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Abstract

Meta-learning (ML) has emerged as a promising direction in learning models under
constrained resource settings like few-shot learning. The popular approaches for
ML either learn a generalizable initial model or a generic parametric optimizer
through episodic training. The former approaches leverage the knowledge from
a batch of tasks to learn an optimal prior. In this work, we study the importance
of tasks in a batch for ML. We hypothesize that the common assumption in batch
episodic training where each task in a batch has an equal contribution to learning
an optimal meta-model need not be true. We propose to weight the tasks in a
batch according to their “importance" in improving the meta-model’s learning. To
this end, we introduce a training curriculum, called task attended meta-training,
to weight the tasks in a batch. The task attention is a standalone unit and can
be integrated with any batch episodic training regimen. The comparisons of the
task-attended ML models with their non-task-attended counterparts on complex
datasets like miniImageNet, FC100 and tieredImageNet validate its effectiveness.

1 Introduction

The ability to infer knowledge and discover complex representations from data has made deep
learning models widely popular in the machine learning community. However, these models are
data-hungry, often requiring large volumes of labeled data for training. Collection and annotation of
such large amounts of training data may not be feasible for many real life applications, especially
in domains that are inherently data constrained, like medical and satellite image classification, drug
toxicity estimation, etc. Meta-learning (ML) has emerged as a promising direction for learning
models in such settings, where only a limited amount (few-shots) of labeled training data is available.
A typical ML algorithm employs an episodic training regimen that differs from the training procedure
of conventional learning tasks. This episodic meta-training regimen is backed by the assumption that
a machine learning model quickly generalizes to novel unseen data with minimal fine-tuning when
trained and tested under similar circumstances [49]. To facilitate such a generalization capacity, a
meta-training phase is undertaken, where the model is trained to optimize its performance on several
homogeneous tasks/episodes randomly sampled from a dataset. Each episode or task is a learning
problem in itself. In the few-shot setting each task is a classification problem, a collection of K
support (train) and Q query (test) samples corresponding to each of the N classes. Task-specific
knowledge is learned using the support data, and meta-knowledge across the tasks is learned using
query samples, which essentially encodes “how to learn a new task effectively.”

The learned meta-knowledge is generic and agnostic to tasks from the same distribution. It is typically
characterized in two different forms - either as an optimal initialization for the machine learning model
or a learned parametric optimizer. Under the optimal initialization view, the learned meta-knowledge
represents an optimal prior over the model parameters, that is equidistant, but close to the optimal
parameters for all individual tasks. This enables the model to rapidly adapt to unseen tasks from the
same distribution [10, 28, 18]. Under the parametric optimizer view, meta-knowledge pertaining to
the traversal of the loss surface of individual tasks is learned by the meta-optimizer. Through learning
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task specific and task agnostic characteristics of the loss surface, a parametric optimizer can thus
effectively guide the base model to traverse the loss surface and achieve superior performance on
unseen tasks from the same distribution [40].

Initialization based ML approaches accumulate the meta-knowledge by simultaneously optimizing
over a batch of tasks. On the other hand, a parametric optimizer sequentially accumulates meta-
knowledge across individual tasks. The sequential accumulation process leads to a long oscillatory
optimization trajectory and a bias towards the last task, limiting the parametric optimizer’s task
agnostic potential. Leveraging common knowledge from a batch of tasks to learn the parametric
optimizer can help address this issue. We first accumulate meta-knowledge in a batch mode for
the parametric optimizer. Further, under such batch episodic training (for both initialization and
optimization views), a common assumption in ML that the randomly sampled episodes of a batch
contribute equally to improving the learned meta-knowledge need not hold good. Due to the latent
properties of the sampled tasks in a batch and the model configuration, some tasks may be better
aligned with the optimal meta-knowledge than others. We hypothesize that proportioning the
contribution of a task as per its alignment towards the optimal meta-knowledge can improve the
meta-model’s learning. This is analogous to classical machine learning algorithms like bootstrapping,
which however, operate at sample granularity. In bootstrapping, samples leading to false positives are
prioritized and therefore replayed. Hence, the latent properties due to which a sample is prioritized are
explicitly defined. For complex task distributions, explicitly handcrafting the notion of “importance"
of a task would be hard.

To this end, we propose a task attended meta-training curriculum that employs an attention module
that learns to assign weights to the tasks of a batch with experience. The attention module is
parametrized as a neural network that takes meta-information in terms of the model’s performance on
the tasks in a batch as input and learns to associate weights to each of the tasks according to their
contribution in improving the meta-model. Overall, we make the following contributions,

• We propose a task attended meta-training strategy wherein different tasks of a batch are
weighted according to their “importance" defined by the attention module. This attention
module is a standalone unit that can be integrated into any batch episodic training regimen.

