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Abstract001

The cross-modal grounding of LLMs has re-002
cently garnered significant attention, while003
grounding them in textual interactions has been004
less explored. As the first of its kind, the005
GLAM framework utilises LLMs as agents006
in interactive text-based games to investigate007
their grounding capabilities. However, it faces008
the challenge of low computational efficiency,009
which hinders further experiments. This paper010
proposes the use of Lookahead models for ac-011
tion selection, demonstrating through empirical012
results that the approach can substantially im-013
prove training speed, achieving performance014
gains relative to the size of the action space.015

1 Introduction016

A well-known limitation of Large Language Mod-017

els (LLMs) is that their language is grounded018

only in textual contexts and not in real-world phe-019

nomena (Bender and Koller, 2020; Harnad, 2024).020

Thus, researchers are trying to ground them into021

perception, e.g. visual modalities (Reich and022

Schultz, 2024; Li et al., 2024b) and 3D environ-023

ments (Liu et al., 2024; Li et al., 2024a). However,024

opposing viewpoints argue that learning meaning025

from text alone is still valuable (Pavlick, 2023;026

Lyre, 2024; Bommasani et al., 2022). An inter-027

mediate approach hypothesises that grounding in028

unimodal text is beneficial but not in raw sequen-029

tial form, rather, in goal-oriented interactions (Chai030

et al., 2019), or as is called, conversational ground-031

ing (Shaikh et al., 2024).032

A recent attempt in this regard is Grounded LAn-033

guage Models (GLAM) (Carta et al., 2023) that034

uses LLMs as agents to play an interactive text-035

based game and examines their language ground-036

ing capabilities. In a Reinforcement Learning (RL)037

setup, a prompt is created including the goal, hints,038

observations, and a final question about the next039

step of the game. The agent is expected to select040

the next action, not by generating an output but041

by predicting the probability of action tokens. In 042

fact, the LLM ranks a set of potential responses 043

(actions). It then uses game rewards for parameter 044

optimisation. So, through textual interaction with 045

the environment, the agent learns what different 046

words mean in terms of functionality. However, 047

this approach suffers from computational ineffi- 048

ciencies, making further research in this direction 049

practically challenging. 050

The main reason behind this is that GLAM re- 051

quires a full LLM forward pass to determine the 052

rank of each action. This stems from the autoregres- 053

sive nature of LLM’s, in which billions of compu- 054

tations are performed in each run, just to predict a 055

single next token. Intuitively, this effort seems use- 056

ful for guessing which tokens might appear at sub- 057

sequent positions. Although these guesses are unre- 058

liable for generating responses (since they overlook 059

dependencies between tokens), they can still be use- 060

ful for ranking, because they help filter out many 061

tokens of vocabulary that are unlikely and assign 062

higher scores to the more probable tokens. 063

This paper examines the above idea by propos- 064

ing efficient variations of Lookahead LLMs (Xia 065

et al., 2024), where they predict not only the next 066

immediate token, but also the second, third, ... up 067

to K next tokens. Using future tokens, the likeli- 068

hood of all actions can be approximated with fewer 069

forward passes. Analytically, it reduces the training 070

time of GLAM by a factor of the number of actions. 071

The experiments presented here demonstrate that a 072

more than 2x improvement is achieved. 073

The contributions of this paper are as follows. 074

• Novel efficient variants of Lookahead LLMs 075

are proposed that can be used to predict multi- 076

ple future tokens in one forward pass. 077

• The use of Lookahead LLMs is proposed to 078

approximate the rank of a set of potential 079

responses and is demonstrated in text-based 080

games for interactive language grounding. 081
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Figure 1: A) GLAM runs LLM once per action, looking
up action tokens in output. B) Using Lookahead LLM,
the model is called once, and tokens of all actions are
queried in the output. The dotted sections show previous
tokens which are removed for the sake of space.

