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Abstract

Large language models (LLMs) offer powerful
capabilities but come with significant environ-
mental costs, particularly in carbon emissions.
Existing studies benchmark these emissions
but lack a standardized basis for comparison
across models. To address this, we introduce
the concept of a functional unit (FU) and de-
velop FUEL, the first FU-based framework for
evaluating LLM serving’s environmental im-
pact. Through case studies on model size, quan-
tization, and hardware, we uncover key trade-
offs in sustainability. Our findings highlight
the potential for reducing carbon emissions by
optimizing model selection, deployment strate-
gies, and hardware choices, paving the way for
more sustainable Al infrastructure.

1 Introduction

Large language models (LLMs) have been widely
adopted in various industries due to their ability to
perform complex language tasks (Vu et al., 2024;
Shen et al., 2024; Liu et al., 2024c). However,
LLM serving comes with significant environmen-
tal impacts, particularly in terms of carbon emis-
sions. For instance, processing a single prompt on
ChatGPT produces over 4 grams of CO,eq (Wong,
2023), which is over 20x the carbon emissions gen-
erated by a web search query (Griffiths, 2020).
Recent studies have benchmarked the carbon
emissions of LLM serving by analyzing perfor-
mance (e.g., throughput, latency) and energy con-
sumption, then modeling carbon emissions under
varying conditions such as request rate, and in-
put/output length (Nguyen et al., 2024; Li et al.,
2024d; Shi et al., 2024; Li et al., 2024b). However,
these efforts have two limitations: (1) they focus on
individual LLMs rather than cross-model compar-
isons, and (2) they lack a standardized basis for fair
carbon emission comparisons. These gaps limit the
broader applicability and fairness of their analyses.

Building on principles from life cycle assess-
ment in environmental sustainability (Klopffer and
Grahl, 2014), we address these two limitations by
introducing the concept of a functional unit (FU)
as a standardized basis for comparing LLMs. In
LLM serving, an FU represents a token generation
defined by workload intensity, performance, and
quality constraints. Using this, we develop FUEL,
a Functional Unit-based Evaluation framework for
evaluating the environment impact of LLMs. To
demonstrate its effectiveness and generalizability,
we conduct three case studies exploring model size,
quantization, and hardware. Our key insights for
building sustainable LLM serving systems include:
* Model size: Larger models are greener in high

output quality and low request rate, while smaller

models excel as the request rate increases.

* Quantization: Quantization significantly lowers
carbon emissions, especially for larger models.

* Hardware: Newer hardware offers better perfor-
mance but is not always greener due to higher
embodied carbon. Older hardware can lower
carbon emissions while meeting quality and per-
formance constraints.

The contributions of this paper are:
¢ Introducing and defining FU for LLM serving

from environmental sustainability.

* Developing FUEL, the first FU-based framework
for assessing the environmental impact of LLM
serving.

* Conducting case studies on model size, quantiza-
tion, and hardware impact on carbon emissions.

2 Related Work

Environmental impact of LLM serving. Re-
searchers have recognized the environmental im-
pact of LLM serving and explored it through mod-
eling and profiling (Ding and Shi, 2024). Modeling
efforts include LLMCarbon (Faiz et al., 2024) and
LLMCO2 (Fu et al., 2024), which provide end-
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Figure 1: Overview of FUEL framework.

to-end carbon modeling frameworks, while LLM-
Campass (Zhang et al., 2024) focuses on hardware
evaluation for LLM workloads. Profiling studies
have run various LLM serving models across dif-
ferent hardware and QPS settings (Nguyen et al.,
2024; Li et al., 2024c; Patel et al., 2024a), with
GreenLLM (Shi et al., 2024) and Sprout (Li et al.,
2024b) optimizing carbon emissions based on their
profiling. However, none of these studies take a
functional unit perspective as we do in this work.

LLM serving optimization. Prior work on LLM
serving has primarily focused on optimizing per-
formance and energy efficiency. Performance im-
provements can be categorized into model-level
and system-level techniques. Model-side optimiza-
tions include quantization (Lin et al., 2024; Fran-
tar et al., 2022), sparsification (Frantar and Alis-
tarh, 2023), and speculative decoding (Leviathan
et al., 2023). System-side approaches involve
memory management (Kwon et al., 2023), batch-
ing (Agrawal et al., 2024; Yu et al., 2022), and
kernel optimizations (Dao et al., 2022). Addition-
ally, efforts to enhance energy efficiency include
solutions like Splitwise (Patel et al., 2024b) and
DynamoLLM (Stojkovic et al., 2024). However,
they have largely overlooked quality constraints.

3 The Framework FUEL

We present FUEL, a Functional Unit-based
Evaluation framework for evaluating the environ-
ment impact of LLMs. FUEL enables a systematic
and comprehensive analysis across various compar-
ison configurations (e.g., model size, quantization,
and hardware). Inspired by life cycle assessment in
environmental sustainability (Klopffer and Grahl,
2014), the key insight is to establish a functional
unit as a standardized basis for comparison. In
LLM serving, a functional unit (FU) represents a
token characterized by its serving constraints dur-
ing generation. In the FUEL framework, we com-
pare the environmental impact of tokens generated
by different model configurations with the same
performance and quality constraints.

Figure 1 illustrates the four key steps of FUEL.

First, FUEL identifies the inputs, including models,
comparison configurations, and serving constraints.
Next, it defines the FU based on these inputs. Then,
experiments are conducted to profile performance
and energy consumption. Finally, FUEL quantifies
the environmental impact — focusing on carbon
emissions in this work — using the collected data.
Next, we will introduce each step in detail.