• To integrate task attention module with the parametric optimizer, we design a batch-mode
parametric optimizer (MetaLSTM++) and experimentally show its merit on miniImageNet,
FC100, and tieredImageNet datasets.

• We conduct extensive experiments on miniImageNet, FC100, and tieredImageNet datasets,
and comparisons of the ML algorithms with their non-task-attended counterparts to validate
the effectiveness of the task attention module and its coupling with any batch episodic
training regimen.

• We also perform exhaustive empirical analysis to decipher the working of the task attention
module.

2 Related Work

ML literature is profoundly diverse and may broadly be classified into metric approaches [49, 45, 48,
16, 23, 8], initialization approaches [10, 35, 11, 52, 3, 25, 28, 18, 39, 12, 52, 14, 36, 38, 34, 26, 42, 17,
27, 47, 46], optimization approaches [40, 2, 7, 51] and model approaches [43, 33, 37, 32] depending
on how the meta-knowledge is accumulated. Metric approaches learn an embedding from input data
and design kernel functions to classify the query samples by finding the maximum similarity sample
in the support set. Initialization approaches learn an optimal prior on model parameters. The model
is thus generalizable to new tasks drawn from the same distribution. Optimization approaches learn
parametric optimizers to traverse the loss surfaces of tasks during training and guide the model along
the loss surfaces of newly sampled tasks from the same distribution. Model approaches employ an
external memory to store the meta-information gathered from the seen tasks and use it to generalize
to unseen tasks.

However, all of these meta-learning approaches follow training strategies that randomly sample
tasks with uniform probability. Assigning non-uniform priorities at sample granularity is not new
[22, 13, 44]. Various attributes like losses, gradients, uncertainty, etc., have been used to assign
priorities to samples [29, 53, 6]. Motivated by human learning, this literature is succeeded by
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[5, 19, 24, 50, 41, 20, 9] wherein training of easier samples precede hard ones. These works vary
in the procedure of arranging samples throughout training, aiming least overhead in terms of an
additional pre-trained model or multiple passes over data. Nevertheless, assigning non-uniform
priorities to tasks in meta-learning is under explored. Recent works like [21, 15, 30] focus on
sampling tasks based on the information contained in the tasks. [21, 15] are specific to reinforcement
learning and [30] propose a class-pair potential based adaptive task sampling strategy. Our work is
different from these as we do not propose a task sampling strategy rather a task weighting mechanism
for the meta-model update. Contrary to our idea is TAML [18] - a meta-training curriculum that
enforces equity across the tasks in a batch. We show that weighting the tasks according to their
“importance" and hence utilizing the diversity present in a batch given the meta-model’s current
configuration offers better performance than enforcing equity in a batch of tasks.

3 Preliminary

In a typical ML setting, the principal dataset D is divided into disjoint meta-setsM (meta-train set),
Mv (meta-validation set) andMt (meta-test set) for training the model, tuning its hyperparameters
and evaluating its performance, respectively. Every meta-set is a collection of tasks T drawn from
the joint task distribution P (T ) where each task Ti consists of support Di = {{xck, yck}Kk=1}Nc=1

and query set D∗
i = {{x∗cq , y∗cq }

Q
q=1}Nc=1. Here (x, y) represents a (sample, label) pair and N is

the number of classes, K and Q are the number of samples belonging to each class in the support
and query set, respectively. According to support-query characterizationM,Mv andMt could
be represented as {(Di, D

∗
i )}Mi=1, {(Di, D

∗
i )}Ri=1, {(Di, D

∗
i )}Si=1 where M,R and S are the total

number of tasks inM, Mv andMt respectively. During meta-training onM, meta-model θ is
adapted on Di of each Ti to φi. The adapted model φi is then evaluated on D∗

i to update θ. The
output of this episodic training is either an optimal prior or a parametric optimizer, both aiming to
facilitate the rapid adaptation of the model on unseen tasks fromMt.

4 Task Attention in Meta-learning

A common assumption under the batch-wise episodic training regimen adopted by ML is that each
task in a batch has an equal contribution in improving the learned meta-knowledge. However, this
need not always be true. It is likely that given the current configuration of the meta-model, some
tasks may be more important for the meta-model’s learning. A contributing factor to this difference
is that tasks sampled from complex data distributions can be profoundly diverse. The diversity and
latent properties of the tasks coupled with the model configuration may induce some tasks to be better
aligned with the optimal meta-knowledge than others. The challenging aspect in the meta-learning
setting is to define the “importance" and associate weights to the tasks of a batch proportional to their
contribution to improving the meta-knowledge. As human beings, we learn to associate importance
to events subjective to meta-information about the events and prior experience. This motivates us to
define a learnable module that can map the meta-information of tasks to their importance weights.

