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Abstract001

Large language models (LLMs) offer powerful002
capabilities but come with significant environ-003
mental costs, particularly in carbon emissions.004
Existing studies benchmark these emissions005
but lack a standardized basis for comparison006
across models. To address this, we introduce007
the concept of a functional unit (FU) and de-008
velop FUEL, the first FU-based framework for009
evaluating LLM serving’s environmental im-010
pact. Through case studies on model size, quan-011
tization, and hardware, we uncover key trade-012
offs in sustainability. Our findings highlight013
the potential for reducing carbon emissions by014
optimizing model selection, deployment strate-015
gies, and hardware choices, paving the way for016
more sustainable AI infrastructure.017

1 Introduction018

Large language models (LLMs) have been widely019

adopted in various industries due to their ability to020

perform complex language tasks (Vu et al., 2024;021

Shen et al., 2024; Liu et al., 2024c). However,022

LLM serving comes with significant environmen-023

tal impacts, particularly in terms of carbon emis-024

sions. For instance, processing a single prompt on025

ChatGPT produces over 4 grams of CO2eq (Wong,026

2023), which is over 20x the carbon emissions gen-027

erated by a web search query (Griffiths, 2020).028

Recent studies have benchmarked the carbon029

emissions of LLM serving by analyzing perfor-030

mance (e.g., throughput, latency) and energy con-031

sumption, then modeling carbon emissions under032

varying conditions such as request rate, and in-033

put/output length (Nguyen et al., 2024; Li et al.,034

2024d; Shi et al., 2024; Li et al., 2024b). However,035

these efforts have two limitations: (1) they focus on036

individual LLMs rather than cross-model compar-037

isons, and (2) they lack a standardized basis for fair038

carbon emission comparisons. These gaps limit the039

broader applicability and fairness of their analyses.040

Building on principles from life cycle assess- 041

ment in environmental sustainability (Klöpffer and 042

Grahl, 2014), we address these two limitations by 043

introducing the concept of a functional unit (FU) 044

as a standardized basis for comparing LLMs. In 045

LLM serving, an FU represents a token generation 046

defined by workload intensity, performance, and 047

quality constraints. Using this, we develop FUEL, 048

a Functional Unit-based Evaluation framework for 049

evaluating the environment impact of LLMs. To 050

demonstrate its effectiveness and generalizability, 051

we conduct three case studies exploring model size, 052

quantization, and hardware. Our key insights for 053

building sustainable LLM serving systems include: 054

• Model size: Larger models are greener in high 055

output quality and low request rate, while smaller 056

models excel as the request rate increases. 057

• Quantization: Quantization significantly lowers 058

carbon emissions, especially for larger models. 059

• Hardware: Newer hardware offers better perfor- 060

mance but is not always greener due to higher 061

embodied carbon. Older hardware can lower 062

carbon emissions while meeting quality and per- 063

formance constraints. 064

The contributions of this paper are: 065

• Introducing and defining FU for LLM serving 066

from environmental sustainability. 067

• Developing FUEL, the first FU-based framework 068

for assessing the environmental impact of LLM 069

serving. 070

• Conducting case studies on model size, quantiza- 071

tion, and hardware impact on carbon emissions. 072

2 Related Work 073

Environmental impact of LLM serving. Re- 074

searchers have recognized the environmental im- 075

pact of LLM serving and explored it through mod- 076

eling and profiling (Ding and Shi, 2024). Modeling 077

efforts include LLMCarbon (Faiz et al., 2024) and 078

LLMCO2 (Fu et al., 2024), which provide end- 079

1



• Models
• Comparison configs
• Serving constraints

• Perf. (TTFT & TPOT)
• Power

Define FU1
• Workload intensity
• Perf. constraints
• Quality constraints

• Operational carbon
• Embodied carbon

Inputs Profiling Carbon Modeling432

Figure 1: Overview of FUEL framework.