3.1 Step 1: Inputs

The inputs to FUEL include three key components:

* Models: The LLMs being compared, which can

be different versions within the same model fam-

ily or models from different families.

Comparison configurations: The primary param-

eter that varies across comparisons. This pa-

per focuses on three configurations: model size,
quantization, and hardware.

* Serving constraints: The standardized basis for
comparison, including workload intensity, perfor-
mance constraint, and quality constraint. These
constraints are critical in defining the FU.

3.2 Step 2: Define Functional Unit

In LLM serving, a functional unit represents a to-
ken characterized by its workload intensity, perfor-
mance, and quality constraints during generation.
Workload intensity. FUEL defines workload inten-
sity as the request rate (QPS), measuring incoming
user requests per second (req/s).

Performance constraint. FUEL evaluates perfor-
mance using two widely adopted metrics: Time-to-
First-Token (TTFT) and Time-Per-Output-Token
(TPOT). TTFT reflects how quickly the system
responds to a new request by generating the first
token, while TPOT quantifies the time per output
token during decoding. Following prior work Liu
et al. (2024b), FUEL sets a TTFT requirement of
1 second and a TPOT threshold of 200 ms, align-
ing with average human reading speed to ensure a
smooth user experience.

Quality constraint. Quantitatively assessing out-
put quality is challenging. While prior works
(Zhong et al. (2022); Yuan et al. (2021); Jiang
et al. (2023)) have introduced various methods,



they depend on either specific datasets or the need
for reference answers. After evaluating multiple
quality metrics, we adopt the reward model (Liu
etal., 2024a), a common approach in reinforcement
learning from human feedback training (Ouyang
et al., 2022). Our experiments show that the reward
model’s scores align most closely with human pref-
erences and effectively differentiate outputs across
models. Using the reward model’s score, we de-
fine Oscore as a measure of output quality, where a
higher Qscore reflects better quality and indicates
that the output meets a certain quality threshold.

An example of FU definition. Based on these serv-
ing constraints, we define an example FU below:

A token generated by an LLM at a request rate
of 5 req/s, with a Qscore of 10, and performance
constraints of 1s TTFT and 200ms TPOT.

3.3 Step 3: Profiling

FUEL profiles performance (TTFT and TPOT) and
energy consumption by running LLMs under dif-
ferent configurations, based on the inputs given to
FUEL and the specified workload intensity. Dur-
ing profiling, Qscore is collected using an off-the-
shelf reward model to evaluate output quality. For
NVIDIA GPUs and Intel CPUs, power is measured
every 200ms using NVIDIA (pynvml) and Intel
(psutil) APIs for energy modeling, respectively.

3.4 Step 4: Carbon Modeling

Unlike prior work that profiles performance and
energy without considering serving constraints,
FUEL defines and calculates carbon emission per
FU (CFU), measuring the emissions of FUs that
meet certain serving constraints. Formally,

__ Total carbon emissions for all tokens
CFU = =

)

Ny =YY 1(Q, > a) - I(TTFT; < 8) - [(TPOT; < 7),

where N is the total number of output tokens, N
is the total number of tokens considered FUs, Q
is the Qscore, «, 3, and ~ are the constraints for
Qscore, TTFT, and TPOT, respectively. Note that
we consider a token to meet the Qscore requirement
if its corresponding response does, as Qscore is
defined at the response level. Next, we describe
how to calculate carbon emissions.

Carbon emission calculation. Following prior
work (Nguyen et al., 2024; Li et al., 2024d; Shi
et al., 2024; Ding and Shi, 2024), total carbon emis-
sions in LLM serving include operational carbon

emission C,p, and embodied carbon emissions Cepy,.

We now describe how to calculate each.

* Operational carbon is calculated as the prod-
uct of the energy consumed, E,,, and the car-
bon intensity of the energy source (CI). Car-
bon intensity is defined as the amount of C'Oaeq
emitted per kilowatt-hour (kW h) of electricity
used (Maji et al., 2022; Li et al., 2024a). The
operational carbon emission is thus given by:

Cop = Eop - CI (1)

* Embodied carbon of a hardware device is deter-
mined by factors such as processor chip area and
memory capacity (Gupta et al., 2022; Faiz et al.,
2024). The detail of modeling the total embodied
carbon of a hardware device is in Appendix B.
The embodied carbon emission of an LLM exe-
cution over time ¢ is calculated by amortizing the
hardware’s total embodied carbon Ceyy, tota1 OVer
its lifetime (LT), typically 5 to 7 years (Ostrou-
chov et al., 2020). Thus, the embodied carbon
for a time period ¢ is given by:

t

Cem = E : Cem,total (2)

* Total carbon is thus given by:

t

Chotal = Eop -CI+ E : Cem,total (3)

3.5 Summary and Implementation

FUEL provides a systematic framework for eval-
uating the environmental impact of LLM serving,
using FU as a comparison basis. To demonstrate its
effectiveness and generalizability, we will present
three case studies exploring different comparison
configurations: model size (§4), quantization (§5),
and hardware (§6). For broadly applicable in-
sights, we focus on two widely used model families,
Qwen2.5 (Qwen et al., 2025) and Llama2 (Touvron
et al., 2023), and conduct experiments using the
open-source LLM serving platform vLLM (Kwon
et al., 2023). We use a carbon intensity of 518
gCO,eq, the 12-month average of our server’s re-
gion, to calculate operational carbon emissions. All
experiments were conducted in a single run with
the LLM temperature set to 0 to minimize output
randomness. We use the NewsQA (Trischler et al.,
2016) summarization dataset for main results, as it
tests language understanding without extra context.
Results on other datasets are in the Appendix.
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Figure 2: Carbon emission per FU for different model
sizes across Qscores at QPS=1 req/s.

