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Abstract. Multi-object tracking (MOT) endeavors to precisely estimate
the positions and identities of multiple objects over time. The prevailing
approach, tracking-by-detection (TbD), first detects objects and then
links detections, resulting in a simple yet effective method. However,
contemporary detectors may occasionally miss some objects in certain
frames, causing trackers to cease tracking prematurely. To tackle this
issue, we propose BUSCA, meaning ‘to search’, a versatile framework
compatible with any online TbD system, enhancing its ability to persis-
tently track those objects missed by the detector, primarily due to occlu-
sions. Remarkably, this is accomplished without modifying past tracking
results or accessing future frames, i.e., in a fully online manner. BUSCA
generates proposals based on neighboring tracks, motion, and learned
tokens. Utilizing a decision Transformer that integrates multimodal vi-
sual and spatiotemporal information, it addresses the object-proposal
association as a multi-choice question-answering task. BUSCA is trained
independently of the underlying tracker, solely on synthetic data, without
requiring fine-tuning. Through BUSCA, we showcase consistent perfor-
mance enhancements across five different trackers and establish a new
state-of-the-art baseline across three different benchmarks. Code avail-
able at: https://github.com/lorenzovaquero/BUSCA.

Keywords: 2D Tracking · Multi-target tracking · Online

1 Introduction

Multi-object tracking (MOT) entails the process of locating and identifying mul-
tiple objects over time within a scene. It is a crucial task in computer vision with
applications spanning various domains such as robotics [17], autonomous vehi-
cles [20, 71], and video surveillance systems [44]. The prevalent MOT paradigm
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Fig. 1: Due to occlusions, detectors fail to locate many relevant elements on a scene
(e.g., the woman in red). Accordingly, online multi-object trackers may lose track of
some objects. With BUSCA, we propose a fully online framework that can be integrated
into any online TbD tracker to persistently track those objects missed by the detector.
Box colors represent object identities.

is tracking-by-detection (TbD) [9], where object trajectories are obtained by
(i) first detecting objects and (ii) then associating detections. Although alter-
native frameworks have been proposed in the literature [1, 34], TbD has sur-
faced capitalizing on significant progress in object detection. Notably, over the
past few years, center- [70,83] and Transformer-based architectures [55,70] have
emerged. More recently, the MOT performance has been further improved thanks
to the adoption of YOLO-based detectors [19,45] coupled with a straightforward
intersection-over-union (IoU) matching. This simple yet effective approach has
even contributed to the renewed popularity of SORT [7,15,45].

Meanwhile, significant efforts in the community have been also dedicated
to improving identity consistency within a trajectory. This is achieved by de-
vising better association schemes [7, 15, 77, 84] or through re-identification (Re-
ID) [46,51]. However, these methods remain highly dependent on the availability
of detections, which makes them susceptible to trajectory fragmentations.

Current state-of-the-art detectors are not perfect and fail to detect all the
objects in a video. To have an idea, 17% of the detections in MOT17 [35] valida-
tion set are still missed by the YOLOX detector [19], and the extremely occluded
objects (visibility = 0, provided in the ground-truth annotations) contribute
11.0 points to the MOTA score based on the standard MOT evaluation [12,35].
Meanwhile, modern online trackers pause or terminate the tracking process dur-
ing these situations where an object fails to be detected, leading to suboptimal
results. We argue that more care should be taken in this regard, avoiding pre-
mature terminations of objects that genuinely exist. In this work, we introduce
BUSCA (Building Unmatched trajectorieS Capitalizing on Attention), which
helps online TbD systems handle those objects, often highly occluded, overlooked



Lost and Found: Overcoming Detector Failures in Online MOT 3

by the detector. BUSCA propagates unmatched tracks and, by design, can be
applied to the outcome of any online TbD track assignment process.

Some works in the literature [13,41,50] focus on repairing fragmented tracks
and improving trajectory continuity. However, these have so far been imple-
mented through offline methods, as they alter decisions made on previous time
steps (e.g., interpolating a trajectory after re-detection) and/or leverage future
information. Thus, despite some of them claiming to be online, they should
be considered as offline according to the widely accepted definition of ’online’
in MOTChallenge [12, 35] where “the solution has to be immediately available
with each incoming frame and cannot be changed at any later time”. The of-
fline fashion makes them impractical for certain real-world applications and not
comparable to online methods. Conversely, BUSCA is able to persistently track
undetected objects in a fully online setting5.

As an example illustrated in Fig. 1, some objects are missed due to low vis-
ibility even by a highly performant detector [19], causing the tracker to lose
them. With BUSCA, we can enhance any TbD online tracker to continuously
track those undetected objects without resorting to offline methods. To this end,
BUSCA is built on a multi-choice question-answering Transformer that finds
undetected objects given (i) candidate generated with a motion model (inde-
pendent of the detector), (ii) contextual information derived from neighboring
objects, and (iii) previous observations from the object of interest. These inputs
are composed of visual and spatiotemporal information. The visual component
characterizes object appearances while the spatiotemporal element encapsulates
the size, center location, and timing of the object in a condensed format using
an innovative spatiotemporal encoder.

In summary, the main contributions and novelties of this work are as follows:
– BUSCA is a general framework to persistently track those objects missed by

the detector, in a fully online manner, without (i) modifying past tracking
predictions (ii) or accessing future frames.

– BUSCA entails (i) a novel Decision Transformer inspired by multi-choice
question-answering tasks, (ii) a Proposal Generator that relies on neighbor-
ing tracks, motion, and learned tokens, and (iii) an innovative Spatiotempo-
ral Encoder that captures the size, location, and time of the objects. The
network is trained independently from the underlying tracker and using syn-
thetic data [16], without any fine-tuning on real MOT sequences.

– BUSCA can be seamlessly integrated on top of any online TbD tracker,
as demonstrated in our comprehensive experiments where we systemati-
cally enhance the performance of five distinct trackers on standard bench-
marks [12,35], defining a new state-of-the-art among online trackers.

2 Related Work

End-to-end MOT methods model detection, tracking, and their implicit match-
ing within a unified architecture. The most common approaches tackle this
5 BUSCA strictly respects the ‘online’ definition, thus ‘fully online’.
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through identity embeddings [65], regression [1,61] or the recent use of attention
mechanisms [6,18,34,76,84,85]. Nonetheless, this holistic design can create chal-
lenges during the joint training process [18] and, prevent these methods from
being applicable to other trackers and leveraging leading-edge detectors. Conse-
quently, these models have not yet superseded TbD techniques.
Tracking by detection (TbD) is an effective paradigm that decouples the
MOT task into object detection and data association. This decomposition en-
ables TbD methods [21,51,55,69,70,77,80,83] to benefit from classical [45,47,69],
more advanced [26, 77] or self-constructed [55, 70, 83] detectors, coupled with
diverse association processes such as hierarchical clustering [80], graph neural
networks [21] or geometric cues [77].

In particular, center-based methods like CenterTrack [84] and TransCen-
ter [70] alleviate the ambiguity in bounding boxes by predicting object center
heatmaps in a CNN-based or Transformer-based architecture, respectively. Re-
cently, ByteTrack [77] showcases remarkable results using a meticulously tuned
YOLOX detector [19] paired with a simple IoU-based matching mechanism. This
powerful detector has also revived SORT [4] with a stronger association mecha-
nism in methods such as OC-SORT and StrongSORT [7,15]. Nevertheless, these
TbD trackers remain highly vulnerable to missed detections. This issue moti-
vates us to introduce BUSCA, a framework designed to improve any online TbD
tracker by persistently tracking those objects overlooked by the detector.
Improving trajectory consistency, i.e., maintaining consistent object iden-
tities over time, is one of the main challenges of online multi-object trackers.
Most of these methods rely on frame-by-frame association of detections solved
via Hungarian matching [28]. However, pure motion-based associations [4, 5, 77]
often encounter difficulties in crowded environments or moving-camera scenarios.
As a result, other works turn to appearance-based techniques [27,43,46,52,59,67],
hybrid cues [15,29,51,58], or Transformer solvers [76,84]. Notably, GHOST [51]
redesigns the use of a ReID model and builds a simple yet strong baseline. In
efforts to lessen the impact of occlusions, some methods aim to predict an ob-
ject’s visibility in order to adjust its detections’ confidences [24] or re-weight the
association matrix [79]. On the other hand, some strategies improve associations
by hallucinating object trajectories [57] or by prompting re-detections in areas
where occluders are present [31].

