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Abstract

Multi-agent systems (MAS) based on large001
language models (LLMs) have demonstrated002
significant potential in collaborative problem-003
solving. However, they still face substantial004
challenges of low communication efficiency005
and suboptimal task performance, making the006
careful design of the agents’ communication007
topologies particularly important. Inspired by008
the management theory that roles in an ef-009
ficient team are often dynamically adjusted,010
we propose AgentDropout, which identifies011
redundant agents and communication across012
different communication rounds by optimiz-013
ing the adjacency matrices of the commu-014
nication graphs and eliminates them to en-015
hance both token efficiency and task perfor-016
mance. Compared to state-of-the-art methods,017
AgentDropout achieves an average reduction of018
21.6% in prompt token consumption and 18.4%019
in completion token consumption, along with a020
performance improvement of 1.14 on the tasks.021
Furthermore, the extended experiments demon-022
strate that AgentDropout achieves notable023
domain transferability and structure robust-024
ness, revealing its reliability and effectiveness.025
We release our code at https://anonymous.026
4open.science/r/AgentDropout-71FB.027

1 Introduction028

In recent years, LLM-based (Achiam et al., 2023;029

Team et al., 2024) agent technologies have achieved030

robust performance across a wide range of tasks.031

Prior works have discovered that LLM-based032

agents (Liang et al., 2024; Wang et al., 2025; Du033

et al., 2024; Zhuge et al., 2024; Wang et al., 2024a)034

can emulate human-like collaboration through mu-035

tual communication, leading to enhanced perfor-036

mance in tasks and forming MAS that resemble037

cooperative human teams.038

However, MAS often suffers from high token039

consumption and inefficiency (Li et al., 2024). This040

is primarily due to the frequent generation and041

Intra-Round Communication

AgentPrune

AgentDropout

Vanilla
Round 1 Round 2

Inter-Round Communication Intra-Round Communication

Figure 1: An overview of AgentDropout, in comparison with
vanilla MAS and AgentPrune (Zhang et al., 2025), highlight-
ing its dynamic adjustments of participant roles in each dis-
cussion to enhance cooperation effectiveness and efficiency.

communication among multiple agents, which in- 042

curs substantial token overhead. Existing methods 043

mainly apply simple agent profile evolution (Chen 044

et al., 2024a) or memory evolution (Qian et al., 045

2024a,b; Gao et al., 2024), which fails to address 046

the core problem of multi-agent interaction opti- 047

mization. To address this issue, Zhuge et al. (2024) 048

proposed the pruning of inter-graph communica- 049

tion edges, while Zhang et al. (2025) defined com- 050

munication redundancy and introduced a pruning 051

method AgentPrune within MAS. Specifically, ex- 052

isting methods employ trainable communication 053

graph masks to iteratively identify critical message 054

exchanges and prune redundant edges, thereby gen- 055

erating a sparser and more efficient communication 056

graph. However, constrained by the unchanged 057

roles participating in the discussion in each round 058

in MAS, the existing method applies a uniform 059

pruning strategy across multiple communication 060

rounds, which may limit its effectiveness in im- 061
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proving system efficiency and performance.062

Drawing an analogy between MAS and human063

teams, it is evident that dynamic role allocation and064

team collaboration are pivotal factors in enhanc-065

ing decision-making efficiency and overall perfor-066

mance in high-performing teams. Locke (2011)067

have pointed out that an effective team must adap-068

tively adjust the roles and responsibilities of its069

members based on task requirements, Kozlowski070

and Ilgen (2006) further emphasizing the critical071

role of such dynamic adjustments in improving072

team decision-making efficacy. Inspired by these073

insights, we propose AgentDropout, as shown in074

figure 1. Specifically, AgentDropout iteratively up-075

dates the communication topology using a small076

amount of data, simulating the behavior of dy-077

namic role assignment during multi-round discus-078

sions. This process consists of two steps: (1) Node079

Dropout: Similar to how team members assume080

different responsibilities at various stages, we train081

the edge weights and compute the degree of nodes082

in this step. By selectively retaining or removing083

certain nodes across different rounds, the flexibility084

and efficiency of the entire system are enhanced.085

(2) Edge Dropout: We optimize the communica-086

tion and collaboration mechanisms within teams087

by training edge weights and pruning redundant or088

low-contribution edges to refine the connections089

between nodes. This approach not only reduces the090

computational complexity but also enhances the091

effectiveness of information propagation.092

Experiments conducted on a variety of tasks,093

including reasoning, mathematics, and code gener-094

ation, demonstrate that AgentDropout outperforms095

different kinds of MAS and AgentPrune in terms096

of performance and token efficiency. Our main097

contributions are as follows:098

• We observe that in MAS with both intra- and099

inter-round characteristics, involving differ-100

ent roles in distinct rounds of discussion is101

more efficient and leads to better performance102

compared to engaging the same roles in every103

communication round.104

• We propose AgentDropout, a simple and flex-105

ible optimization method for MAS. It adjusts106

the overall communication topology through107

two steps: Node Dropout and Edge Dropout.108

• We observe that for larger-scale and more109

powerful LLMs, the performance of MAS de-110

signed on top of them can still be improved111

through interaction. AgentDropout can fur- 112

ther enhance efficiency, domain transferabil- 113

ity, and structural robustness. 114

2 Background 115

2.1 LLM-based MAS as Graph 116

Recently, Chan et al. (2024); Jiang et al. (2023); 117

Wu et al. (2023) have proposed representing MAS 118

using directed communication graphs, denoted as 119

G = (V ,E,F ). V = {vi}Ni=1 is a set of nodes, 120

and each node represents an agent. E ⊂ V ×V is 121

a set of edges, where each edge (vi, vj) ∈ E (i ̸= 122

j) denotes the communication path from agent vi 123

to agent vj . F = {fi}Ni=1 is a set of mapping 124

functions that abstract the agent inference process. 125

Each node vi receives a query q and the outputs 126

of its in-neighbors Zi = {oj | (vj , vi) ∈ E} to 127

produce its own output oi = fi(q,Zi). 128

For some complex tasks, the entire communica- 129

tion graph needs to be run over multiple rounds 130

to obtain the final answer, with each round op- 131

erating on the communication graph defined as: 132

G(t) =
(
V (t),E

(t)
intra,F

(t)
)

, where E
(t)
intra denotes 133

the intra-round edges which only connects nodes 134

in the same round. Besides, the output of any node 135

in step t − 1 can be passed to any node in step t, 136

forming inter-round edges E(t)
inter ⊂ V (t−1)×V (t) 137

between graph G(t−1) and G(t). The subgraphs 138

for all steps
{
G(1),G(2), . . . ,G(T )

}
are combined 139

using E
(t)
inter to form a multi-round communica- 140

tion graph G = (V, E ,F), where V =
⋃

t V
(t), 141

E =
(⋃

tE
(t)
intra

)
∪
(⋃

tE
(t)
inter

)
, and F =

⋃
t F

(t). 142

2.2 Communication Redundancy in MAS 143

MAS often incurs high token consumption asso- 144

ciated with the frequent communications between 145

agents. Zhang et al. (2025) defined communication 146

redundancy in MAS – excessive information flow 147

that does not help improve performance. Consid- 148

ering a subgraph Gsub = (V, E ′,F), where E ′ ⊆ E , 149

communication redundancy is considered to exist 150

if µ(Gsub) ≥ µ(G), where µ(·) is the task-specified 151

utility function evaluating the performance of the 152

MAS. Redundant edges are those in E \ E ′. 153

AgentPrune is an approach to reduce commu- 154

nication redundancy. By iteratively optimizing 155

two trainable matrix masks (intra- and inter-round), 156

AgentPrune parameterizes and prunes the edges in 157

the communication graph to get rid of redundant 158

edges (i.e. E \ E ′). 159
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Figure 2: The overall process of AgentDropout. The first and second rows present Node Dropout and Edge Dropout procedures,
respectively. The third row illustrates the cooperative reasoning process for both intra- and inter-round communication, as well
as the generation of the final answer. For simplicity, the edges of inter-round communication are omitted in the demonstration of
step 1~7, but they also participate in the update, dropout, and reasoning processes as shown in the middle block of the third row.