4 Case Study: Model Size

In this section, we use FUEL to examine the envi-
ronmental impact of model size on LLM serving.

4.1 Evaluation Methodology

Setup. We evaluate various model sizes from
two LLM families—Qwen2.5 (7B, 14B, 32B) and
Llama2 (7B, 13B)—on an NVIDIA H100 GPU
paired with an Intel Xeon 8480+ CPU.

Benchmarking configurations. To assess how
model sizes affect the environmental impact—or
how “green" £ each model is in terms of carbon
efficiency—we evaluate a range of FUs by adjust-
ing serving constraints. QPS is from 1 to 20 req/s.
The Qscore ranges are set to [-5, 15] for Qwen and
[-5, 10] for Llama, based on the Qscore distribution
of each model family (Figure 21 in Appendix C.1).
These ranges ensure broad coverage while provid-
ing sufficient outputs across model sizes that meet
quality requirements. TTFT is at 1s and TPOT is
at 200ms to align with human reading speed.

4.2 Evaluation Results

Question 1:  Are smaller models always greener?
We first investigate whether smaller models are
always greener. Figure 2 shows carbon emissions
per FU across model sizes under different Qscore
settings at QPS =1 req/s. We choose a relatively
low QPS to ensure all models generate enough
tokens without violating performance constraints.
The results indicate that the answer is no.

For Qwen, at a low Qscore of -5, smaller models
emit less carbon. However, as Qscore increases,
carbon emissions increase for all model sizes, with
smaller models increasing at a faster rate. When
Qscore exceeds 5, the smallest 7B model becomes
the highest emitter. At Qscore 15, the 32B model
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Figure 3: Carbon savings of Qwen 14B and 32B com-
pared to 7B with Qscore low (-5) and high (15). Data
for Qwen 32B are missing at QPS > 4 req/s, as larger
models cannot serve intensive workloads.
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Figure 4: Carbon savings of Llama 13B compared to
7B with Qscore low (-5) and high (10).

has the lowest emissions, while the 7B model emits
over 1.8x more. A similar trend is seen in Llama,
where larger models become greener as quality
requirement rise. We confirm that larger models
produce higher-quality outputs with higher Qscores
in Figure 21 in Appendix C.1. This underscores
the need to balance model size and output quality
for lower environmental impact.

Question 2:  When are larger models greener?
To examine when larger models become greener,
we set FUs with a broader QPS range and two
quality requirements: low (Qscore = -5) and high
(Qscore = 15 for Qwen, 10 for Llama). Figure 3
shows that for Qwen, larger models (14B and 32B)
save more carbon compared to the 7B model un-
der high Qscore, with the 32B saving over 40%.
However, under a low-quality requirement (Qscore
= -5), larger models offer no advantage. A similar
trend is seen for Llama, where the 13B model saves
over 20% carbon compared to the 7B model at high
quality. Thus, larger models become greener
when output quality requirements are high.

To explain the carbon savings shift with vary-
ing QPS, we analyze its impact on service level
objective (SLO) attainment, which refers to meet-
ing TTFT and TPOT constraints. In Figure 5, we
observe that once QPS exceeds a certain thresh-
old, SLO attainment drops, as the system becomes
saturated. This explains why larger models can
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Figure 5: SLO attainment of Qwen and Llama families
across QPS range.
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Figure 6: Comparison of Qwen 7B, 14B, and 32B in
FUEL. Tile colors indicate the model size with the low-
est carbon per FU. Tile values are carbon savings (%) of
greenest model size compared to the second greenest.

be greener at lower QPS: they meet performance
constraints while producing higher-quality output.

Question 3: Does a universal greenest model
size exist?

The answer is no. Figure 6 shows the relative car-
bon savings of Qwen 7B, 14B, and 32B across
various QPS and Qscore values. No model size
consistently has the lowest carbon emissions. At
low QPS (1-4 req/s) with high Qscore, Qwen 32B
can save up to 49% in carbon emissions compared
to the second greenest. However, as QPS increases,
the 32B fails to meet the performance constraints,
making the 14B the greenest. When the quality
requirement is low (Qscore = 0), the 7B model is
always the greenest, especially at high QPS.

Takeaway 1: Larger models are greener under
high-quality, low-QPS conditions. Smaller mod-
els become greener as QPS increases. No single
model size is the greenest across all scenarios.

5 Case Study: Quantization

In this section, we explore how quantization af-
fects the environmental impact of LLM serving.
By reducing model weight and activation preci-
sion, quantization significantly decreases model

size. For example, 4-bit quantization cuts model
size by 4x compared to FP16. This reduction low-
ers memory usage and computational costs while
maintaining accuracy. Using FUEL, we investigate
whether quantization, especially weight-only (Lin
et al., 2024) and activation (Frantar et al., 2022)
quantization techniques, can improve carbon effi-
ciency while maintaining output quality.