to-end carbon modeling frameworks, while LLM-080

Campass (Zhang et al., 2024) focuses on hardware081

evaluation for LLM workloads. Profiling studies082

have run various LLM serving models across dif-083

ferent hardware and QPS settings (Nguyen et al.,084

2024; Li et al., 2024c; Patel et al., 2024a), with085

GreenLLM (Shi et al., 2024) and Sprout (Li et al.,086

2024b) optimizing carbon emissions based on their087

profiling. However, none of these studies take a088

functional unit perspective as we do in this work.089

LLM serving optimization. Prior work on LLM090

serving has primarily focused on optimizing per-091

formance and energy efficiency. Performance im-092

provements can be categorized into model-level093

and system-level techniques. Model-side optimiza-094

tions include quantization (Lin et al., 2024; Fran-095

tar et al., 2022), sparsification (Frantar and Alis-096

tarh, 2023), and speculative decoding (Leviathan097

et al., 2023). System-side approaches involve098

memory management (Kwon et al., 2023), batch-099

ing (Agrawal et al., 2024; Yu et al., 2022), and100

kernel optimizations (Dao et al., 2022). Addition-101

ally, efforts to enhance energy efficiency include102

solutions like Splitwise (Patel et al., 2024b) and103

DynamoLLM (Stojkovic et al., 2024). However,104

they have largely overlooked quality constraints.105

3 The Framework FUEL106

We present FUEL, a Functional Unit-based107

Evaluation framework for evaluating the environ-108

ment impact of LLMs. FUEL enables a systematic109

and comprehensive analysis across various compar-110

ison configurations (e.g., model size, quantization,111

and hardware). Inspired by life cycle assessment in112

environmental sustainability (Klöpffer and Grahl,113

2014), the key insight is to establish a functional114

unit as a standardized basis for comparison. In115

LLM serving, a functional unit (FU) represents a116

token characterized by its serving constraints dur-117

ing generation. In the FUEL framework, we com-118

pare the environmental impact of tokens generated119

by different model configurations with the same120

performance and quality constraints.121

Figure 1 illustrates the four key steps of FUEL.122

First, FUEL identifies the inputs, including models, 123

comparison configurations, and serving constraints. 124

Next, it defines the FU based on these inputs. Then, 125

experiments are conducted to profile performance 126

and energy consumption. Finally, FUEL quantifies 127

the environmental impact — focusing on carbon 128

emissions in this work — using the collected data. 129

Next, we will introduce each step in detail. 130

3.1 Step 1: Inputs 131

The inputs to FUEL include three key components: 132

• Models: The LLMs being compared, which can 133

be different versions within the same model fam- 134

ily or models from different families. 135

• Comparison configurations: The primary param- 136

eter that varies across comparisons. This pa- 137

per focuses on three configurations: model size, 138

quantization, and hardware. 139

• Serving constraints: The standardized basis for 140

comparison, including workload intensity, perfor- 141

mance constraint, and quality constraint. These 142

constraints are critical in defining the FU. 143

3.2 Step 2: Define Functional Unit 144

In LLM serving, a functional unit represents a to- 145

ken characterized by its workload intensity, perfor- 146

mance, and quality constraints during generation. 147

Workload intensity. FUEL defines workload inten- 148

sity as the request rate (QPS), measuring incoming 149

user requests per second (req/s). 150

Performance constraint. FUEL evaluates perfor- 151

mance using two widely adopted metrics: Time-to- 152

First-Token (TTFT) and Time-Per-Output-Token 153

(TPOT). TTFT reflects how quickly the system 154

responds to a new request by generating the first 155

token, while TPOT quantifies the time per output 156

token during decoding. Following prior work Liu 157

et al. (2024b), FUEL sets a TTFT requirement of 158

1 second and a TPOT threshold of 200 ms, align- 159

ing with average human reading speed to ensure a 160

smooth user experience. 161

Quality constraint. Quantitatively assessing out- 162

put quality is challenging. While prior works 163

(Zhong et al. (2022); Yuan et al. (2021); Jiang 164

et al. (2023)) have introduced various methods, 165
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they depend on either specific datasets or the need166

for reference answers. After evaluating multiple167

quality metrics, we adopt the reward model (Liu168

et al., 2024a), a common approach in reinforcement169

learning from human feedback training (Ouyang170

et al., 2022). Our experiments show that the reward171

model’s scores align most closely with human pref-172

erences and effectively differentiate outputs across173

models. Using the reward model’s score, we de-174

fine Qscore as a measure of output quality, where a175

higher Qscore reflects better quality and indicates176

that the output meets a certain quality threshold.177

An example of FU definition. Based on these serv-178

ing constraints, we define an example FU below:179

A token generated by an LLM at a request rate
of 5 req/s, with a Qscore of 10, and performance
constraints of 1s TTFT and 200ms TPOT.180

3.3 Step 3: Profiling181

FUEL profiles performance (TTFT and TPOT) and182

energy consumption by running LLMs under dif-183

ferent configurations, based on the inputs given to184

FUEL and the specified workload intensity. Dur-185

ing profiling, Qscore is collected using an off-the-186

shelf reward model to evaluate output quality. For187

NVIDIA GPUs and Intel CPUs, power is measured188

every 200ms using NVIDIA (pynvml) and Intel189

(psutil) APIs for energy modeling, respectively.190

3.4 Step 4: Carbon Modeling191

Unlike prior work that profiles performance and192

energy without considering serving constraints,193

FUEL defines and calculates carbon emission per194

FU (CFU), measuring the emissions of FUs that195

meet certain serving constraints. Formally,196

CFU = Total carbon emissions for all tokens
Nf

,197

198
Nf =

∑N
i=1 I(Qi ≥ α) · I(TTFTi ≤ β) · I(TPOTi ≤ γ),199

where N is the total number of output tokens, Nf200

is the total number of tokens considered FUs, Q201

is the Qscore, α, β, and γ are the constraints for202

Qscore, TTFT, and TPOT, respectively. Note that203

we consider a token to meet the Qscore requirement204

if its corresponding response does, as Qscore is205

defined at the response level. Next, we describe206

how to calculate carbon emissions.207

Carbon emission calculation. Following prior208

work (Nguyen et al., 2024; Li et al., 2024d; Shi209

et al., 2024; Ding and Shi, 2024), total carbon emis-210

sions in LLM serving include operational carbon211

emission Cop and embodied carbon emissions Cem. 212

We now describe how to calculate each. 213

• Operational carbon is calculated as the prod- 214

uct of the energy consumed, Eop, and the car- 215

bon intensity of the energy source (CI). Car- 216

bon intensity is defined as the amount of CO2eq 217

emitted per kilowatt-hour (kWh) of electricity 218

used (Maji et al., 2022; Li et al., 2024a). The 219

operational carbon emission is thus given by: 220

Cop = Eop · CI (1) 221

• Embodied carbon of a hardware device is deter- 222

mined by factors such as processor chip area and 223

memory capacity (Gupta et al., 2022; Faiz et al., 224

2024). The detail of modeling the total embodied 225

carbon of a hardware device is in Appendix B. 226

The embodied carbon emission of an LLM exe- 227

cution over time t is calculated by amortizing the 228

hardware’s total embodied carbon Cem,total over 229

its lifetime (LT), typically 5 to 7 years (Ostrou- 230

chov et al., 2020). Thus, the embodied carbon 231

for a time period t is given by: 232

Cem =
t

LT
· Cem,total (2) 233

• Total carbon is thus given by: 234

Ctotal = Eop · CI+
t

LT
· Cem,total (3) 235

3.5 Summary and Implementation 236

FUEL provides a systematic framework for eval- 237

uating the environmental impact of LLM serving, 238

using FU as a comparison basis. To demonstrate its 239

effectiveness and generalizability, we will present 240

three case studies exploring different comparison 241

configurations: model size (§4), quantization (§5), 242

and hardware (§6). For broadly applicable in- 243

sights, we focus on two widely used model families, 244

Qwen2.5 (Qwen et al., 2025) and Llama2 (Touvron 245

et al., 2023), and conduct experiments using the 246

open-source LLM serving platform vLLM (Kwon 247

et al., 2023). We use a carbon intensity of 518 248

gCO2eq, the 12-month average of our server’s re- 249

gion, to calculate operational carbon emissions. All 250

experiments were conducted in a single run with 251

the LLM temperature set to 0 to minimize output 252

randomness. We use the NewsQA (Trischler et al., 253

2016) summarization dataset for main results, as it 254

tests language understanding without extra context. 255

Results on other datasets are in the Appendix. 256
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Figure 2: Carbon emission per FU for different model
sizes across Qscores at QPS=1 req/s.

