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Abstract
We present time vectors, a simple tool to cus-001
tomize language models to new time periods.002
Time vectors are created by finetuning a lan-003
guage model on data from a single time (e.g.,004
a year or month), and then subtracting the005
weights of the original pretrained model. This006
vector specifies a direction in weight space007
that, as our experiments show, improves perfor-008
mance on text from that time period. Time vec-009
tors specialized to adjacent time periods appear010
to be positioned closer together in a manifold.011
Using this structure, we interpolate between012
time vectors to induce new models that perform013
better on intervening and future time periods,014
without any additional training. We demon-015
strate the consistency of our findings across016
different tasks, domains, model sizes, and time017
scales. Our results suggest that time is encoded018
in the weight space of finetuned models.019

1 Introduction020

Temporal variation is a fundamental characteris-021

tic of language. As we show in §3, it manifests022

in language model development as temporal mis-023

alignment, where deviations in train and test data024

lead to large performance degradation across dif-025

ferent time periods (Luu et al., 2022; Lazaridou026

et al., 2021, inter alia). This necessitates adapta-027

tion techniques for customizing models to specific028

time periods. Designing such techniques is difficult,029

however, due to the multitude of time scales and030

the possibility that data from a target time period031

might be unavailable.032

Recent work has shown that the behavior of neu-033

ral networks can be edited through closed-form034

interpolation between parameters of finetuned mod-035

els (Ilharco et al., 2023; Ortiz-Jiménez et al., 2023;036

Li et al., 2022; Wortsman et al., 2021, inter alia).037

In this work, we demonstrate that weight-space038

interpolation can also be used to cheaply edit lan-039

guage model behavior over time. To this end, we040

introduce time vectors (§4), an extension of task041

Figure 1: We present time vectors, a simple tool to cus-
tomize language models to new time periods. Time
vectors (τi) specify a direction in weight space that im-
proves performance on text from a time period i. They
are computed by subtracting the pretrained weights (θpre;
left panel) from those finetuned to a target time period
(θi). We can customize model behavior to new time
periods (e.g., intervening months or years) by interpo-
lating between time vectors and adding the result to the
pretrained model (middle panel). We can also gener-
alize to a future time period j with analogy arithmetic
(right panel). This involves combining a task-specific
time vector with analogous time vectors derived from
finetuned language models (τLM

j ).

vectors (Ilharco et al., 2023). We finetune a pre- 042

trained language model on text from a single time 043

period, and then subtract the pretrained weights. 044

This vector represents a direction of movement in 045

weight space that improves performance on text 046

from the target time period. 047

We analyze the structure of time vectors with 048

temporally organized datasets for language mod- 049

eling, classification, and summarization (§2). Our 050

results consistently suggest that time vectors are in- 051

tuitively organized on a manifold; years or months 052

that are closer together in time yield time vectors 053

that are also closer together in weight space. Simi- 054

larly, we show that temporal degradation in yearly 055

and monthly settings is strongly correlated with the 056

angles between time vectors (§4.2). 057

We use this structure of time vectors to induce 058
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Figure 2: Model performance degrades linearly year-to-year. We evaluate language model perplexity (WMT),
ROUGE-L (news summarization), and macro F1 (political affiliation classification). Each cell indicates the monthly
performance of T5-3B finetuned and evaluated on a single year from that task. We report the percentage difference
from the average performance for each year, and find linear degradation as finetuning and evaluation years become
more misaligned regardless of task. We display similar trends for T5-small and medium, as well as for other domains
and tasks, in §A.1. We measure the linearity of these degradations in Appendix Table 4.

models that generalize better to data from new time059

periods. By interpolating between two time vectors,060

we discover vectors that, when applied to the pre-061

trained model, improve performance on intervening062

months or years (§4.3). The structure can also be063

used to generalize task-specific models across time064

periods with analogous time vectors specialized to065

unlabeled data (§4.4).066

Our results show that temporal variation is to067

some extent encoded in the weight space of fine-068

tuned models, and that weight interpolation can069

help customize language models to new time peri-070

ods. We publicly release our code, data, and over071

500 models finetuned on specific time periods.1072

2 Data and Finetuning073

In this section, we describe our datasets and fine-074

tuning techniques, which serve as the basis for all075

subsequent experiments. We finetune language076

models on multiple time-stratified datasets, which077

we use to analyze temporal misalignment and build078

time vectors. Then, we explore different ways of079

interpolating between time vectors to generalize080

to new times. See §4.3-4.5 for more details on081

interpolation strategies.082

2.1 Datasets083

Language Modeling We create two new time-084

specific language modeling datasets from unla-085

beled text in news and Twitter domains. For these086

1anonymous.com

datasets, we measure perplexity of the model on 087

the test set: 088

• WMT Language Modeling: We randomly 089

sample 67K ± 5K articles (47M BPE tokens) 090

of training articles and 3K ± 0.3K test articles 091

(2.3–2.4M tokens of) from each year 2012– 092

2021 in the English subset of the WMT news 093

dataset (Barrault et al., 2021), from 2012– 094

2016. From the same time range, we also 095

sample 7.1M tokens of training articles and 096

700–720K tokens of test articles from each 097

month. We are missing WMT train and test 098

splits for August 2012 and May 2016. 099

• Twitter Language Modeling: We randomly 100

sample 2M ± 105K training tweets (72–78M 101

tokens BPE tokens) and 100K ± 5.4K test 102

tweets (3.6-3.9M BPE tokens) from each year 103

in the Internet Archive Twitter Stream Grab,2 104

from 2015–2020. We only use this dataset to 105

study the domain-specificity of time vectors 106

in §4.4. 107

To understand the level of contamination in our 108

datasets, we measure the overlap between yearly 109

train and test splits in both tasks using a Bloom fil- 110

ter.3 We find that less than two percent and 0.1 per- 111

cent of examples in the Twitter and WMT LM test 112

sets, respectively, contain contaminated n-grams. 113

2https://archive.org/details/
twitterstream

3https://github.com/allenai/bff
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We do not own any text in these corpora, and pub-114