5.1 Evaluation Methodology

Setup. We evaluate two widely used quantization
methods: 4-bit AWQ (Lin et al., 2024) (weight-
only) and W8AS (Frantar et al., 2022) (INT8 quan-
tization for both weights and activations). We eval-
uate Qwen2.5 (7B, 14B, 32B) and Llama2 (7B,
13B) on an NVIDIA H100 GPU with an Intel
Xeon 8480+ CPU. Qwen provides an official AWQ
version, while Llama’s AWQ is from Hugging
Face (TheBloke, 2023b,a). For W8AS, we quantize
the models using LLM Compressor (vVLLM Project,
2023), an open-source library designed for vLLM.

Benchmarking configurations. Same as in §4.

5.2 Evaluation Results

Question 1:
greener?
The answer is no. Figure 7 shows the relative car-
bon emission savings per FU for AWQ compared
to the FP16 version of Qwen under high (10) and
low (-5) Qscores. Overall, AWQ’s carbon savings
decline as QPS increases. For the 7B model, AWQ
consistently reduces emissions, even under high
Qscore. At QPS =1 req/s and Qscore = 10, AWQ
cuts emissions by over 20% compared to FP16.
This is because AWQ slightly increases the output
quality of 7B (Table 3 in Appendix D), resulting
in an increased number of FUs. On the other hand,
the 14B model shows positive carbon savings at
low Qscore (-5) but negative savings at high Qs-
core (10). The 32B model never achieves positive
carbon savings, regardless of Qscore. We observe
a similar trend for Llama in Figure 8. As QPS
increases, the carbon savings of AWQ over FP16
decline and can even become negative at high QPS.
To understand why AWQ does not always out-
perform FP16 in carbon savings, we analyze its
impact on TTFT and TPOT speedup. Figures 9 and
10 show that TPOT sees some speedup at low QPS
but slows down at high QPS, while TTFT is always
slower than FP16. This is because quantization
reduces weight size, but weights are dequantized

Is weight-only quantization always
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Figure 9: Latency speedup of AWQ Qwen compared to
the FP16 version.

back to 16-bit during inference, adding overhead.
AWQ improves TPOT in memory-bound cases at
low QPS by reducing memory transfer, but this
advantage diminishes as QPS increases and com-
putation grows. Since TTFT is compute-intensive,
AWQ provides no speedup.

Takeaway 2: Weight-only quantization reduces
carbon emissions at low QPS but loses its advan-
tage as QPS increases.

Question 2:
greener?

Unlike weight-only quantization, activation quanti-
zation applies to both weights and activations. We
compared the relative carbon savings of W8AS
compared to the FP16 version under different Qs-

Is activation quantization always
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Figure 10: Latency speedup of AWQ Llama compared
to the FP16 version.
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Figure 11: Carbon savings of W8A8 Qwen compared
to the FP16 version with Qscore low (-5) and high (10).
Data are missing at higher QPS for 14B and 32B, as
larger models cannot serve intensive workloads.
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Figure 12: Carbon savings of W8AS8 Llama compared
to the FP16 version with Qscore low (-5) and high (10).

cores and QPS, and the results show that the answer
is yes. As shown in Figure 11, W8AS consistently
reduces carbon emissions for Qwen models, regard-
less of quality requirements. Despite some accu-
racy loss in the 7B model (Table 3 in Appendix D),
it still achieves a 5% carbon reduction at Qscore =
10. Unlike AWQ, W8AS maintains stable savings
even as QPS increases.

We observe a similar trend for Llama in Fig-
ure 12. Notably, Llama 7B improved in output
quality after quantization (Table 3 in Appendix D),
saving over 15% of carbon at Qscore = 10. This
shows activation quantization can break the trade-
off between FP16 and AWQ, ensuring consistent
carbon savings across different FUs.

To understand why W8AS always outperforms
FP16 in carbon savings, we analyze its impact on
TTFT and TPOT speedup. Figures 13 and 14 show
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that W8AS8 consistently speeds up TPOT and TTFT
across all QPS ranges. This improvement comes
from reducing both weight and activation precision,
which decreases the amount of data movement and
computation during inference. This makes W8AS8
a more sustainable choice for LLM serving, as it
strikes a balance between quality and performance.

Question 3:  Does a universal greenest quantiza-
tion method exist?

The answer is no. Figure 15 shows the relative
carbon savings of FP16, AWQ, and W8AS8 models
across various QPS and Qscores for Qwen 7B and
14B. For Qwen 14B, W8AS outperforms in all sce-
narios, with carbon savings increasing as QPS rises.
However, for Qwen 7B, AWQ maintains slightly
better quality at low QPS, while W8AS lags behind

Table 1: Hardware platform specifications in this paper.

Specification | LA40 server | H100 server
GPU 4 x L40 8x H100
TDP 300W 350W
Process size Snm Snm

Die size 609 mm? 814 mm?
GPU memory | 40GB 80GB
Release Year 2022 2023

CPU AMD EPYC 7443 Intel Xeon 8480+
TDP 200W 350W
Process size 7nm 10nm

Die size 4x81 mm? 4x477 mm?
CPU memory | 504GB 1031GB
Release Year 2021 2023

at high QPS and high-quality requirements due to
its slight accuracy loss (Table 3 in Appendix D).

Takeaway 3:Weight and activation quantization
methods, like W8AS, hold significant potential
for reducing carbon emissions in LLM serving,
particularly for larger models.

6 Case Study: Hardware

In this section, we examine how hardware plat-
form affects the environmental impact of LLM
serving. Using FUEL, we investigate whether more
advanced hardware can enhance carbon efficiency
while maintaining output quality.

