature maps. The number of feature maps duplicate
with every decomposition level, just as in the original U-
Net (Ronneberger et al., 2015). In addition, all models
contain a 1×1 convolution combined with a clipping oper-
ation as output layer. The method employed to compute
the impulse response of the SUM model is described in
Appendix B. In addition, to characterize the impulse and fre-
quency responses, this paper proposes the space-domain and
frequency-domain spreads (SDV and FDS, respectively), as
well as the frequency-domain variation (FDV). The referred
features are described in Appendix C.

4.3. Training

For the experiments, we have trained all the models for
300 epochs with AdamW optimization (Loshchilov & Hut-
ter, 2017). For the specified optimizer, the learning rate
linearly decays from an initial value of 3.5×10−4 to zero
and the weight decay value is set to 0.25. The batch size
employed for training for all models is set to 8 samples.
Furthermore, as data augmentation, rotations by 90, 180 and
270 degrees and flips in the horizontal dimensions have been
performed. Each of the data augmentations has a probability
to happen of 50% for every sample in the training/validation
sets. In Experiment 1 each model is trained 5 times to esti-
mate the confidence intervals. Moreover, in Experiment 2
the model is trained only once since it provides a result of
more qualitative nature.

4.4. Experiment 1: Signal processing behavior of
U-Net-like models

Overall performance: With the described settings, we
have trained all the specified models. Fig 2 displays an
example slice that has been processed with each of the mod-
els being tested. In addition, the computed Dice score and
Jaccard index/intersection over union computed (IoU) are
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Table 1. Dice score and intersection over union (IoU) measured over the segmentation estimates generated by the U-Net, U-NetNoBN,
SUMSeg and SUMRec models. The performance values are obtained by averaging the performance after 5 training cycles.

Model U-Net U-NetNoBN SUMSeg SUMRec

Dice Score 0.884 ± 0.004 0.859 ± 0.006 0.849 ± 0.010 0.859 ± 0.007
IoU 0.793 ± 0.007 0.752 ± 0.009 0.738 ± 0.015 0.752 ± 0.010
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Figure 2. A slice of the test set processed with the SUMSeg, SUMEst, U-Net and U-NetNoBN models. In the figure, column Input displays
the input to each of the models. Column Lin. ED. (EDS(α=0)(·)) refers to the output of the encoder-decoder module when the bias of the
nonlinearities is set to zero. Column Inp. sig. O.L. is the input signal to the output layer. Finally, the last two columns (Est. segmentation
and True segmentation) show the estimated and true segmentation masks, respectively. For display, images in the columns Lin. ED.
(EDS(α=0)(·) and Inp. sig. O.L. are scaled in such way that the similarity with the input image is more visible. Finally, it should be noted
that the Reconstruction signal is missing in the U-Net models, this signal has been excluded, because these models are too complex to be
analyzed. Appendix F, shows the segmentations an additional subject. Furthermore, Appendix D provides complementary information in
the signal flow employed to compute the images that compose this figure.

shown in Table 1. Here, it can be observed that the best
performing model in terms of Dice score and intersection
over union (IoU) is the U-Net, followed by the SUMRec
model and the U-NetNoBN. This result is sensible because
the SUM model is simpler and has less parameters than
the conventional U-Net. In addition, it should be noted,
that the absence of normalization layers in the U-NetNoBN
causes an important drop in performance. However, Ap-
pendix E shows that despite the fact that the U-Net is the

best-performing model for this experiment, it is also the
least robust to unseen distortions.

Signal processing within the model: The column Inp.
sig. O.L. in Fig. 2 shows the signal that results from pro-
cessing the input image with the encoder-decoder section
of each of the tested CNNs. It can be observed that the
encoder-decoder module of all the segmentation models
generate a signal that is reminiscent of the area delimited by
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Figure 3. Impulse responses of the encoder-decoder model within
the SUMSeg and SUMRec CNNs for one of the training cycles.
The first row (Imp. response) depicts the impulse response of the
SUMSeg and SUMRec models, respectively. The second row (Freq.
response) shows the magnitude of the Fourier transform of the
impulse response. It can be noted that the frequency response of
the SUMSeg model focuses on a narrower frequency range that is
more focused in the lower and intermediate frequency ranges. In
contrast, filters of the SUMRec propagate more frequencies.