licly release our splits under the CC0 license.115

Downstream Tasks For downstream tasks, we116

draw from Luu et al. (2022). We measure each117

model’s performance on the test set in ROUGE-L118

for NewsSum and macro F1 for PoliAff.119

• NewsSum: We use Luu et al. (2022) postpro-120

cessing of Grusky et al. (2018) news summa-121

rization task. To align with out WMT dataset,122

we do not bin adjacent years together, creating123

uniformly sized splits for each year from 2012124

to 2016.125

• PoliAff: We use the Political Affiliation task126

from Luu et al. (2022), with uniformly sized127

datasets for each year from 2015 to 2020.128

2.2 Finetuning129

To compare the same weight space across tasks,130

we use pretrained T5 (Raffel et al., 2023) check-131

points for all our experiments. We finetune T5-132

small, T5-large, and T5-3b on each of our time-133

stratified datsets. For language modeling, we use134

the “LM adaptation” objective (Lester et al., 2021).135

To reduce the computational burden, we fine-136

tune T5-large and T5-3B with Low-Rank Adap-137

tation (LoRA; Hu et al., 2021) and default hy-138

perparameters (q and v attention target modules,139

r = 8, α = 32, dropout = 0.1). When creating140

time vectors, we merge LoRA weights back into141

the base model before subtracting the pretrained142

model.143

Across all settings, we use a batch size of 2 with144

8 gradient accumulation steps. We finetune for145

a single epoch on LM splits and three epochs on146

downstream task splits. Our learning rates across147

all tasks are 8 × 10−4 for T5-small and T5-large,148

and 2× 10−4 for T5-3b. We finetuned models con-149

currently with a single GPU each; we used 8 2080ti,150

4 Titan, and 8 A40 GPUs. In experiments for sec-151

tions §4.4 and §4.5, we ran evaluations in parallel152

using available Titan, A40, and A100 GPUs.153

3 Revealing Temporal Misalignment at154

Multiple Time Scales155

We begin with an analysis of temporal misalign-156

ment using the new set of models and tasks that we157

consider in this work (§2). These findings set the158

stage for our creation of time vectors in §4.159

Figure 3: Monthly temporal degradation has sea-
sonal patterns. Each cell indicates the monthly perfor-
mance of T5-small finetuned and evaluated on a single
month of the WMT dataset. We report the percentage
difference in test perplexity from the average on the eval-
uation month over all finetuned T5-small models (darker
is better). The diagonal indicates that each model does
best on its finetuning month. Models also do relatively
better on the same month in other years, visible as the
stripes radiating out from the diagonal every 12 months.

3.1 Yearly Degradation is Linear 160

Previous work on temporal misalignment shows 161

that models degrade over time on a yearly basis. 162

To confirm these results, we finetune T5-small, 163

T5-large, and T5-3b on each yearly split from ev- 164

ery dataset. We then evaluate each of these year- 165

finetuned models on every other time split of the 166

test data. 167

We display heatmaps of temporal misalignment 168

at a yearly scale in Figure 2. We report percent 169

perplexity change from the average on each year to 170

avoid inherent year performance differences. Con- 171

sistent with past work (Lazaridou et al., 2021; Luu 172

et al., 2022; Longpre et al., 2023), we observe linear 173

patterns of degradation in each task for all model 174

sizes (see Table 4 in the Appendix for more details). 175

Like Luu et al. (2022) show, some tasks, like politi- 176

cal affiliation classification, exhibit clearer degra- 177

dation than others. We quantify these variations in 178

§A.2. 179

3.2 Monthly Degradation is Seasonal 180

Next, we turn to month-by-month temporal mis- 181

alignment, which, to the best of our knowledge, 182

is unexplored. We train T5-small on each WMT 183

LM month split from 2012–2016, resulting in 58 184

month-finetuned models. We then test every 2012– 185

2016 month model on each month test split for a 186
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Figure 4: Time vectors are organized in a mani-
fold that reflects temporal variation. Each point is a
UMAP projection (with default parameters) of the last
feedforward layer of a T5-small time vector finetuned
on single month of WMT. Points and edges between
adjacent months are colored by year. Distances between
the weights of time vectors correlate with temporal mis-
alignment (§4.2).