4.1 Characteristics of Meta-Information

Given a task-batch {Ti}Bi=1, the task attention module takes as input meta-information about each
task (Ti) in the batch, defined as the four tuple below:

I =

{ (
||∇φT

i
L∗
i (φ

T
i )||, L∗T

i , A∗T
i ,

L∗T
i

L∗0
i

) }B
i=1

(1)

where corresponding to each task i in the batch ||∇φT
i
L∗
i (φ

T
i )|| denotes the norm of gradient, L∗T

i

and A∗T
i are the test loss and accuracy of the adapted model respectively, and

L∗T
i

L∗0
i

is the ratio of the

model’s test loss post and prior adaptation.
Gradient norm: Let P =

{
(φT1 )i, . . . , (φ

T
n )i
}B
i=1

be the parameters of the model obtained
after adapting the initial model (T iterations) on support data {Di}Bi=1. Also, let G ={
(∇(φT

1 ,D)L
∗(φT1 , D

∗))i, . . . , (∇(φT
n ,D)L

∗(φTn , D
∗))i

}B
i=1

be the gradients of the adapted model
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parameters w.r.t the query losses {L∗
i }Bi=1. The gradient norm

{
||∇φT

i
L∗
i (φ

T
i )||
}B
i=1

is the L2

norm of G that carries information about the magnitude of the consolidated displacement of the
adapted model parameters during a gradient descent update on query data. This magnitude of
consolidated displacement (grad norm) of adapted task model parameters characterizes its gener-
alizability to the unseen query data. Larger gradient norm on query dataset could indicate that the
model has either overfitted or has not learned the support set. Hence the model is not generaliz-
able on query set compared to the models with low gradient norm. Thus, the grad norm aids the
task attention module in determining the weights of tasks while considering their generalizability.

Algorithm 1: Task Attended Meta-Training
Input:
Dataset:M = {Di, D

∗
i }Mi=1

Models: Meta-model θ, Base-model φ, Att-module δ
Learning-rates: α, β, γ
Parameters: Iterations niter, Batch-size B,

Adaptation-steps T
Output: Meta-model : θ

1 Initialization: θ, δ ← Random Initialization
2 for iteration in niter do
3 {Ti}Bi=1 = {Di, D

∗
i }Bi=1 ← Sample task-batch(M)

4 for all Ti do
5 φ0i ← θ
6 L∗0

i , _← evaluate(φ0i , D
∗
i )

7 φTi = adapt(φ0i , Di)

8 L∗T
i , A∗T

i ← evaluate(φTi , D
∗
i )

9 end
10 [wi]

B
i=1 ←

Att_module

([
L∗T
i

L∗0
i

, A∗T
i , ||∇φT

i
L∗
i (φ

T
i )||, L∗T

i

]B
i=1

)
11 θ ← θ − β∇θ

∑B
i=1 wiL

∗
i (φ

T
i )

12 {Dj , D
∗
j }Bj=1 ← Sample task-batch(M)

13 for all Tj do
14 φ0j ← θ

15 φTj = adapt(φ0j , Dj)

16 end
17 δ ← δ − γ∇δ

∑B
j=1 L

∗
j (φ

T
j )

18 end
19 Return θ

Test Loss: {L∗T
i }Bi=1 represents

the empirical error of the adapted
base models on unseen query
instances and hence character-
izes the generalizability of the
adapted models to unseen query
data. Unlike grad norm, which
characterizes the generalizability
in parameter space, query loss
quantifies generalizability in the
output space as the divergence
between the real and predicted
probability distributions. More-
over, {L∗T

i }Bi=1 is a component
of the meta-update so, each tasks’
query loss has a direct influence
on learning the meta-model and
therefore is an essential character-
istic of a task. Further, test errors
of classes have widely been used
to determine their “easy or hard-
ness" [5, 31]. Thus {L∗T

i }Bi=1 ac-
quaints the attention module with
the generalizability aspect of task
models and their influence in up-
dating the meta-model.