2 Background082

Using LLMs as agents in interactive games has be-083

come a popular trend (Hu et al., 2024). However,084

few studies address grounding (Ichter et al., 2023;085

Lin et al., 2024), and even fewer focus on unimodal086

text-based games like GLAM. Most of the works087

mentioned above use LLM-generated responses to088

extract valid actions. In contrast, GLAM directly089

uses output probabilities to assess the likelihood090

of actions and samples from them. In this respect,091

it is the only and first of its kind. A similar study092

is (Yao et al., 2020) however, it uses LLM to gen-093

erate actions and then uses a Deep Reinforcement094

Relevance Network (DRRN) for ranking.095

As discussed in Sections 1, and 3, GLAM’s096

long runtime limits experimentation with larger097

LLMs and games with larger action spaces, which098

may contribute to overfitting and hinder language099

grounding improvements. To address these limi-100

tations, this work proposes the use of Lookahead101

LLMs, an active area of research also known as102

Speculative Decoding (SD) (Xia et al., 2024) or103

Parallel Decoding (Santilli et al., 2023). Most of104

these approaches aim to improve efficiency of in-105

ference and generation (Xia et al., 2024). Their106

common paradigm, Guess-And-Verify, drafts fu-107

ture tokens first and later verifies them, either by108

the same drafter model (Self Drafting) or with a109

more powerful LLM (Independent Drafting).110

Nevertheless, not all works are considered in111

the survey. For example, (Qi et al., 2020) adds112

K self-attention blocks to predict K future tokens,113

increasing the size of the model. To reduce GPU114

load, Skippy Simultaneous Speculative Decoding115

(S3D) (Zhong and Bharadwaj, 2024) appends K116

masked tokens to the prompt and skips some mid-117

layers for cost-effective drafting. However, it also118

incorporates Tree Attention, adding complexity.119

Although most SD proposals use an autoregres-120

sive drafter, ParallelSpec (Xiao et al., 2024) uses 121

Lookahead models for drafting. Similarly to one 122

of the models proposed in this study, it extends 123

the input with K additional mask tokens so that 124

it outputs the same number of extra tokens. The 125

output is then compared with that of a target model 126

to compute loss in a knowledge distillation setup. 127

(Kim et al., 2024) studied Blockwise Parallel 128

Decoding (BPD) (Stern et al., 2018) improving its 129

quality with two refinements. However, of particu- 130

lar relevance to ours, it did not alter the Lookahead 131

drafter, consisting of K+1 extra layers on top of the 132

decoder. Similarly, LlamaMultiToken (Gloeckle 133

et al., 2024) splits the N attention blocks into two 134

sets of size K and N −K, the first being used for 135

future tokens and the latter for the original opera- 136

tion of the model. Then it uses multiple heads with 137

separate losses to optimise the parameters. 138

Overall, the above efforts deal with various lev- 139

els of complexity, mainly because their major con- 140

cern is generation. However, in this paper, the main 141

concern is obtaining multiple future predictions to 142

increase ranking speed via approximation via sim- 143

pler and more efficient models. 144

3 Methodology 145

In order to choose the next action in each step, 146

GLAM creates one prompt per action and runs the 147

LLM to compute the exact probability of each to- 148

ken in each action given the prompt (containing the 149

goal and observations); see Figure 1. The formal 150

definition of the problem is the same as provided in 151

Section 3.1 of (Carta et al., 2023), but simply put, 152

considering A as the set of actions, the probability 153

of each ai ∈ A is calculated by Equation 1. 154

LPLLM (ai|p) =
|ai|∑
j=0

logPLLM (wj |p, w<j) (1) 155

where |ai| is the length of the ith action, wj is the 156

jth token in ai, and p is the prompt. So, for each it- 157

eration over the sum, a separate token position must 158

be included in the input. This makes the number of 159

input tokens on the order of O(|A|×maxai∈A |ai|), 160

which in turn affects both the required number of 161

forward passes and memory. 162

Instead, using Lookahead LLMs, the probability 163

of each action is approximated with Equation 2: 164

PLLM (ai|p) ≈
|ai|∑
j=0

PLA,j(wj |p) (2) 165
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Figure 2: (A) a non-LA LLM. (B) The LA model for K = 2, the language modelling head is replicated twice. (C)
LAA and LAA2 are similar, but the former uses K replicates of last hidden state (C1), while the latter uses the
last K hidden states (C2). (D) LAE has no extra head but extends the input with K special tokens, thus outputs K
extra tokens. Note that in all these figures, labels yi = xi+1 so yS is the first token not present in the input.