4 Case Study: Model Size257

In this section, we use FUEL to examine the envi-258

ronmental impact of model size on LLM serving.259

4.1 Evaluation Methodology260

Setup. We evaluate various model sizes from261

two LLM families—Qwen2.5 (7B, 14B, 32B) and262

Llama2 (7B, 13B)—on an NVIDIA H100 GPU263

paired with an Intel Xeon 8480+ CPU.264

Benchmarking configurations. To assess how265

model sizes affect the environmental impact—or266

how “green"  each model is in terms of carbon267

efficiency—we evaluate a range of FUs by adjust-268

ing serving constraints. QPS is from 1 to 20 req/s.269

The Qscore ranges are set to [-5, 15] for Qwen and270

[-5, 10] for Llama, based on the Qscore distribution271

of each model family (Figure 21 in Appendix C.1).272

These ranges ensure broad coverage while provid-273

ing sufficient outputs across model sizes that meet274

quality requirements. TTFT is at 1s and TPOT is275

at 200ms to align with human reading speed.276

4.2 Evaluation Results277

Question 1: Are smaller models always greener?278

We first investigate whether smaller models are279

always greener. Figure 2 shows carbon emissions280

per FU across model sizes under different Qscore281

settings at QPS = 1 req/s. We choose a relatively282

low QPS to ensure all models generate enough283

tokens without violating performance constraints.284

The results indicate that the answer is no.285

For Qwen, at a low Qscore of -5, smaller models286

emit less carbon. However, as Qscore increases,287

carbon emissions increase for all model sizes, with288

smaller models increasing at a faster rate. When289

Qscore exceeds 5, the smallest 7B model becomes290

the highest emitter. At Qscore 15, the 32B model291
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Figure 3: Carbon savings of Qwen 14B and 32B com-
pared to 7B with Qscore low (-5) and high (15). Data
for Qwen 32B are missing at QPS > 4 req/s, as larger
models cannot serve intensive workloads.
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Figure 4: Carbon savings of Llama 13B compared to
7B with Qscore low (-5) and high (10).

has the lowest emissions, while the 7B model emits 292

over 1.8× more. A similar trend is seen in Llama, 293

where larger models become greener as quality 294

requirement rise. We confirm that larger models 295

produce higher-quality outputs with higher Qscores 296

in Figure 21 in Appendix C.1. This underscores 297

the need to balance model size and output quality 298

for lower environmental impact. 299

Question 2: When are larger models greener? 300

To examine when larger models become greener, 301

we set FUs with a broader QPS range and two 302

quality requirements: low (Qscore = -5) and high 303

(Qscore = 15 for Qwen, 10 for Llama). Figure 3 304

shows that for Qwen, larger models (14B and 32B) 305

save more carbon compared to the 7B model un- 306

der high Qscore, with the 32B saving over 40%. 307

However, under a low-quality requirement (Qscore 308

= -5), larger models offer no advantage. A similar 309

trend is seen for Llama, where the 13B model saves 310

over 20% carbon compared to the 7B model at high 311

quality. Thus, larger models become greener 312

when output quality requirements are high. 313

To explain the carbon savings shift with vary- 314

ing QPS, we analyze its impact on service level 315

objective (SLO) attainment, which refers to meet- 316

ing TTFT and TPOT constraints. In Figure 5, we 317

observe that once QPS exceeds a certain thresh- 318

old, SLO attainment drops, as the system becomes 319

saturated. This explains why larger models can 320
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Figure 6: Comparison of Qwen 7B, 14B, and 32B in
FUEL. Tile colors indicate the model size with the low-
est carbon per FU. Tile values are carbon savings (%) of
greenest model size compared to the second greenest.

be greener at lower QPS: they meet performance321

constraints while producing higher-quality output.322

Question 3: Does a universal greenest model323

size exist?324

The answer is no. Figure 6 shows the relative car-325

bon savings of Qwen 7B, 14B, and 32B across326

various QPS and Qscore values. No model size327

consistently has the lowest carbon emissions. At328

low QPS (1-4 req/s) with high Qscore, Qwen 32B329

can save up to 49% in carbon emissions compared330

to the second greenest. However, as QPS increases,331

the 32B fails to meet the performance constraints,332

making the 14B the greenest. When the quality333

requirement is low (Qscore = 0), the 7B model is334

always the greenest, especially at high QPS.335

Takeaway 1: Larger models are greener under
high-quality, low-QPS conditions. Smaller mod-
els become greener as QPS increases. No single
model size is the greenest across all scenarios.