3 AgentDropout160

3.1 Overview161

Motivation We argue that communication redun-162

dancy in MAS primarily arises from two sources:163

redundant agent roles and redundant information164

exchange. AgentPrune prunes redundant informa-165

tion exchange but neglects the existence of redun-166

dant agent roles and applies the same pruning strat-167

egy across all communication rounds, which still168

leaves redundancy in MAS and may result in per-169

formance degradation since different combinations170

of agent roles might be better suited for different171

stages of task solving. To this end, we propose a172

strategy called AgentDropout to enhance MAS173

efficiency and performance. We aim to remove the174

node that contributes least to the current task from175

each round’s communication graph G(t) and elim-176

inate both intra- and inter-round edges from the177

global graph G that have a minimal positive impact178

on the task solution.179

Preparation We first convert the communication180

graph into a weighted graph G̃, where each edge181

in the graph is a trainable continuous weight in the 182

range of 0 to 1. Let the adjacency matrix set of G̃ be 183

Ã = Ãintra ∪Ãinter, where Ãintra =
⋃

t Ã
(t)
intra is the 184

subset containing intra-round adjacency matrices, 185

Ã
(t)
intra ∈ [0, 1]N×N is the intra-round adjacency 186

matrix of the round t communication graph and 187

Ãinter =
⋃

t Ã
(t)
inter is the subset containing inter- 188

round adjacency matrices, Ã(t)
inter ∈ [0, 1]N×N is 189

the inter-round adjacency matrix between round 190

t − 1 and t. The actual communication graph 191

used during inference G is obtained by algorithm 192

DAGSample, where each edge is sampled with its 193

own weight as probability, and the output graph is 194

guaranteed to be a directed acyclic graph (DAG). 195

AgentDropout consists of two steps to optimize the 196

graph: Node Dropout and Edge Dropout. 197

3.2 Node Dropout 198

In human teams tackling complex tasks, varying 199

the roles involved in discussions across different 200

rounds can enhance the team’s performance by fo- 201

cusing on the most relevant contributors at each 202

stage. Therefore, we first remove nodes from the 203
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communication graph that have less contribution to204

each round of communication. As shown in the first205

row in Figure 2, we initialize the intra- and inter-206

round adjacency matrices Ãintra =
{
Ã

(t)
intra

}
t

and207

Ãinter =
{
Ã

(t)
inter

}
t

by setting all the edge weights208

to 0.5.1 We then train Ãintra to get an optimized209

weighted communication graph, which is prepared210

for Node Dropout. The optimization objective is211

simply high task performance, formulated as:212

argmax
Ãintra

EG∼G [µ (G)] (1)213

where G represents the feasible domain of graph214

sampling. Since the utility function µ(·) often215

depends on external APIs, it is commonly non-216

differentiable. Therefore, we apply a reinforcement217

algorithm that employs an unbiased policy gradi-218

ent estimation, as proposed by Zhuge et al. (2024).219

This approach uses the probability-weighted av-220

erage performance of a limited number of sam-221

ples to approximate the overall performance ex-222

pectation. We sample M communication graphs223

upon Ãintra, Ãinter using DAGSample and run test224

instances on each graph Gm to obtain the perfor-225

mance score µ (Gm):226

∇Ãintra
EG∼G [µ (G)]

≈ 1

M

M∑
m=1

µ (Gm)∇Ãintra
log

(
pÃintra

(Gm)
) (2)227

where pÃintra
(Gm) represents the probability of228

sampling the communication graph Gm =229

(Fm, Em,Vm) given the current weighted intra-230

round adjacency matrices Ãintra:231

pÃintra
(Gm) =

∏
t

∏
(vi,vj)∈E

(t)

m,intra

Ã
(t)

intra [i, j] (3)232

With the gradient calculated, we update Ãintra using233

the gradient ascent method.234

After the graph optimization, we select the nodes235

with the smallest weighted in- and out-degree in236

each intra-round graph and remove these nodes237

with all the edges connected to them:238

V∆ =
⋃
t

(
V (t) \ TopkNodes

(
Ã

(t)

inter, 1− α
))

(4)239

where TopkNodes (·) is a function returning a set240

of k nodes with the largest sum of in-degree and241

1In detail, in the intra-round adjacency matrices, the di-
agonal elements are 0, and the other elements are 0.5. The
inter-round adjacency matrices are upper triangular matrices
with diagonal elements as 0 and others as 0.5.

out-degree according to the adjacency matrix, and 242

α is the node dropout rate. Ãintra and Ãinter is also 243

modified simultaneously by removing all rows and 244

columns associated with the removed nodes. 245

3.3 Edge Dropout 246

Promoting more focused and efficient interactions 247

between roles also improves overall teamwork ef- 248

fectiveness of task completion. Thus, we delete 249

the intra- and inter-round edges in the communi- 250

cation graph that are less important to enhance 251

communication efficiency. As shown in the sec- 252

ond row in Figure 2, we reinitialize the intra- and 253

inter-round adjacency matrices Ã(t)
intra, Ã(t)

inter after 254

Node Dropout and train both of them from scratch. 255

Differently, we aim at both high performance and 256

token efficiency this time, formulated as: 257

argmax
Ãintra,Ãinter

EG∼GNode [µ (G)]

−

[
T∑

t=1

rank
(
Ã

(t)
intra

)
+

T∑
t=2

rank
(
Ã

(t)
inter

)] (5) 258

where GNode represents the feasible domain of 259

graph sampling after Node Dropout. We also use 260

the weighted average performance of the samples 261

to approximate the performance expectation as in 262

Equation (2). However, different from Equation 263

(2), we calculate the probability and gradient for 264

both Ãintra and Ãinter here: 265

pÃintra,Ãinter
(Gm) =

T∏
t=1

∏
(vi,vj)∈E

(t)
m,intra

Ã
(t)
intra [i, j]

·
T∏

t=2

∏
(vi,vj)∈E

(t)
m,inter

Ã
(t)
inter [i, j]