where PLA,j means the probability of jth next to-166

ken given the prompt, e.g. PLA,0 is that of immedi-167

ately next token, PLA,1 is that of the second next to-168

ken, and so forth. Using this mechanism, the num-169

ber of forward passes required to compute all PLA,j170

is on the order of O(⌈maxai∈A |ai|
K ⌉) and for the spe-171

cial case where K is greater than the maximum172

length of actions, i.e. (K ≥ maxai∈A |ai|), a sin-173

gle forward pass would suffice, O(1). Note that the174

log-likelihood is also omitted compared to Equa-175

tion 1, GLAM uses it to avoid multiple normaliza-176

tions, but this may overweight lower-probability177

actions. (see Appendix B for more details).178

3.1 Lookahead LLMs179

The main objective of the current research is to180

design the Lookahead feature with minimal com-181

plexity and overhead. To achieve this purpose, the182

LLM architecture is altered in four different ways,183

as illustrated in Figure 2.184

1. In the simplest form, the language modelling185

head (LM in Figure 2) is repeated K times for each186

future position. The input to each head is the same187

as the original (Figure 2.B). The dataset is fetched188

in a way that the labels for each head are shifted189

right, thus the last position of each head is trained190

on, and will predict the ith next token. This model191

is named LA (LookAhead). Its main downside is192

that the LM head is typically large (depending on193

the vocabulary size, e.g. 30K) and, when repli-194

cated, the model size increases substantially. This195

is undesirable particularly because only the very196

last position of the output of each head is needed197

and the rest are discarded.198

2. To address the aforementioned issue and to re- 199

duce model size and computational cost, the LM 200

head is replicated only once and fed with a smaller 201

input (Figure 2.C1). Assuming that the hidden 202

states for the last token are informative enough 203

to predict the next K tokens, it is replicated K 204

times and used as input for the extra head. The 205

output will then be a sequence of length K, each of 206

which predicts one Lookahead token. This model 207

is named LAA (LA with Additional head). 208

3. As another variation of the above model, it is 209

possible to include the last K positions of hidden 210

states as input to the new head. This is based on the 211

assumption that the last K positions in the hidden 212

state are more informative to predict the next K 213

tokens. This model is named LAA2 (Figure 2.C2). 214

4. The last model does not introduce extra heads, 215

but extends the input with K additional positions, 216

manipulated by special tokens, so that it outputs 217

extra predictions. This is similar to (Xiao et al., 218

2024) but they have trained the model using knowl- 219

edge distillation from a target model. In contrast, 220

this variation simply fetches K extra tokens from 221

the dataset as labels for the new positions and com- 222

putes the loss as in the original LLM. This model 223

is named LAE for Extended input (Figure 2.D). 224

4 Experimental Setup 225

To prototype the above architectures, nanoGPT1 is 226

chosen as the base model because it is easy to ex- 227

tend, with training data and algorithm ready to run. 228

1A LLM developed primarily for educational purposes, see
https://github.com/karpathy/nanoGPT
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Figure 3: A) The speed of training models in GLAM, measured by FPS (frames per second) for a single run, the
higher FPS means faster training. B) The success rate of the same models.