total of 3,364 evaluations.187

As seen in Figure 3, finetuning and evaluating188

models on specific months in the WMT dataset re-189

veals non-linear patterns in temporal misalignment,190

which correspond to the cycle of months in each191

year. This pattern is captured by the stripes that oc-192

cur parallel to the diagonal every 12 months, which193

indicate that the model for a particular month tends194

to do better on the same month in other years. We195

quantify these differences in perplexity in appendix196

Figure 12. We also report degradation patterns in197

online training settings in §A.4.198

3.3 Summary199

We measure temporal misalignment across a va-200

riety of domains, tasks and time scales. While201

performance decays linearly on a yearly scale, we202

discover seasonal trends in month-to-month mis-203

alignment. Next, we analyze how these phenomena204

relate to the weights of time-specific models, and205

then use that relationship to present techniques for206

adapting LMs to new times.207

4 Temporal Adaptation with Time208

Vectors209

The collection of year and month-finetuned mod-210

els from §3 presents a new source of data to study211

temporal misalignment: model weights. In this212

section, we analyze these weights through the lens213

of time vectors, formed by taking the difference of214

a model finetuned on a specific time and the pre-215

Pearson r

T5 size WMT LM NewsSum PoliAff

small -0.867 0.663 0.654
large -0.737 0.628 0.672
3b -0.795 0.626 0.668

Table 1: The similarity between time vectors corre-
lates with temporal degradation. Pearson correlation
between cosine similarity of yearly time vectors and %
degradation from the mean performance of all yearly
models on each evaluation time period. All p-values are
< 8× 10−4.

trained model. First, we show that the weights of 216

two time vectors become less similar as the times 217

they were finetuned on become more misaligned 218

(§4.2). Then, we attempt to use the reverse relation- 219

ship to update models to unseen times: reducing 220

misalignment on intervening (§4.3), future (§4.4), 221

and multiple time periods (§4.5) by interpolating 222

time vectors. 223

4.1 Background and Definition 224

Task vectors (Ilharco et al., 2023) are the differ- 225

ence of the weights of a pretrained model from 226

the weights of the same model after finetuning on 227

a task. Adding and subtracting task vectors from 228

finetuned models is a simple and effective way to 229

improve performance on other settings, or reduce 230

unwanted behavior without further training. Like 231

word embeddings, if there are tasks with the anal- 232

ogous relationship “A is to B as C is to D,” then 233

task vectors can be used to improve performance 234

on D with the approximation D ≈ C + (B −A). 235

Time vectors are an extension of task vectors 236

to the time domain. Given the weights of the pre- 237

trained model, θpre and those of the model fine- 238

tuned on data from only a single time period t, θt, 239

a time vector τt = θt − θpre . Like their task-based 240

counterparts, we add back the pretrained weights at 241

inference time and evaluate θpre + τt (Ilharco et al., 242

2023). We call time vectors from models finetuned 243

on individual years and months “year-vectors” and 244

“month-vectors.” 245

4.2 Correlation of Time Vector Similarity and 246

Temporal Degradation 247

We visualize time vectors with a UMAP in Figure 248

4, which suggests that time vectors closer together 249

in weight space are also closer together in time. 250

To verify this hypothesis, we measure the cosine 251
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similarity between model weights from each pair252

of time vectors trained on different time periods253

(visualized in §A.1).254

We find that this similarity metric and perfor-255

mance (Figure 11) decay similarly over time. Table256

1 shows that the correlation between cosine simi-257

larity and relative performance change on different258

years is highest in WMT language modeling. Cor-259

relations are generally similar across T5 sizes, with260

a higher score for T5-small in the WMT LM setting261

than T5-large and T5-3b, and no absolute values262

less than 0.6.263

This relationship also extends to the monthly264

scale. Seasonal stripes are visible in the cosine sim-265

ilarities between each pair of monthly WMT time266

vectors (visualized in Appendix Figure 9). The267

monthly performance degradation from the mean268

(Figure 3) and cosine similarity matrices (Figure 9)269

have a negative correlation (Pearson r = −0.667;270

p < 10−16). We analyze cosine similarities to271

single-year time vectors throughout online training272

in Appendix §A.5.273

These results indicate that time vectors are or-274

ganized in way that is predictive of their perfor-275

mance on corresponding time periods. Next, we276

explore how we can use this structure to improve277

performance on new time periods by interpolating278

between time vectors.279

4.3 Generalizing to Intervening Time Periods280

Archiving issues or a low sampling rate can lead281

to gaps in datasets between the oldest and newest282

examples. Without data, we expect models to per-283

form worse on these “gap” times due to temporal284

misalignment. In this section, we find that we can285

generalize better to these intervening time periods286

by interpolating between models finetuned on the287

oldest and newest times.288

Method For two time vectors τj , τk, we compute289

their interpolation α · τj + (1 − α) · τk with α ∈290

[0, 1]. In this section, we interpolate between the291

earliest year time vector τ0 and latest year time292

vector τn and evaluate on times t0, ..., tn for each293

α ∈ [0.1, 0.2, ..., 1.0].294

Results Figure 5 shows that interpolating be-295

tween start and end-year finetuned models im-296

proves performance on intervening years in both297

WMT LM and PoliAff tasks. Improvement is gen-298

erally greatest on the exact middle years (2014299

for WMT LM, 2017 for PoliAff) and decreases300

Perplexity (↓) Rouge (↑) F1 (↑)

Method WMT LM NewsSum PoliAff

Start-year finetuned (τ0) 13.92 38.56 0.6886
End-year finetuned (τn) 13.84 35.09 0.6967
1
2(τ0 + τn) 13.77 38.86 0.7765
Best interpolations 13.75 40.11 0.7941
Eval-year finetuned (τi) 13.65 42.36 0.8341