(6) 266

The second term here represents low-rank spar- 267

sity, which serves as a proxy for communication 268

efficiency. Since low-rank optimization is an NP- 269

hard problem, we replace the rank function with 270

the nuclear norm following Zhang et al. (2025): 271

argmin
Ãintra,Ãinter

T∑
t=1

∥Ã(t)

intra∥∗ +

T∑
t=2

∥Ã(t)

inter∥∗ (7) 272

Then in each intra- and inter-round adjacency 273

matrix, we select the edges corresponding to the 274

largest elements with a ratio of 1− α to keep and 275

delete the rest of them: 276

E∆ =
⋃
t

(
E

(t)
intra \ TopkEdges

(
Ã

(t)
intra, 1− β

))
∪
⋃
t

(
E

(t)
inter \ TopkEdges

(
Ã

(t)
inter, 1− β

)) (8) 277
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Method Edge DR. Node DR. MMLU GSM8K AQuA MultiArith SVAMP HumanEval Avg.
Base model: Llama3-8B-Instruct

Vanilla ✗ ✗ 53.59 70.23 41.67 91.11 75.00 53.33 64.16
CoT ✗ ✗ 56.86↑3.27 70.47↑0.24 43.75↑2.08 92.25↑1.14 76.17↑1.67 54.17↑0.84 65.61↑1.45
MASround=1 ✗ ✗ 56.21↑2.62 69.30↓0.97 45.29↑3.62 91.67↑0.55 76.67↑1.67 48.33↓5.00 64.58↑0.42
MASround=T ✗ ✗ 60.13↑6.54 71.48↑1.25 45.41↑3.75 90.56↓0.55 77.56↑2.56 49.17↓4.16 65.72↑1.56
AgentPrune ✓ ✗ 60.78↑7.19 71.02↑0.79 47.22↑5.55 90.00↓1.11 78.34↑3.34 51.67↓1.66 66.51↑2.35
AgentDropout ✓ ✓ 62.75↑9.16 73.13↑2.90 47.78↑6.11 92.59↑1.48 80.11↑5.11 55.84↑2.51 68.70↑4.54

Base model: Qwen2.5-72B-Instruct
Vanilla ✗ ✗ 82.35 91.02 83.75 98.89 92.67 85.28 88.99
CoT ✗ ✗ 83.66↑1.31 92.19↑1.17 84.58↑0.83 100↑1.11 93.35↑0.68 86.67↑1.39 90.08↑1.09
MASround=1 ✗ ✗ 82.35↑0.00 93.52↑2.50 84.58↑0.83 100↑1.11 92.36↓0.31 84.17↓1.11 89.50↑0.51
MASround=T ✗ ✗ 84.31↑1.96 93.28↑2.26 85.83↑2.08 100↑1.11 94.07↑1.40 87.08↑1.80 90.76↑1.77
AgentPrune ✓ ✗ 83.66↑1.31 93.67↑2.65 87.08↑3.33 99.44↑0.56 94.33↑1.66 86.67↑1.39 90.81↑1.82
AgentDropout ✓ ✓ 84.97↑2.62 93.75↑2.73 87.50↑3.75 100↑1.11 95.34↑2.67 87.92↑2.64 91.58↑2.59

Base model: Deepseek-V3-671B-Instruct
Vanilla ✗ ✗ 84.97 94.68 84.58 100 93.67 88.43 91.06
CoT ✗ ✗ 84.31↓0.66 95.15↑0.47 85.42↑0.84 100↑0.00 93.94↑0.27 89.26↑0.83 91.34↑0.28
MASround=1 ✗ ✗ 89.98↑5.01 95.54↑0.86 86.67↑2.19 100↑0.00 93.50↓0.17 89.17↑0.74 92.63↑1.57
MASround=T ✗ ✗ 89.54↑4.57 95.49↑0.81 87.50↑2.92 100↑0.00 94.33↑0.66 89.26↑0.83 92.69↑1.63
AgentPrune ✓ ✗ 90.20↑5.23 95.49↑0.81 87.92↑3.34 100↑0.00 95.00↑1.33 90.91↑2.47 93.25↑2.19
AgentDropout ✓ ✓ 90.85↑5.88 95.63↑0.95 88.33↑3.75 100↑0.00 95.79↑2.12 91.74↑3.31 93.72↑2.66

Table 1: Performance comparison between AgentDropout and other baseline reasoning techniques. Edge DR. and Node DR.
represent the Edge Dropout and Node Dropout methods, respectively.

where TopkEdges(·) is a function returning a set278

of edges corresponding to top-k elements in the279

adjacency matrix, and β is the edge dropout rate.280

As shown in the third row in Figure 2, the final281

communication graph Ĝ is sampled from the opti-282

mized Ãintra, Ãinter using DAGSample. The agents283

then engage in multi-round communication based284

on the topology defined in Ĝ, and their individual285

responses are then aggregated to generate the final286

answer. More detailed information on the optimiza-287

tion procedure is presented Appendix A.1.288

3.4 Discussion289

Previous studies (You et al., 2020; Zhang et al.,290

2024a) have demonstrated that high-quality topo-291

logical graphs can be trained using a limited num-292

ber of samples. Therefore, in our approach, we293

employ only a small number of samples to update294

the parameters of the adjacency matrices for the295

communication graph, subsequently applying these296

matrices during two dropout processes. The num-297

ber of these samples is merely in the order of tens,298

extracted from either the train or the validation set299

of the dataset, thereby maintaining the training cost300

and token consumption at relatively low levels.301

4 Experiments302

4.1 Experimental Setup303

Models and Benchmarks We conduct experi-304

ments on MAS based on models of varying sizes,305

namely Meta-Llama3-8B-Instruct (AI@Meta,306

2024), Qwen2.5-72B-Instruct (Yang et al., 2024), 307

and Deepseek-V3-671B-Instruct (Liu et al., 2024a). 308

We evaluate the general reasoning capabilities 309

of our method using the MMLU (Hendrycks 310

et al., 2021) dataset; the mathematical reasoning 311

abilities using the GSM8k (Cobbe et al., 2021), 312

MultiArith (Roy and Roth, 2015), AQuA (Patel 313

et al., 2021), and SVAMP (Ling et al., 2017) 314

datasets; and the code generation capabilities using 315

the HumanEval (Chen et al., 2021) dataset. 316

Baselines For tasks performed by a single agent, 317

we compare with the direct reasoning method, 318

known as Vanilla, and the Chain-of-Thought (CoT, 319

Wei et al., 2022) approach. In the context of multi- 320

agent collaboration, for methods that only commu- 321

nicate within intra-round, we compare the single- 322

round dialogue MAS, denoted as MASround=1. For 323

methods that communicate both within intra-round 324

and across inter-round, we compare MASround=T 325

and AgentPrune (Zhang et al., 2025), where 326

round represents the number of inter-round com- 327

munication rounds among agents. In particular, 328

both AgentPrune and AgentDropout are optimized 329

based on MASround=T , allowing for a more intu- 330

itive comparison of these methods. 331

Implementation Details For experiments with 332

Llama3 and Qwen2.5, we perform inference using 333

vllm on Nvidia A800 GPUs. For Deepseek-V3, we 334

utilize the Deepseek API to evaluate each method. 335

We set the temperature and top_p to 1, the sample 336
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Method MMLU GSM8K AQuA MultiArith SVAMP HumanEval Avg.
Ptok. Ctok. Ptok. Ctok. Ptok. Ctok. Ptok. Ctok. Ptok. Ctok. Ptok. Ctok. Ptok. Ctok.