336

5 Case Study: Quantization337

In this section, we explore how quantization af-338

fects the environmental impact of LLM serving.339

By reducing model weight and activation preci-340

sion, quantization significantly decreases model341

size. For example, 4-bit quantization cuts model 342

size by 4× compared to FP16. This reduction low- 343

ers memory usage and computational costs while 344

maintaining accuracy. Using FUEL, we investigate 345

whether quantization, especially weight-only (Lin 346

et al., 2024) and activation (Frantar et al., 2022) 347

quantization techniques, can improve carbon effi- 348

ciency while maintaining output quality. 349

5.1 Evaluation Methodology 350

Setup. We evaluate two widely used quantization 351

methods: 4-bit AWQ (Lin et al., 2024) (weight- 352

only) and W8A8 (Frantar et al., 2022) (INT8 quan- 353

tization for both weights and activations). We eval- 354

uate Qwen2.5 (7B, 14B, 32B) and Llama2 (7B, 355

13B) on an NVIDIA H100 GPU with an Intel 356

Xeon 8480+ CPU. Qwen provides an official AWQ 357

version, while Llama’s AWQ is from Hugging 358

Face (TheBloke, 2023b,a). For W8A8, we quantize 359

the models using LLM Compressor (vLLM Project, 360

2023), an open-source library designed for vLLM. 361

Benchmarking configurations. Same as in §4. 362

5.2 Evaluation Results 363

Question 1: Is weight-only quantization always 364

greener? 365

The answer is no. Figure 7 shows the relative car- 366

bon emission savings per FU for AWQ compared 367

to the FP16 version of Qwen under high (10) and 368

low (-5) Qscores. Overall, AWQ’s carbon savings 369

decline as QPS increases. For the 7B model, AWQ 370

consistently reduces emissions, even under high 371

Qscore. At QPS = 1 req/s and Qscore = 10, AWQ 372

cuts emissions by over 20% compared to FP16. 373

This is because AWQ slightly increases the output 374

quality of 7B (Table 3 in Appendix D), resulting 375

in an increased number of FUs. On the other hand, 376

the 14B model shows positive carbon savings at 377

low Qscore (-5) but negative savings at high Qs- 378

core (10). The 32B model never achieves positive 379

carbon savings, regardless of Qscore. We observe 380

a similar trend for Llama in Figure 8. As QPS 381

increases, the carbon savings of AWQ over FP16 382

decline and can even become negative at high QPS. 383

To understand why AWQ does not always out- 384

perform FP16 in carbon savings, we analyze its 385

impact on TTFT and TPOT speedup. Figures 9 and 386

10 show that TPOT sees some speedup at low QPS 387

but slows down at high QPS, while TTFT is always 388

slower than FP16. This is because quantization 389

reduces weight size, but weights are dequantized 390
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Figure 7: Carbon savings of AWQ Qwen compared to
the FP16 version with Qscore low (-5) and high (10).
Data are missing at higher QPS for 14B and 32B, as
larger models cannot serve intensive workloads.
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Figure 8: Carbon savings of AWQ Llama compared to
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Data are missing at higher QPS for 13B, as larger mod-
els cannot serve intensive workloads.
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Figure 9: Latency speedup of AWQ Qwen compared to
the FP16 version.

back to 16-bit during inference, adding overhead.391

AWQ improves TPOT in memory-bound cases at392

low QPS by reducing memory transfer, but this393

advantage diminishes as QPS increases and com-394

putation grows. Since TTFT is compute-intensive,395

AWQ provides no speedup.396

Takeaway 2: Weight-only quantization reduces
carbon emissions at low QPS but loses its advan-
tage as QPS increases.

397

Question 2: Is activation quantization always398

greener?399

Unlike weight-only quantization, activation quanti-400

zation applies to both weights and activations. We401

compared the relative carbon savings of W8A8402

compared to the FP16 version under different Qs-403
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Figure 10: Latency speedup of AWQ Llama compared
to the FP16 version.
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Figure 11: Carbon savings of W8A8 Qwen compared
to the FP16 version with Qscore low (-5) and high (10).
Data are missing at higher QPS for 14B and 32B, as
larger models cannot serve intensive workloads.
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Figure 12: Carbon savings of W8A8 Llama compared
to the FP16 version with Qscore low (-5) and high (10).

cores and QPS, and the results show that the answer 404

is yes. As shown in Figure 11, W8A8 consistently 405

reduces carbon emissions for Qwen models, regard- 406

less of quality requirements. Despite some accu- 407

racy loss in the 7B model (Table 3 in Appendix D), 408

it still achieves a 5% carbon reduction at Qscore = 409

10. Unlike AWQ, W8A8 maintains stable savings 410

even as QPS increases. 411

We observe a similar trend for Llama in Fig- 412

ure 12. Notably, Llama 7B improved in output 413

quality after quantization (Table 3 in Appendix D), 414

saving over 15% of carbon at Qscore = 10. This 415

shows activation quantization can break the trade- 416

off between FP16 and AWQ, ensuring consistent 417

carbon savings across different FUs. 418

To understand why W8A8 always outperforms 419

FP16 in carbon savings, we analyze its impact on 420

TTFT and TPOT speedup. Figures 13 and 14 show 421
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Figure 15: Comparison of FP16, AWQ and W8A8 ver-
sions of Qwen 7B/14B in FUEL. Tile colors indicate
the model with the lowest carbon per FU. Tile values
are carbon savings (%) of greenest quantization version-
compared to the second greenest.

that W8A8 consistently speeds up TPOT and TTFT422

across all QPS ranges. This improvement comes423

from reducing both weight and activation precision,424

which decreases the amount of data movement and425

computation during inference. This makes W8A8426

a more sustainable choice for LLM serving, as it427

strikes a balance between quality and performance.428

Question 3: Does a universal greenest quantiza-429

tion method exist?430

The answer is no. Figure 15 shows the relative431

carbon savings of FP16, AWQ, and W8A8 models432

across various QPS and Qscores for Qwen 7B and433

14B. For Qwen 14B, W8A8 outperforms in all sce-434

narios, with carbon savings increasing as QPS rises.435

However, for Qwen 7B, AWQ maintains slightly436

better quality at low QPS, while W8A8 lags behind437

Table 1: Hardware platform specifications in this paper.

Specification L40 server H100 server

GPU 4 × L40 8× H100
TDP 300W 350W
Process size 5nm 5nm
Die size 609 mm2 814 mm2

GPU memory 40GB 80GB
Release Year 2022 2023
CPU AMD EPYC 7443 Intel Xeon 8480+
TDP 200W 350W
Process size 7nm 10nm
Die size 4×81 mm2 4×477 mm2

CPU memory 504GB 1031GB
Release Year 2021 2023

at high QPS and high-quality requirements due to 438

its slight accuracy loss (Table 3 in Appendix D). 439

Takeaway 3:Weight and activation quantization
methods, like W8A8, hold significant potential
for reducing carbon emissions in LLM serving,
particularly for larger models.