6.1 Evaluation Methodology

Setup. We conduct experiments on two GPU
servers with different hardware configurations, one
older and one newer, as detailed in Table 1. For
fair comparisons, we use a single GPU per server
for all experiments. We evaluate the Qwen2.5 (7B,
14B) and Llama2 (7B, 13B).

Benchmarking configurations. Same as in §4.

6.2 Evaluation Results

Question 1: How does different hardware con-
tribute to total carbon emissions?

Figure 16 shows the breakdown of carbon emis-
sions per FU for Qwen and Llama 7B models
on different hardware platforms, separating oper-
ational and embodied carbon. It is worth noting
that different hardware contributes to different em-
bodied carbon per FU, due to differences in the
total embodied carbon for each hardware. The
L40 platform has lower total embodied carbon than
the H100, with values of 26.6 and 29.92 kgCO,eq
repectively. These differences are based on calcu-
lations using the ACT modeling tool (Gupta et al.,
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Figure 17: Carbon emission per FU of Qwen and Llama

model families on different hardware platforms, evalu-

ated in FUEL with Qscore=0.

2022) and are due to hardware factors such as pro-
cess and die size. The difference is even more
pronounced between the AMD EPYC 7443 and
Intel Xeon 8480+ CPUs, with the AMD CPU hav-
ing 9.98 kgCO»,eq, compared to the Intel’s 42.81
kgCO»eq, over 4x higher.

Advanced hardware like the H100 offers better
performance but higher embodied carbon. Extend-
ing hardware lifetime can yield more carbon sav-
ings, especially considering the large difference in
embodied carbon between older and newer devices.

Question 2:
ware greener?

Is LLM serving on advanced hard-

Figure 17 shows the carbon emissions per FU for
the Qwen and Llama model families on two hard-
ware platforms. At low QPS, the L40 server consis-
tently has lower carbon emissions than the H100.
This means that the answer is no: advanced hard-
ware is not necessarily greener.

The main advantage of advanced hardware like
the H100 is its ability to produce higher-quality out-
puts and meet performance constraints, as shown
in Figure 18. Although advanced hardware may
not be greener, it provides better performance and
supports higher-quality LLM serving at scale.
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Figure 18: SLO attainment of Qwen and Llama model
families on different hardware platforms.
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Figure 19: Comparison of Qwen 7B and 14B on differ-
ent hardware platforms in FUEL. Tile colors indicate
the hardware with the lowest carbon emission per FU.
Tile values are carbon savings (%) of the greenest hard-
ware compared to the second greenest.

Question 3:  How to choose greener hardware?

To answer this question, we run experiments across
different FUs with varying QPS and Qscores. Fig-
ure 19 shows the relative carbon savings of L40
and H100 servers for Qwen 7B and 14B. Hard-
ware carbon efficiency depends mainly on model
size and QPS, with a minor influence from Qscore.
Newer hardware is more carbon efficient at high
QPS, while older hardware is better at low QPS.
These findings underscore the sustainability bene-
fits of reusing older hardware to cut carbon emis-
sions while maintaining performance and quality.

Takeaway 4: Advanced hardware offers higher
performance but is not always greener due to
higher embodied carbon. Older hardware can
achieve lower carbon emissions while still meet-
ing quality and performance constraints.

7 Conclusion

We introduce FUEL, the first evaluation framework
for unveiling LLM serving’s environmental impact
by leveraging functional units as the basis for com-
parison. We explore how model size, quantization,
and hardware affect carbon emissions. Our findings
highlight opportunities for greener LLM deploy-
ment, paving the way for sustainable Al systems.



Limitations
We discuss the limitations of this work as follows.

Model families. Our case studies examine two
widely used open-source LLM families, Qwen2.5
and Llama2, which we believe are representative
of general LLM serving behaviors. However, we
have not yet explored other model families, such
as Mistral, or task-specific models like multimodal,
vision-language, and code-focused LLMs. We
leave these investigations for future work.

Hardware. All our experiments are conducted
on a single GPU to ensure fair comparisons, limit-
ing us to models up to 32B. We have yet to explore
the performance and power dynamics in a multi-
GPU distributed environment, which would allow
us to run larger models like Llama 70B. This setup
introduces additional overhead, particularly from
communication, making the results even more in-
sightful. We leave this exploration for future work.

Quality metrics. Quantitatively evaluating LLM
output quality remains a challenging and open re-
search question. We experimented with various
metrics before selecting the reward model, a com-
mon approach in reinforcement learning from hu-
man feedback. While we believe our key findings
remain robust regardless of the specific quality met-
ric used, access to more advanced evaluation meth-
ods in the future could further enhance the accuracy
and rigor of our work.

Ethical Statement

This research aims to contribute to the development
of sustainable and carbon efficient LLM serving
systems. We are committed to conducting our work
in a responsible manner, adhering to ethical guide-
lines and best practices. Our focus is on minimiz-
ing the environmental impact of LLM deployments
while ensuring that the quality of the models and
the performance of the systems meet the necessary
standards for practical use.

We recognize the potential environmental con-
sequences of the widespread use of LLMs, includ-
ing energy consumption, electronic waste, and the
environmental impact of hardware manufacturing.
Therefore, we emphasize the importance of opti-
mizing LL.Ms for lower energy and carbon emis-
sions, not only in terms of performance but also
through hardware reuse and longevity, as part of a
more sustainable approach to Al infrastructure.

We strive to be transparent in our research
methodologies and encourage further exploration
of green Al practices. As we explore new avenues
for improving LLM efficiency, we remain mindful
of the broader social, economic, and environmental
implications of deploying large-scale Al systems
and aim to promote solutions that benefit both the
technology and society at large.