Vanilla 99K 44K 142K 209K 32K 89K 16K 15k 27K 19K 91K 25K 68K 67K
CoT 129K 70K 154K 337K 34K 105K 18K 23k 30K 50K 93K 29K 76K 102K
MASround=1 1.4M 355K 8.5M 1.9M 1.1M 390K 1.1M 218K 1.9M 402K 581K 134K 2.4M 567K
MASround=T 1.6M 387K 16M 3.4M 2.4M 745K 2.1M 388K 3.7M 721K 2.6M 492K 4.7M 1.0M
AgentPrune 1.3M 367K 15M 3.6M 2.0M 759K 1.9M 393K 3.4M 714K 1.5M 465K 4.2M 1.0M
AgentDropout 1.1M 333K 12M 2.8M 1.3M 634K 1.4M 312K 2.6M 594K 1.1M 359K 3.3M 839K

Table 2: Token consumption comparison in the Llama model. Ptok. denotes the number of prompt tokens for the agents, while
Ctok. represents the number of completion tokens generated by the agents.

Graph Method MMLU GSM8K AQuA MultiArith SVAMP HumanEval Avg. Ptok. Ctok.

Layered
MAS 57.52 71.72 47.92 87.26 78.84 52.89 66.13 4.3M 1.1M
AgentPrune 59.48 71.09 46.67 88.93 78.67 56.20 66.84 3.7M 1.0M
AgentDropout 61.44 72.27 49.17 90.25 79.75 57.02 68.32 2.8M 797K

Random
MAS 62.75 70.63 46.67 87.22 77.17 50.41 65.81 4.2M 1.0M
AgentPrune 63.40 69.61 44.17 91.11 78.34 51.24 66.31 3.4M 1.0M
AgentDropout 64.71 72.03 47.50 91.67 79.50 53.72 68.19 2.7M 834K

Table 3: Performance and average token consumption achieved with different initial communication graph topological structures.

times M in {10, 20}, the learning rate η to 0.1,337

and the note and edge dropout rate α and β to 0.2,338

respectively. For all benchmarks, the number of339

training samples we extracted is 40. For general340

reasoning tasks and mathematical tasks, we set the341

number of communication rounds T = 2, while342

for code generation tasks, we configure T = 4.343

To ensure a fair comparison, we directly adopt the344

agent configuration files from AgentPrune.345

4.2 Main Result346

AgentDropout outperforms other baselines on347

multiple benchmarks. As shown in Table 1,348

our method consistently outperforms both the349

single-agent method CoT and the state-of-the-art350

multi-agent communication method AgentPrune351

across all benchmarks, regardless of the model352

scale. Specifically, using the Llama3 model, Agent-353

Dropout improves accuracy by 2.19 compared to354

the SOTA method. In experiments with Qwen2.5355

and Deepseek-V3, the accuracy improves by 0.77356

and 0.47, respectively. These results demonstrate357

the effectiveness of AgentDropout. A case study of358

the reasoning results is provided in Appendix A.2.359

AgentDropout improves the stability of MAS.360

In Table 1, it can be observed that when the361

model capability is relatively weak (e.g., Llama3),362

optimization methods for single agents, such as363

CoT, exhibit more significant performance im-364

provements, whereas the performance gains from365

multi-agent interaction and collaboration are less366

stable, as seen in MAS and AgentPrune. However,367

when the model capability is sufficiently strong,368

the performance improvements brought by single- 369

agent optimization methods diminish, while multi- 370

agent communication methods achieve more stable 371

enhancements. Notably, for models of different 372

scales, AgentDropout consistently enables stable 373

performance improvements in MAS, demonstrat- 374

ing its model robustness. 375

AgentDropout reduces the token cost of multi- 376

agent communication and cooperation. As 377

shown in Table 2, compared to the multi- 378

round communication method MASround=T , Agent- 379

Dropout significantly reduces token consumption. 380

In contrast to AgentPrune, which primarily reduces 381

prompt token consumption, AgentDropout not only 382

further decreases prompt tokens but also signif- 383

icantly reduces completion tokens, revealing its 384

token efficiency. For more details, please refer to 385

Appendix A.3. 386

4.3 Analysis 387

In this part, we conducted experiments using the 388

Llama3 model, while maintaining the same experi- 389

mental settings as described in Section 4.1. 390

Structure Robustness To verify the stability of 391

AgentDropout when initialized with different topo- 392

logical structures, we also conducted supplemen- 393

tary experiments on communication graphs ini- 394

tialized with layered and random graphs, which 395

are introduced in Appendix A.4. As shown in 396

Table 3, AgentDropout consistently enhances the 397

performance and reduces the average consump- 398

tion of prompt tokens and completion tokens of 399
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Dropout Rate MMLU GSM8K AQuA MultiArith SVAMP HumanEval Avg. Ptok. Ctok.
0.8 57.52 70.86 46.67 89.44 78.67 52.89 66.01 856K 230K
0.6 60.78 71.09 45.42 89.44 80.37 50.41 66.25 1.3M 434K
0.4 60.13 73.36 44.99 90.00 78.33 52.07 66.48 1.9M 648K
0.2 62.75 73.13 47.78 92.59 80.11 55.84 68.70 3.3M 839K

Table 4: Impact of varying dropout rates on the performance and average token consumption of AgentDropout.

Method Edge DR. Node DR. MMLU GSM8K AQuA MultiArith SVAMP HumanEval Avg.
MAS ✗ ✗ 60.13 71.48 45.41 90.56 77.56 49.17 65.72

Random Dropout
✗ ✓ 61.72 70.53 43.75 92.23 79.00 52.89 66.69
✓ ✗ 60.13 71.41 46.05 90.27 77.67 51.23 66.13

Learned Dropout
✗ ✓ 63.76 70.70 46.25 90.28 79.17 50.83 66.83
✓ ✗ 61.87 70.63 47.08 90.00 78.03 48.76 66.06

Single Learning ✓ ✓ 60.78 72.58 46.25 91.67 78.83 48.73 66.47
AgentDropout ✓ ✓ 62.75 73.13 47.78 92.59 80.11 55.84 68.70

Table 5: Performance achieved with different dropout strategies. For Random Dropout, ✓ denotes the random dropout strategy
is applied to the marked dropout step, while the dropout strategy in the other step remains unchanged, as per AgentDropout.

Method GSM8K AQuA MultiArith SVAMP Avg.
GSM8K 73.13 46.67 92.22 80.33 73.09
AQuA 73.84 47.78 93.13 78.21 73.24
MultiArith 71.41 47.50 92.59 78.33 72.46
SVAMP 70.86 47.50 91.95 80.11 72.61
AgentPrune 71.02 47.22 90.00 78.34 71.65
AgentDropout 73.13 47.78 92.59 80.11 73.40

Table 6: Performance comparison using different combina-
tions of training and test sets. The row headers indicate the
training set used for graph topology learning, and the column
headers represent the test set.