440

6 Case Study: Hardware 441

In this section, we examine how hardware plat- 442

form affects the environmental impact of LLM 443

serving. Using FUEL, we investigate whether more 444

advanced hardware can enhance carbon efficiency 445

while maintaining output quality. 446

6.1 Evaluation Methodology 447

Setup. We conduct experiments on two GPU 448

servers with different hardware configurations, one 449

older and one newer, as detailed in Table 1. For 450

fair comparisons, we use a single GPU per server 451

for all experiments. We evaluate the Qwen2.5 (7B, 452

14B) and Llama2 (7B, 13B). 453

Benchmarking configurations. Same as in §4. 454

6.2 Evaluation Results 455

Question 1: How does different hardware con- 456

tribute to total carbon emissions? 457

Figure 16 shows the breakdown of carbon emis- 458

sions per FU for Qwen and Llama 7B models 459

on different hardware platforms, separating oper- 460

ational and embodied carbon. It is worth noting 461

that different hardware contributes to different em- 462

bodied carbon per FU, due to differences in the 463

total embodied carbon for each hardware. The 464

L40 platform has lower total embodied carbon than 465

the H100, with values of 26.6 and 29.92 kgCO2eq 466

repectively. These differences are based on calcu- 467

lations using the ACT modeling tool (Gupta et al., 468
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Figure 17: Carbon emission per FU of Qwen and Llama
model families on different hardware platforms, evalu-
ated in FUEL with Qscore=0.

2022) and are due to hardware factors such as pro-469

cess and die size. The difference is even more470

pronounced between the AMD EPYC 7443 and471

Intel Xeon 8480+ CPUs, with the AMD CPU hav-472

ing 9.98 kgCO2eq, compared to the Intel’s 42.81473

kgCO2eq, over 4x higher.474

Advanced hardware like the H100 offers better475

performance but higher embodied carbon. Extend-476

ing hardware lifetime can yield more carbon sav-477

ings, especially considering the large difference in478

embodied carbon between older and newer devices.479

Question 2: Is LLM serving on advanced hard-480

ware greener?481

Figure 17 shows the carbon emissions per FU for482

the Qwen and Llama model families on two hard-483

ware platforms. At low QPS, the L40 server consis-484

tently has lower carbon emissions than the H100.485

This means that the answer is no: advanced hard-486

ware is not necessarily greener.487

The main advantage of advanced hardware like488

the H100 is its ability to produce higher-quality out-489

puts and meet performance constraints, as shown490

in Figure 18. Although advanced hardware may491

not be greener, it provides better performance and492

supports higher-quality LLM serving at scale.493
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Figure 18: SLO attainment of Qwen and Llama model
families on different hardware platforms.

Figure 19: Comparison of Qwen 7B and 14B on differ-
ent hardware platforms in FUEL. Tile colors indicate
the hardware with the lowest carbon emission per FU.
Tile values are carbon savings (%) of the greenest hard-
ware compared to the second greenest.

Question 3: How to choose greener hardware? 494

To answer this question, we run experiments across 495

different FUs with varying QPS and Qscores. Fig- 496

ure 19 shows the relative carbon savings of L40 497

and H100 servers for Qwen 7B and 14B. Hard- 498

ware carbon efficiency depends mainly on model 499

size and QPS, with a minor influence from Qscore. 500

Newer hardware is more carbon efficient at high 501

QPS, while older hardware is better at low QPS. 502

These findings underscore the sustainability bene- 503

fits of reusing older hardware to cut carbon emis- 504

sions while maintaining performance and quality. 505

Takeaway 4: Advanced hardware offers higher
performance but is not always greener due to
higher embodied carbon. Older hardware can
achieve lower carbon emissions while still meet-
ing quality and performance constraints.

506

7 Conclusion 507

We introduce FUEL, the first evaluation framework 508

for unveiling LLM serving’s environmental impact 509

by leveraging functional units as the basis for com- 510

parison. We explore how model size, quantization, 511

and hardware affect carbon emissions. Our findings 512

highlight opportunities for greener LLM deploy- 513

ment, paving the way for sustainable AI systems. 514
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Limitations515

We discuss the limitations of this work as follows.516

Model families. Our case studies examine two517

widely used open-source LLM families, Qwen2.5518

and Llama2, which we believe are representative519

of general LLM serving behaviors. However, we520

have not yet explored other model families, such521

as Mistral, or task-specific models like multimodal,522

vision-language, and code-focused LLMs. We523

leave these investigations for future work.524

Hardware. All our experiments are conducted525

on a single GPU to ensure fair comparisons, limit-526

ing us to models up to 32B. We have yet to explore527

the performance and power dynamics in a multi-528

GPU distributed environment, which would allow529

us to run larger models like Llama 70B. This setup530

introduces additional overhead, particularly from531

communication, making the results even more in-532

sightful. We leave this exploration for future work.533

Quality metrics. Quantitatively evaluating LLM534

output quality remains a challenging and open re-535

search question. We experimented with various536

metrics before selecting the reward model, a com-537

mon approach in reinforcement learning from hu-538

man feedback. While we believe our key findings539

remain robust regardless of the specific quality met-540

ric used, access to more advanced evaluation meth-541

ods in the future could further enhance the accuracy542

and rigor of our work.543

Ethical Statement544

This research aims to contribute to the development545

of sustainable and carbon efficient LLM serving546

systems. We are committed to conducting our work547

in a responsible manner, adhering to ethical guide-548

lines and best practices. Our focus is on minimiz-549

ing the environmental impact of LLM deployments550

while ensuring that the quality of the models and551

the performance of the systems meet the necessary552

standards for practical use.553

We recognize the potential environmental con-554

sequences of the widespread use of LLMs, includ-555

ing energy consumption, electronic waste, and the556

environmental impact of hardware manufacturing.557

Therefore, we emphasize the importance of opti-558

mizing LLMs for lower energy and carbon emis-559

sions, not only in terms of performance but also560

through hardware reuse and longevity, as part of a561

more sustainable approach to AI infrastructure.562

We strive to be transparent in our research 563

methodologies and encourage further exploration 564

of green AI practices. As we explore new avenues 565

for improving LLM efficiency, we remain mindful 566

of the broader social, economic, and environmental 567

implications of deploying large-scale AI systems 568

and aim to promote solutions that benefit both the 569

technology and society at large. 570

We also recognize the importance of fairness 571

and inclusivity, ensuring that our research does not 572

disproportionately harm any community or group 573

and aligns with the goal of creating AI systems that 574

are accessible and beneficial to all. 575
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A Code Availability860