the segmentation mask, in which the non-anomalous regions
are pushed towards negative values that are suppressed by
the saturating output layer. This supports our hypothesis that
the encoder-decoder part of the segmentation CNN behaves
as some sort of matched filter which boosts the foreground
signal (the anomaly in this case), and/or suppresses the rest
of the image. Moreover, the column Lin. ED. EDS(α=0)(·) in
Fig. 2 shows that when the SUM model is trained only with
segmentation loss (SUMSeg), the filters of the encoder and
decoder allow to propagate most of the signal content of the
signal input. However, the filters of the encoder-decoder
model of SUMSeg do not reconstruct the signal perfectly.
This behavior is more obvious when observing the impulse
response of the encoder-decoder filters of the SUMSeg and
SUMRec models, displayed in Fig. 3. In the figure, it is visi-
ble that the filters of the SUMSeg propagate only a narrow set
of frequencies, while the filters of the SUMRec propagate a
broader frequency range. In spite of this, when enabling the
nonlinearities of the model, the encoder-decoder part of the
SUM suppresses and boosts part of the signal, which gener-
ates an image that is reminiscent of the anomaly despite the
fact that the filtering that they perform differs.

In Fig. 2, it is visible that in the SUM model where signal
reconstruction is enforced (SUMRec), the convolution filters
of the model are able to approximate the input signal. This
means that in this case, the nonlinearities are the main driver
of the segmentation, which is analogous to image denosing
models based on wavelets. Moreover, when analyzing the
impulse and frequency responses of this model (see Fig. 3),
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Figure 4. Impulse responses of a SUM model trained for image
segmentation and denoising. Note that the model trained for seg-
mentation has a wider response in space and it reconstructs less
frequency bands. In contrast, the model trained for image de-
noising has a more localized impulse response and its frequency
response is broader.

it can be observed that –just as expected– the reconstruction
regularization forces the CNN to reconstruct more frequen-
cies than the model trained only with the segmentation loss.

4.5. Experiment 2: Contrasting the behavior of CNNs
trained for image denoising and segmentation

The SUM model for image denoising has been trained with
the procedure described in Section 4.2. With the resulting
models, we have processed one of the slices in the dataset
(see Fig. 5), where it is visible that the linear part of both
models (see column Lin ED (EDSα=0(·))) propagates most
of the image content. However, in the case of the segmen-
tation model, the reconstruction is less accurate than in the
denoising model, which is a sensible result because perfect
reconstruction may not be needed for producing segmenta-
tion estimates. In contrast, the denoising model propagates
the input signal almost perfectly and it is even able to recon-
struct the noise. Furthermore, when the nonlinear behavior
of the models is enabled, the output of the encoder-decoder
module of the SUM model trained for segmentation, be-
comes a signal where the segmentation model attenuates the
background and pushes it towards negative values, while
preserving the section of the image that corresponds to the
foreground (see column Inp. sig. O.L.). In an analogous
way, the non-linearities of the denoising model eliminate
the noise, while allowing to propagate the signal of inter-
est. The result shown in Fig. 5 is complemented by the
impulse responses of the models trained for segmentation
and denoising that is displayed in Fig. 4, where it can be ob-
served that the impulse response of the segmentation model
only propagates a narrow band of frequencies that has more
emphasis in the low and mid-frequency bands, while the

7
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Figure 5. Comparison between the operation of a SUM model trained for image segmentation (top) and denoising (bottom). In col-
umn (Lin. ED (EDS(α=0)(·))), it can be observed that the convolution filters of the encoder and decoder of the segmentation model can
reconstruct a blurred version of the input. In contrast, the model trained for image denosing, is able to propagate more frequencies and it
is even able to reconstruct the noise. When the non-linearities are enabled (column Inp. sig O.L.), the encoder-decoder module within
the SUM trained for image segmentation attenuates the non-anomalous areas and sends them to the negative image range. In a similar
process, the model trained for image denosing suppresses the noise, while preserving the signal of interest. Finally, the output layer of
both models scale the signal, and in the case of the segmentation model, the signal is saturated.

denoising model has a more uniform frequency response,
which means that its convolution filters of this model can
propagate a broader frequency range. Note that the impulse
response of the model trained for image denoising is similar
to the SUM model that is trained for image segmentation
where the filters have been regularized for signal reconstruc-
tion SUMRec

5. Discussion
The results of the experiments in Section 4 confirm that seg-
mentation encoder-decoder networks behave akin to noise
reduction algorithms based on sparse modeling. However,
in contrast with sparse modeling techniques employed in
noise reduction (e.g. framelets), the filters banks in segmen-
tation networks do not need to approximate perfect signal
reconstruction. Furthermore, it can be observed that the
described operation of segmentation CNNs is also similar
to the matched filtering discussed in Appendix I.