Nonetheless, unlike BUSCA, these more advanced association processes re-
main heavily dependent on the detector as they operate on available detections.
[29] is a rare exception but at the cost of MOT performance drop.
Ensuring trajectory continuity is a non-trivial task that attempts to repair
the trajectory of an object from the instant it is lost until it is re-identified
again. Thus, most current trackers perform an extra offline post-processing step
based on linear [77] or Gaussian-smoothed [15] interpolation. Some more so-
phisticated methods involve implementing a probabilistic model to retroactively
insert missed detections [50], learning an additional Refind Module [41] to bridge
these gaps, or 2D-to-3D lifting and performing motion forecasting in a bird’s eye
view [13]. Nevertheless, these strategies remain offline [12, 35] as they either al-
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ter predictions on past time steps or take into account future frames, limiting
their applicability in certain real-world scenarios. We introduce thus BUSCA, a
framework that can be built on top of any online TbD tracker to enhance its
continuity and consistency in a fully online fashion.

Fig. 2: The bottom-left panel depicts the tracking-by-detection (TbD) paradigm
(Sec. 3), where a track is paused when the detector fails to locate the object. To
address this issue, we integrate BUSCA into the online TbD tracker (Sec. 4) as shown
in the top-left panel. This allows for the extension of trajectories of undetected objects
by pairing them with proposals comprising candidates (B), contextual information (C)
and learned tokens (L) (Sec. 4.2) via an innovative decision Transformer (Sec. 4.1).
Comprehensive details about the components of BUSCA are showcased in the right-
hand panel. The track observations and proposals fed to the decision Transformer are
made up of both appearance features (extracted with a convolutional backbone omit-
ted here for clarity) and spatiotemporal cues for time, size, and distance encoded in a
compact embedding through our novel spatiotemporal encoding (STE, Sec. 4.3).

3 TbD in a Nutshell

In the tracking by detection (TbD) paradigm, at a given frame a detector
first produces a set D = {𝛿1, ..., 𝛿𝑀 } of 𝑀 detections, with each detection
𝛿𝑖 = {𝑎𝑖 , 𝑐𝑖 , 𝜔𝑖} is defined by its appearance 𝑎𝑖 (i.e., features of the image con-
tained in the coordinates), coordinates 𝑐𝑖 (object size and center location) and
confidence score 𝜔𝑖. These detections are used to propagate the position of a
set T = {𝜏1, ..., 𝜏𝑁 } of 𝑁 active tracks, each represented by a time-ordered set
𝜏𝑗 = (𝑜 𝑗 ,1, . . . , 𝑜 𝑗 ,𝑍 ) of observations 𝑜𝑘 = {𝑎𝑘 , 𝑐𝑘} over the past 𝑍 frames.

D is compared with T , using coordinates and geometric cues [4, 77], ap-
pearance information [67], or both [51], yielding a cost matrix of size 𝑁 × 𝑀

whose optimal assignments are determined through Hungarian matching [28].
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Thus, as shown in the bottom-left part of Fig. 2, correctly matched tracks are
updated with the assigned detections, while those without a matching detection
are paused. Having correct and sufficient detections for all tracks is critical, lead-
ing many trackers to resort to offline interpolation techniques to repair missing
observations. In order to address this issue without resorting to offline interpola-
tion, we present BUSCA, which tracks those undetected objects in a fully online
fashion.

4 BUSCA: Finding Objects without Detections

Current detectors still fail to detect all the objects, especially in low-visibility
situations i.e., heavy occlusions. Modern trackers heavily rely on the detection
quality, thus naively stopping the tracking process whenever the detector fails.
Therefore, BUSCA comes to help by saving those objects missed by the detector
and finding where they are.

In particular, BUSCA is a fully online framework that can be coupled with
any TbD tracker to persistently track those objects missed by the detector. As
can be seen in the upper left part of Fig. 2, BUSCA receives unmatched tracks
T𝑢 and compares them with a set of proposals generated through a proposal
generation process (Sec. 4.2). This comparison is carried out through a novel de-
cision Transformer (Sec. 4.1), which uses an innovative spatiotemporal encoding
(STE, Sec. 4.3) to aggregate information of different nature. This way, BUSCA
can update the coordinates of those unmatched tracks or determine whether
they have really left the scene.

4.1 Decision Transformer: To Be or Not To Be

Deciding whether to pause an undetected track or propagate its identity can
be formulated as a multiple-choice question-answering task [42]. That is, given
a question (the track 𝜏) and a set of possible options (the proposals P =

{𝑝1, ..., 𝑝𝐽 }, where 𝑝𝑖 = {𝑎𝑖 , 𝑐𝑖}), the goal of the network is to find the cor-
rect answer (the decision of which proposal to match to the track) forming the
assignment set A = {𝜏𝑗 ↦→ 𝑝𝑖 |𝜏𝑗 ∈ T , 𝑝𝑖 ∈ P}. Inspired by this formulation, we
propose to maintain undetected objects via a Transformer-based design that in-
puts different proposals and a track, outputting the best match, i.e., the proposal
with the highest probability.

As shown on the right side of Fig. 2, our decision Transformer is imple-
mented through an 𝐿-layer encoder model, which receives an input I = {𝜏,P},
in which the past observations of the track are included. For each of the indi-
vidual elements that make up the input (referred to as tokens), the appearance
information 𝑎 is processed by a convolutional backbone and projected to a lower
dimensional space. This visual information of each token is then fused with its
geometric cues 𝑐 using our innovative spatiotemporal encoding (Sec. 4.3), to al-
low the Transformer to reason complex relationships between motion and visual
features.
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Within the decision Transformer, the input tokens are self-attended with each
other, yielding refined tokens J = {𝜏,P} where the features most closely related
to the track have been enhanced. Then, the elements of P are fed to a shared-
weight multi-layer perceptron (MLP) that generates one logit per token. After
a Softmax operation, we output the probabilities that the track 𝜏 is assigned to
each proposal 𝑝, allowing us to obtain A by finding the maximum probability.
Finally, we update 𝜏 when it is successfully matched with a candidate proposal
(See Sec. 4.2) or pause it otherwise. It should be noted that the MLP is share-
weight, so as not to be restricted to any fixed input size.

4.2 Proposal Generation: Missing Puzzle Pieces

As with textual question-answering problems, the composition of the proposals
P is one of the most critical aspects, and this is no different for our decision
Transformer. P = {B, C,L} is composed of candidates B, contextual proposals
C, and learned proposals L. As shown in the bottom-right of Fig. 2, B and C
are extracted from the frame, while L is learned. BUSCA will keep a track 𝜏

active and update it with the proposal information if it is associated with any
element from B and pause 𝜏 otherwise.

Generating the sets of proposals B and C is nontrivial given that none of the
detections in D can be associated with 𝜏. Given its reasonable performance [4,
15, 77], we opt for a simple yet effective Kalman filter [25] to predict a new
observation of 𝜏 at the current frame. To this end, it is possible to obtain B =

{Kalman(𝜏)} without adding extra complexity to BUSCA, all while effectively
managing complex motion scenarios, as evidenced in the supplementary material.
Regarding the contextual proposals C, their goal is to provide BUSCA with
more information about the scene. C is composed of the 𝑄 closest observations
within the neighborhood of 𝜏, 𝑉 (𝜏). Details for the computation of the maximum
neighborhood distance for 𝜏 are given in the supplementary material.

The input proposals P of BUSCA also comprise a set L = {[Halluc.], [Miss.]}
of learned tokens that allow the Transformer to make complex decisions about
the tracking process and pause 𝜏 if necessary. Specifically, [Halluc.] is learned
to capture whether any observation 𝑜 is corrupted (i.e., belonging to a different
object) whereas [Miss.] handles if 𝜏 has left the scene or none of the elements
of {B, C} are suitable enough to be matched. Additionally, a separator token
[SEP] borrowed from textual Transformers [42] is also learned to delimit each
of the elements of P.

4.3 Spatiotemporal Encoding (STE): Merging Modalities

Along with appearance features, spatiotemporal information is also crucial for
making correct assignments. This information is however more complex to be
encoded due to its multi-dimensionality (i.e., time-stamp 𝑡 at which observations
are recorded, the size 𝑠 of the bounding box, and their distance 𝑑 in the 2D co-
ordinate space). To this end, we propose the spatiotemporal encoding (STE)
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depicted on the top-right part of Fig. 2, which models these relationships be-
tween observations and allows its fusion with visual features so BUSCA can
effectively learn complex relationships. Our spatiotemporal encoding supersedes
the conventional positional encoding often implemented in Transformer mod-
els [60]. This encoding is generated through a two-step process comprising the
interplay mapping and subsequent the embedding projection.