Test Accuracy: {A∗T
i }Bi=1 cor-

responds to the accuracies of
{φTi }Bi=1 on {D∗

i }Bi=1 scaled in
the range [0,1]. A∗T

i measures
the thresholded prediction based
on the highest softmax value and
the actual class label, unlike L∗T

i ,
which determines the confidence
of the predictions. Two task mod-

els may predict the same class labels but differ in the confidence of the predictions. In such scenarios,
neither loss nor accuracy individually is sufficient to comprehend this relationship among the tasks.
So, the combination of these two entities is more reflective of the nature of the learned task models.
Loss-ratio: Let L∗0

i be the loss of θ on the D∗
i , and L∗T

i be the loss of the adapted model φTi on D∗
i .

The loss- ratio
L∗T
i

L∗0
i

is representative of the relative progress of a meta-model on each task. Higher

values (> 1) of the loss ratio suggests adapting θ to Di has an adverse effect on generalizing it to D∗
i

(negative transfer), while lower values (< 1) of the loss ratio indicates the benefit of adaptation of θ
on Di (positive transfer). Loss ratio of exactly one signifies adaptation attributes to no additional
benefit (neutral transfer). Therefore, loss-ratio quantifies positive, negative, or neutral transfer of task
knowledge to the meta-model given its current configuration and task data.
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Figure 1: Computational Graph of the forward pass of the meta-model using TA meta-training
curriculum. The output of this procedure is a meta-model θn. Gradients are propagated through solid
lines and restricted through dashed lines.

4.2 Task Attention Module

We learn a task attention module parameterized by δ, which attends to the tasks that contribute
more to the model’s learning i.e., the objective of the task attention module is to learn the relative
importance of each task in the batch for the meta-model’s learning. Thus the output of the module is
a B−dimensional vector w = [w1, . . . , wB ], (

∑B
i=1 wi = 1) quantifying the attention-score (weight

- wi) for each task. The attention vector w is multiplied with the corresponding task losses of the
adapted models L∗

i (φ
T
i ) on the held-out datasets D∗

i to update the meta-model θ:

θt+1 ← θt − β∇θt
B∑
i=1

wiL
∗
i (φ

T
i ) (2)

After the meta-model is updated using the weighted task losses, we evaluate the goodness of the
generated attention weights. We sample a new batch of tasks {Dj , D

∗
j }Bj=1 and adapt a base-model

φj using the updated meta-model θt+1 on the train data {Dj} of each task. The mean test-loss of the
adapted models {φTj }Bj=1 reflect the goodness of the weights assigned by the attention-module in the
previous iteration. The attention module δ is thus updated using the gradients flowing back into it
w.r.t to this mean test-loss. The attention network is trained simultaneously with the meta-model in
an end to end fashion using the update rule:

δt+1 ← δt − γ∇δt
B∑
j=1

L∗
j (φ

T
j ) (3)

where φTj is adapted from θt+1.

4.3 Task Attended Meta-Training Algorithm

We demonstrate the meta-training curriculum using the proposed task attention in Figure 1, formally
summarized in Algorithm 1. As with the classical meta-training process, we first sample a batch of
tasks from the task distribution. For each task Ti, we adapt the base-model φi using the train data
{Di}Bi=1 for T time-steps (line 7). The meta-information about the adapted models for each task

is then computed, comprising of the loss L∗T
i , the accuracy A∗T

i , the loss-ratio
L∗T
i

L∗0
i

and gradient
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norm on test data {D∗
i }Bi=1. The meta-information corresponding to each task in a batch is given

as input to the task attention module (Figure 1 - Label: 2 ) which outputs the attention vector (line
10). The attention vector in combination with test losses {L∗

i }Bi=1 is used to update meta-model
parameters θ (line 11, Figure 1 - Label: 4 ). We sample a new batch of tasks {Dj , D

∗
j }Bj=1 and adapt

the base-models {φTj }Bj=1 using the updated meta-model. We compute the mean test loss over the
adapted base-models {L∗

j (φ
T
j )}Bj=1, which is then used to update the parameters of the task attention

module δ (lines 12-17).

The attention network is designed as a stand-alone module to learn the mapping from the meta-
information space to the importance of tasks in a batch. Thus, it is important to decouple the
learning of the attention network from that of the meta-model. The parameters of the meta-model θ
should not be directly dependent on that of the task attention module δ. We prevent it by enforcing
∇θwiL∗

i (φ
T
i ) = wi∇θL∗

i (φ
T
i ). Restricting the flow of gradients to the meta-model through the task

attention module also enables us to evade the computational overhead generated by the product of gra-
dients. Specifically, stopping the gradient flow frees us from computing∇δtθt+1.∇φtδt.∇θtφt. The
leading term∇δtθt+1 in turn requires the computation of∇δt .∇θt .∇θt . Figure 1 demonstrates the
paths along which gradient backflow is restricted and permitted as dashed and solid lines respectively.