It should be noted that the impulse responses shown here can
be influenced by training parameters such as the learning
rate, weight-decay settings and data augmentation, which
means that, in practice, the model can converge to solutions
with different signal processing behavior. Complementary
experiments that have been performed to study this behavior
are shown in Appendices G and H.

It can be observed that the similarity in the processing
performed by models employed for image denoising and
segmentation may explain the recent successes in co-
learning (Buchholz et al., 2020; Ye et al., 2023), where

it is shown that training a CNN for simultaneous denoising
and segmentation benefits the performance and generaliza-
tion of the segmentation part of the model. Furthermore,
the authors hypothesize that this work can be used also as
a first step to understand in more depth the reverse diffu-
sion process performed in diffusion models (Sohl-Dickstein
et al., 2015) for image generation and segmentation (Wu
et al., 2024; Baranchuk et al., 2022).

The performed study has the following limitations. (1) The
experiments are based on a proxy model that employs as
nonlinearities soft shrinkages instead of ReLUs, which may
not capture completely the behavior of ReLU-based mod-
els. However, we consider that this approximation is good
enough to sufficiently characterize the behavior of this U-
Net-like of models. (2) The studies presented here avoid
batch normalization, which is a common element in CNNs.
(3) This paper focuses only on binary segmentation models.

6. Conclusions and future work
This paper demonstrates that the signal processing in
encoder-decoder CNNs employed in segmentation and im-
age denoising is analogous and is described by the following
steps. (1) The convolution filters of the encoder and decoder
provide a decomposition and reconstruction which is useful
for estimating the signal of interest. This is a process akin to
the framelet decomposition. However, in encoder-decoder
CNNs employed in image segmentation, the linear part
of the model does not need to approximate perfect recon-
struction, as framelet-based denoising models do. (2) The
nonlinearities/activation functions suppress the background
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and/or boost the signal of interest in the feature maps, while
the decoder reconstructs the signal. (3) The output layer
provides scaling and saturation and sets the output values
to the range between zero and unity. To the best of our
knowledge, this is the first time that this behavior has been
studied in segmentation models.

The authors envision two different research tracks as follow-
up work. The first of these branches considers to further
explore SUMs and to study the feasibility of providing de-
signers with quantitative metrics that characterize the biases
of these models for image segmentation. Specifically, we
hypothesize that it is possible to discover biases that are
learned to by the SUM model to specific textures and/or ob-
ject sizes, which can be find by greedily finding the feature
maps that are the most relevant to produce the segmentation
and by masking them while obtaining the impulse response
of the filters of the SUM model.

The second branch of envisioned future work considers to
employ SUM models to approximate the behavior of trained
U-Nets. In this way, it may be possible to study the operation
of trained models, as well as their biases. Finally, further
research will be performed to extend this analysis approach
to multi-class segmentation problems as well as to more
challenging segmentation datasets.

Impact Statement
The development of this work is motivated by the need to
have better understanding of CNN models, which could
potentially be employed in the chain of decision-making
in medicine. Consequently, the authors envision only posi-
tive impacts for this research, since it could provide early
insights on the operation and limitations of the CNNs used
for critical applications. Furthermore, we envision that this
work can be further employed to improve the robustness,
reliability, and trustworthiness of deep neural networks.
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A. ReLU and Shrinkage functions
This appendix discusses the similarities and differences between rectified linear units (ReLU) and soft shrinkage activations.
To start this discussion, the ReLU activation (·)+ is defined by

(x− b)+ = max{x− b, 0}, (16)

in which max{·} the maximum operation. Moreover, the soft shrinkage S(·)(·) activtion is mathematically described by

S(b)(x) = sign(x) ·max{|x| − b, 0}, (17)

which is equivalent to
S(b)(x) = (x− b)+ − (−x− b)+. (18)

Here, it becomes evident that the soft-shrinkage is equivalent to the ReLU when x− b ≥ 0. However, the soft shrinkage is
an antisymmetric function, while the ReLU activation is not. The referred behavior is more evident when observing the
graphical representations in Fig. 6.
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Figure 6. Input and output relationships for ReLU (top) and soft shrinkage functions (bottom) for negative, null and positive bias/threshold
levels. It can be noted that the ReLU and soft shrinkage functions behave identically for positive inputs. However, the soft shrinkage is an
antysimmetric function with respect to the line x = 0, while the ReLU sets to zero any negative values.