Interplay mapping. The encodings employed in visual Transformers rely
on absolute values, which limit the network’s overall adaptability and make them
rely on interpolation techniques to handle diverse frame sizes [8,14,37]. Moreover,
this method has consequential downsides for tracking tasks, as identical inter-
actions might be represented differently depending on their specific occurrence
(e.g. proximity between a track and an observation will be encoded differently
depending on their absolute position within the frame or video).

To address this, our STE relies on a novel interplay mapping that models
interactions relative to an anchor 𝜅. In our specific use case, 𝜅 = {𝑥𝜅 , 𝑦𝜅 , 𝑤𝜅 , ℎ𝜅 , 𝑡𝜅 }
corresponds to the coordinates (i.e., object center, width, and height) and time-
stamp of the last known observation of the track 𝑜 ∈ 𝜏. To this end, we can
compute a spatiotemporal embedding {𝐸 𝑡 , 𝐸 𝑠 , 𝐸𝑑} comprising time, size, and
distance, respectively, for each token 𝜄 ∈ I as:

𝐸 𝑡 = 𝜎𝑡 (𝑡 𝜄 − 𝑡𝜅 ) (1)

𝐸 𝑠 = 𝜎𝑠

(
log

(
𝑤 𝜄

𝑤𝜅

)
+ log

(
ℎ 𝜄

ℎ𝜅

))
(2)

𝐸𝑑 = 𝜎𝑑 log

√︄(
𝑥 𝜄 − 𝑥𝜅

𝑤𝜅

)2
+
(
𝑦 𝜄 − 𝑦𝜅

ℎ𝜅

)2
(3)

where 𝜎𝑡 , 𝜎𝑠 , 𝜎𝑑 are scaling factors. This relative representation boosts the gen-
eralization capacity of BUSCA and improves convergence during training.

Embedding Projection. After computing the interplay mapping between
input tokens and 𝜏, it is essential to make this representation compatible with
both the transformer and the visual features. However, adding multiple inde-
pendent sinusoidal functions could lead to potentially ambiguous information,
according to [64]. To this end, it is necessary to establish a joint spatiotemporal
encoding by expanding the function used in [60] to a 3-dimensional space. Given
the Transformer’s internal dimension of 𝐷Tr channels, we equally distribute it
among the three components of our spatiotemporal embedding 𝐷 = 𝐷Tr/3.
Therefore, for a given dimension 𝐸Δ where Δ ∈ {𝑡, 𝑠, 𝑑} we can compute its
projected embedding 𝑃𝐸Δ:

𝑃𝐸Δ
2𝑖 = sin

(
𝐸Δ

100002𝑖/𝐷

)
𝑃𝐸Δ

2𝑖+1 = cos
(

𝐸Δ

100002𝑖/𝐷

)
(4)

where 0 ≤ 𝑖 < 𝐷/2. And subsequently concatenate the components of the
different dimensions to create our compact spatiotemporal encoding 𝑆𝑇𝐸 =(
𝑃𝐸 𝑡 , 𝑃𝐸 𝑠 , 𝑃𝐸𝑑

)
for each one of the tokens 𝜄 ∈ I.
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5 Experimental Results

In Sec. 5.1, we clarify the experimental settings along with the used datasets and
metrics. In Sec. 5.2, we validate the necessity of BUSCA compared to the naive
solutions and show that it can systematically extend tracks’ lifespan, improving
trajectory continuity without losing consistency. Subsequently, we empirically
demonstrate the effectiveness of each component of BUSCA and justify its design
choices. Once validated, we show in Sec. 5.3 that BUSCA is a plug-and-play
component that consistently improves various trackers, setting new state-of-the-
art performance in all tested benchmarks compared to other online methods.
Finally, some successful and failure cases are qualitatively shown in Sec. 5.4.

5.1 Experimental Settings
We conduct our experiments on the widely-used MOT16 [35], MOT17 [35]
and the crowded MOT20 [12] datasets. In contrast to other methods, we train
BUSCA using solely synthetic data from MOTSynth [16], which consists of 764
full-HD videos recorded at 20 fps. For each training sample, we construct a track
of length 𝑍 = 11 and randomly select 5 objects near 𝜏 to form a proposal set
(current observation of 𝜏 is the positive candidate while objects with an overlap
smaller than 0.5 are negatives. Additionally, we set a 15% probability of not
sampling any positives ([Miss.] will be considered the correct option) and a
1% chance of altering observations within 𝜏 ([Halluc.] will be the correct op-
tion). Our training process focuses only on bounding box annotations and does
not require any fine-tuning towards particular datasets or tracking systems. The
computational cost of BUSCA is relatively small, with only 8.7M parameters and
a runtime of 45ms per frame on a single NVIDIA RTX GPU (when integrated
with [77], the whole system runs at roughly 13fps).

For the ablation, we focus on MOT17 with the widely-adopted split [51, 77,
83] that evenly divides each video sequence into training and validation sets.
Unless otherwise stated, we employ ByteTrack [77] as our baseline tracker due
to its state-of-the-art performance, but we remove its offline interpolation and its
per-sequence curated thresholds. For the comparison with the state-of-the-art,
we submit our test set results to the MOTChallenge servers and compare our
approach with current online methods as defined in the challenge [12,35].

For evaluation, we report the standard metrics adopted by the MOTChal-
lenge [11]. These include MOTA [2] reflecting the overall performance of a pre-
dicted trajectory; the recently introduced HOTA [33] that balances object cover-
age and identity preservation; IDF1 [49] focusing on association quality; IDentity
SWitches (IDSW) to reflect identity consistency; and False Positives (FP) as well
as False Negatives (FN) to assess detection performance. Additional experiments
and implementation details can be found in the supplementary material.

5.2 Model Validation and Ablation
Naive approaches are not enough. Persistently tracking objects overlooked
by the detector is not a trivial task and cannot be achieved with simpler naive ap-
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Table 1: Comparison to different simpler solutions on MOT17 [35] val set. The differ-
ence with the baseline is depicted next to each metric. ByteTrack [77] is used as base
tracker removing its offline interpolation and per-sequence thresholds, noted with ★.

MOTA ↑ HOTA ↑ FN ↓ FP ↓

ByteTrack★ 76.5 67.4 9120 3410
+ LD 75.3 (−1.2) 65.6 (−1.8) 8854 (−266) 4196 (+786)
+ IoU 75.4 (−1.1) 67.0 (−0.4) 7588 (−1532) 5493 (+2083)
+ Mixed 76.6 (+0.1) 67.6 (+0.2) 8393 (−727) 4063 (+653)
+ BUSCA (ours) 77.1 (+0.6) 67.6 (+0.2) 8326 (−794) 3889 (+479)

[0.0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1.0]
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Additional objects located by BUSCA
BUSCA over ByteTrack
BUSCA over StrongSORT
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BUSCA over TransCenter
BUSCA over CenterTrack

(a) Extra successfully rescued objects. (b) Impact of BUSCA on track length.

Fig. 3: (a) Analysis of the additional objects that BUSCA successfully locates when
integrated with different trackers. The objects are grouped by their visibility [35]. (b)
Analysis of the impact of BUSCA on the resulting track length in different trackers.
Additional implementation details can be found in the supplementary material.

proaches. Specifically, ByteTrack [77] demonstrates that with a reliable detector,
some low-score detections can be leveraged in a second-round association. One
would then expect that Lowering the Detection (LD) threshold 𝜖 = 0.01 would
provide further benefits during the tracks-detections matching. Another direct
approach similar to BUSCA consists of using a motion model (e.g., Kalman
filter) to estimate the track future coordinates and perform an extra round of
associations based on motion and geometry cues like IoU. Alternatively, we
also propose an extra recovery round based on Mixed cues (i.e. both IoU and
appearance), as shown important for more robust associations [67].