5 Experiments and Results

We consider different few-shot learning settings on the benchmark datasets - miniImageNet, Fewshot
Cifar 100 (FC100) and tieredImageNet to test the effectiveness of the proposed attention module.
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Figure 2: Mean validation accuracies of a) MAML b) MetaSGD c)
MetaLSTM++ across 300 tasks with/without attention on 5-way
1-shot setting on miniImageNet dataset.

All the experimental results
and comparisons correspond to
our re-implementation of the
ML algorithms integrated into
learn2learn library [4] to ensure
fairness and uniformity. We be-
lieve that integrating the pro-
posed attention module and ad-
ditional ML algorithms into the
learn2learn library will benefit
the ML community. We perform
individual hyperparameter tun-
ing for all the models over the
same hyperparameter space to
ensure a fair comparison. The architecture and hyper-parameter details are provided in the im-
plementation details in supplementary material. The source code is publicly available.1

5.1 Influence of Task Attention on Meta-Training

As the task-attention (TA) is a standalone module, it can be integrated with any batch episodic
training regimen. To facilitate this integration, we introduced a batch-wise training regi-
men for parametric optimizer (MetaLSTM++ [1]). The comparative analysis of MetaLSTM
and MetaLSTM++ on miniImagenet, FC100, and tieredImagenet is presented in Table 1.
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Figure 3: Mean Pearson correlation of
TA-MAML on 5-way 1-shot setting on
miniImagenet.

It is evident from the results that batch-wise episodic training
is effective than sequential episodic training. We also investi-
gate the performance of the models trained with the TA meta-
training regimen with their non-TA counterparts. Specifi-
cally, we compare MAML, MetaSGD and MetaLSTM++
with TA-MAML, TA-MetaSGD and TA-MetaLSTM++ re-
spectively over 5 and 10-way (1 and 5-shot) settings on
miniImageNet, FC100 and tieredImageNet datasets and re-
port the results in Table 1. We observe that models trained
with TA regimen generalize better to the unseen meta-test
tasks than their non-task-attended versions across all the set-
tings and all datasets. Note that the proposed TA mechanism

1https://github.com/taskattention/task-attended-metalearning.git
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aims not to surpass the state-of-the-art meta-learning algorithms but provides new insight into the
batch episodic meta-training regimen, which as per our knowledge, is common to all meta-learning
algorithms. We also compare the performance of TA-MAML against TAML. The results, as pre-

Table 1: Comparison of few-shot classification performance of vanilla ML algorithms with their task
attended versions on miniImageNet, FC100 and tieredImageNet datasets for 5 and 10-way (1 and
5-shot) settings. The ± represents the 95% confidence intervals over 300 tasks. Algorithms denoted
by * are rerun on their optimal hyper-parameters. Attention-based ML algorithms perform better than
their corresponding vanilla approaches across all the settings. Further, MetaLSTM++ and TA-MAML
perform better than MetaLSTM and TAML, respectively, across all settings and datasets.

Test Accuracy (%)

5-Way 10-Way

Model 1 Shot 5 Shot 1 Shot 5 Shot

miniImageNet

MAML∗ 46.10 ± 0.19 60.16 ± 0.17 29.42 ± 0.11 41.98 ± 0.10
TAML∗ 46.26 ± 0.21 53.40 ± 0.14 29.76 ± 0.11 36.88 ± 0.10
TA-MAML 48.36 ± 0.23 62.48 ± 0.18 31.15± 0.11 43.70 ± 0.09

MetaSGD∗ 47.65± 0.21 61.60 ± 0.17 30.09± 0.10 42.22 ± 0.11
TA-MetaSGD 49.28 ± 0.20 63.37 ± 0.16 31.50± 0.11 44.06 ± 0.10

MetaLSTM∗ 41.48 ± 1.02 58.87 ± 0.94 28.62 ± 0.64 44.03 ± 0.69
MetaLSTM++ 48.00 ± 0.19 62.73 ± 0.17 31.16 ± 0.09 45.46 ± 0.10
TA-MetaLSTM++ 49.18 ± 0.17 64.89 ± 0.16 32.07± 0.11 46.66 ± 0.09

FC100

MAML∗ 36.40 ± 0.38 46.76±0.21 23.93±0.14 31.14 ± 0.07
TAML∗ 38.00 ± 0.26 48.05± 0.13 21.60± 0.14 33.19± 0.07
TA-MAML 39.86± 0.25 49.56 ± 0.13 25.46± 0.15 36.06± 0.08