Table 2: Interpolation between start and end-year
finetuned models reduces temporal misalignment
on intervening years. T5-3b average performance on
each year between start and end (non-inclusive). “Best
interpolations" use the best performing α values for
each year.

on years closer to start and end times. Patterns of 301

improvement also vary depending on setting, with 302

flatter changes in performance near α = 1.0, 0.0 303

in PoliAff compared to WMT LM, and minimal 304

improvements in NewsSum across αs compared 305

to the difference in performance between evalua- 306

tion years. Table 2 quantifies these changes, show- 307

ing that interpolation closes the gap on intervening 308

years between temporally aligned and misaligned 309

models. Improvements are particularly large for 310

PoliAff, nearly eight macro-F1 points just by aver- 311

aging the start and end-year time vectors. 312

Figure 6 shows that these results extend to the 313

monthly scale for WMT LM; we can interpolate 314

between time vectors finetuned on January and 315

December in a year to improve performance on 316

the months between them. The best interpolations 317

for each month follow an intuitive pattern, with 318

a higher percentage of the January model leading 319

to better performance on earlier months and vice 320

versa. 321

4.4 Generalizing to the Future 322

The creation of labeled datasets lags behind corpera 323

of raw text, which can be scraped automatically. As 324

a result, language models that rely on supervision 325

for finetuning are quickly outdated. Updating these 326

models can be expensive, involving extra finetuning 327

and creating labeled datasets from more recent ex- 328

amples. In this section, we present a new technique 329

for updating task models finetuned on a source time 330

period j to a target time period k with only unla- 331

beled data from j, using task analogies (Ilharco 332

et al., 2023). 333

Method Given language models with weights 334

θLM
j , θLM

k finetuned on unlabeled text from times 335

j, k, and a task-specific model with weights θj fine- 336

tuned on labeled data from time j, we perform the 337
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Figure 5: Interpolating between two year vectors improves performance on the years between them. T5-3b
performance improvements follow an intuitive structure, e.g. when interpolating between 2012 and 2016, the best
result on 2013 occurs with a higher percentage of 2012 and vice versa for 2015. Improvement from interpolation
varies across settings.

Figure 6: Interpolating between two month vectors improves performance on the months between them.
We interpolate between January and December month vectors and evaluate on all other months within the same
finetuning year. Like at the yearly scale, early months do better with a higher percentage of the January model
and vice versa while middle months do best with a 50% split between the models. The stars in the upper plots
correspond to the best performing interpolations for each evaluation month; these optimums are mirrored in the
lower line plots.

following arithmetic on the vectors:338

τj = θj − θpre339

τLM
j = θLM

j − θpre340

τLM
k = θLM

k − θpre341

τk ≈ α1 · τj + (α2 · τLM
k − α3 · τLM

j )342

θk = τk + θpre343

We evaluate our estimated θk on each target344

time tk, sweeping over all combinations of α1 ∈345

[0.6, 0.8, . . . 2.2], α2, α3 ∈ [0.1, . . . 0.6] and re-346

porting the best result compared to the original347

model θj . In this section, we update a 2012 News- 348

Sum model to 2013–2016, and a 2015 PoliAff 349

model to 2016–2020 using WMT LM and Twit- 350

ter LM time vectors respectively. 351

Results Task analogies improve performance on 352

future years in both PoliAff and NewsSum tasks. 353

Figure 7 shows that improvement compared to fine- 354

tuning on the start year increases as the target and 355

start years become more misaligned. Model size 356

also affects performance, with T5-large and T5-3b 357

showing greater improvements. In PoliAff, T5- 358
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Figure 7: Task analogies can offset downstream tem-
poral misalignment without labeled data from the
target time. We report the performance of NewsSum
and PoliAff T5 models updated using WMT LM and
Twitter LM vectors for each target evaluation time. We
report the percent improvement of the best updated
model over 2012 NewsSum and 2015 PoliAff models
on each target time for all model sizes.