We also recognize the importance of fairness
and inclusivity, ensuring that our research does not
disproportionately harm any community or group
and aligns with the goal of creating Al systems that
are accessible and beneficial to all.
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A Code Availability

Please find our code repository at

The manufacturing embodied footprint C,,, of
processors and SoCs like CPUs and GPUs depends
on several factors: die area (Agie), carbon intensity
of the energy consumed by the fab (CI,y,), energy
consumed per unit area manufactured (EPA), the
GHG emissions from gases and chemicals per unit
area (GPA), the footprint of procuring raw mate-
rials per unit area (MPA), and fabrication yield
(Yield, set to 0.875 as in Gupta et al. (2022)). The
information is sourced from product data sheets
and sustainability reports. The manufacturing em-
bodied carbon of a processor can be calculated as:

(CTgap X EPA + GPA 4+ MPA) X Agi,
Yield
(%)

The packaging carbon emission (Y, is calculated
by the number of integrated circuits (Nic) with a
packaging footprint. Following ACT, we use an
average packaging overhead of 150 gCOg per IC.

Cm =

C, = Nic x 150 (©)

In cloud environments or HPC clusters, it is often
challenging to obtain details of DRAM specifica-
tions. Previous studies (Li et al., 2023; Kohler et al.,

https://anonymous. 4open.science/r/FUEL-76EF 2023) generally assume that the embodied carbon

We provide a README file that offers instructions

on how to get started and utilize FUEL.
We summarize the appendix as follows:

* Section B provides a detailed description of em-
bodied carbon modeling.

* Section C presents additional results for the
model size case study, including experiments
on NewsQA and two additional datasets (Arena
Hard and HumanEval).

* Section D provides supplementary results for the
quantization case study on the same datasets.

* Section E offers more detailed comparisons of
model selections in the hardware case study.

B Embodied Carbon Modeling

We utilize the ACT (Gupta et al., 2022) embodied
carbon modeling tool. The embodied carbon foot-
print can be divided into manufacturing and pack-
aging carbon emissions. Manufacturing carbon
arises from producing electronic components like
transistors and resistors from raw materials, while
packaging carbon is associated with assembling
these components into chips and circuit boards:

Cem = Umanufacturing + Cpackaging (4)

of DRAM is proportional to its capacity. Following
prior work, we adopt a fixed rate of 65gC0O2/GB to
estimate the embodied carbon of DRAM.

C Additional Results for Model Size Case
Study

C.1 Results on NewsQA Summarization

Figure 20 illustrates the naive carbon emission per
token for various model sizes across a range of QPS.
This figure represents carbon per token without
the use of FUEL. Without considering server con-
straints, smaller models consistently exhibit lower
carbon emissions per token, which does not reflect
real-world serving requirements where larger mod-
els may be preferred for higher quality outputs.

Figure 22 shows the cumulative percentage of
quality scores > a given threshold for different
models on the NewsQA summarization task. This
figure highlights significant differences between
models, particularly between Llama 7B and 13B,
and between Qwen 7B and 32B. This discrepancy
demonstrates why smaller models may not be as
advantageous when higher quality is required, as
larger models provide better outputs.


https://doi.org/10.18653/v1/2022.emnlp-main.131
https://doi.org/10.18653/v1/2022.emnlp-main.131
https://doi.org/10.18653/v1/2022.emnlp-main.131

-&- Qwen-7B Qwen-14B - Qwen-32B
-®- Llama-7B -@- Llama-13B
& le—4
2125+ ;
St
O
2 1.00 1 B
g
% 0.75 A E
g i i
& 0.50
g 0.25
80
8 T T T T
5 10 5 10
QPS QPS
(a) Qwen (b) Llama

Figure 20: Naive carbon emission per token for different
model sizes across QPS range on NewsQA dataset.
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Figure 21: Qscore distribution of outputs across differ-
ent model sizes on the NewsQA dataset.
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Figure 22: Cumulative percentage of Qscore > thresh-
old on NewsQA dataset.

C.2 Results on Arena Hard

The Arena Hard dataset (Li et al., 2024c) is a chal-
lenging benchmark designed to evaluate the instruc-
tion following capabilities of LL.Ms, which is de-
rived from real user interactions on Chatbot Arena.

Figure 23 shows the Qscore distribution for dif-
ferent model sizes on the Arena Hard dataset. As
shown, larger models tend to achieve higher quality
scores. However, compared to the quality distri-
bution on the NewsQA summarization task, while
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Figure 23: Qscore distribution of outputs across differ-
ent model sizes on the Arena Hard dataset.
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Figure 24: Cumulative percentage of Qscore > thresh-
old for different model sizes on Arena Hard dataset.

larger models still perform better, the differences
between model sizes on Arena Hard are less pro-
nounced than on the NewsQA. However, the gap
between Llama 7B and 13B remains significant.
Figure 24 also confirms this trend by showing the
cumulative percentage of quality scores > a given
threshold for various model sizes on Arena Hard.
Figure 25 shows carbon emissions per FU across
model sizes under different Qscore settings at QPS
= 1 req/s. For the Qwen model family, since the
Qscore distribution gap has narrowed, we only ob-
serve the 32B model producing less carbon than the
7B model when the quality requirement becomes
very high (Qscore > 15). On the other hand, due
to the significant quality distribution gap between
the Llama models, a slight increase in the quality
requirement makes the Llama 13B model greener
than the 7B model. Moreover, when the quality
requirements become stricter, the carbon emission
gap between Llama 13B and 7B becomes larger.
The result aligns well with our findings on the
NewsQA dataset: if the quality requirement is high,
larger models become a greener choice, especially
when there are large differences in quality distri-
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Figure 25: Carbon emission per FU for different model
sizes on Arena Hard across Qscores at QPS=1 req/s.