Please find our code repository at861

https://anonymous.4open.science/r/FUEL-76EF.862

We provide a README file that offers instructions863

on how to get started and utilize FUEL.864

We summarize the appendix as follows:865

• Section B provides a detailed description of em-866

bodied carbon modeling.867

• Section C presents additional results for the868

model size case study, including experiments869

on NewsQA and two additional datasets (Arena870

Hard and HumanEval).871

• Section D provides supplementary results for the872

quantization case study on the same datasets.873

• Section E offers more detailed comparisons of874

model selections in the hardware case study.875

B Embodied Carbon Modeling876

We utilize the ACT (Gupta et al., 2022) embodied877

carbon modeling tool. The embodied carbon foot-878

print can be divided into manufacturing and pack-879

aging carbon emissions. Manufacturing carbon880

arises from producing electronic components like881

transistors and resistors from raw materials, while882

packaging carbon is associated with assembling883

these components into chips and circuit boards:884

Cem = Cmanufacturing + Cpackaging (4)885

The manufacturing embodied footprint Cm of 886

processors and SoCs like CPUs and GPUs depends 887

on several factors: die area (Adie), carbon intensity 888

of the energy consumed by the fab (CIfab), energy 889

consumed per unit area manufactured (EPA), the 890

GHG emissions from gases and chemicals per unit 891

area (GPA), the footprint of procuring raw mate- 892

rials per unit area (MPA), and fabrication yield 893

(Yield, set to 0.875 as in Gupta et al. (2022)). The 894

information is sourced from product data sheets 895

and sustainability reports. The manufacturing em- 896

bodied carbon of a processor can be calculated as: 897

Cm =
(CIfab × EPA + GPA + MPA)×Adie

Yield
(5) 898

The packaging carbon emission Cp is calculated 899

by the number of integrated circuits (NIC) with a 900

packaging footprint. Following ACT, we use an 901

average packaging overhead of 150 gCO2 per IC. 902

Cp = NIC × 150 (6) 903

In cloud environments or HPC clusters, it is often 904

challenging to obtain details of DRAM specifica- 905

tions. Previous studies (Li et al., 2023; Köhler et al., 906

2023) generally assume that the embodied carbon 907

of DRAM is proportional to its capacity. Following 908

prior work, we adopt a fixed rate of 65gCO2/GB to 909

estimate the embodied carbon of DRAM. 910

C Additional Results for Model Size Case 911

Study 912

C.1 Results on NewsQA Summarization 913

Figure 20 illustrates the naive carbon emission per 914

token for various model sizes across a range of QPS. 915

This figure represents carbon per token without 916

the use of FUEL. Without considering server con- 917

straints, smaller models consistently exhibit lower 918

carbon emissions per token, which does not reflect 919

real-world serving requirements where larger mod- 920

els may be preferred for higher quality outputs. 921

Figure 22 shows the cumulative percentage of 922

quality scores ≥ a given threshold for different 923

models on the NewsQA summarization task. This 924

figure highlights significant differences between 925

models, particularly between Llama 7B and 13B, 926

and between Qwen 7B and 32B. This discrepancy 927

demonstrates why smaller models may not be as 928

advantageous when higher quality is required, as 929

larger models provide better outputs. 930
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Figure 20: Naive carbon emission per token for different
model sizes across QPS range on NewsQA dataset.
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Figure 21: Qscore distribution of outputs across differ-
ent model sizes on the NewsQA dataset.
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Figure 22: Cumulative percentage of Qscore ≥ thresh-
old on NewsQA dataset.

C.2 Results on Arena Hard931

The Arena Hard dataset (Li et al., 2024c) is a chal-932

lenging benchmark designed to evaluate the instruc-933

tion following capabilities of LLMs, which is de-934

rived from real user interactions on Chatbot Arena.935

Figure 23 shows the Qscore distribution for dif-936

ferent model sizes on the Arena Hard dataset. As937

shown, larger models tend to achieve higher quality938

scores. However, compared to the quality distri-939

bution on the NewsQA summarization task, while940
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Figure 23: Qscore distribution of outputs across differ-
ent model sizes on the Arena Hard dataset.
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Figure 24: Cumulative percentage of Qscore ≥ thresh-
old for different model sizes on Arena Hard dataset.

larger models still perform better, the differences 941

between model sizes on Arena Hard are less pro- 942

nounced than on the NewsQA. However, the gap 943

between Llama 7B and 13B remains significant. 944

Figure 24 also confirms this trend by showing the 945

cumulative percentage of quality scores ≥ a given 946

threshold for various model sizes on Arena Hard. 947

Figure 25 shows carbon emissions per FU across 948

model sizes under different Qscore settings at QPS 949

= 1 req/s. For the Qwen model family, since the 950

Qscore distribution gap has narrowed, we only ob- 951

serve the 32B model producing less carbon than the 952

7B model when the quality requirement becomes 953

very high (Qscore > 15). On the other hand, due 954

to the significant quality distribution gap between 955

the Llama models, a slight increase in the quality 956

requirement makes the Llama 13B model greener 957

than the 7B model. Moreover, when the quality 958

requirements become stricter, the carbon emission 959

gap between Llama 13B and 7B becomes larger. 960

The result aligns well with our findings on the 961

NewsQA dataset: if the quality requirement is high, 962

larger models become a greener choice, especially 963

when there are large differences in quality distri- 964

13
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Figure 25: Carbon emission per FU for different model
sizes on Arena Hard across Qscores at QPS=1 req/s.