MetaSGD∗ 33.46 ± 0.23 43.96± 0.13 21.40±0.15 30.59± 0.07
TA-MetaSGD 35.66±0.25 49.49± 0.12 23.80±0.15 32.08±0.07

MetaLSTM∗ 37.20 ± 0.26 47.89 ± 0.13 21.70 ± 0.14 32.11 ± 0.07
MetaLSTM++ 38.60 ±0.23 49.82 ± 0.12 22.80 ± 0.14 33.46 ± 0.08
TA-MetaLSTM++ 41.53 ±0.28 51.17 ±0.13 25.33 ±0.15 34.18 ±0.08

tieredImageNet

MAML∗ 44.40 ± 0.49 57.07 ± 0.22 27.40 ± 0.25 34.30 ± 0.14
TAML∗ 46.40 ± 0.40 56.80 ± 0.23 26.40 ± 0.25 34.40 ± 0.15
TA-MAML 48.40 ± 0.46 60.40 ± 0.25 31.00± 0.26 37.60± 0.15

MetaSGD∗ 52.80 ± 0.44 62.35 ± 0.26 31.90 ± 0.27 44.16 ± 0.15
TA-MetaSGD 56.20 ± 0.45 64.56 ± 0.24 33.20± 0.29 47.12 ± 0.16

MetaLSTM∗ 37.00 ± 0.44 59.83 ± 0.25 29.80 ± 0.28 39.28 ± 0.13
MetaLSTM++ 47.60 ± 0.49 63.24 ± 0.25 30.70 ± 0.27 47.97 ± 0.16
TA-MetaLSTM++ 49.00 ± 0.44 66.15 ± 0.23 32.10± 0.27 51.35 ± 0.17

sented in Table 1, suggest that TA-MAML performs better than TAML on all benchmarks across all
settings. Note that both TAML and TA-MAML are approaches that built upon MAML to address the
inequality/diversity of tasks in a batch. Our aim is thus to compare TAML and TA-MAML and not to
assess the efficacy of TAML when meta-trained using task attention.
We also investigate the influence of the TA meta-training regimen on the model’s convergence by
analyzing the trend of the model’s validation accuracy over iterations. Figure 2 depicts the mean
validation accuracy over 300 tasks on miniImageNet dataset for a 5-way 1-shot setting across training
iterations. A similar convergence trend has been obtained for tieredImagenet and is presented in the
supplementary material. We observe that the models meta-trained with TA regimen tend to achieve
higher/at-par performance in fewer iterations than the corresponding models meta-trained with the
non-TA regimen.

5.2 Ablation Studies

To examine the significance of each input given to the task attention model, we conduct an abla-
tion study on 5-way 1-shot TA-MAML on miniImagenet dataset and report the results in Table
2. We observe that all the components of meta-information contribute to the learning of a more
generalizable meta-model. To further support this observation, we analyze the ranks of the tasks

7



for maximum and minimum values of : loss, loss ratio, accuracy, and grad norm in a batch, as per
the weights across training iterations and the results are described in the supplementary material.

Table 2: Effect of ablating components of meta-
information in TA-MAML for 5-way 1-shot setting
on miniImagenet dataset.

Ablation on inputs

Grad norm Loss Loss ratio Accuracy Test Accuracy

× × × × 46.10± .019
X X X × 47.30± .016
X X × X 47.62±0.17
X × X X 48.10± 0.18
× X X X 47.30 ± 0.18
X X X X 48.36 ± 0.23

We also investigate the relationship between
the meta-information and weights assigned
by the task attention module by analyzing
the mean Pearson correlation of each of the
components of the meta-information with
the attention vector across the training iter-
ations. This is depicted in figure 3 for TA-
MAML on 5-way 1-shot setting for mini-
ImageNet dataset, and results on 5-way 5-
shot setting are presented in the supplemen-
tary material. We observe that the loss ratio
and loss are positively correlated with the at-
tention vector, while accuracy and gradient
norm are negatively correlated.

5.3 Analysis of Attention Network

To gain further insights into the operation of the attention module, we examine the trend
of the attention-vector (Figure 4) while meta-training TA-MAML for 5-way 1 and 5 shot
settings on the miniImageNet dataset. Results for 5-shot setting are deferred to supple-
mentary material. We plot the maximum and minimum attention scores assigned to the
tasks of a batch across iterations together with a few weighted task batches for illustration.