small has no improvement over the baseline and359

T5-large task analogies perform worse than the360

baseline on 2016 and 2017 before improving on361

2019 and 2020. Strangely, we find that only scal-362

ing α1 can also improve performance on future363

years. We report these α ablations and our results364

on two other classification tasks in Appendix §A.6.365

We observe mostly similar results on these tasks,366

although there are task-specific inconsistencies.367

4.5 Generalizing to Multiple Time Periods368

Because interpolations prove useful for generaliz-369

ing to intervening and future time periods, we next370

test if we can build models that perform well on371

multiple time periods by interpolating between all372

time vectors for a task.373

Method We approach this problem with the374

model soup technique (Wortsman et al., 2022). One375

of the key practical advantages of soups is that con-376

stituent time-specific models can be trained inde-377

pendently (on smaller compute budgets) and com-378

bined at any time. Furthermore, the multi-year379

model does not need to be retrained to include new380

time periods; new time periods can be incorporated381

by merely growing the soup with additional fine-382

tuned models.383

We attempt to create a multi-year model by 384

following the recipe outlined by Wortsman et al. 385

(2022). They introduce two soup variants: the uni- 386

form soup and greedy soup. The uniform soup 387

applies a uniform weight among all constituent 388

models in the interpolation, while the greedy soup 389

is an iterative procedure that only includes models 390

in the soup that improves validation performance. 391

We assess both variants here. 392

Our “uniform time soup” is θpre +
1
|T |

∑
t∈T τt 393

where T is the set of all years for a given task. For 394

our “greedy time soup,” we implement a similar 395

algorithm to Wortsman et al. (2022) which samples 396

time vectors (with replacement) from each year in 397

order of decreasing performance and adds them 398

to the average model soup if they improve perfor- 399

mance. 400

To evaluate our ability to build models that gen- 401

eralize to multiple time periods, we measure the 402

average performance across all evaluation years for 403

each task. We compare our model soups against 404

two baselines: 1) a model trained on all shuffled 405

available data at once and 2) the best-performing 406

model finetuned on only a single year of data. The 407

all-year model is the most compute-intensive ap- 408

proach. 409

Results Overwhelmingly, time soups perform 410

worse than the model finetuned on all shuffled avail- 411

able data. For WMT LM and NewsSum, the uni- 412

form time soup performs worse than even the best 413

single year model, despite having access to five 414

times the amount of finetuning data. The greedy 415

time soup only improves over the best single-year 416

model on PoliAff with a single macro F1 point gain. 417

These findings suggest that a model which general- 418

izes to multiple time periods does not lie in a region 419

of weight space bounded by models finetuned on 420

single years of data. Future work may explore more 421

sophisticated methods of merging which to induce 422

better performing multi-year models. 423

4.6 Summary 424

We propose methods for updating models to in- 425

tervening, future, and multiple time periods using 426

time vector arithmetic. We find that interpolating 427

between two time vectors improves performance 428

on unseen intervening times at both yearly and 429

monthly scales. Similarly, we can improve per- 430

formance on the future with unlabeled data from 431

target times using time vector analogies. Building 432

a multi-year model with a “soup” of time vectors, 433
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Perplexity (↓) Rouge (↑) F1 (↑)

Method WMT LM NewsSum PoliAff

Best single-year model 34.45 38.95 0.7101

Uniform time soup 34.70 33.05 0.6078
Greedy time soup 34.45 38.95 0.7202
Training on all years 29.17 40.07 0.7853

Table 3: Interpolation does not enable generalization
to multiple time periods simultaneously. Here, we
measure the average performance of models on all years.
We compare multiple ways of building multi-year mod-
els; T5-small models finetuned to individual years or all
years, and “time soups” created by averaging together
all year time vectors for a task.

however, does not approach the performance of a434

model finetuned on all times at once. These results435

suggest that task arithmetic can be a simple way to436

update models to new times, but it does not help to437

improve generalization across the board within a438

single model.439

5 Related Work440

Semantic Drift Although changes in the full441

weight spaces of models over time have not been442

previously explored, semantic changes in word em-443

beddings over time are well-documented (Hamil-444

ton et al., 2016). Temporal misalignment (Bamler445

and Mandt, 2017; Gonen et al., 2021) and word446

analogies over time (Szymanski, 2017) have also447

been studied in embeddings. Our work extends448

these analyses to the full set of language model449

parameters.450

Temporal Misalignment The phenomenon of451

temporal misalignment in language models has452

gained attention in the last three years. Moving453

from semantic drift to model misalignment in the454

twitter domain, Jaidka et al. (2018) measure gender455

and age classifier degradation over time, Rijhwani456

and Preoţiuc-Pietro (2020) demonstrate the effect457

of temporal drift on named entity recognition, and458

Loureiro et al. (2022) find decay on a variety of459

language modeling and downstream tasks. Lazari-460

dou et al. (2021) extend these analyses to language461

modeling on News and Science domains and show462

that increasing model size does not help mitigate463

temporal misalignment. Luu et al. (2022) compare464

temporal misalignment across a variety of down-465

stream tasks, finding that degradation varies greatly466

over both domain and task. Using the same suite467

of tasks, Longpre et al. (2023) report similar degra-468

dation over time in pretraining regardless of model469

size. 470

Updating LMs Recent attempts at updating lan- 471

guage models to new time periods have used a 472

range of techniques. Luu et al. (2022) find limited 473

improvement with continued pretraining (Röttger 474

and Pierrehumbert, 2021) on target times. Similar 475

to the sequential updating setting, however, Lazari- 476

dou et al. (2021) show that dynamic evaluation 477

(Gururangan et al., 2020) can improve language 478

modeling performance on new times, but results in 479

forgetting the past. More recent techniques have 480

been proposed for keeping models up to date in 481

the QA domain by adding flags with the year for 482

each example (Dhingra et al., 2022) or by discard- 483

ing outdated facts (Zhang and Choi, 2023). Unlike 484

these methods, we consider the problem of updat- 485

ing models to new time periods without data in the 486

target time and without additional finetuning. 487

Interpolation Our work draws heavily on recent 488

techniques for editing models directly with inter- 489

polation and task analogies. Time vectors are an 490

application of task vectors (Ilharco et al., 2023) 491

to the time domain, our interpolation experiments 492

are inspired by previous work on patching mod- 493

els for multiple tasks (Ilharco et al., 2022), and 494

our time soups are an application of models soups 495

(averaging multiple models trained with different 496

initializations) (Wortsman et al., 2022). 497

6 Conclusion 498

We connect studies of temporal misalignment and 499

weight arithmetic with time vectors, formed by 500

finetuning a model on a specific time period and 501

then subtracting its pretrained weights. We show 502

that the weights of time vectors are more similar if 503

their corresponding times are closer and vice versa. 504

These similarities are highly correlated to temporal 505

misalignment at both yearly and monthly scales 506

(which exhibit seasonal patterns). Leveraging this 507

temporal structure in weight space, we induce new 508

models that perform better on intervening years by 509

interpolating between adjacent time vectors. Simi- 510

larly, we use task analogies to improve downstream 511

performance on future time periods using only un- 512

labeled data from those times. These results show 513

that task arithmetic can be a simple tool for updat- 514

ing models to new time periods. 515
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7 Limitations516