B. Impulse response of a shrinkage-based model
The impulse response of a system is a common technique to characterize the filtering behavior of linear time-invariant (LTI)
systems. In the context of convolutional neural networks (CNNs), it has been used to study the frequency coverage of the
filter banks that compose the encoder and decoder parts of a CNN (Zavala-Mondragón et al., 2022; Zavala-Mondragón et al.,
2023). It should be noted that this technique is used exclusively to characterize linear systems. Consequently, only can be
applied in CNNs based on linear, shrinkage or (soft) clipping activations, because these activation functions allow to obtain
linear models by altering their bias/threshold level (Zavala-Mondragón et al., 2023).

In order to explain how the impulse response of a shrinkage-based CNN is computed, this appendix presents of an arbitrary
CNN C(·), which is defined by

C(x) = D(E(x)). (19)
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Here, the decoder D(·) is
D(y) = S(b̃0)

(
K̃0S(b̃1)

(
K̃1y

))
, (20)

in which K̃0, K̃1 are the convolution filters of the decoder, while b̃0 and b̃1 are their respective bias/threshold vectors. In
addition, S(·)(·) represents the soft threshold function. Complementary to the decoder, the encoder E(·) is mathematically
described by

E(x) = S(b1)

(
K1S(b0)

(
K0x

))
. (21)

Akin to the decoder, the encoder filters and corresponding biases/threshold levels are defined by K0, K1, b0 and b1.

In order to characterize the impulse response of the model described in Eq. (19), the input x is replaced by the convolution
identity (Dirac’s delta function), represented by I. Furthermore, the biases b̃1, b̃0, b1, b0 are set to zero. Consequently, under
this conditions, the output of the model C(b=0)(I) is defined by

C(b=0)(I) = S(0)

(
K̃0S(0)

(
K̃1S(0)

(
K1S(0)

(
K0I

))))
, (22)

where, x = S(0)(x) for any value of x. Consequently, Eq. (22) becomes

C(b=0)(I) = K̃0K̃1K1K0. (23)

Here, it can be noted that the entire response of the system depends purely on linear convolutions. Therefore, Eq. (23) is
reduced to

C(b=0)(I) = r, (24)

in which r is the impulse response of the shrinkage-based CNN C(·). It should be noted that the impulse response r is
a filter which captures the global behavior of the filter banks that compose C(·). Finally, the frequency response of the
system is obtained by computing F{C(b=0)(I)}, where F{·} is the Fourier transform and its magnitude indicates the spatial
frequencies that can be propagated through the filters of the CNN.

C. Signal spread and variation features
In order to establish a quantitative approach to characterize the impulse response r of the filter banks composing a CNN,
this paper suggests to employ the signal spread of the impulse response in the frequency and spatial domains, as well as the
variation of the frequency-domain representation of the impulse response.

The frequency-domain variation (FDV) of the impulse response employed in this paper is defined by

FDV(f) =
∥f∥TV

∥f∥F
, (25)

where f = |F{r}| is the magnitude of the Fourier transform of the impulse response r, while ∥·∥F is the Frobenious norm
and ∥·∥TV is the total variation norm (Rudin et al., 1992)

∥f∥TV=

N−1∑

n=0

√
(dh[n])2 + (dv[n])2, (26)

in which h and v denote the image indices in the horizontal and vertical directions, respectively. Moreover the gradient of f
in horizontal and vertical directions dh and dv in this paper is defined by

dh =sh ∗ x,
dv =sv ∗ x.