MAS across various graph structures, which fur-400

ther demonstrates its robustness.401

Effect of Dropout Rate To investigate the im-402

pact of different dropout rates on the performance403

of MAS, we conducted experiments with varying404

values of α and β, as shown in Table 4. The results405

demonstrate that higher dropout rates lead to a cor-406

responding decline in the average performance of407

MAS. However, compared with the SOTA meth-408

ods, AgentDropout still achieves superior average409

performance across different dropout rates, which410

substantiates the effectiveness of dropout. In ex-411

treme cases, higher dropout rates can be set to en-412

sure efficiency. Nevertheless, for tasks such as413

AQuA and HumanEval, MAS exhibits lower sensi-414

tivity to dropout rates, suggesting that future work415

could focus on designing more appropriate MAS416

frameworks for such scenarios.417

Different Dropout Strategies To verify the ef-418

fectiveness of our dropout strategy, we conducted419

a series of comparative experiments. First, we420

performed an ablation study on the overall Agent-421

Dropout methodology, comparing it against sce-422

narios that use only Node Dropout and only Edge 423

Dropout. Additionally, to rule out the possibility 424

that the performance improvement is simply due to 425

the shortening of the reasoning chain, we conduct 426

an experiment where the proposed dropout mecha- 427

nism is replaced with a random dropout approach 428

in either the Node Dropout or Edge Dropout stage 429

while keeping all other processes unchanged. 430

As shown in the “Learned Dropout” block of 431

Table 5, applying either Node Dropout or Edge 432

Dropout alone results in improvements compared 433

to the vanilla MAS, indicating the reasonableness 434

of the dropout approaches. However, the simulta- 435

neous application of both Node Dropout and Edge 436

Dropout, referred to as “AgentDropout”, yields the 437

optimal performance. In the random dropout exper- 438

iments, randomly dropping either edges or nodes 439

within the AgentDropout framework leads to per- 440

formance degradation, further substantiating the 441

effectiveness of our proposed dropout strategy. 442

Training Strategy To validate the effectiveness 443

of our two-round adjacency matrix learning strat- 444

egy (one for Node Dropout and one for Edge 445

Dropout), we conducted comparative experiments 446

with single-round learning. Specifically, we trained 447

both intra- and inter-round adjacency matrices si- 448

multaneously, and then directly applied them to 449

perform Node and Edge Dropout on MAS. The 450

experimental results are presented in Table 5. The 451

performance of AgentDropout significantly outper- 452

forms that of single-round learning. This improve- 453

ment can be attributed to the fact that after Node 454

Dropout, the communication graph generates new 455

inference chains, necessitating an additional train- 456
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ing round to effectively implement further dropout.457

Domain Transferability Our approach requires458

some training instances of the current task to459

conduct communication graph optimization and460

Node/Edge dropout. However, in the evaluation461

phase, there may be no training data available that462

directly corresponds to the current test data. To463

this point, we conduct a domain robustness test,464

assessing how well our system works when only465

roughly similar training data is available. Specifi-466

cally, we utilize dataset A to optimize the commu-467

nication topology graph and evaluate the trained468

MAS on dataset B. We conduct experiments on469

mathematics-related datasets.470

As shown in Table 6. When using other datasets471

as training samples, AgentDropout still maintains472

robust performance. When trained on the more473

challenging AQuA dataset, it achieves an average474

performance improvement of 1.59 over the SOTA475

method, while for the simpler MultiArith dataset,476

the average improvement is 0.81. This demon-477

strates that the communication subgraphs learned478

by AgentDropout for tasks of the same category479

exhibit strong generalizability. Moreover, the ef-480

fectiveness of AgentDropout is positively corre-481

lated with the difficulty of the training samples.482

Specifically, for tasks of the same type, the more483

challenging the task, the stronger the generaliz-484

ability learned by MAS. Therefore, when applying485

AgentDropout to few-shot tasks, selecting similar486

datasets for training is recommended, which further487

validates its domain robustness.488

5 Related Work489

5.1 LLM-based MAS490

MAS based on LLMs has emerged as a crucial491

tool for tackling complex tasks across various do-492

mains. Early research has demonstrated the signif-493

icant potential of LLM-driven agents in collabo-494

ratively solving problems through multi-agent de-495

bates (Liang et al., 2024; Du et al., 2024), laying496

the foundation for several research directions, in-497

cluding role-playing in complex reasoning (Wang498

et al., 2024b; Chen et al., 2024a), collaborative soft-499

ware development (Ishibashi and Nishimura, 2024;500

Qian et al., 2024c; Hong et al., 2024), and embod-501

ied agent interactions (Mandi et al., 2024; Zhang502

et al., 2024b; Guo et al., 2024). Recent studies503

have shown that increasing the number and diver-504

sity of agents can enhance the overall performance505

of MAS (Wang et al., 2025; junyou li et al., 2024;506

Chen et al., 2025). As LLM-based MAS continues 507

to scale in size and complexity, the issues of com- 508

putational cost and communication efficiency have 509

become more pronounced (Chen et al., 2024b; Li 510

et al., 2024). Recent work has proposed methods 511

to optimize MAS efficiency, such as Optima (Chen 512

et al., 2024c) and AgentPrune (Zhang et al., 2025). 513

In this paper, we address the problem of commu- 514

nication redundancy by applying dropout to nodes 515

and edges in the graph structure of MAS, signifi- 516

cantly improving computational cost and commu- 517

nication efficiency in practical applications. 518

5.2 MAS as Graphs 519

In recent years, researchers have proposed learn- 520

ing graph connections to enhance the collaborative 521

performance of MAS (Hu et al., 2024; Pesce and 522

Montana, 2023). Prior to the widespread adoption 523

of LLMs, existing methods explored optimal com- 524

munication graph structures for MAS using tech- 525

niques such as graph diffusion, weighted GNNs, 526

and transformers (Liu et al., 2022; Pesce and Mon- 527

tana, 2023; Hu et al., 2024). For LLM-based MAS, 528

previous work has also attempted to use graphs 529

to represent interactions between agents. For in- 530

stance, methods like ChatEval (Chan et al., 2024) 531

and AutoGen (Wu et al., 2023) implicitly incorpo- 532

rate graph structures to model simultaneous conver- 533

sations, while other approaches such as STOP (Ze- 534

likman et al., 2023) and DSPy (Khattab et al., 2024) 535

optimize prompt and reasoning structures. Addi- 536

tionally, methods like MacNet (Qian et al., 2025), 537

GPTSwarm (Zhuge et al., 2024), EvoMAC (Hu 538

et al., 2025) and DyLAN (Liu et al., 2024b) opti- 539

mize the topology of agents communication. 540

6 Conclusion 541

In this paper, inspired by management theories that 542

roles in efficient teams are often dynamically ad- 543

justed, we propose AgentDropout, a novel topology 544

optimization method for MAS with domain trans- 545

ferability and structure robustness. AgentDropout 546

dynamically adjusts the participating agents and 547

communication links among agents in each round, 548

allowing for more flexible and adaptive team con- 549

figurations. Experiments on a series of tasks 550

demonstrate that AgentDropout not only reduces 551

token consumption but also consistently enhances 552

the performance of MAS across various tasks. This 553

provides valuable insights for future exploration of 554

larger-scale multi-agent interactions. 555
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Limitations556