As shown in Tab. 1, lower-score detections are not reliable and +LD in-
creases FP (+786) with a slight decrease in FN (-266), leading to a MOTA
(-1.2) and HOTA (-1.8) drop. This demonstrates that the leftover detections
in [77] are not reliable and insufficient for finding lost objects and it is therefore
necessary to leverage a motion model providing better candidates. However, not
every candidate is reliable, and relying solely on +IoU associations does not im-
prove MOT performance (-1.1/-0.4 in MOTA/HOTA). Adding visual cues with
our +Mixed approach brings improvements, but the limited increase in MOTA
(+0.1) evidences that this simple method still struggles to make correct assign-
ments. Differently, BUSCA considers visual and spatiotemporal information
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Table 2: Ablation on MOT17 [35] val set of the different components that
comprise BUSCA. HLC=[Halluc.] learned token, MSS=[Miss.] learned token,
STE=spatiotemporal encoding, CTX=contextual proposals. The difference with the
baseline is depicted next to each metric. ByteTrack [77] is used as base tracker remov-
ing its offline interpolation and per-sequence thresholds.

Line HLC MSS STE CTX MOTA ↑ HOTA ↑ FN ↓ FP ↓

1 76.5 67.4 9120 3410
2 ✓ 75.0 (−1.5) 66.3 (−1.1) 8395 (−725) 4911 (+1501)
3 ✓ 76.4 (−0.1) 67.3 (−0.1) 8064 (−1056) 4513 (+1103)
4 ✓ ✓ 76.5 ( 0.0 ) 67.1 (−0.3) 8656 (−464) 3853 (+443)
5 ✓ ✓ ✓ 76.7 (+0.2) 67.4 ( 0.0 ) 8528 (−592) 3851 (+441)
6 ✓ ✓ ✓ 76.9 (+0.4) 67.6 (+0.2) 8387 (−733) 3884 (+474)
7 ✓ ✓ ✓ ✓ 77.1 (+0.6) 67.6 (+0.2) 8326 (−794) 3889 (+479)

from the track, the candidate, and the context in a Transformer-based design,
providing better decisions to prevent undetected tracks from being paused.
Longer trajectories with BUSCA. As illustrated in Fig. 3a, the efficacy of
BUSCA is evident in its ability to successfully keep alive an extensive array of
missing objects under different baselines. We observe that most of those saved
objects have low visibility (i.e., under heavy occlusions), proving that BUSCA is
particularly good at mitigating instances where the detector exhibits a proclivity
for failure. Accordingly, BUSCA correctly extends the resulting track trajectories
in every tested tracker, as demonstrated in Fig. 3b.
BUSCA component ablation. BUSCA relies on different components that
ensure its proper operation and allow it to associate proposals and tracks accu-
rately. In Table 2, we analyze the impact of the learned [Miss.] and [Halluc.]
tokens, the spatiotemporal encoding, and the use of contextual information.

BUSCA may decide to pause a track either because it is a hallucinated
track ([Halluc.] token), or because none of the candidates is suitable enough
([Miss.] token). Relying solely on the [Halluc.] token (Line 2) yields negative
results, resulting in an additional +1501 false positives compared to the baseline.
Conversely, if track termination is guided solely by the [Miss.] token (Line 3),
the output remains marginally below the baseline with a decrease of −0.1 points
in MOTA. The integration of these two learned tokens leads to improved per-
formance (Line 4) because taking into account both conditions for whether to
associate a track more accurately represents real-world situations.

By adding our spatiotemporal encoding 𝑆𝑇𝐸 (Line 5), the MOTA score is
further increased by +0.2 points. Nonetheless, a high number of false negatives
persist due to duplicated tracks occasionally kept alive. These tracks negatively
impact the system when kept active, and so far BUSCA has had no way of
identifying them. To address this issue, we integrate contextual proposals from
nearby observations (Line 6), successfully reducing false negatives by −733 and
resulting in a MOTA increase of +0.4 points. The best results are achieved when
all components are integrated into BUSCA (Line 7).
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Fig. 4: Study of track length and number of contextual proposals used as input in our
decision Transformer w.r.t. HOTA and MOTA performance.

Track length, contextual proposal size. Adhering to the definition of an
online method, BUSCA considers the past observations of a track and its in-
teraction with neighboring objects, learning deep relationships between motion
and appearance. On Fig. 4a, we study the optimal amount of observations fed
as input to BUSCA. The HOTA curve contains noisier observations, whereas
MOTA displays an upward trend that starts to converge at 𝑍 = 11 where HOTA
also achieves the best score. Regarding the maximum number of contextual pro-
posals, from Fig. 4b, we observe that both curves have a positive slope which
decays when 𝑄 > 4. We hypothesize this is due to the additional contextual
proposals being too distant and uninformative on the track’s environment.

5.3 State-of-the-Art Comparisons

By design, BUSCA can be seamlessly incorporated into any existing online
TbD tracker. To illustrate its performance, we extensively integrate BUSCA
into five diverse state-of-the-art trackers and compare them against the cur-
rent state-of-the-art in online MOT. Our base trackers include the center-based
CenterTrack [82] (CNN network) and TransCenter [70] (Transformer network);
as well as the YOLOX-based ByteTrack [77] (IoU matching), StrongSORT [15]
(appearance-enhanced association), and GHOST [51] (attentive Re-ID scheme).
Evaluations were conducted on the test sets of MOT16 [35], MOT17 [35], and
MOT20 [12]. As shown in Tab. 3, BUSCA consistently improves the performance
of all trackers in every benchmark for nearly all metrics, without requiring train-
ing on any real MOT data nor necessitating to be fine-tuned for any tracker.

Remarkably, BUSCA drastically enhances both CenterTrack and TransCen-
ter without the necessity for a recent state-of-the-art detector. For instance, in
CenterTrack, we achieve a boost of +12 HOTA and +21 IDF1 in MOT20. Sim-
ilarly, TransCenter also gets significantly improved due to a marked reduction
in IDSW, thereby bolstering HOTA (e.g., +5.1/+8.6 in MOT17/20) and IDF1
(e.g., +8.6/+15 in MOT17/20). When paired with high-performing trackers such
as ByteTrack and StrongSORT that rely on a potent YOLOX detector [19],
BUSCA sets a new state-of-the-art for online multi-object tracking. Further-
more, BUSCA can also join efforts with identity-preserving methods like the
advanced Re-ID mechanism in GHOST [51] to further enhance its performance.
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Table 3: State-of-the-art comparison on MOT16, MOT17, and MOT20 test sets. ★

means that the offline interpolation and the per-sequence thresholds in ByteTrack [77]
and OC-SORT [7] are removed for fair comparison. † and ‡ indicate reproduced results
for GHOST [51] and StrongSORT [15] on MOT16 and for CenterTrack [83] on MOT20,
respectively, due to their unavailability in the original works. Private detections are
used. BUSCA consistently improves all baseline trackers in almost every metric, as
shown in bold. Best results are highlighted in blue.

MOT16 MOT17 MOT20
MOTA↑ HOTA↑ IDF1↑ IDSW↓ MOTA↑ HOTA↑ IDF1↑ IDSW↓ MOTA↑ HOTA↑ IDF1↑ IDSW↓

TubeTK [38] 66.9 50.8 62.2 1236 63.0 48.0 58.6 5727 – – – –
CTracker [40] 67.6 48.8 57.2 1897 66.6 49.0 57.4 5529 – – – –
QDTrack [39] 69.8 54.5 67.1 1097 68.7 53.9 66.3 3378 – – – –
TraDeS [68] 70.1 53.2 64.7 1144 69.1 52.7 63.9 3555 – – – –
MTrack [74] 72.9 – 74.3 642 72.1 – 73.5 2028 63.5 – 69.2 6031
MeMOT [6] 72.6 57.4 69.7 845 72.5 56.9 69.0 2724 63.7 54.1 66.1 1938
MeMOTR [18] – – – – 72.8 58.8 71.5 1902 – – – –
GSDT [63] 74.5 56.6 68.1 1229 73.2 55.2 66.5 3891 67.1 53.6 67.5 3230
Decode-MOT [29] 74.7 60.2 73.0 1094 73.2 59.6 72.0 3363 67.2 54.5 69.0 2805
MOTR [76] – – – – 73.4 57.8 68.6 2439 – – – –
OUTrack [31] 74.2 59.2 71.1 1328 73.5 58.7 70.2 4122 68.6 56.2 69.4 2223
FairMOT [78] 75.7 61.6 75.3 621 73.7 59.3 72.3 3303 61.8 54.6 67.3 5243
TrackFormer [34] – – – – 74.1 57.3 68.0 2829 68.6 54.7 65.7 1532
TransTrack [55] – – – – 74.5 - 63.9 3663 64.5 – 59.2 3565
AOH [24] – – – – 75.1 59.6 72.6 3312 67.9 55.1 70.0 2698
GTR [84] – – – – 75.3 59.1 71.5 2859 – – – –
CrowdTrack [53] – – – – 75.6 60.3 73.6 2544 70.7 55.0 68.2 3198
OC-SORT★ [7] – – – – 76.0 61.7 76.2 2199 73.1 60.5 74.4 1307
SGT [23] 76.8 61.2 73.5 1276 76.3 60.6 72.4 4578 72.8 56.9 70.5 2649
CorrTracker [62] 76.6 61.0 74.3 1709 76.5 60.7 73.6 3369 65.2 – 69.1 5183
ReMOT [73] 76.9 60.1 73.2 742 77.0 59.7 72.0 2853 – – – –
Unicorn [72] – – – – 77.2 61.7 75.5 5379 – – – –
MTracker [79] – – – – 77.3 – 75.9 3255 66.3 – 67.7 2715
MO3TR-YOLOX [85] – – – – 77.6 60.3 72.9 2847 72.3 57.3 69.0 2200
CountingMOT [48] 77.6 62.0 75.2 1087 78.0 61.7 74.8 3453 70.2 57.0 72.4 2795