(27)

Here, the Sobel filters in the horizontal and vertical directions sh and sv are defined by

sh =



−1 0 1
−2 0 1
−1 0 1


 ; sv =



−1 −2 −1
0 0 0
1 2 1


 . (28)
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As mentioned earlier, two additional measurements employed to characterize the impulse response are the spread of the
amplitude of space and frequency representations of the impulse response. These features are referred to as frequency-domain
spread (FDS) and spatial-domain spread (SDS) and are defined by

FDS(f) =
Nh−1∑

h=0

Nv−1∑

v=0

(
f(h, v)

∑Nh−1
n=0

∑Nv−1
n=0 f(h, v)

)
·
√
(h− ch)2 + (v − cv)2,

SDS(r) =
Nh−1∑

h=0

Nv−1∑

v=0

(
r(h, v)

∑Nh−1
n=0

∑Nv−1
n=0 r(h, v)

)
·
√

(h− zh)2 + (v − zv)2,

(29)

in which ch and cv denote the horizontal and vertical coordinates the zero-th frequency, while zh and zv are the coordinates
that correspond to the input impulse/Dirac delta that is supplied to the CNN to compute its impulse response.

D. Signal flow to generate the images in Fig. 2
Fig. 2 shows an input slice processed with different parts of the SUM model. This is is performed with the aim of
understanding better the internal processing that this model performs. This appendix shows complementary information on
the signal flow in the SUM model used to produce such figure. Specifically, there are two main cases to be studied. The first
case considers when the non-linear part of the model is enabled (see the top part of Fig. 7). The second case is when the
non-linear part of the model is disabled, which is employed for analyzing the processing performed by the linear part of the
system (bottom part of Fig. 7). The titles of the columns in Fig. 2 are shown as outputs of the SUM model.
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Figure 7. Signal flow in the SUM model to generate each of images in the columns shown in Fig. 2. The top figure shows the signal flow
employed to compute the images in columns Est. segmentation and Inp. sig. O.L. in Fig. 2, in which the parameter α in Fig. 1 is set to
unity. It can be noted that the column Inp. sig. O.L. is the input signal to the output layer, or the output of the encoder-decoder network.
Moreover, signal Est. segmentation is the estimated segmentation by the network. The lower picture shows the signal flow to compute the
column Lin. ED EDS(α=0)(·). In this case, the parameter α is set to unity, which causes that all the shrinkage layers behave as the identity
operation. Consequently, the images in column Lin. ED EDS(α=0)(·) show the processing performed by linear part of the encoder-decoder
network within the SUM model (i.e. the filter banks).
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E. Robustness of the models in Experiment 1 to blur and noise
Experiment 1 in Section 4 shows that the U-Net model performs better than the U-NetNoBN, SUMSeg and SUMRec models
when the test set images look similar to the training/validation sets (the images are not distorted). This appendix extends
this result by evaluating the referred models in images that are blurred or noisy. Specifically, Table 2 summarizes the
performance metrics when test set images have been corrupted with Gaussian blur (σblur = 1), or with additive Gaussian
noise (σnoise = 10% of the dynamic range of the image). The referred table shows that the U-Net is the least robust model to
both, blurring and noise, whereas the other models are only affected marginally when the input is blurred. In the case when
the input image is noisy, it can be observed that the most robust model is the SUMRec model.

Note that the U-Net model with batch normalization (U-Net) layers is less robust to unseen corruptions than the U-Net
model that does not have them (U-NetNoBN). This observation suggests that, while batch normalization may improve the
performance of the model, it makes the CNN less robust. This result matches the observations that have been made on the
lack of robustness of batch-normalization-based models to adversarial attacks (Wang et al., 2022; Benz et al., 2021b;a).

Table 2. Dice score and intersection over union (IoU) measured over the segmentation estimates generated by the U-Net, U-NetNoBN,
SUMSeg and SUMRec models. The performance values are obtained by averaging the performance after 5 training cycles. This table is an
extension of Table 1, where the test set has been contaminated with image blur or noise in order to test the robustness of the compared
models to unseen corruptions.