Figure 26: Comparison of different model sizes on
Arena Hard in FUEL. Tile colors indicate the model
with the lowest carbon per FU. Tile values are carbon
savings (%) of the greenest size compared to the second
greenest.

bution across models of different sizes. Figure 26965

shows the optimal model size choice across vari-966

ous Qscore and QPS conditions for the Qwen and967

Llama families. Due to the close quality distri-968

bution within the Qwen family, the advantage of969

larger models is constrained to the top-left corner970

(high Qscore, low QPS). In contrast, in the bot-971

tom right corner, as the quality requirement de-972

creases and QPS increases, the 7B model becomes973

the greenest one.974

C.3 Results on HumanEval975

The HumanEval dataset (Chen et al., 2021) is a976

benchmark designed to evaluate the code genera-977

tion ability of LLMs. It consists of Python coding978

problems and requires LLMs to implement the spe-979

cific functions.980

Figure 27 shows the Qscore distribution for dif-981

ferent model sizes on the HumanEval dataset. Qs-982

core distribution for the Qwen models is much983

closer on this dataset. This is consistent with their984

technical report (Qwen et al., 2025), which also985

highlights similar performance across models in986
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Figure 27: Qscore distribution for different model sizes
on HumanEval dataset.
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Figure 28: Cumulative percentage of Qscore ≥ thresh-
old for different model sizes on HumanEval dataset.

the HumanEval evaluation. However, for the Llama 987

models, the gap between the 7B and 13B model 988

remains large, as expected. 989

Figure 29 shows carbon emissions per FU across 990

model sizes on HumanEval dataset under different 991

Qscore settings at QPS = 1 req/s. For the Qwen 992

family, since the quality difference between the 993

three model sizes on this task is not significant, 994

increasing the Qscore does not lead to larger mod- 995

els demonstrating carbon emission saving over the 996

7B model. The carbon emissions per FU remain 997

similar across model sizes even with higher Qscore 998

requirements. In contrast, for the Llama model 999

family, due to the large quality gap between the 7B 1000

and 13B models, we observe that even at very low 1001

quality requirements (e.g., Qscore = -15), the 13B 1002

model exhibits lower carbon emissions than the 7B 1003

model. 1004

If we extend the Qscore requirement and QPS 1005

into two dimensions, as demonstrated in Figure 30, 1006

we observe that on HumanEval, Qwen 14B only 1007

shows an incremental carbon saving of 1-2% at 1008

QPS = 1 req/s, while in most other cases, Qwen 7B 1009

remains the greenest model. This is because the 1010

14
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Figure 29: Carbon emission per FU for different model
sizes on HumanEval across Qscores at QPS=1 req/s.

Figure 30: Comparison of different model sizes on Hu-
manEval in FUEL. Tile colors indicate the model with
the lowest carbon per FU. Tile values are carbon sav-
ings (%) of the greenest size compared to the second
greenest.

output quality of Qwen 7B is very close to that of1011

Qwen 14B and 32B. For the Llama model family,1012

the results align with the previous observations: at1013

lower QPS and higher quality requirements, the1014

13B model becomes the greenest option, as it can1015

produce higher-quality responses compared to the1016

7B model.1017

This experiment on the HumanEval dataset fur-1018

ther highlights our previous conclusion that select-1019

ing the greenest model size requires a comprehen-1020

sive consideration of both model output quality and1021

workload intensity.1022

D Additional Results for Quantization1023

Case Study1024

As shown in Table 2, we used LM Eval (Gao1025

et al., 2024), an open-source LLM evaluation1026

tool, to assess the LLMs used in our ex-1027

periments and their quantized versions. The1028

evaluations were conducted on tasks from the1029

Open LLM Leaderboard, including ARC-c (Clark1030

et al., 2018), GSM8k (Cobbe et al., 2021), Hel-1031

laSwag (Zellers et al., 2019), MMLU (Hendrycks1032
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Figure 31: SLO attainment of Qwen and Llama families
with AWQ version across QPS range.
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Figure 32: SLO attainment of Qwen and Llama families
with W8A8 version across QPS range.

et al., 2020), TruthfulQA (Lin et al., 2021), and 1033

Winogrande (Sakaguchi et al., 2021). 1034

We also present the Qscore for the LLMs and 1035

their quantized versions across three datasets, as 1036

shown in Table 3. 1037

D.1 Results on NewsQA Summarization 1038

Figure 31 and Figure 32 illustrate the impact of 1039

the AWQ and W8A8 quantized versions on SLO 1040

attainment across the QPS range for the Qwen and 1041

Llama families. As shown in Figure 31, the AWQ 1042

version of the models fails to meet the SLO at 1043

lower QPS values. In contrast, the W8A8 quantized 1044

version improves efficiency, enabling models to 1045

serve a higher QPS. 1046

Figure 33 shows the comparison results among 1047

FP16, AWQ and W8A8 versions in Llama family. 1048

W8A8 has almost the lowest carbon emission under 1049

all conditions. 1050

D.2 Results on Arena Hard 1051

Figure 34 shows the results of different quantiza- 1052

tion methods for Qwen 7B/14B models on Arena 1053

Hard dataset. This aligns well with the results 1054

on the previous NewsQA summarization dataset, 1055

15



Table 2: Evaluation on different benchmarks for Qwen and Llama families with their quantized versions.