CenterTrack‡ [83] 69.6 – 60.7 2124 67.8 52.2 64.7 3039 45.8 31.8 36.6 6296
+ BUSCA (ours) 70.4

(+0.8)
55.7

(−)
69.7
(+9.0)

927
(-1197)

68.9
(+1.1)

55.1
(+2.9)

68.8
(+4.1)

2817
(-222)

49.5
(+3.7)

44.2
(+12)

58.0
(+21)

1370
(-4926)

TransCenter [70] 75.7 56.9 65.9 1717 76.2 56.6 65.5 5427 72.9 50.2 57.7 2625
+ BUSCA (ours) 75.7

(+0.0)
61.9
(+5.0)

74.5
(+8.6)

1038
(-679)

76.2
(+0.0)

61.7
(+5.1)

74.1
(+8.6)

3282
(-2145)

73.9
(+1.0)

58.8
(+8.6)

72.4
(+15)

1756
(-869)

GHOST† [51] 78.3 63.0 77.4 709 78.7 62.8 77.1 2325 73.7 61.2 75.2 1264
+ BUSCA (ours) 78.5

(+0.2)
63.2
(+0.2)

77.5
(+0.1)

707
(-2)

79.0
(+0.3)

62.9
(+0.1)

77.0
(-0.1)

2295
(-30)

74.2
(+0.5)

61.3
(+0.1)

75.1
(-0.1)

1251
(-13)

StrongSORT† [15] 78.3 63.8 78.9 437 78.3 63.5 78.5 1446 72.2 61.5 75.9 1066
+ BUSCA (ours) 78.4

(+0.1)
64.2
(+0.4)

79.5
(+0.6)

434
(-3)

78.6
(+0.3)

63.9
(+0.4)

79.2
(+0.7)

1428
(-18)

72.7
(+0.5)

61.8
(+0.3)

76.3
(+0.4)

1006
(-60)

ByteTrack★ [77] 78.2 62.8 77.2 892 78.9 62.8 77.1 2363 74.2 60.4 74.5 925
+ BUSCA (ours) 78.5

(+0.3)
63.3
(+0.5)

77.9
(+0.7)

743
(-145)

79.3
(+0.4)

63.1
(+0.3)

77.7
(+0.6)

2358
(-5)

74.5
(+0.3)

60.5
(+0.1)

74.4
(-0.1)

920
(-5)

Lastly, recent tracking-by-attention methods [18,34,76,84,85] strive to create
a fully end-to-end architecture that performs both object detection and track-
detection matching within a single network. However, this streamlined process
hinders their ability to easily incorporate new elements, such as a more powerful
detector. This is illustrated by MOT3TR-YOLOX [85], a recent model that, de-
spite adopting a more powerful YOLOX detection backbone, still underperforms
TransCenter+BUSCA by −1.4 HOTA, −1.2 IDF1 in MOT17 and by −1.5 HOTA
−3.4 IDF1 in MOT20. This underscores the superior performance of TbD meth-
ods and the opportunities that BUSCA brings, offering a plug-and-play module
that systematically enhances state-of-the-art TbD trackers in a fully online man-
ner without the need for retraining.



14 L. Vaquero et al.

BUSCA
T

0.89

CC

MOT17-04

(a)

BUSCA
T

0.55

CC

MOT17-02

(b)

BUSCA
T

0.59

[H
al
lu
c.
]

CC

MOT17-09

(c)

BUSCA
T

0.81

[M
is
s.
]

CC

MOT17-11

(d)

Fig. 5: Qualitative examples of BUSCA integrated into ByteTrack [77] for MOT17-
val [11]. a, b, and c depict correct predictions while d shows a scenario where BUSCA
incorrectly labels the pedestrian wearing a gray shirt as ‘missing’, even though the
individual’s left foot (highlighted with a red circle) remains visible. The values indicate
the assignment confidence.

5.4 Qualitative Results

Fig. 5 showcases a series of qualitative visualizations. In Fig. 5a, the YOLOX
detector [19] fails to detect the person obscured by the street lamp and flowers
due to substantial occlusion. However, with BUSCA, we can successfully preserve
his identity. A similar scenario unfolds in Fig. 5b, where the pedestrian in the
background is accurately identified by BUSCA despite his minimal size and
the scarce visibility of only his head. Fig. 5c illustrates a clearly spurious track
created by ByteTrack [77] that does not correlate to any specific person. BUSCA
correctly identifies it as a hallucination and deactivates it, effectively preventing
any further false positives. Lastly, in Fig. 5d, due to the noisy track and the
almost total occlusion, the pedestrian wearing a gray shirt is incorrectly labeled
as missing, even though his left foot can still be spotted behind the man in red.
Additional videos are provided in the supplementary material.

6 Conclusion

In this work, we present BUSCA, an innovative and plug-and-play framework
that can enhance any online tracking-by-detection system to persistently track
undetected objects in a fully online fashion. This implies that BUSCA does not
alter the outputs of previous time steps or access future frames. To achieve this,
our novel Decision Transformer associates tracks with proposals having both
visual and spatiotemporal information, maintaining the identity of tracks in a
lightweight manner and without any need for fine-tuning.

We extensively validate our proposed method with five distinct trackers,
bringing systematic performance improvements and setting new state-of-the-
art results across different benchmarks. For future work, we aim to factor in
extreme motions via nonlinear multi-candidate proposals, incorporate 3D mul-
timodal cues, and explore the use of BUSCA to override previous tracking de-
cisions and fix incorrect associations. We hope that BUSCA can inspire future
research towards fully online trackers without overly relying on the detectors.
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Fig. 6: Additional qualitative results showing the benefit of using BUSCA on differ-
ent online TbD trackers like ByteTrack [77]. We can see that BUSCA improves the
trajectory consistency and continuity of the baseline trackers. Colors represent object
identities. Results are shown for only one subject to ease the visualization.

A Introduction

In this supplementary material, we show additional qualitative results in Ap-
pendix B, which demonstrate the benefits of using BUSCA. Following this, we
underline the fact that BUSCA is a generic framework (Appendix C) applicable
to any online TbD method by definition, which is backed up by the experimen-
tal results in the main paper. We then provide implementation details about the
network architecture, training, and inference parameters in Appendix D, and
discuss in Appendix E the characteristics of the naive baselines introduced in
the main paper. Subsequently, we further explain in Appendix F how to cal-
culate the vicinity of a track and select its neighbors as contextual proposals
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and further discuss the impact of BUSCA on object trajectories in Appendix G.
Then, we detail how to encode spatiotemporal information for the learned to-
kens in Appendix H and demonstrate the effect of the [SEP] token in BUSCA’s
performance in Appendix I.

BUSCA generalizes well in different trackers and scenarios without being
trained on real MOT datasets. Nonetheless, we discuss in Appendix J the possible
benefits of training and fine-tuning BUSCA on real in-domain data. Additionally,
in Appendix K we show how our Kalman-based motion model handles complex
motions like the dancing scenes found in DanceTrack [54], and in Appendix L we
demonstrate the performance of BUSCA for categories different than humans.

Trackers like ByteTrack [77] and StrongSORT [15] employ offline interpo-
lation methods to further improve their MOT performance by modifying past
predictions with future frame information. Differently, BUSCA strictly respects
the online definition. Although they are not directly comparable, to give an idea
of the performance differences, we show in Appendix M the offline version of
ByteTrack and StrongSORT versus their fully online versions with BUSCA, and
the potential benefits of embedding BUSCA in an offline tracker. Lastly, to facil-
itate the analysis of BUSCA’s performance, we include its sequence-wise results
in Appendix N.