Not distorted input

Model U-Net U-NetNoBN SUMSeg SUMRec

Dice Score 0.884 ± 0.004 0.859 ± 0.006 0.849 ± 0.010 0.859 ± 0.007
IoU 0.793 ± 0.007 0.752 ± 0.009 0.738 ± 0.015 0.752 ± 0.010

Gaussian blur (σblur = 1)

Model U-Net U-NetNoBN SUMSeg SUMRec

Dice Score 0.793 ± 0.018 0.852 ± 0.005 0.841 ± 0.007 0.854 ± 0.005
IoU 0.657 ± 0.024 0.742 ± 0.008 0.726 ± 0.011 0.745 ± 0.007

Noise (σNoise = 10% of dynamic range of the images )

Metric U-Net U-NetNoBN SUMSeg SUMRec

Dice Score 0.553 ± 0.100 0.776 ± 0.062 0.782 ± 0.038 0.804 ± 0.011
IoU 0.389 ± 0.099 0.638 ± 0.080 0.643 ± 0.049 0.673 ± 0.016

F. Additional slices processed with the models described in Experiment 1
Experiment 1 in Section 4 shows an example slice that has been processed with the SUMSeg, SUMRec, U-Net and U-NetNoBN
models. In order to show that the result is representative of other cases, this appendix shows an additional slice processed by
the referred models, which is displayed in Fig. 8.

G. Impulse responses of the SUM model as a function of data augmentation
This appendix explores the effect of data augmentation in the characteristics of the impulse response of the SUM model.
Specifically, the SUM model has been trained with the settings listed as follows. (1) No augmentations. (2) Only rotations
and mirroring. (3) Only Gaussian blur with standard deviation σblur with unity value. (4) Only noise with standard deviation
σnoise=10% of the dynamic range of the image. (5) Rotations, mirroring, Gaussian blur and Noise.

The SUM model has been trained with the referred data augmentations and the performance metrics for all the models are
summarized in Table 3. In the referred table, it is possible to observe that the model trained with all the augmentations
(column Rot. noi. blur) is the best performing non-distorted and blurred images. Furthermore, the model trained with
rotations and mirroring (column Rot. mirr) performs as second best when processing non-distorted and blurred inputs. In
fact, the model trained with rotations performs better when presented with blurred images than the model only trained with
blurred pictures. However, the model trained with rotations does not perform so good when processing noisy images.
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Figure 8. A slice of the test set processed with the SUMSeg, SUMEst, U-Net and U-NetNoBN.

When observing the FDV and FDS features, it is possible to observe that the model trained with all the augmentations has
the smallest frequency spread variation, this model is also the most robust to image blur. Conversely, it can be shown that the
model with no augmentations is the least robust and has the highest values for the FDS feature. Complementary to Table 9,
the figure in Appendix G shows the impulse responses of the models with the same augmentations for one training cycle.
In the figure it is visible that the Fourier spectrums of the impulses that include rotations are smoother, while the Fourier
spectrum of the model trained without any data augmentation is more irregular.

H. Effect of the weight decay in the impulse response of the SUMSeg model
This appendix explores the effect of the weight decay in the signal processing behavior of segmentation models. To
demonstrate the influence of this hyperparameter, the SUMSeg model is trained with weight decay values of 0.5, 0.25, 0.125,
0.075 and 0. For this experiment, no data augmentations have been employed.

Table 4 summarizes the results of processing the test set that has been proceeded with non-corrupted slices, as well as with
corrupted images with Gaussian blur (σblur = 1), or with additive Gaussian noise (σnoise = 10% of the dynamic range of
the image). In the referred table, it can be observed that space-domain spread (SDS) of the impulse response decreases
the weight-decay value increases. However, lower spread in the space-domain does not seem to result in better performing
models. However, just as in Appendix G, the best performing models have also the lowest frequency-domain spreads.
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Table 3. Dice score and intersection over union (IoU) measured for segmentation estimates produced by the SEG model with different
data augmentation techniques.

Not distorted input

Augm. No augment. Rot. mirr. Noise Blur Rot. noi. blur
Dice Sc. 0.709 ± 0.086 0.849 ± 0.010 0.833 ± 0.003 0.833 ± 0.003 0.852 ± 0.003

IoU 0.556 ± 0.103 0.738 ± 0.015 0.713 ± 0.005 0.714 ± 0.005 0.742 ± 0.005

Gaussian blur (σblur = 1)

Augm. No augment. Rot. mirr. Noise Blur Rot. noi. blur
Dice Sc. 0.695 ± 0.089 0.841 ± 0.007 0.828 ± 0.004 0.831 ± 0.003 0.849 ± 0.003