Model Method ARC-c GSM8k HellaSwag MMLU TruthfulQA Winogrande

Qwen-7B
FP16 63.57 81.96 62.24 74.23 49.82 73.64
AWQ 62.03 (-1.54) 79.61 (-2.35) 61.52 (-0.72) 73.33 (-0.9) 50.43 (+0.61) 74.11 (+0.47)
W8A8 63.65 (+0.08) 82.11 (+0.15) 62.15 (-0.09) 74.18 (-0.05) 49.45 (-0.37) 74.35 (-0.71)

Qwen-14B
FP16 69.54 79.23 65.73 79.87 52.26 80.66
AWQ 68.00 (-1.54) 80.89(+1.66) 64.78 (-0.95) 78.88 (-0.99) 48.84 (-3.42) 79.48 (-1.18)
W8A8 69.71 (+0.71) 79.83 (-0.6) 65.74 (+0.01) 79.93 (+0.06) 51.04 (-1.22) 81.14 (+0.48)

Qwen-32B
FP16 71.42 75.89 67.11 83.28 51.16 80.03
AWQ 69.88 (-1.54) 76.72(+0.83) 66.47 (-0.64) 82.40 (-0.88) 52.14 (-0.98) 79.72 (-0.31)
W8A8 71.08 (-0.34) 75.82 (-0.07) 67.14 (+0.03) 83.15 (-0.13) 50.55 (-0.61) 80.43 (+0.4)

Llama-7B
FP16 49.83 23.2 59.34 47.22 45.04 72.93
AWQ 48.98 (-0.85) 21.23(-1.97) 58.61 (-0.73) 45.34 (-1.88) 43.57 (-1.47) 72.53 (-0.4)
W8A8 50.34 (+0.51) 22.67 (-0.53) 59.3 (-0.04) 47.24 (+0.02) 44.80 (-0.24) 73.32 (+0.39)

Llama-13B
FP16 55.63 35.56 63.1 53.55 40.88 75.06
AWQ 54.95 (-0.68) 31.69(-3.87) 62.13 (-0.97) 53.77 (+0.22) 41.37 (+0.49) 76.09 (+1.03)
W8A8 55.29 (-0.34) 35.18 (-0.38) 63.08 (-0.02) 53.65 (+0.1) 41.49 (+0.61) 75.22 (+0.16)

Table 3: Mean Qscore on three datasets for Qwen and
Llama families with their quantized versions.

Model Method Qscore
NewsQA

Qscore
ArenaHard

Qscore
HumanEval

Qwen-7B
FP16 11.11 15.90 26.82
AWQ 11.77 (+0.66) 14.17 (-1.73) 26.52 (-0.3)
W8A8 10.46 (-0.65) 15.76 (-0.14) 26.84 (+0.02)

Qwen-14B
FP16 14.37 18.41 27.03
AWQ 12.01 (-2.36) 15.33 (-3.08) 26.41 (-0.62)
W8A8 14.40 (+0.03) 18.49 (+0.08) 27.24 (+0.21)

Qwen-32B
FP16 15.62 19.82 28.86
AWQ 14.87 (-0.75) 18.89 (-0.93) 27.99 (-0.87)
W8A8 15.36 (-0.26) 19.73 (-0.09) 28.38 (-0.48)

Llama-7B
FP16 6.81 -7.93 -4.19
AWQ 6.49 (-0.32) -10.19 (-2.26) -8.23 (-4.04)
W8A8 6.87 (+0.06) -8.58 (-0.65) -4.23 (-0.04)

Llama-13B
FP16 8.73 -5.63 0.41
AWQ 8.63 (-0.11) -6.34 (-0.71) -1.65 (-2.06)
W8A8 8.64 (-0.09) -5.69 (-0.06) 0.24 (-0.17)

Figure 33: Comparison of FP16, AWQ and W8A8 ver-
sions of Llama 7B/13B in FUEL on NewsQA dataset.
Tile colors indicate the model with the lowest carbon
per FU. Tile values are carbon savings (%) of greenest
version compared to the second greenest.

as AWQ shows an advantage at low QPS on the1056

smaller 7B model. When we use 14B model,1057

W8A8 illustrates the great potential to save up to1058

50% carbon emission under each scenario. We can1059

see a similar trend in Figure 35 on Llama models.1060

Figure 34: Comparison of FP16, AWQ and W8A8 ver-
sions of Qwen 7B/14B in FUEL on Arena Hard dataset.
Tile colors indicate the model with the lowest carbon per
FU. Tile values are carbon savings (%) of the greenest
version compared to the second greenest.

Figure 35: Comparison of FP16, AWQ and W8A8 ver-
sions of Llama 7B/13B in FUEL on Areana Hard dataset.
Tile colors indicate the model with the lowest carbon
per FU. Tile values are carbon savings (%) of greenest
version compared to the second greenest.

D.3 Results on HumanEval 1061

As shown in Figure 36, AWQ still becomes the 1062

greenest method when QPS is low, but W8A8 dom- 1063

inates in more conditions on the Qwen 7B model. 1064

This is because, after W8A8 quantization, the Qs- 1065

core of Qwen 7B improves on the HumanEval 1066

dataset. For the Qwen 14B model, W8A8 is no 1067
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Figure 36: Comparison of FP16, AWQ and W8A8 ver-
sions of Qwen 7B/14B in FUEL on HumanEval dataset.
Tile colors indicate the model with the lowest carbon
per FU. Tile values are carbon savings (%) of greenest
quantization version compared to the second greenest.

Figure 37: Comparison of FP16, AWQ and W8A8 ver-
sions of Llama 7B/13B in FUEL on HumanEval dataset.
Tile colors indicate the model with the lowest carbon
per FU. Tile values are carbon savings (%) of greenest
quantization version compared to the second greenest.

Figure 38: Comparison of model-hardware combina-
tions for Qwen and Llama in FUEL. Tile colors indicate
the model-hardware with the lowest carbon per FU. Tile
values are carbon savings (%) of the greenest choice
compared to the second greenest.

longer the greenest method under all conditions.1068

This is due to AWQ experiencing minimal accuracy1069

degradation on this dataset, allowing it to retain its1070

advantage at low QPS.1071

E Additional Results for Hardware Case1072

Study1073

Figure 38 compares model and hardware combina-1074

tions, further confirming our previous conclusion:1075

older hardware can achieve lower carbon emissions.1076

As shown in the figure, whether for the Qwen or 1077

Llama model families, the greenest choice at low 1078

QPS is consistently the L40 server. Once the hard- 1079

ware is fixed, we can apply insights from the model 1080

size case study to select the model size based on 1081

the quality requirement. This pattern reaffirms that 1082

choosing the optimal model and hardware combina- 1083

tion requires a balance between performance needs 1084

and carbon efficiency. 1085
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