B Additional Qualitative Results

The efficacy of online tracking by detection (TbD) is largely dependent on the
underlying detectors. Issues such as object loss or identity switches often arise
when these detectors miss some of the objects in the scene. In order to showcase
how incorporating BUSCA into a TbD system can enhance track consistency
and continuity, we provide several illustrative examples. More specifically, Fig. 6
elucidates the advantages of integrating BUSCA into ByteTrack [77], while Figs.
7, 8, 9, and 10 (found at the end of this supplementary material) visually demon-
strate the application of BUSCA to StrongSORT [15], GHOST [51], TransCen-
ter [70], and CenterTrack [83], respectively. The visualizations display the results
for a single subject for ease of visualization. To view the results for every object in
the sequences, the reader is referred to the videos included in this supplementary
material.

C On the Generality of BUSCA

We claim that BUSCA’s design allows it to be applied to any online TbD tracker.
This is because, by definition [9], online TbD trackers (i) detect objects in the
current frame and (ii) link them to existing tracks. During this process, it is
natural for some detections to remain unmatched, leading either to the creation
of new tracks or their dismissal. Similarly, it is also common for some tracks to
be unmatched and, therefore, paused. BUSCA introduces an additional step that
(iii) propagates these unmatched tracks without requiring additional detections,
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a feature applicable to the results of any online TbD track assignment procedure.
Hence, we assert the adaptability of BUSCA any online TbD tracker.

D Network, Inference and Training Details

Network architecture. BUSCA’s decision Transformer is composed of 𝐿 = 4
encoder blocks, each one of them comprising a 4-headed multi-attention layer
and a 1024-size feed-forward layer. The internal dimension of the Transformer
is 𝐷𝑇𝑟 = 512 channels. For our spatiotemporal encoding, the scaling factors are
set as 𝜎𝑡 = 2, 𝜎𝑠 = 15, and 𝜎𝑑 = 15.

The extraction of the appearance features 𝑎 of each observation is performed
with a ResNet-50 [22] with an extra fully-connected layer for downsampling and
the domain adaptation mechanism described in [51] (i.e., samples are normalized
using the mean and variance of the batch, instead of the learned ones). To this
end, the coordinates 𝑐 of each observation are cropped to 128×384 px and fed to
the feature extractor, yielding a 512-channel embedding. This appearance model
is pre-trained on the Re-ID dataset Market-1501 [81] and is not trained on any
MOT data.

Inference parameters. Following the experimental results discussed in Sec.
5.2 of the main paper, candidate B is generated using a simple-yet-effective
Kalman filter [25] that forecasts a new observation for 𝜏 at the present frame,
while the contextual proposal set C comprises the 𝑄 = 4 closest observations
within the neighborhood of 𝜏. If B is chosen as the correct candidate, we will
keep 𝜏 active and update it with the new Kalman-based observation. Otherwise,
or if 𝜏 has fewer than 𝑍 = 11 observations (indicating low reliability in the
Decision Transformer’s prediction), we will not update the track and let the
underlying base tracker handle it through its usual process (either deactivating
the track or increasing its inactive counter).

Training parameters. BUSCA parameters are randomly initialized and
trained via label-smoothed cross-entropy loss for 25 epochs using an AdamW
optimizer [32] with a dropout regularization probability of 0.1 and a batch size of
256. We set the weight decay at 1×10−5, with the initial learning rate established
at 2× 10−5. Following the 20th epoch, we reduce the learning rate by a factor of
10.

For each training sample, we randomly choose an object identity from the
dataset and construct a track 𝜏 by sampling 𝑍 = 11 observations, ensuring a max-
imum separation of 10 frames between consecutive observations. Subsequently,
we randomly pick a frame within a range of 20 frames from the last observa-
tion and select 5 objects near 𝜏 to form a proposal set. From these proposals,
we designate the ground truth annotation of 𝜏 as the positive candidate, while
objects with an overlap smaller than 0.5 are marked as negatives (others are
ignored). Additionally, we set a 15% probability of not sampling any positives,
in which case the [Miss.] token will be considered the correct option within
the proposal set, and a 1% chance of randomly eliminating some proposals. Fur-
thermore, observations within 𝜏 are subject to alteration with a 1% probability,
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either through removal or replacement with different object observations. If at
least 5% of the observations in 𝜏 correspond to a different object, the track is
deemed unreliable, and the [Halluc.] token is considered the correct option.

The entire training process took roughly 28 hours, utilizing a single NVIDIA
Quadro RTX 8000. As highlighted in the main paper, BUSCA does not neces-
sitate training aimed at any particular tracker or real MOT dataset. BUSCA is
trained on a subset of 100 MOTSynth [16] videos, and does not need to be fine-
tuned. Therefore, we consistently use the same weights across all experiments
featured in our main paper.

E Implementation of Naive Approaches

In Sec. 5.2 of the main paper, we present the results of approaches proposed
by us that follow the same philosophy as BUSCA (i.e., handling those tracks
without matching detections in an online manner). Specifically, the IoU-based
approach computes the intersection over union between the proposals generated
by BUSCA and the object’s last known bounding box, assigning as correct pro-
posal to the one with the highest overlap. On the other hand, the Mixed method
uses overlap as a threshold to filter out the unrealistic proposals (IoU < 0.7)
and, in a second step, it uses the cosine similarity between the ReID features
(extracted with GHOST [51]) of proposals and the last observation of the track
to determine the most suitable match.

F Neighborhood Computation

The intention behind our contextual proposals C is to equip BUSCA with a
broader understanding of the scene. To this end, as stated in the main paper,
we pool the 𝑄 closest observations within the neighborhood of track 𝜏, 𝑉 (𝜏). We
envision 𝑉 (𝜏) possessing two characteristics: first, observations that are spatially
adjacent to 𝜏 are deemed closer neighbors, and second, a clear demarcation is
maintained between foreground and background objects. To meet these ends, we
calculate the distance 𝜙(𝜏, 𝑜) between the last known coordinates of track 𝜏 and
an observation 𝑜 as follows:

𝜙(𝜏, 𝑜) = Eucl(𝜏, 𝑜) ∗ Ratio(𝜏, 𝑜) (5)

Eucl(𝜏, 𝑜) =
√︁
(𝑥𝜏 − 𝑥𝑜)2 + (𝑦𝜏 − 𝑦𝑜)2 (6)

Ratio(𝜏, 𝑜) = max
(√

𝑤𝜏 ∗ ℎ𝜏√
𝑤𝑜 ∗ ℎ𝑜

,

√
𝑤𝑜 ∗ ℎ𝑜√
𝑤𝜏 ∗ ℎ𝜏

)
(7)

Thus, in defining this distance, we consider not only the Euclidean distance
between centers Eucl(·, ·), but also penalize this value based on the difference in
object sizes Ratio(·, ·). This approach is driven by the fact that object size serves
as a strong indicator of depth in the objects within a scene [36].
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Consequently, the neighborhood of 𝜏 can be defined as 𝑉 (𝜏) = {𝑜 ∈ T \
T𝑢} | 𝜙(𝜏, 𝑜) < 𝜈𝜏}, where 𝜈𝜏 represents the maximum distance within which an
observation is considered a neighbor. The maximum distance acts as a variable
parameter, fluctuating about the area of the track as discussed in [3]. This can
be computed using the following equation:

𝜈𝜏 =
√︁
(𝑤𝜏 + 𝜁 (𝑤𝜏 + ℎ𝜏)) ∗ (ℎ𝜏 + 𝜁 (𝑤𝜏 + ℎ𝜏)) (8)

Here, 𝜁 = 1 is employed as a scaling factor that governs the growth of 𝜈 concern-
ing 𝜏.

G Impact of BUSCA on Object Trajectories

BUSCA can be incorporated into any online tracking-by-detection system, en-
hancing its capabilities to persistently track those objects missed by the detector.
As can be seen in Fig. 3 of the main paper, BUSCA primarily focuses on those
objects where the detector most frequently fails, specifically those with minimal
visibility. This has the added advantage of extending the average lifespan of the
tracks, thereby enhancing their trajectory consistency and continuity.