The original nangoGPT, together with four Looka-229

head models (explained in Section 3.1 and depicted230

in Figure 2) are pre-trained from scratch using the231

OpenWebText dataset (Peterson et al., 2019) on the232

GPT2 scale to fit within a limited budget. Also,233

as a state of the art, LlamaMultiToken (Raj et al.,234

2024) is implemented on top of nanoGPT, hence235

the name nanoLlamaMultiToken and trained with236

the same scale and data as above. For clarity of237

presentation, K is set to 2 in Lookahead models.238

The technical details and results of the pretraining239

are reported in Appendix A.240

The models were then deployed in the GLAM241

experiment, after integrating Lookahead functional-242

ity for ranking actions using a single forward pass.243

The rest of the experimental setup is kept the same244

as in GLAM, only batch_size parameters are in-245

creased to benefit from the computational resources246

freed up as a result of this approach.247

5 Results248

The main metric for the speed of training is FPS249

(frames per second), which represents the number250

of steps per second the agent can perform in the251

game. As shown in Figure 3.A, it increases from 9252

for non-LA model to a range of 11 to 20 for looka-253

head models, showing more than a 2x improvement.254

The LAE, LAA, and LAA2 models have gained255

better FPS compared to LA most probably because256

they have added less overhead to the number of257

parameters (see Table 2). This negative correla-258

tion between model size and FPS highlights the259

need for efficient models. Another metric is the260

Success Rate which represents the performance of261

the agent in the game. Figure 3.B does not show262

a significant change in this metric, demonstrating263

that the approach has not affected performance neg-264

atively. However, the LA models have achieved265

a better success rate compared to non-LA models. 266

Considering both measures, the LAA model seems 267

the best performing one but this has to be further 268

verified after fine-tuning on human preference data. 269

6 Conclusion 270

Based on the analysis provided in Section 3, the 271

performance gain is expected to be on the order 272

of action space size (6x for the case of GLAM), 273

however, the 2x speed up in the empirical results 274

reinforces the importance of model size as a deter- 275

mining factor. Preliminary experimentation with 276

Science World environments (Wang et al., 2022) 277

that contain more actions further revealed the ad- 278

vantage of this approach. Even with a fixed-size 279

action space, the improvement in running time pro- 280

vides the opportunity to run experiments for more 281

steps, try larger LLMs, and employ parallel com- 282

putation mechanisms. These results are limited by 283

current GPU resources, but its advantages would 284

be clearer with more powerful hardware. 285

The project code has been made open source2. 286

7 Future Works 287

The models in this study are decoder-only, but the 288

same approach is implemented on encoder-decoder 289

models like Flan-T5 in the Huggingface Transform- 290

ers, with ongoing work to pre-train and deploy 291

them in GLAM. 292

Additionally, speculative decoding techniques 293

could be applied to the proposed LA models to as- 294

sess improvements in generation quality. Finally, 295

the overall approach may also benefit other appli- 296

cations in which LLMs are used to rank responses 297

rather than generate them. 298

2For models based on nanoGPT see anonymous_link, for
Transformers implementation, see anonymous_link
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Limitations299