Our analyses are restricted to three sizes of T5,517

with the largest containing three billion parameters.518

Because we use LoRA when finetuning T5-large519

and T5-3b, our total number of trainable parame-520

ters never exceeded those of base T5-small (∼60521

million). Although similar patterns of temporal522

misalignment have been observed in larger autore-523

gressive models (e.g., Luu et al., 2022, Longpre524

et al., 2023), improvements from time vector arith-525

metic are not guaranteed to scale with mutli-billion526

parameter LMs.527

Because we only finetune and evaluate at the528

monthly scale with WMT news articles, season-529

ality may not occur, or occur differently, in other530

domains. News may be particularly suited to sea-531

sonal trends in perplexity compared to, e.g., fiction532

novels, because of reporting on events like holidays533

and weather.534

In time vector analogies, unlabeled text may still535

be difficult to gather for isolated source and target536

times due to a lack of metadata. Furthermore, find-537

ing ideal α values for each vector in the analogy538

arithmetic requires searching over a large number539

of combinations (324 in our experiments). In the540

best case, we find that time vector analogies can541

improve performance 5–15% on a target year over542

a model finetuned on only the earliest year. These543

improvements vary by task, however, and analogies544

can even hurt performance in some cases, as we545

show in Appendix §A.6.546

In practice, models are trained on text from many547

time periods at once, which likely yields better re-548

sults than a single time-specific model. Our experi-549

ments with time vectors are therefore focused on550

analyzing the relationship between time-specific551

models in weight space, and the potential of weight552

arithmetic for adapting models to new times, rather553

than improving the state of the art.554

8 Ethical Considerations555

For further study of temporal misalignment and556

replication of our experiments, we publicly release557

our models finetuned on text from the monolingual558

WMT news dataset and Twitter stream grab. Fol-559

lowing guidelines from both sources, all models560

are under a CC0 license and should be used solely561

for research.562

Corpora and tasks used in this dataset do not563

identify authors of examples, but include informa-564

tion about other individuals, including which user565

a post is retweeting in the Twitter splits. Frequently 566

mentioned names are important features for study- 567

ing temporal variation. Simultaneously, we realize 568

that our models may reproduce this identifying 569

information in their outputs, which can include 570

falsehoods or hallucinations. Additionally, we do 571

not filter out examples containing toxic or offen- 572

sive language in our datasets. We acknowledge 573

that the models we release are susceptible to gener- 574

ating similar text which perpetuates social harms 575

(Gehman et al., 2020). 576

Although we aim to cover a range of downstream 577

tasks for each year and monthly domain shift, our 578

datasets are not equally representative of different 579

languages and demographic groups. We filter out 580

documents that are not classified as English, and 581

note that the majority of news articles and tweets 582

are sourced from the U.S., where the majority of 583

journalists are white and between the ages of 30– 584

64 (Tomasik and Gottfried, 2023). As a result, 585

our models finetuned on NewsSum and WMT are 586

likely harmfully skewed towards white-aligned En- 587

glish, reproducing the view that other registers are 588

linguistically inadequate (Rosa and Flores, 2017). 589

Finally, we are cognizant that finetuning year and 590

month-specific models incurs a significant energy 591

cost. We estimate that it took on average three 592

hours to train each T5-small and T5-large model 593

on yearly WMT splits, and nine hours for T5-3b. 594

Training on NewsSum splits took around a third of 595

the time as WMT LM. For PoliAff, the train time 596

for year-finetuned models was lower at around 5 597

minutes for T5-small and T5-large, and 15 minutes 598

for T5-3b. Finetuning T5-small on a single monthly 599

WMT split took 15 minutes on average. Evaluating 600

on each split took roughly a tenth of the time as 601

training. Using these heuristics, we estimate the 602

main paper experiments took a total of 1200 GPU 603

hours. We did not track GPU usage on preliminary 604

or Appendix experiments, but we estimate they 605

used an equivalent 1200 GPU hours. 606
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A Appendix748