Figure 4: Trend of an attention vector in a 5-way 1-
shot setting on miniImageNet dataset for TA-MAML.

Note that the mean attention-score is always
0.25 as we follow a meta-batch size of 4. We
observe that the TA module’s output follows
an interesting trend. Initially, the TA mod-
ule assigns almost uniform weights to all the
tasks of a batch; however, as the iterations in-
crease, the TA module assigns unequal scores
to the tasks in a batch, preferring some over
the other. This suggests that during the initial
phases of the meta-model’s training, all tasks
have equal contribution towards learning a
generic structure of the meta-knowledge. As
the meta-model’s learning proceeds, learn-
ing the further fine-grained meta-knowledge
structure requires prioritizing some tasks in
a batch over the others, which are potentially
better aligned with learning the optimal meta-
knowledge.

6 Summary and Future Work

In this work we have shown that the batch wise episodic training regimen adopted by ML strategies
can benefit from leveraging knowledge about the importance of tasks within a batch. Unlike prior
approaches that assume uniform importance for each task in a batch, we propose task attention
as a way to learn the relevance of each task according to its alignment with the optimal meta-
knowledge. We have validated the effectiveness of task attention by augmenting it to popular
initialization and parametric-optimization based ML strategies. To facilitate integration with the latter,
we have introduced a batch wise training strategy for a parametric optimizer, that outperforms its
previous sequential counterpart. We have demonstrated through few-shot learning experiments on
miniImageNet, FC100 and tieredImageNet datasets that augmenting task attention helps attain better
generalization to unseen tasks from the same distribution while requiring fewer iterations to converge.
We also conduct an exhaustive empirical analysis on the distribution of attention weights to study the
nature of the meta-knowledge and task attention module. We believe this end-to-end attention-based
meta training persuades towards fully automated meta-training.
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Task Attended Meta-Learning for Few-Shot Learning
Supplementary Material

1 Experiments and Results

1.1 Implementation Details

We use the architecture from [1] for the base model and a two-layer LSTM [4] for the parametric
optimizer. The task attention module is a ReLU activated neural network with a 1 × 1 convolutional
layer followed by 2 fully connected layers with 32 neurons, and finally a softmax activation to
generate the attention weights. We perform a grid search over 30 different configurations for 5000
iterations to find the optimal hyper-parameters for each setting. The search space is shared across
all meta-training algorithms. The meta, base and attention model learning rates are sampled from a
log uniform distribution in the ranges

[
1e−4, 1e− 2

]
,
[
1e−2, 5e−1

]
and

[
1e−4, 1e−2

]
respectively.

The hyperparameter λ for TAML (Theil) is sampled from a log uniform distribution over the range
of

[
1e−2, 1

]
. The number of adaptation steps is fixed to 5 for all settings except for 10-way 5-shot

setting, where we use 2 adaptation steps owing to the computational expenses. The meta-batch
size is set to 4 for all settings [1, 2]. However, we study its impact in Table 1. All models were
trained for 55000 iterations (early stopping was employed for tieredImagenet) using the optimal set
of hyper-parameters using an Adam optimizer [3].

Table 1: Comparison of few-shot classification performance of MAML and TA-MAML on miniIm-
ageNet dataset with meta-batch size 6 for 5 and 10-way (1 and 5-shot) settings. The ± represents
the 95% confidence intervals over 300 tasks. Algorithms denoted by * are rerun on their optimal
hyper-parameters. We observe that TA-MAML consistently performs better than MAML, and an
increase in the tasks in a batch improves the performance of both MAML and TA-MAML. The
hardware constraint restricts the study on a 10-way 5-shot setting, and meta-batch size of 8 or higher.

Test Accuracy (%)

5-Way 10-Way

Model 1 Shot 5 Shot 1 Shot 5 Shot

miniImageNet (Batch Size 6)

MAML∗ 47.72 ± 1.041 63.45 ± 1.083 31.55 ± 0.626 Out of memory
TA-MAML 49.14 ± 1.211 65.26 ± 0.956 32.62± 0.635 Out of memory

1.2 Influence of Task Attention on Meta-Training

Figure 1 describes the mean validation accuracy over 300 tasks on tieredImageNet dataset for a
5-way 1-shot setting across training iterations. It is observed that the models meta-trained with TA
regimen tend to achieve higher/at-par performance in fewer iterations than the corresponding models
meta-trained with the non-TA regimen.