IoU 0.540 ± 0.106 0.726 ± 0.011 0.707 ± 0.005 0.711 ± 0.005 0.737 ± 0.004

Noise (σNoise = 10% of dynamic range of the images )

Augm. No augment. Rot. mirr. Noise Blur Rot. noi. blur
Dice Sc. 0.773 ± 0.048 0.780 ± 0.038 0.822 ± 0.003 0.802 ± 0.006 0.805 ± 0.019

IoU 0.632 ± 0.060 0.641 ± 0.050 0.698 ± 0.005 0.669 ± 0.008 0.674 ± 0.026

Impulse response characterization measurements

Augm. No augment. Rot. mirr. Noise Blur Rot. noi. blur
SDS 25.9 ± 0.88 26.8 ± 2.30 28.2 ± 2.47 26.8 ± 1.57 30.0 ± 2.75
FDV 53.9 ± 3.47 53.0 ± 2.12 55.2 ± 3.54 56.1 ± 0.88 50.9 ± 4.12
FDS 25.8 ± 0.52 23.6 ± 0.68 22.3 ± 0.71 23.8 ± 1.32 21.4 ± 1.37

Input impulse

SD spread: 0.00

FD spread: 48.97
FD variation: 0.00

No augmentations

SD spread: 24.70

FD spread: 25.14
FD variation: 54.13

Rotations + mirroring
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FD spread: 24.32
FD variation: 53.15

Noise

SD spread: 26.34

FD spread: 21.57
FD variation: 61.30

Blur

SD spread: 25.08
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Figure 9. Impulse response for SUM models trained with different data augmentations. The top row depicts the impulse response, while
the bottom row shows their corresponding Fourier spectrums.

I. Matched filters and segmentation models
Recent research has shown that the convolution kernels in shallow classification CNNs converge to filters that are correlated
to the training samples (Pinson et al., 2023). Consequently, the convolution of such filters with the images being processed
is analogous to the processes performed by matched filters used in signal detection and communication systems (Steven,
1998). In matched filtering, a known signal is to be detected. The signal may be corrupted by noise and/or distorted by the
propagation medium. Since the signal is known, the optimal estimator is given by a template of the signal that is referred
to as matched filter. Therefore, when convolving the input with the observed noisy/distorted observation, the result is
the superposition of the auto correlation of the signal and a cross-correlation with the noise. If the noise is assumed to
be uncorrelated to the signal, it can be noted that the amplitude of the resulting operation is small when the signal being
detected is not present. In contrast, when the signal of interest is present, the correlation between the template and the signal
is high, which results in more signal power.
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Table 4. Dice score and intersection over union (IoU) measured for segmentation estimates produced by the SEGSeg with blurred and
noisy images as a function of the weight decay values set for training the model. The performance values are obtained by averaging the
performance after 5 training cycles.

Not distorted input

W.D. val. 0.5 0.25 0.125 0.075 0
Dice Sc. 0.828 ± 0.002 0.835 ± 0.002 0.840 ± 0.006 0.839 ± 0.003 0.843 ± 0.007

IoU 0.707 ± 0.004 0.717 ± 0.004 0.725 ± 0.009 0.723 ± 0.005 0.729 ± 0.010

Gaussian blur (σblur = 1)

W.D. val 0.5 0.25 0.125 0.075 0
Dice Sc. 0.825 ± 0.003 0.830 ± 0.002 0.830 ± 0.005 0.826 ± 0.004 0.828 ± 0.006

IoU 0.702 ± 0.004 0.709 ± 0.003 0.710 ± 0.007 0.704 ± 0.006 0.706 ± 0.009

Noise (σNoise = 10% of dynamic range of the images )

W.D. val. 0.5 0.25 0.125 0.075 0
Dice Sc. 0.783 ± 0.006 0.804 ± 0.002 0.796 ± 0.017 0.815 ± 0.005 0.808 ± 0.008

IoU 0.643 ± 0.008 0.672 ± 0.003 0.662 ± 0.023 0.688 ± 0.007 0.678 ± 0.012

Space/frequency-domain and frequency-domain variation

W.D. val. 0.5 0.25 0.125 0.075 0
SDS 23.4 ± 1.86 25.8 ± 1.95 27.5 ± 0.98 28.1 ± 0.57 30.0 ± 1.36
FDV 44.8 ± 3.66 57.5 ± 5.06 70.1 ± 3.46 71.3 ± 7.39 88.0 ± 4.10
FDS 24.5 ± 0.93 25.7 ± 1.24 26.0 ± 1.11 24.9 ± 2.11 24.6 ± 1.70
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Figure 10. Effect of the weight decay on the signal processing behavior of the SUMSeg model. The first row shows the impulse response
of each of the trained models, while the second row depicts the corresponding frequency responses. Note that the filtering caused by
models trained with higher weight-decay values is more spatially localized and has a more uniform frequency spectrum.