A.1 Yearly Misalignment with Other Tasks749

and T5 Sizes750

In this section, we report raw performance degra-751

dation over time on four downstream and three752

language modeling tasks with three sizes of T5.753

We evaluate on all tasks in the main paper plus754

Newsroom Source Classification (NewsCls) and AI755

Venue Classification (AIC) from Luu et al. (2022).756

We also create a third science domain language757

modeling task from abstracts in the Kaggle arXiv758

dataset4. For each group of three years from 2006-759

2008 to 2018-2020 we randomly sample 26-38M760

and 2.6-3.9M BPE tokens (150MB and 15MB of761

text) of arXiv paper abstracts for train and test splits762

respectively.763

Figures 8 and 11 are yearly degradation764

heatmaps for each model size and task. These765

results show that normalizing performance by the766

average on each evaluation time helps account for767

variations in test splits. ArXiv language modeling768

and NewsSum, for example, have large differences769

in performance on evaluation years regardless of770

finetuning year.771

4https://www.kaggle.com/datasets/Cornell-
University/arxiv/data

A.2 Task Variations in Linear Yearly 772

Degradation 773

Like Luu et al. (2022), we find differences across 774

domain and task in the rate and linearity of year-to- 775

year decay. TD scores measure the average rate of 776

performance degredation for each year of misalign- 777

ment between train and test time periods (Luu et al., 778

2022). We find the rate of decay using a linear least 779

squares regression and average rates for each task 780

over all evaluations. Table 4 shows TD scores (Luu 781

et al., 2022) for all tasks and T5-sizes. We also com- 782

pare TD scores calculated from raw performance to 783

TD scores calculated from performance normalized 784

by the average on each evaluation year. In general, 785

percent performance difference from the mean on 786

an evaluation year decays more linearly than raw 787

performance. 788

A.3 Yearly and Monthly Cosine Similarities 789

In this section, we report cosine similarity between 790

each pair of yearly and monthly time vectors. Fig- 791

ure 10 shows cosine similarity between every pair 792

of year vectors for each T5-size and task. Figure 9 793

shows cosine similarity between each pair of T5- 794

small monthly WMT LM time vectors. Similar to 795

performance, year-to-year degradation in cosine 796

similarity between task vectors appears to be linear 797

regardless of setting. Like Figure 3, we observe sea- 798

sonal "stripes" every 12 months from the diagonal 799

9. 800

A.4 Temporal Degradation in Online Settings 801

Our work so far illustrates temporal misalignment 802

on static time splits. However, in practice, we 803

usually deploy language models in online settings, 804

meaning that they are continually updated with the 805

latest data, and we do not have access to data from 806

all training years simultaneously. 807

To show how temporal misalignment manifests 808

in these settings, we first sort all the training data 809

from the PoliAff and WMT tasks by month, and 810

finetune T5-small on each task separately. We dis- 811

play the performance of the LM on every year 812

throughout training in Figure 13. As expected, for 813

PoliAff, we see that the performance of models on 814

a particular year peak at the final month of that year, 815

and then gradually degrade as the model continues 816

training. 817

For language modeling on WMT data, perfor- 818

mance consistently improves during training, re- 819

gardless of the evaluation year. However, perplex- 820
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Figure 8: Yearly downstream performance degradation on four tasks and three T5 sizes.

Normalized? T5 Size WMT LM NewsSum NewsCls Twitter LM PoliAff ArXiv LM AIC

small -0.67 (0.81) 2.21 (0.51) 0.05 (0.67) -0.35 (0.97) 0.08 (0.98) -0.59 (0.65) 0.03 (0.55)
No large -0.10 (0.34) 2.07 (0.53) 0.04 (0.61) -0.20 (0.97) 0.07 (0.97) -0.20 (0.67) 0.03 (0.50)

3b -0.07 (0.34) 2.12 (0.53) 0.04 (0.67) -0.20 (0.97) 0.07 (0.95) -0.13 (0.66) 0.03 (0.40)

small -1.70 (0.90) 6.99 (0.87) 6.43 (0.74) -4.52 (0.89) 10.47 (0.95) -2.61 (0.94) 2.93 (0.57)
Yes large -0.56 (0.92) 6.27 (0.89) 5.33 (0.84) -2.64 (0.91) 9.57 (0.94) -1.24 (0.93) 2.53 (0.51)

3b -0.52 (0.93) 6.44 (0.88) 4.72 (0.84) -2.90 (0.91) 7.66 (0.91) -0.96 (0.94) 3.12 (0.61)

Table 4: TD scores for all tasks and T5 sizes for raw performance and performance divide by the average on each
eval. year. Variance explained by the TD score linear fit in parentheses. TD scores calculated with normalized
performance decay have generally higher R2 scores, except on Twitter LM and PoliAff, and are easier to compare.
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Figure 9: Cosine similarity between monthly time
vectors also exhibits seasonality. We observe simi-
lar "stripes" every 12 months when measuring the co-
sine similarity between each pair of T5-small WMT
month vectors. The correlation between this heatmap
(including the diagonal) and Figure 3 is −0.667 with
p < 1× 10−16.