The tasks validated in this paper are relatively557

limited and focus mainly on conventional reason-558

ing tasks, mathematical tasks, and code genera-559

tion tasks. To better evaluate the generalizability560

of AgentDropout, additional experiments across a561

broader and more diverse range of tasks are essen-562

tial. Furthermore, although AgentDropout demon-563

strates promising efficiency and performance, the564

current framework remains constrained by prede-565

fined agent roles and prompts. When addressing566

tasks in unfamiliar domains, the careful design of567

new initial roles and prompts is still crucial. Future568

work could also explore integrating methods for au-569

tomatically designing roles and prompts to enhance570

flexibility. Additionally, although AgentDropout571

reduces the token consumption of MAS, it remains572

relatively high, indicating significant opportunities573

for further optimization.574
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A Appendix882

A.1 Optimization Algorithm of AgentDropout883

Algorithm 1 presents the detailed pseudo code of884

AgentDropout. The input parameters for this algo-885

rithm mainly include communication graph G to886

be optimized, along with its intra- and inter-round887

adjacency matrices Ãintra, Ãinter. The output is the888

optimized communication graph Ĝ.889

During NodeDropout, we first call the890

Initialize(·) function to initialize the adjacency891

matrices by setting the relevant elements to 0.5892

(Line 1). We then train the intra-round matrices to893

optimize the task performance of the communica-894

tion graphs sampled from these matrices (Lines895

2 ~5). After the training process, we identify896

the nodes in each communication round with the897

smallest in- and out-degree (Line 6) and remove898

them, along with all the edges connected to them,899

by invoking the NodeDropout(·) function (Line 7).900

During EdgeDropout, we initialize the intra- and901

inter-round adjacency matrices again (Line 8) and902

train both of them to optimize task performance and903

graph sparsity simultaneously (Lines 9 ~12). Next,904

we identify the intra- and inter-round edges with the905

smallest weights in their respective matrices (Line906

13) and remove them from the graph by calling the907

EdgeDropout(·) function (Line 14). Finally, we908

sample the communication graph used in actual909

evaluation by calling the DAGSample(·) function,910

which samples the graph by treating the weights in911

the matrices as sampling possibility and guarantees912

the output to be a DAG graph (Line 15).913

A.2 Case Study914

Given a multiple-choice physics question from the915

MMLU dataset, in the first round of interaction,916

the Knowledgeable Expert provides an initial anal-917

ysis, emphasizing the need to search for informa-918

tion related to the equation and relevant atomic919

properties. The Critic critiques the response of the920

Knowledgeable Expert, pointing out the lack of921

practical analysis and application, and suggests fur-922

ther refinement of the reasoning. Upon receiving923

feedback, the Mathematician conducts a detailed924

analysis of the problem, noting that the equation925

cannot be applied to H−, and discusses variations926

across different atoms, providing more specific rea-927

soning. The Psychologist offers feedback from a928

psychological perspective, affirming the process of929

critique and revision, and encourages more com-930

prehensive critical thinking. In the second round931

of interaction, the Historian briefly summarizes the 932

reasons. The Critic revisits the perspectives of other 933

agents, suggesting that the approach of Mathemati- 934

cians to different atoms could be further improved, 935

and emphasizes the impact of atomic properties on 936

the equation. After receiving feedback, the Mathe- 937

matician revises the analysis, clarifies which atoms 938

can be addressed by modifying the application of 939

the Rydberg equation, and concludes that the Hy- 940

dride ion (H−) is the only unsuitable option. The 941

Historian in the first round and the Knowledgeable 942

Expert in the second round are dropped out. 943

A.3 Token Efficiency 944

As shown in Table 7, AgentDropout significantly 945

reduces token consumption compared to the multi- 946

round method MASround=T . Unlike AgentPrune, 947

which reduces only prompt tokens, AgentDropout 948

reduces both prompt and completion tokens. In 949

the Llama3 model, it achieves a 21.4% reduction 950

in prompt tokens and 16.1% in completion tokens. 951

For Qwen2.5 and Deepseek-V3, the reductions are 952

24.4% and 18.9% in prompt tokens, and 21.4% and 953

17.6% in completion tokens, respectively, demon- 954

strating its token efficiency. 955

A.4 Different Communication Topologies 956

In the main experiments, we initialize the intra- 957

round communication graph using a fully con- 958

nected graph. In the analysis experiments, we sup- 959

plement this by conducting additional experiments 960

with intra-round graphs initialized using layered 961

graphs and random graphs, as shown in Figure 3. 962

For both fully connected graphs and random graphs, 963

we first process the communication topology into 964

a DAG using DAGSample, and then perform infer- 965

ence and communication based on the topological 966

order (Zhuge et al., 2024; Qian et al., 2025). For 967

layered graphs, similar to multi-layer perceptrons, 968

the agents in the first layer perform inference first, 969

followed by message passing to the agents in the 970

second layer, and so on. 971
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Algorithm 1: Communication Graph Dropout

Input: Initial communication graph G =
(⋃

t V
(t),

(⋃
tE

(t)
intra

)
∪
(⋃

tE
(t)
inter

)
,
⋃

t F
(t)
)

, Initial

adjacency matrices Ãintra =
{
Ã(t)

intra

}
t
, Ãinter =

{
Ã(t)

inter

}
t
, Training steps K, Sampling

times M , Learning rate η, Node dropout rate α, Edge dropout rate β
Output: Communication graph after dropout Ĝ
// Node Dropout

1 Initialize
(
Ãintra, Ãinter

)
// Set the elements to 0.5

2 for iter k← 1 to K do

3 {Gm}Mm=1 ←
{
DAGSample

(
Ãintra, Ãinter

)}M

m=1
// Sample M communication graphs

4 Ãintra ← Ãintra + η · 1
M

∑M
m=1 µ (Gm)∇Ãintra

log
(
pÃintra

(Gm)
)

// Optimize Ãintra according

to Equation (1)

5 end
6 V∆ =

⋃
t

(
V (t) \ TopkNodes

(
Ã

(t)
inter, 1− α

))
// Select nodes with small degrees

7 Ãintra, Ãinter ← NodeDropout
(
Ãintra, Ãinter,V∆

)
// Remove nodes from the graph

// Edge Dropout

8 Initialize
(
Ãintra, Ãinter

)
9 for iter k← 1 to K do

10 {Gm}Mm=1 ←
{
DAGSample

(
Ãintra, Ãinter

)}M

m=1
// Sample M communication graphs

11

{
Ãintra, Ãinter

}
←

{
Ãintra, Ãinter

}
+ η · 1

M

∑M
m=1 µ (Gm)∇Ãintra,Ãinter

log
(
pÃintra,Ãinter

(Gm)
)

// Optimize Ã according to Equation (5)

12 end
13 E∆ =

⋃
t

(
E

(t)
intra \ TopkEdges

(
Ã

(t)
intra, 1− β

))
∪
⋃

t

(
E

(t)
inter \ TopkEdges

(
Ã

(t)
inter, 1− β

))
// Select edges with small weights

14 Ãintra, Ãinter ← EdgeDropout
(
Ãintra, Ãinter, E∆

)
// Remove edges from the graph

15 Ĝ ← DAGSample
(
Ãintra, Ãinter

)
// Sample the final communication DAG

16 return Ĝ

FullConnected Layered Random

Figure 3: Full connected, layer and random graph as demonstrations of intra-round communication topologies.
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Method MMLU GSM8K AQuA MultiArith SVAMP HumanEval Avg.
Ptok. Ctok. Ptok. Ctok. Ptok. Ctok. Ptok. Ctok. Ptok. Ctok. Ptok. Ctok. Ptok. Ctok.