1.3 Ablation Studies

We analyze the ranks of the tasks for maximum and minimum values of : loss, loss ratio, accuracy,
and grad norm in a batch wrt attention weights throughout meta-training of TA-MAML on a 5-way

5th Workshop on Meta-Learning at NeurIPS 2021, held virtually.
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Figure 1: [Best viewed in color] Mean validation accuracies of a) MAML b) MetaSGD c) MetaL-
STM++ across 300 tasks with/without attention on 5-way 1-shot setting on tieredImageNet dataset.

1 and 5 shot settings on miniImagenet dataset (Figure 2 and 3). Specifically, the highest weighted
task is given rank one, and the least weighted task in a batch is given the last rank. We observe that
the TA module does not assign maximum weight to the tasks with maximum or minimum values
of : test loss, loss ratio, grad norm or accuracy throughout meta-training. Thus, the TA module
does not trivially learn to assign weights to the tasks based on some component of meta-information
but learns useful latent information from all the components to assign importance for the tasks in a
batch. For the sake of completeness, we repeat the ablation study on inputs of the attention module of
TA-MAML for 5-way 5-shot setting on miniImagenet dataset. Table 2 describes the impact of the
individual components of meta-information on meta-test performance.

Table 2: Effect of ablating components of meta-information in TA-MAML for 5-way 5-shot setting
on miniImagenet dataset.

Ablation on inputs
Grad norm Loss Loss ratio Accuracy Test Accuracy

× × × × 60.16 ± 0.17
X X X × 60.48± 0.16
X X × X 62.17±0.17
X × X X 60.90 ± 0.20
× X X X 61.52 ± 0.16
X X X X 62.48 ± 0.18

We also study the correlation between the meta-information components and weights assigned by
the task attention module for TA-MAML on 5-way 5-shot setting for miniImageNet dataset. From
Figure 4, we observe that the correlation pattern is comparable to 5-way 1-shot setting, but the mean
correlation value of grad norm across iterations is less than that of the 5-way 1-shot setting. It is
because the 5-way 5-shot setting is richer in data than the 5-way 1-shot setting, which allows better
learning and therefore has low average values of grad norm (Main paper - Section IV(A)).

We illustrate the trend of mean weighted loss across iterations for TA-MAML on 5-way 1 and 5
shot settings on miniImagenet dataset (Figure 5). The trend indicates that the average weighted loss
decreases over the meta-training iterations. The shaded region represents a 95% confidence interval
over 100 tasks.

1.4 Analysis of Attention Network

To demonstrate the functionality of the task attention module, figure 6 shows the trend of the
attention-vector during meta-training of TA-MAML for 5-way 5-shot setting on miniImageNet
dataset. We observe that the attention module initially assigns uniform priorities to all tasks to
learn the generic meta-knowledge and subsequently inclines towards the tasks aligned more towards
optimal meta-knowledge.

We attempt to decipher the functioning of the black box attention network by analyzing the qualitative
relation among weights and the classes of task batches (figure 7). We observe that the tasks containing
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Figure 2: Rank Analysis of tasks for maximum and minimum values of : loss, loss-ratio, accuracy
and grad norm throughout the training of TA-MAML for 5-way 1-shot setting on miniImagenet
dataset.

images from similar classes are hard to distinguish and given more weight. In figure 7(a) task 2
is regarded as most important, possibly because it includes three breeds of dogs followed by task
4, which comprises two species of fish. However, the aforementioned is not a hard constraint, as
there are some task batches (figure 7(b)) in which the distribution of weights cannot be explained
qualitatively. More supporting examples corresponding to both cases are described in figure 8.
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Figure 3: Rank Analysis of tasks for maximum and minimum values of : loss, loss-ratio, accuracy
and grad norm throughout the training of TA-MAML for 5-way 5-shot setting on miniImagenet
dataset.
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Figure 4: Mean Pearson correlation of TA-MAML on 5-way 5-shot setting on miniImagenet.
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Figure 5: Trend analysis of weighted loss across meta-training iterations for TA-MAML on 5-way
1-shot (left) and 5-shot (right) settings on miniImagenet dataset.
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Figure 6: Trend of an attention vector in a 5-way 5-shot setting on miniImageNet dataset for
TA-MAML.

(a) (b)

Figure 7: Explanations of TA module in TA-MAML on miniImagenet. a) Higher weights accredited to
tasks with comparable classes b) Association of weights and task data is qualitatively uninterpretable.
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(a) (b)

(c) (d)

Figure 8: More examples on explanations of TA module in TA-MAML on miniImagenet. (a-b)
Higher weights accredited to tasks with comparable classes (c-d) Association of weights and task
data is qualitatively uninterpretable.
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