ity reduces more slowly in earlier years as we con-821

tinue training. These results suggest that temporal822

misalignment may manifest differently in online823

settings based on the training setup and task.824

A.5 Online Cosine Similarities825

We study the relationship between performance826

degradation and cosine similarity during online827

training. Recall that in the online setting, we per-828

form a single finetuning run on the Poliaff and829

WMT tasks (after ordering their training data by830

month), and measure performance on each year831

throughout training. To study how time vectors832

move throughout space in this setting, we measure833

the cosine similarity between the time vector of the834

model trained up to month m and each yearly time835

vector for the PoliAff and WMT tasks.836

We find that the cosine similarity to each time837

vector decreases as the online model is updated838

past the first 12 months of data. This means that839

online models’ peak similarity to earlier years tends840

to be higher than those to later years since the they841

make up a smaller part of its total finetuning set.842

Like our experiments with soups of time vectors in843

section §4.5, this indicates that models trained on844

multiple years of data lay outside a region defined845

by single-year models.846

To account for these decreases, we normalize the847

similarity to each year time vector by its average848

after updating on all months in Figure 13. Our849

results reveal that the vector for our online model850

is relatively most similar to each year vector after851

finetuning on the months in that year. 852

A.6 Time Vector Analogy Ablations 853

In this section, we ablate our time vector analogy 854

experiment to determine the effects of only adding 855

the LM vector from the target time, and only scal- 856

ing the weights of the initial time vector. For τk ≈ 857

α1 · τj +(α2 · τLM
k −α3 · τLM

j ), we define our "task 858

addition" ablation for α3 = 0, α1, α2 ̸= 0, and our 859

"scaling only" ablation for α1 ̸= 0, α2, α3 = 0 860

We report the best results after sweeping over 861

the same α ranges from §4.4 with the added con- 862

straints in figure 15. While task analogies generally 863

perform best across tasks and T5-sizes (especially 864

as τj and τk become more misaligned), we find that 865

ablating τLM
k and τLM

j can still improve over the 866

base τj model. Surprisingly, only scaling τj also 867

improves over the initial model on many tasks. 868

A.7 Temporal Misalignment Affects Some 869

Parameters More than Others 870

In this section, we explore whether we can re- 871

duce temporal misalignment by swapping parame- 872

ter weights from a model trained on a misaligned 873

year with those of the model trained on the target 874

year. For example, we substitute the QKV attention 875

layers from a model finetuned on 2015 PoliAff with 876

those finetuned on 2020 PoliAff and evaluate on 877

2020 data. In table 5 we evaluate the start-year fine- 878

tuned models for each task on the end times (e.g. 879

start = 2012 for WMT LM, end = 2016) with vari- 880

ous parameter weights swapped with the end-year 881

finetuned model. 882

From these experiments, we find that we can 883

improve performance on a target time by swapping 884

out weights with a time vector finetuned on 885

that time. Surprisingly, swapping embeddings 886

with the target time vector makes very little 887

difference, except in language modeling tasks, 888

and swapping all non-embedding weights with a 889

target time almost reaches the performance the 890

target time-specific models for downstream tasks. 891

Swapping only feed-forward or attention layers 892

also improves performance on the target time, 893

suggesting temporal misalignment is somewhat 894

isolated to those model regions in downstream 895

tasks. 896

897
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Figure 10: Cosine similarities between all pairs of year time vectors for all tasks and model sizes.

Figure 11: Yearly language modeling perplexity decay on three tasks and three T5 sizes.
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Swapped Params WMT LM NewsSum NewsCls Twitter LM PoliAff ArXiv LM AIC

None 35.72 35.11 0.7232 6.69 0.5903 18.18 0.8224
Feed Forward 35.31 35.17 0.8162 13.25 0.6174 18.21 0.8500
Attention 36.23 34.49 0.7986 14.95 0.6095 19.24 0.8644
Embeddings 36.13 34.30 0.7232 16.65 0.5902 19.29 0.8192
Non-Embedding 34.57 37.24 0.8760 13.46 0.7991 17.37 0.8845
All 33.51 38.89 0.8759 5.79 0.7999 15.75 0.8845

Table 5: We can improve performance on a target time by swapping out weights with a time vector finetuned
on that time. T5-small start-year finetuned model performance on the end-year split for each task (e.g. finetuning
on 2015 for PoliAff and evaluating on 2020). We compare the baseline start-year model (none swapped) to versions
with various parameter weights from the target-year model, and the target-year model itself (all swapped).

Figure 12: Seasonality makes a small, but noticeable
impact on monthly misalignment. Distribution of per-
plexity change from the mean for aligned finetuning and
evaluation months (left, mean=-4.36), seasonal "stripes"
(middle, mean=0.04), and all finetuning and evaluation
combinations which share neither the same month nor
year (right, mean=0.77).
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Figure 13: In online settings, language model performance degrades on earlier time periods. We show macro
F1 and perplexity on each year split of PoliAff and WMT LM respectively after sequentially finetuning T5-small on
each new month of task data. PoliAff performance over all years plateaus after finetuning on months up to 2018.
WMT performance continues to improve with more data, but perplexity decrease slows on earlier years. Starred
points are where performance on a year is best relative to the average performance on all years.

Figure 14: Cosine similarity between an online time vector and a year vector peaks relative to other years
after updating on data for that year. We show cosine similarity between each monthly checkpoint of online
T5-small time vectors and yearly vectors for PoliAff and WMT LM. To account for overall decreases in similarity
as online time vectors are updated, we normalize similarities to each year vector by the mean similarity to that year
over all checkpoints. We star the point for each year vector where its cosine similarity to the online model is largest
relative to the average on all years.
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Figure 15: Time vector analogy ablations for three sizes of T5. Given the time vector analogy τk ≈ α1 · τj + (α2 ·
τLM
k − α3 · τLM

j ), α1, α2, α3 ̸= 0, we define "task addition" to be only adding the language modeling vector (i.e
α1, α2 ̸= 0, α3 = 0), and "scaling only" to be only scaling the base τj model (i.e α1 ̸= 0, α2, α3 = 0). We sweep
over the same α combinations as in §4.4 and report the best results for each target year, task, and T5-size.

Figure 16: Year-to-year, T5-small feed forward layers change the most across all tasks and domains, and attention
changes more in the language modeling setting. For our T5-large and T5-3b models trained with LoRA, the V
attention layers change more than the Q layers, with most of the changes (regardless of model size) concentrated
in the last layers. Like our param swapping experiment, this suggests that some parameters play a larger role in
temporal misalignment than others.
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