As an example of the above discussion, Fig. 11 shows the high-level operation of a matched filter. Specifically, assume that
it is desired to detect the sinusoidal wave s shown in the first frame (top left). In practice, this signal propagates trough a
medium, which may introduce noise η (top center and top right). As discussed earlier, matched filtering considers that the
optimal detection mechanism to detect the signal is to convolve it with a highly-correlated signal (e.g. another sinusoid).
Since the signal may present phase shifts, then a quadrature component may be employed. The correlation between the
observed noisy input x and a cosine and sine templates with the same frequency is shown the bottom left frame. The final
process of matched filtering is to perform a threshold operation. Note that the resulting detected signal is similar to the
ground-truth segmentation which shows the area in which the original sinusoid is active (bottom right).

In order to contrast the analogy of matched filtering with segmentation CNNs. We propose to train a simple CNN
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Figure 11. Example of matched filter employed to detect a sinusoidal signal with known frequency and unknown phase. The top left
frame shows a one-cycle sinusoidal wave s that is to be detected. The top center frame shows noise η that contaminates the signal of
interest s. The resulting signal of the previous operation is the noise-contaminated signal x shown in the top right frame. The top left
frame shows the convolution, squaring and sum of the signal x with two quadrature filters h and q, where h is a cosine function and q is a
sine with the same frequency. It should be noted that the result of this operation is a signal that is the squared of the envelope signal.
Finally, the top center frame shows the result of applying the threshold operation to the signal in the bottom left frame (the threshold level
is represented as an horizontal red line). Note that the detection signal is reminiscent of the ground truth signal/segmentation.

encoder-decoder with synthetic data to perform signal segmentation/detection. The proposed CNN is defined by

CNN(x) = C(0,1)
(
C̃0S(b0)

(
C0x

))
. (30)

Here, C̃0 and C0 are tensors with dimensions (2×1×18) and (1×2×18), respectively. Moreover the bias vector b has
dimensions (1×2). Finally, function C(0,1)(·) is a clipping operation between zero and unity.

The CNN described in Eq. (30) has been trained to segment/label every pixel in randomly placed pieces of sinusoidal signals
that are contaminated with noise, the resulting trained convolution kernels are shown in Fig. 12, where it can be seen that the
filters of the encoder C0 learn signals that are reminiscent of sinusoidal waveforms. Moreover, the filters of the decoder
C̃0 resemble some sort of Gaussian filter (in blue) and a derivative of Gaussian (in green). Fig 13 shows the operation of
the trained model that is evaluated in the signal x from Fig. 11. In the figure it can be observed that the convolution and
activation of the encoder layer results in a sparse signal, were most of the energy is focused in the area where the signal
of interest is active. Furthermore, where the decoder is applied to the encoded signal, it is visible that the resulting signal
is smoother and more similar to the envelope signal shown in Fig. 11. However, in this case, all the values that are not
considered to be part of the signal are pushed toward the negative region and are clipped by the output layer to produce the
segmentation estimate m.
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Figure 12. Filters learned by the simple CNN described in Eq. (30). The left image shows the filters learned by the encoder convolution
kernel C0, whereas the right image are the corresponding filters of the decoder C̃0. Note that the encoder filters learn a sinusoidal
function, while the decoder functions resemble a scaling and wavelet functions.
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Figure 13. Operation of the CNN described in Eq. (30) when evaluated in the noisy observation x shown in Fig. 11. From left to right, the
first frame shows the application of the activation signal over the convolution of signal x with the encoder filters. The second frame is the
convolution of the encoded signal with the decoder filter. Note that the small elements in the encoded signal are pushed towards negative
values. The third frame shows the result of applying the output layer to the decoded signal. The resulting signal m̂ is an estimate of the
true segmentation m that is shown in the fourth and last frame
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