To conduct the experiment shown in Fig. 3a, we used the visibility attributes
contained within the MOT17 [11] ground truth. Thus, for every object that
BUSCA finds and that would otherwise have been paused by the tracker, we
refer to its corresponding annotation and visibility attribute. This is performed
for each combination of tracker+BUSCA studied, confirming that BUSCA is ca-
pable of identifying a substantial number of objects with extremely low visibility,
due to occlusions.

About the effect of BUSCA on the track length, Fig. 3b illustrates the dif-
ference between using various standalone trackers and combining them with
BUSCA. For this experiment, we evaluated the results produced by each com-
bination, quantifying the frequency of each ID reported (i.e., the length of each
track). As demonstrated, incorporating BUSCA engenders positive effects, am-
plifying both the median and average length of tracks for all five tested trackers.

H Learned Tokens

The appearance features 𝑎 of the learned proposals L = {[Halluc.], [Miss.]},
along with the separator token [SEP], are initialized using a random Gaussian
distribution and are trained end-to-end alongside the rest of the architecture.
There is no need for these features to pass through the appearance extractor,
being directly fed to BUSCA’s decision Transformer.

Regarding the coordinates component 𝑐 of the learned tokens, [Miss.] is
given the same coordinates as the last known observation of 𝜏 and [Halluc.],
is computed by maximizing its distance w.r.t. 𝜏 in the spatiotemporal represen-
tation space (main paper, Sec. 4.3). Lastly, [SEP] tokens are given the same
coordinates as the proposals they delimit.
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Table 4: Ablation of the effect of the [SEP] token on MOT17 [11] validation data.
BUSCA uses several [SEP] tokens to delimit every proposal 𝑝 ∈ P, for a total of |P |
separator tokens. In ×1 [SEP], we utilize a single token to delimit 𝜏 from P. Byte-
Track [77] is used as base tracker without its offline interpolation and per-sequence
threshold, noted with ★.

MOTA ↑ HOTA ↑ IDF1 ↑ IDSW ↓
ByteTrack★ 76.5 67.4 79.4 165
+ BUSCA w/ ×1 [SEP] 76.8 (+0.3) 67.3 (-0.1) 78.8 (-0.8) 162 (-3)
+ BUSCA w/ ×|P| [SEP] 77.1 (+0.6) 67.6 (+0.2) 79.5 (+0.1) 166 (+1)

Table 5: Ablation of training BUSCA on in-domain data for MOT17 [11]. We test
both training from scratch and fine-tuning BUSCA after training it on MOTSynth [16].
The difference with the baseline is depicted next to each metric. ByteTrack [77] is used
as base tracker without its offline interpolation and per-sequence threshold, noted with
★.

MOTA ↑ HOTA ↑ IDF1 ↑ IDSW ↓

Va
l.

ByteTrack★ 76.5 67.4 79.4 165
+ BUSCA (MOT17 train) 76.8 (+0.3) 67.4 (+0.0) 79.1 (-0.3) 167 (+2)
+ BUSCA (MOTSynth train) 77.1 (+0.6) 67.6 (+0.2) 79.5 (+0.1) 166 (+1)
+ BUSCA (MOT17 fine-tune) 77.2 (+0.7) 67.9 (+0.5) 79.8 (+0.4) 150 (-15)

Te
st

ByteTrack★ 78.9 62.8 77.1 2363
+ BUSCA (MOT17 train) 79.3 (+0.4) 63.1 (+0.3) 77.7 (+0.6) 2358 (-5)
+ BUSCA (MOT17 fine-tune) 79.3 (+0.4) 63.1 (+0.3) 78.8 (+0.9) 2349 (-14)

I Effect of the [SEP] token

We incorporate [SEP] tokens to delimit different input segments, following stan-
dard practice in textual Transformers [42]. Nonetheless, track 𝜏 is the only ele-
ment in input I = {𝜏,P} with variable length and, thus, separating each proposal
𝑝 ∈ P using [SEP] is not necessarily mandatory. Still, Tab. 4 shows the advan-
tages of retaining [SEP] for every proposal, as visual Transformers benefit from
having additional registers to store, process, and retrieve global information [10].

J Impact of Training BUSCA on In-Domain Data

BUSCA aims to be as portable and generic as possible to facilitate its inte-
gration with any type of tracker by detection. This is why we train it on the
MOTSynth [16] synthetic dataset, without making any adjustments for specific
trackers or scenarios. Still, in-domain training from scratch is possible, as shown
in Tab. 5 (trained on the first half of MOT17-train and validated on the second
half). Despite being trained on less than 2 minutes of video, BUSCA still im-
proves +0.3 MOTA over the baseline. Nevertheless, BUSCA still benefits from
additional data, such as the 100 sequences from MOTSynth used in the primary
experiments. Accordingly, to further boost the performance of BUSCA.
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Table 6: BUSCA results on DanceTrack [51]. ★ denotes reproduced results for
GHOST [51] using the publicly available official code.

HOTA ↑ IDF1 ↑ MOTA ↑ DetA ↑ AssA ↑

CenterTrack [83] 41.8 35.7 86.8 78.1 22.6
FairMOT [78] 39.7 40.8 82.2 66.7 23.8
QDTrack [39] 54.2 50.4 87.7 80.1 36.8
TransTrack [55] 45.5 45.2 88.4 75.9 27.5
TraDeS [68] 43.3 41.2 86.2 74.5 25.4
MOTR [76] 54.2 51.5 79.7 73.5 40.2
GTR [84] 48.0 50.3 84.7 72.5 31.9
ByteTrack [77] 47.7 53.9 89.6 71.0 32.1
GHOST [51] 56.7 57.7 91.3 81.1 39.8

GHOST★ [51] 54.8 55.5 91.3 81.1 37.1
+ BUSCA (ours) 55.5 (+0.7) 56.1 (+0.6) 91.5 (+0.2) 81.4 (+0.3) 38.0 (+0.9)

Table 7: BUSCA results on BDD100K [75] validation set. ★ denotes reproduced results
for GHOST [51] using the publicly available official code.

mMOTA ↑ mHOTA ↑ mIDF1 ↑

D2TT2D-100K [75] 25.9 – 44.5
MOTR [76] 32.0 – 43.5
QDTrack [39] 36.3 41.7 51.5
TETer [30] 39.1 – 53.3
GHOST [51] 44.9 45.7 55.6
ByteTrack [77] 45.2 45.4 54.6

GHOST★ [51] 43.4 42.5 50.7
+ BUSCA (ours) 43.7 (+0.3) 43.1 (+0.6) 52.4 (+1.7)

K Behaviour under Complex Motions

BUSCA’s simple-yet-effective design is also able to model complex motions, like
the ones found in DanceTrack [54]. Among the five trackers we employed, only
GHOST [51] provides an official code for DanceTrack. We thus take it as an
example and show here its test results with and without BUSCA. While the
official code does not replicate the exact results in [51], BUSCA still yields im-
provements in DanceTrack, as shown in Tab. 6.

L Performance on Different Categories

The performance improvement that BUSCA yields is not limited to people only.
In Tab. 7, we show how it can improve the mMOTA, mHOTA, and mIDF1 of
GHOST [51] (other tested baseline trackers do not provide an official imple-
mentation for the dataset) in BDD100K [75], which comprises eight different
categories. For this experiment, we freeze the appearance feature extractor and
fine-tune BUSCA on SHIFT [56].
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Table 8: State-of-the-art comparison on MOT17 and MOT20 test sets including offline
versions of contemporary methods (colored gray). ★ means that the offline interpolation
and the per-sequence thresholds in ByteTrack [77] are removed.