The success rate of models is currently low; how-300

ever, it is worth considering that the original301

GLAM has also struggled with this metric and302

even with Google Flan-T5-Large (783M) it hardly303

achieved the top success rate of 1. Moreover, mod-304

els presented in the current work are not fine-tuned305

on any human preference data, and their knowledge306

is limited to just pre-training corpus. However,307

even without fine-tuning, the Lookahead models308

achieved a faster speed and an on-par success rate309

compared to non-LA models. It is planned to per-310

form fine-tuning and study its effect as well.311

Predicting Lookahead tokens imposes a nega-312

tive impact on the quality of the next-immediate313

token compared to the same position predicted by314

a non-LA LLM. To confirm this intuition, the loss315

is broken down into losses at each position and316

tracked during pretraining. The result is shown317

in Figure 4. As expected, all Lookahead models318

faced a higher loss, but the difference can be consid-319

ered acceptable given the fact that generation is not320

the primary concern in GLAM design. Moreover,321

applying the verification phase (of the Guess-And-322

Verify paradigm) that is normally done in Spec-323

ulative Decoding approaches might remedy this324

limitation.325

The idea of this paper is examined in tiny-scale326

LLMs. On larger scales, though, the overhead on327

the number of parameters imposed by the first LA328

model is considerable, because it replicates the LM329

head, and that head is very large for fully-fledged330

LLMs. However, the other three proposed models331

are very efficient in this regard.332

More broadly, although the goal of this research333

is language grounding in conversational interac-334

tions, the current work only proposes a novel way335

to boost training. However, this speed up has fa-336

cilitated further investigations and experiments to337

measure the extent of impact on grounding as the338

ultimate goal. The work is also in progress in this339

regard.340

Most of the above limitations are primarily due341

to limited access to GPU infrastructures. The avail-342

able resources were either 3xA40 40GB or 2xH100343

PCIe 80GB each on a maximum of 2 days for a344

single run.345

Figure 4: The loss of pertaining models reported only
on the next immediate token after the prompt.
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Figure 5: The loss of pertaining models on validation
set has not changed significantly after 60K iterations.

Table 1: Configuration of all models.

Name Value

Embedding size 768
# Heads 12
# Layers 12
Block size 1024
Batch size 12
Lookahead size 2
Data Type bfloat16

Appendix A Pretraining Models500

To keep the comparison as fair as possible, the501

model configurations are kept the same, as listed in502

Table 1. Therefore, the discrepancy in the number503

of parameters, shown in Table 2, is mainly the504

result of different architectural designs. Regarding505

the training iterations, although nanoGPT’s best506

results are reported after 600K iterations, taking507

nearly 4 days on a single 8xA100 40GB node 3,508

here the models are trained only for nearly 60K509

iterations during 2 days on a single 3xA40 40GB510

available node. This early stopping in pretraiing511

is decided to be performed, because the loss of512

all models remained almost constant after a while,513

3https://github.com/karpathy/nanoGPT

Table 2: Size of models (number of parameters).

Name Parameters (M)

nanoGPT2 110
nanoLlamaMultiToken 136
nanoGPT2LA 160
nanoGPT2LAA 135
nanoGPT2LAA2 135
nanoGPT2LAE 110

Figure 6: LLM prediction example (vocab size=3):
"pick up" has lower probability, but GLAM wrongly
selects it by summing log-likelihoods (2 > 0) instead of
comparing normalized logits (1.16 > 0.66).

indicating no further improvement, as reported in 514

Figure 5. 515

Appendix B Action Selection Mechanism 516

As shown in Equation 1, GLAM used log probabil- 517

ities to compute probability of actions and justified 518

it in Section 3.2 of their paper with the intention "to 519

avoid multiple normalization operations". How- 520

ever, the multiple normalizations they were con- 521

cerned about occur across different dimensions, 522

and both are necessary. The first one (skipped by 523

GLAM) is across tokens in the vocabulary. In more 524

details, for an action ai the probability of its j-th 525

token wj after p, w0, w1, ..., wj−1 is computed by: 526

PLLM (wj |p, w<j) =
eLPLLM (wj |p,w<j)∑|V |
k=0 e

LPLLM (wk|p,w<j)

(3) 527

where p is prompt, and |V | stands for vocabulary 528

size. For simplicity denote PLLM (wj |p, w<j) as 529

P(j) then Equation 3 can be rewritten as: 530

P(j) =
eLP(j)∑|V |
k=0 e

LP(k)
(4) 531

which means the probability of j-th token is equal 532

to its log-likelihood normalized by sum of log- 533

likelihood of all vocabulary tokens. 534

The second normalization however, is across 535

actions in the game as formulated in the Equation 536

2 of the GLAM paper. The first one is needed, 537

because without it, an action which is less likely 538

to appear after prompt, might wrongly be selected, 539

just because logits for the other actions neutralize 540

each other, as shown in Figure 6. 541
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