Base model: Llama3-8B-Instruct
Vanilla 99K 44K 142K 209K 32K 89K 16K 15k 27K 19K 91K 25K 68K 67K
CoT 129K 70K 154K 337K 34K 105K 18K 23k 30K 50K 93K 29K 76K 102K
MASround=1 1.4M 355K 8.5M 1.9M 1.1M 390K 1.1M 218K 1.9M 402K 581K 134K 2.4M 567K
MASround=T 1.6M 387K 16M 3.4M 2.4M 745K 2.1M 388K 3.7M 721K 2.6M 492K 4.7M 1.0M
AgentPrune 1.3M 367K 15M 3.6M 2.0M 759K 1.9M 393K 3.4M 714K 1.5M 465K 4.2M 1.0M
AgentDropout 1.1M 333K 12M 2.8M 1.3M 634K 1.4M 312K 2.6M 594K 1.1M 359K 3.3M 839K

Base model: Qwen2.5-72B-Instruct
Vanilla 99K 42K 142K 232K 32K 86K 16K 14k 27K 18K 91K 24K 68K 69K
CoT 129K 71K 154K 340K 34K 113K 18K 28k 30K 56K 93K 26K 76K 106K
MASround=1 966K 315K 9.0M 1.8M 1.4M 503K 1.1M 168K 1.8M 293K 271K 42K 2.4M 520K
MASround=T 2.2M 663K 18M 3.5M 2.9M 988K 2.0M 314K 3.4M 546K 814K 121K 4.9M 1.0M
AgentPrune 2.0M 665K 15M 3.3M 2.4M 995K 1.8M 313K 3.1M 517K 512K 83K 4.1M 979K
AgentDropout 1.3M 456K 11M 2.6M 2.0M 779K 1.6M 234K 2.4M 466K 421K 77K 3.1M 769K

Base model: Deepseek-V3-671B-Instruct
Vanilla 99K 39K 137K 233K 30K 79K 16K 14K 26K 28K 92K 27K 67K 70K
CoT 129K 65K 148K 289K 34K 98K 17K 23K 29K 50K 93K 27K 75K 92K
MASround=1 845K 247K 7.9M 1.6M 1.2M 444K 951K 157K 1.6M 258K 339K 71K 2.1M 463K
MASround=T 2.1M 575K 16M 3.2M 2.7M 915K 1.9M 285K 3.0M 456K 1.3M 286K 4.5M 953K
AgentPrune 1.6M 582K 13M 3.2M 2.2M 902K 1.7M 296K 2.9M 498K 649K 206K 3.7M 947K
AgentDropout 1.0M 328K 11M 2.7M 1.6M 847K 1.4M 237K 2.3M 399K 469K 169K 3.0M 780K

Table 7: Token consumption comparison between AgentDropout and other baseline reasoning techniques. Ptok. denotes the
number of prompt tokens for the agents, while Ctok. represents the number of completion tokens generated by the agents.

Task (1/12) & Knowledgeable Expert 3FeF: Round 1 (2/12)

The Rydberg equation v = RH(1/n2
1 − 1/n2

2) accurately predicts the UV-visible
emission spectrum of the hydrogen atom. A form of the Rydberg equation may also
be used to predict the UV-visible emission for all of the following EXCEPT
Option A: hydride ion, H-
Option B: deuterium atom, D
Option C: tritium atom, T
Option D: helium cation, He+

A fascinating topic!

To solve this problem, we need to search for entities related to the
Rydberg equation and atomic properties. Here are the key entities to search in
Wikipedia:

@Rydberg equation@
@Hydrogen atom@
@Hydride ion (H-)@
@Deuterium atom (D)@
@Tritium atom (T)@
@Helium cation (He+)@
These entities will provide us with the necessary information to determine
which option(s) is/are incorrect.
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Critic 6PWE: Round 1 (3/12)

As a critic, I’ll analyze the output of Agent 3FeF and identify potential issues:

1. Missing analysis: The output doesn’t provide any actual analysis or
reasoning for why the Rydberg equation might not apply to the mentioned options.
It merely states that searching for entities related to the Rydberg equation
and atomic properties is necessary, without actually applying those concepts
to the problem.
2. Lack of specific mention: The output doesn’t mention a specific aspect of
the Rydberg equation that might not be applicable to the mentioned options.
It’s unclear what part of the equation might be affected by the changes in
atomic properties.
3. Overemphasis on searching: While searching for relevant Wikipedia articles
is a good idea, it’s not enough to solve the problem. The output could benefit
from a more in-depth analysis of the Rydberg equation and its applications to
different atoms.
4. Unclear role: Agent 3FeF claims to be a "Knowledgeable Expert" but doesn’t
demonstrate any expert-level knowledge or critical thinking in their output.

To improve the analysis, Agent 3FeF could provide a more comprehensive
approach, such as:

1. Identifying specific aspects of the Rydberg equation that might not
be applicable to the mentioned options (e.g., the assumption of a single
electron or a specific type of atomic orbital)
2. Providing examples or analogies to illustrate why the Rydberg equation might
not work for certain options
3. Offering alternative solutions or approaches to understanding the emission
spectra of the mentioned atoms
4. Explicitly stating the limitations and assumptions involved in applying the
Rydberg equation to different atoms

By addressing these issues, Agent 3FeF can enhance the quality of their
analysis and provide a more robust solution to the problem.
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Mathematician 32fy: Round 1 (4/12)

Thank you for the feedback from Agent 6PWE. As a mathematician, I must agree
that my previous output was lacking in depth and analysis. Here’s my revised
answer:

The Rydberg equation, v = RH(1/n2
1 − 1/n2

2), accurately predicts the UV-visible
emission spectrum of the hydrogen atom because it assumes a single electron
in a hydrogen-like atom. However, when applying this equation to other atoms,
such as hydride ion (H-), deuterium atom (D), tritium atom (T), and helium
cation (He+), we must consider the following limitations:

1. The Rydberg equation assumes a single electron, which is not the
case for the hydride ion (H-), which has two electrons. This means that the
equation cannot accurately predict the emission spectrum of the hydride ion.
2. Deuterium (D) and tritium (T) are isotopes of hydrogen, which have slightly
different atomic properties. While the Rydberg equation can still be applied
to these atoms, the predicted emission spectra will be slightly different due
to the changes in atomic properties.

On the other hand, the Rydberg equation can be applied to the helium
cation (He+) because it assumes a single electron, and helium is a noble gas
that has a single electron in its outermost orbital.