MOT17 MOT20
MOTA ↑ HOTA ↑ IDF1 ↑ MOTA ↑ HOTA ↑ IDF1 ↑

StrongSORT [15] 78.3 63.5 78.5 72.2 61.5 75.9
+ AFLink (StrongSORT+) 78.3 (+0.0) 63.7 (+0.2) 79.0 (+0.5) 72.2 (+0.0) 61.6 (+0.1) 76.3 (+0.4)
+ AFLink+GSI (StrongSORT++) 79.6 (+1.3) 64.4 (+0.9) 79.5 (+1.0) 73.8 (+1.6) 62.6 (+1.1) 77.0 (+1.1)
+ BUSCA (ours) 78.6 (+0.3) 63.9 (+0.4) 79.2 (+0.7) 72.7 (+0.5) 61.8 (+0.3) 76.3 (+0.4)

ByteTrack★ [77] 78.9 62.8 77.1 74.2 60.4 74.5
+ interp.+thresh. (ByteTrack) 80.3 (+1.4) 63.1 (+0.3) 77.3 (+0.2) 77.8 (+3.6) 61.3 (+0.9) 75.2 (+0.7)
+ BUSCA (ours) 79.3 (+0.4) 63.1 (+0.3) 77.7 (+0.6) 74.5 (+0.3) 60.5 (+0.1) 74.4 (-0.1)

M BUSCA vs. Offline Processing

BUSCA offers a comprehensive framework to persistently track objects missed
by the detector in a fully online manner (i.e., without modifying past tracking
predictions or accessing future frames). This feature renders it highly valuable
for applications where the solution has to be immediately available with each in-
coming frame and cannot be changed at any later time. Still, certain algorithms
in the literature recover objects post hoc through offline post-processing tech-
niques. While these offline techniques are not directly comparable to BUSCA,
their results serve as a possible insight into the theoretical upper bound for on-
line methods like BUSCA. Specifically, Tab. 8 showcases the offline mechanisms
employed in StrongSORT++ [15] (i.e., AFLink and GSI) and in ByteTrack [77]
(i.e., offline linear interpolation and per-sequence thresholds).

AFLink, an appearance-free linking model that leverages spatiotemporal in-
formation to predict if two tracklets belong to the same object ID, provides a
slight boost in HOTA and IDF1, albeit still inferior to BUSCA’s. With the ad-
dition of GSI, which employs Gaussian process regression [66] for bounding box
interpolation, the achieved MOTA surpasses BUSCA by one point, highlighting
the importance of handling extremely occluded objects. This effect is further em-
phasized with ByteTrack’s offline linear interpolation and tracking thresholds,
which are adapted based on the evaluated test sequence. Nevertheless, BUSCA’s
performance remains competitive, consistently enhancing the capabilities of TbD
trackers in a fully online manner.

Lastly, despite being designed to enhance online multi-object trackers, BUSCA
can also potentially improve batch-based and offline tracking algorithms. Ex-
haustive analysis in this regard falls out of the scope of this paper. However, for
demonstration purposes, we show in Tab. 9 how integrating BUSCA with the
interpolation-based offline version of [77] results in +0.7/+0.2 MOTA/HOTA in
the MOT17 validation set.
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Table 9: Compatibility of BUSCA with offline algorithms. ★ means that the offline
interpolation and the per-sequence thresholds in ByteTrack [77] are removed.

MOTA ↑ HOTA ↑ IDF1 ↑ IDSW ↓
ByteTrack★ 76.5 67.4 79.4 165
+ BUSCA(ours) 77.1 (+0.6) 67.6 (+0.2) 79.5 (+0.1) 166 (+1)

ByteTrack 77.8 67.9 79.9 168
+ BUSCA(ours) 78.5 (+0.7) 68.1 (+0.2) 80.1 (+0.2) 166 (-2)

N Sequence-Wise Results

To facilitate the comparison of BUSCA with other approaches on a finer-grained
level, we show sequence-wise results for the test sets of MOT16 [35], MOT17 [35],
and MOT20 [12] in Tabs. 10, 11, and 12, respectively.
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Table 10: Sequence-wise results on MOT16 test set. ★ means that the offline interpola-
tion and the per-sequence thresholds in ByteTrack [77] are removed for fair comparison.
Private detections are used.

MOT16-01 MOT16-03 MOT16-06 MOT16-07 MOT16-08 MOT16-12 MOT16-14
MOTA HOTA IDF1 MOTA HOTA IDF1 MOTA HOTA IDF1 MOTA HOTA IDF1 MOTA HOTA IDF1 MOTA HOTA IDF1 MOTA HOTA IDF1

CenterTrack
+ BUSCA 60.5 45.1 53.1 86.6 63.8 80.6 56.9 45.9 59.5 55.2 41.5 50.7 39.2 42.0 46.7 48.9 48.8 60.4 41.7 37.5 50.4

TransCenter
+ BUSCA 55.3 49.0 58.5 90.7 71.9 85.8 58.8 45.0 56.0 67.7 49.9 60.0 50.6 44.5 51.6 54.9 53.7 67.1 48.1 42.5 60.5

GHOST
+ BUSCA 60.2 52.1 61.6 91.5 71.2 87.9 61.6 51.7 62.7 71.4 51.4 60.1 56.4 49.8 57.2 57.0 56.5 68.0 57.2 48.4 65.9

StrongSORT
+ BUSCA 61.7 52.0 63.2 91.4 72.0 89.0 62.3 51.6 63.5 71.3 55.2 69.7 56.5 48.8 56.3 62.9 59.8 73.1 54.3 48.6 68.1

ByteTrack★
+ BUSCA 61.6 49.2 57.8 91.6 72.5 90.3 61.5 47.1 57.3 72.1 49.4 59.5 55.3 46.4 51.8 64.3 58.6 71.5 53.8 45.5 63.6

Table 11: Sequence-wise results on MOT17 test set. ★ means that the offline interpola-
tion and the per-sequence thresholds in ByteTrack [77] are removed for fair comparison.
Private detections are used.

MOT17-01 MOT17-03 MOT17-06 MOT17-07 MOT17-08 MOT17-12 MOT17-14
MOTA HOTA IDF1 MOTA HOTA IDF1 MOTA HOTA IDF1 MOTA HOTA IDF1 MOTA HOTA IDF1 MOTA HOTA IDF1 MOTA HOTA IDF1

CenterTrack
+ BUSCA 60.3 45.1 53.0 86.8 64.0 80.7 57.9 45.9 59.3 55.4 41.0 50.1 32.0 37.6 40.4 48.0 48.2 59.4 41.9 37.5 50.4

TransCenter
+ BUSCA 57.3 49.5 59.0 90.9 72.2 85.9 60.7 45.1 55.8 68.1 49.4 59.3 58.0 43.1 50.6 54.4 53.1 66.2 48.1 42.5 60.5

GHOST
+ BUSCA 60.4 52.3 62.3 92.5 71.3 88.2 63.3 51.9 62.4 71.5 51.7 60.4 61.1 47.4 54.2 56.8 55.8 66.7 57.2 48.4 65.9

StrongSORT
+ BUSCA 61.8 52.1 63.2 92.3 72.3 89.5 62.9 51.5 63.0 71.0 55.0 69.3 58.9 46.4 54.2 62.0 59.1 72.4 54.3 48.6 68.1

ByteTrack★
+ BUSCA 61.5 49.3 57.8 92.6 72.8 90.8 62.3 47.0 56.9 73.1 49.7 59.9 61.8 44.7 50.4 63.3 57.8 70.6 53.8 45.5 63.6

Table 12: Sequence-wise results on MOT20 test set. ★ means that the offline interpola-
tion and the per-sequence thresholds in ByteTrack [77] are removed for fair comparison.
Private detections are used.

MOT20-04 MOT20-06 MOT20-07 MOT20-08
MOTA HOTA IDF1 MOTA HOTA IDF1 MOTA HOTA IDF1 MOTA HOTA IDF1

CenterTrack
+ BUSCA 57.1 48.3 65.6 42.8 37.7 48.1 73.9 56.1 69.3 23.8 34.5 44.2

TransCenter
+ BUSCA 84.9 66.1 82.2 61.1 49.0 58.6 77.7 59.3 71.1 55.6 44.9 57.2

GHOST
+ BUSCA 87.3 69.2 84.3 59.8 50.1 62.2 81.8 64.5 75.6 49.6 44.3 56.9

StrongSORT
+ BUSCA 87.1 69.4 84.7 56.8 51.1 65.2 81.9 67.6 79.8 45.3 43.5 56.1

ByteTrack★
+ BUSCA 86.8 67.8 83.6 61.4 50.7 62.4 81.3 62.9 73.2 50.3 43.7 55.7
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Fig. 7: Qualitative results showing the benefit of integrating BUSCA into Strong-
SORT [15]. Colors represent object identities. Results are shown for only one subject
to ease the visualization.
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Fig. 8: Qualitative results showing the benefit of integrating BUSCA into GHOST [51].
Colors represent object identities. Results are shown for only one subject to ease the
visualization.
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Fig. 9: Qualitative results showing the benefit of integrating BUSCA into TransCen-
ter [70]. Colors represent object identities. Results are shown for only one subject to
ease the visualization.
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Fig. 10: Qualitative results showing the benefit of integrating BUSCA into Center-
Track [83]. Colors represent object identities. Results are shown for only one subject
to ease the visualization.
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