H 7B W 14B MW 32B W 7B W 13B
Sl v 1% % o IE3
S 1% AL 1% 4% o 30% 35% 27% 24%
()
5 9 2% o 20% 24% 17% 15%
O
g S 5% S 6% 9% 3% 1%
1 3 5 7 1 3 5 7
QPS
(b) Llama

Figure 26: Comparison of different model sizes on
Arena Hard in FUEL. Tile colors indicate the model
with the lowest carbon per FU. Tile values are carbon
savings (%) of the greenest size compared to the second
greenest.

bution across models of different sizes. Figure 26
shows the optimal model size choice across vari-
ous Qscore and QPS conditions for the Qwen and
Llama families. Due to the close quality distri-
bution within the Qwen family, the advantage of
larger models is constrained to the top-left corner
(high Qscore, low QPS). In contrast, in the bot-
tom right corner, as the quality requirement de-
creases and QPS increases, the 7B model becomes
the greenest one.

C.3 Results on HumanEval

The HumanEval dataset (Chen et al., 2021) is a
benchmark designed to evaluate the code genera-
tion ability of LLMs. It consists of Python coding
problems and requires LLMs to implement the spe-
cific functions.

Figure 27 shows the Qscore distribution for dif-
ferent model sizes on the HumanEval dataset. Qs-
core distribution for the Qwen models is much
closer on this dataset. This is consistent with their
technical report (Qwen et al., 2025), which also
highlights similar performance across models in
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Figure 27: Qscore distribution for different model sizes
on HumanEval dataset.

- Qwen-7B Qwen-14B - Qwen-32B
= Llama-7B — Llama-13B
]
= 1.0 .
%
2 0.8 B
o
[a W 06' // n
o f
2 0.4 .
-
o
= 0.2 -
g
= 0.0 1 g
QO T T T T T T
40 20 0 20 0 -20
Qscore Qscore
(a) Qwen (b) Llama

Figure 28: Cumulative percentage of Qscore > thresh-
old for different model sizes on HumanEval dataset.

the HumanEval evaluation. However, for the Llama
models, the gap between the 7B and 13B model
remains large, as expected.

Figure 29 shows carbon emissions per FU across
model sizes on HumanEval dataset under different
Qscore settings at QPS = 1 req/s. For the Qwen
family, since the quality difference between the
three model sizes on this task is not significant,
increasing the Qscore does not lead to larger mod-
els demonstrating carbon emission saving over the
7B model. The carbon emissions per FU remain
similar across model sizes even with higher Qscore
requirements. In contrast, for the Llama model
family, due to the large quality gap between the 7B
and 13B models, we observe that even at very low
quality requirements (e.g., Qscore = -15), the 13B
model exhibits lower carbon emissions than the 7B
model.

If we extend the Qscore requirement and QPS
into two dimensions, as demonstrated in Figure 30,
we observe that on HumanEval, Qwen 14B only
shows an incremental carbon saving of 1-2% at
QPS =1 req/s, while in most other cases, Qwen 7B
remains the greenest model. This is because the
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Figure 29: Carbon emission per FU for different model
sizes on HumanEval across Qscores at QPS=1 req/s.

H 7B
1%
1%

14B M 32B
E
5%
3%
3%
5% 26%

5 7 1

13B
7% 33%
6%
4%
4%
0% 6%
b Bes

(a) Qwen

1519%
1520%
1661
1636%

27% %

Qscore
5 10 15 20 25

28%
11%
5%
5

21% 1949%

3% 2293%

0

3
QPS
(b) Llama

Figure 30: Comparison of different model sizes on Hu-
manEval in FUEL. Tile colors indicate the model with
the lowest carbon per FU. Tile values are carbon sav-
ings (%) of the greenest size compared to the second
greenest.

output quality of Qwen 7B is very close to that of
Qwen 14B and 32B. For the Llama model family,
the results align with the previous observations: at
lower QPS and higher quality requirements, the
13B model becomes the greenest option, as it can
produce higher-quality responses compared to the
7B model.

This experiment on the HumanEval dataset fur-
ther highlights our previous conclusion that select-
ing the greenest model size requires a comprehen-
sive consideration of both model output quality and
workload intensity.

D Additional Results for Quantization
Case Study

As shown in Table 2, we used LM Eval (Gao
et al., 2024), an open-source LLM evaluation
tool, to assess the LLMs used in our ex-
periments and their quantized versions. The
evaluations were conducted on tasks from the
Open LLM Leaderboard, including ARC-c (Clark
et al., 2018), GSMS8k (Cobbe et al., 2021), Hel-
laSwag (Zellers et al., 2019), MMLU (Hendrycks
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Figure 31: SLO attainment of Qwen and Llama families
with AWQ version across QPS range.

-— Qwen-7B Qwen-14B =— Qwen-32B
= Llama-7B=— Llama-13B == W8A8-model

S
= \
: \
g \
g \
+ 1
b \
o N\
-
wn
10 20 10 20
QPS QPS
(a) Qwen (b) Llama

Figure 32: SLO attainment of Qwen and Llama families
with W8AS version across QPS range.

et al., 2020), TruthfulQA (Lin et al., 2021), and
Winogrande (Sakaguchi et al., 2021).