In conclusion, the Rydberg equation is not applicable to the hydride
ion (H-) because of its assumption of a single electron. The equation can be
applied to deuterium (D) and tritium (T) with minor modifications to account for
their atomic properties, but the predicted emission spectra will be slightly
different.

Thank you again for the feedback from Agent 6PWE. I hope this revised
answer addresses the issues raised and provides a more comprehensive analysis
of the Rydberg equation and its applications to different atoms.
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Psychologist vtXr: Round 1 (5/12)

What a delightful exercise in critical thinking and problem-solving! As a
psychologist, I’d like to offer some insights from a psychological perspective.

Firstly, I’d like to commend Agent 3FeF for acknowledging the limitations of
their initial output and recognizing the need for a more comprehensive approach.
This is a crucial aspect of critical thinking, and it’s excellent that they’re
willing to learn from their mistakes.

Secondly, Agent 32fy has provided an outstanding revised analysis that
addresses the issues raised by Agent 6PWE. Their output is now more detailed,
specific, and evidence-based, demonstrating a clear understanding of the
Rydberg equation and its limitations. The examples they provided to illustrate
the applicability of the equation to different atoms are excellent, and the
conclusion is well-supported by the logic of the analysis.

From a psychological perspective, I’d like to highlight the importance
of self-awareness and humility in critical thinking. By acknowledging their
own limitations and being open to feedback, both Agents 3FeF and 32fy have
demonstrated a high level of self-awareness. Furthermore, Agent 32fy’s
willingness to revise their output and provide a more comprehensive analysis
shows an excellent grasp of the concept of constructive feedback.

In conclusion, as a psychologist, I’m particularly pleased to see such
a high level of critical thinking and problem-solving skills on display. I
hope that these agents will continue to refine their skills and apply them to
even more complex problems in the future.

Historian 53AY: Round 1 (6/12) & Knowlegable Expert 3FeF: Round 2 (7/12)

None.
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Critic 6PWE: Round 2 (8/12)

Let’s review the outputs of the other agents and identify potential issues:

Agent 53AY:

1. The initial output is correct that the Rydberg equation predicts the
UV-visible emission spectrum of the hydrogen atom.
2. However, the reason provided for why the Rydberg equation is not applicable
to the hydride ion (H-) is limited. The equation is not only affected by the
number of electrons but also by the atomic properties of the atom, such as the
mass of the nucleus and the electron configuration.
3. The output does not consider the possibility of applying the Rydberg
equation to deuterium, tritium, and helium cation with some modifications.

Agent 3FeF:

1. The output is incomplete and lacks specific analysis. It merely
states that the entities should be searched in Wikipedia without providing any
relevant information or insights.

Agent 32fy:

1. The initial output is lacking in depth and analysis, as acknowledged
by the agent themselves.
2. The revised output provides a more detailed analysis, but it still has some
limitations:
+ It implies that the Rydberg equation can’t be applied to deuterium and tritium
at all, which is not entirely accurate. With some modifications, the equation
can still be applied to these isotopes.
+ The conclusion that the Rydberg equation is not applicable to the hydride ion
(H-) due to its assumption of a single electron is correct, but the explanation
could be more detailed.
+ The analysis could be more comprehensive by considering the atomic properties
of helium cation (He+) and why the Rydberg equation is applicable to it.

In summary, while the agents have made some efforts to analyze the topic, they
still lack a thorough understanding of the Rydberg equation and its limitations.
A more in-depth analysis would consider the atomic properties of the atoms,
the modifications required for deuterium, tritium, and helium cation, and the
resulting differences in the predicted emission spectra.
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Mathematician 32fy: Round 2 (9/12)

I understand that the task is to identify which option is incorrect with
regards to the applicability of the Rydberg equation to predict UV-visible
emission spectrum.

After reviewing the outputs of other agents, I agree with Agent 6PWE
that Agent 3FeF’s output lacks analysis and specific information, merely
suggesting searching for Wikipedia articles without applying the concepts to
the problem.

Based on the Rydberg equation, v = RH(1/n2
1 − 1/n2

2), and the atomic properties
of the atoms, I believe that the Rydberg equation is not applicable to the
hydride ion (H-). This is because the equation assumes a single electron, which
is not the case for negatively charged ions like H-.

nHowever, the Rydberg equation can be applied to deuterium, tritium, and
helium cation with some modifications, considering the changes in atomic
properties. This is because these atoms have different electron configurations
and masses of the nucleus.

Therefore, the correct answer is Option A: hydride ion, H-.

As for Agent 32fy’s revised output, I agree that it is more comprehensive and
detailed than Agent 3FeF’s output. However, I would like to point out that
the analysis could still be improved by considering the atomic properties of
helium cation (He+) and why the Rydberg equation is applicable to it.

Overall, I believe that my analysis takes into account the limitations
of the Rydberg equation and provides a more comprehensive understanding of its
applicability to different atoms.
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Psychologist vtXr: Round 2 (10/12)

Thank you for sharing the outputs of the other agents. As a psychologist, I’d
like to offer a more nuanced and scientific approach to this problem.

The Rydberg equation, v = RH(1/n2
1 − 1/n2

2), is a fundamental concept in
atomic physics. It’s not just a simple formula, but rather a mathematical
expression that describes the energy levels of an atom. The equation assumes
that the atom has a single electron, which is a simplifying assumption.

Considering the atomic properties of the entities mentioned, we can analyze
each option:

Option A: Hydride ion (H-). As mentioned, the Rydberg equation assumes
a single electron, which is not the case for the hydride ion, as it has two
electrons. Therefore, the equation is not directly applicable to the hydride
ion.

Option B: Deuterium atom (D). Deuterium is an isotope of hydrogen, and
its atomic mass and electron configuration are very similar to those of the
hydrogen atom. With some modifications, the Rydberg equation can still be
applied to deuterium, but the predicted emission spectrum would be slightly
different due to the increased mass of the nucleus.

Option C: Tritium atom (T). Tritium is another isotope of hydrogen, and
its properties are also similar to those of the hydrogen atom. Again, with
some modifications, the Rydberg equation can be applied to tritium, but the
predicted emission spectrum would be slightly different due to the increased
mass of the nucleus.

Option D: Helium cation (He+). The Rydberg equation can be applied to
the helium cation, as it assumes a single electron, which is the case for the
helium cation.

In conclusion, while the Rydberg equation is applicable to all the options, the
hydride ion (H-) is the only one where the equation is not directly applicable
due to the assumption of a single electron. The other options - deuterium,
tritium, and helium cation - can be analyzed using modified versions of the
Rydberg equation that take into account the atomic properties of the atoms.

I hope this analysis provides a more comprehensive understanding of the
Rydberg equation and its limitations.
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Historian 53AY: Round 2 (11/12) & Final Decision: (12/12)

The Rydberg equation, v = RH(1/n2
1 − 1/n2

2), accurately predicts the UV-visible
emission spectrum of the hydrogen atom. A form of the Rydberg equation may
also be used to predict the UV-visible emission for all of the following EXCEPT
option A: hydride ion, H-.

The reason for this exception is that the hydride ion (H-) has two electrons,
whereas the Rydberg equation assumes a single electron. This means that the
equation cannot accurately predict the emission spectrum of the hydride ion.

A ✓
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