We also present the Qscore for the LLMs and
their quantized versions across three datasets, as
shown in Table 3.

D.1 Results on NewsQA Summarization

Figure 31 and Figure 32 illustrate the impact of
the AWQ and W8AS8 quantized versions on SLO
attainment across the QPS range for the Qwen and
Llama families. As shown in Figure 31, the AWQ
version of the models fails to meet the SLO at
lower QPS values. In contrast, the W8AS8 quantized
version improves efficiency, enabling models to
serve a higher QPS.

Figure 33 shows the comparison results among
FP16, AWQ and W8AS versions in Llama family.
WS8AS has almost the lowest carbon emission under
all conditions.

D.2 Results on Arena Hard

Figure 34 shows the results of different quantiza-
tion methods for Qwen 7B/14B models on Arena
Hard dataset. This aligns well with the results
on the previous NewsQA summarization dataset,



Table 2: Evaluation on different benchmarks for Qwen and Llama families with their quantized versions.

Model | Method | ARC-c | GSM8k | HellaSwag | MMLU | TruthfulQA | Winogrande
FP16 63.57 81.96 62.24 74.23 49.82 73.64
Qwen-7B | AWQ | 62.03 (-1.54) | 79.61(-2.35) | 61.52(-0.72) | 73.33(-0.9) | 5043 (+0.61) | 74.11 (+0.47)
WBA8 | 63.65 (+0.08) | 82.11 (+0.15) | 62.15(-0.09) | 74.18 (-0.05) | 49.45(-0.37) | 74.35 (-0.71)
FP16 69.54 79.23 65.73 79.87 5226 80.66
Qwen-14B | AWQ | 68.00 (-1.54) | 80.89(+1.66) | 64.78 (-0.95) | 78.88 (-0.99) | 48.84 (-3.42) | 79.48 (-1.18)
WBA8 | 69.71 (+0.71) | 79.83 (-0.6) | 65.74 (+0.01) | 79.93 (+0.06) | 51.04 (-1.22) | 81.14 (+0.48)
FP16 71.42 75.89 67.11 83.28 51.16 80.03
Qwen-32B | AWQ | 69.88 (-1.54) | 76.72(+0.83) | 66.47 (-0.64) | 82.40 (-0.88) | 52.14 (-0.98) | 79.72(-0.31)
W8A8 | 71.08 (-0.34) | 75.82(-0.07) | 67.14 (+0.03) | 83.15 (-0.13) | 50.55 (-0.61) | 80.43 (+0.4)
FP16 49.83 232 59.34 4722 45.04 72.93
Llama-7B | AWQ | 48.98 (-0.85) | 21.23(-1.97) | 58.61 (-0.73) | 45.34 (-1.88) | 43.57 (-1.47) | 72.53(-0.4)
W8AB | 50.34 (+0.51) | 22.67 (-0.53) | 59.3 (-0.04) | 47.24 (+0.02) | 44.80 (-0.24) | 73.32 (+0.39)
FP16 55.63 35.56 63.1 5355 40.88 75.06
Llama-13B | AWQ | 54.95(-0.68) | 31.69(-3.87) | 62.13(-0.97) | 53.77 (+0.22) | 41.37 (+0.49) | 76.09 (+1.03)
W8A8 | 55.29(-0.34) | 35.18 (-0.38) | 63.08 (-0.02) | 53.65 (+0.1) | 41.49 (+0.61) | 75.22 (+0.16)

Table 3: Mean Qscore on three datasets for Qwen and
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Figure 33: Comparison of FP16, AWQ and W8AS ver-
sions of Llama 7B/13B in FUEL on NewsQA dataset.
Tile colors indicate the model with the lowest carbon
per FU. Tile values are carbon savings (%) of greenest
version compared to the second greenest.

as AWQ shows an advantage at low QPS on the
smaller 7B model. When we use 14B model,
WS8AS illustrates the great potential to save up to
50% carbon emission under each scenario. We can
see a similar trend in Figure 35 on Llama models.

16

sions of Llama 7B/13B in FUEL on Areana Hard dataset.
Tile colors indicate the model with the lowest carbon
per FU. Tile values are carbon savings (%) of greenest
version compared to the second greenest.

D.3 Results on HumanEval

As shown in Figure 36, AWQ still becomes the
greenest method when QPS is low, but W8A8 dom-
inates in more conditions on the Qwen 7B model.
This is because, after W8AS8 quantization, the Qs-
core of Qwen 7B improves on the HumanEval
dataset. For the Qwen 14B model, W8AS is no
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Figure 37: Comparison of FP16, AWQ and W8AS ver-
sions of Llama 7B/13B in FUEL on HumanEval dataset.
Tile colors indicate the model with the lowest carbon
per FU. Tile values are carbon savings (%) of greenest
quantization version compared to the second greenest.
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Figure 38: Comparison of model-hardware combina-
tions for Qwen and Llama in FUEL. Tile colors indicate
the model-hardware with the lowest carbon per FU. Tile
values are carbon savings (%) of the greenest choice
compared to the second greenest.

longer the greenest method under all conditions.
This is due to AWQ experiencing minimal accuracy
degradation on this dataset, allowing it to retain its
advantage at low QPS.

E Additional Results for Hardware Case
Study

Figure 38 compares model and hardware combina-
tions, further confirming our previous conclusion:
older hardware can achieve lower carbon emissions.
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