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ABSTRACT

With hundreds of graph self-supervised pretext tasks proposed over the past few1

years, the research community has greatly developed, and the key is no longer to2

design more powerful but complex pretext tasks, but to make more effective use of3

those already on hand. There have been some pioneering works, such as AutoSSL4

(Jin et al., 2021) and ParetoGNN (Ju et al., 2022), proposed to balance multi-5

ple pretext tasks by global loss weighting in the pre-training phase. Despite their6

great successes, several tricky challenges remain: (i) they ignore instance-level7

requirements, i.e., different instances (nodes) may require localized combinations8

of tasks; (ii) poor scalability to emerging tasks, i.e., all task losses need to be9

re-weighted along with the newly added task and re-pretrained; (iii) no theoret-10

ical guarantee of benefiting from more tasks, i.e., more tasks do not necessarily11

lead to better performance. To address the above issues, we propose in this paper12

a novel multi-teacher knowledge distillation framework for instance-level Multi-13

tasking Graph Self-Supervised Learning (MGSSL), which trains multiple teachers14

with different pretext tasks, then integrates the knowledge of different teachers for15

each instance separately by two parameterized knowledge integration schemes16

(MGSSL-TS and MGSSL-LF), and finally distills it into the student model. Such17

a framework shifts the trade-off among multiple pretext tasks from loss weight-18

ing in the pre-training phase to knowledge integration in the fine-tuning phase,19

making it compatible with an arbitrary number of pretext tasks without the need20

to re-pretrain the entire model. Furthermore, we theoretically justify that MGSSL21

has the potential to benefit from a wider range of teachers (tasks). Extensive ex-22

periments have shown that by combining a few simple but classical pretext tasks,23

the resulting performance is comparable to the state-of-the-art competitors.24

1 INTRODUCTION25

Deep learning on graphs (Wu et al., 2020) has recently achieved remarkable success on a variety26

of tasks, while such success relies heavily on the massive and carefully labeled data. However,27

precise annotations are usually very expensive and time-consuming. Recent advances in graph Self-28

supervised Learning (SSL) (Wu et al., 2021; Xie et al., 2021; Liu et al., 2021) have provided novel29

insights into reducing the dependency on annotated labels and enable the training on massive unla-30

beled data. The primary goal of graph SSL is to provide self-supervision for learning transferable31

knowledge from abundant unlabeled data, through well-designed pretext tasks (in the form of loss32

functions). There have been hundreds of pretext tasks proposed in the past few years (Sun et al.,33

2019; Hu et al., 2019; Xia et al., 2022; 2021; Zhu et al., 2020a; You et al., 2020a; Zhang et al.,34

2020), and different pretext tasks extract different levels of graph knowledge based on different35

inductive biases. For example, PAIRDIS (Jin et al., 2020) captures the inter-node long-range de-36

pendencies by predicting the shortest path lengths between nodes, while PAR (You et al., 2020b)37

extracts topological information by predicting the graph partitions of nodes. With so many ready-38

to-use pretext tasks already on hand, as opposed to designing more complex pretext tasks, a more39

promising problem here is how to leverage multiple existing pretext tasks more effectively.40

There have been some previous works, such as AutoSSL (Jin et al., 2021) and ParetoGNN (Ju et al.,41

2022), that propose to adaptively weight the losses of different pretext tasks in the pre-training phase42

with the optimization objective of graph homophily or Pareto optimality. Despite the great progress,43

there are still several tricky challenges. Firstly, they both ignore instance-level requirements, i.e.,44
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Figure 1: (a)(b) Classification accuracy of nodes with different node degrees and betweenness cen-
trality across five pretext tasks on the Citeseer dataset. (c) Classification accuracy of AutoSSL,
ParetoGNN, and MGSSL with respect to the number of SSL tasks on the Citeseer dataset.

different instances (nodes) may require localized and customized combinations of pretext tasks.45

To illustrate this, we report the classification accuracy of nodes with different node degrees across46

five pretext tasks (PAR, CLU (You et al., 2020b), DGI (Velickovic et al., 2019), PAIRDIS and47

PAIRSIM (Jin et al., 2020)) in Fig. 1(a), from which we observe that different nodes may require48

localized pretext tasks; for example, high-degree nodes benefit more from DGI and PAIRDIS,49

while low-degree nodes prefer CLU and PAIRSIM. Another example with Betweenness Centrality50

as a metric in Fig. 1(b) shows the same phenomenon, which calls for an instance-level framework51

for multi-tasking graph self-supervise. Secondly, balancing multiple tasks by loss weighting during52

the pre-training phase makes it hard to scale the pre-trained model to emerging tasks. To incorporate53

new tasks, it requires to re-weight the losses of new tasks and existing tasks to re-pretrain the model.54

Finally, we present the performance of AutoSSL, ParetoGNN, and MGSSL as the number of SSL55

tasks increases in Fig. 1(c), which shows that only MGSSL can consistently benefit from more tasks.56

Present Work. To address the above issues, this paper proposes a novel multi-teacher knowledge57

distillation framework for instance-level Multi-tasking Graph SSL (MGSSL), which trains multiple58

teachers with different pretext tasks and then integrates the knowledge of different teachers for59

each instance separately by two parameterized knowledge integration schemes (MGSSL-TS and60

MGSSL-LF). This framework shifts the trade-off among multiple pretext tasks from loss weighting61

in the pre-training phase to knowledge integration in the fine-tuning phase. As a result, when a new62

task is encountered, we no longer need to re-weight all task losses for pre-training, but simply train63

a model with only the new task and use it as an additional teacher for knowledge integration, and64

finally distill the integrated knowledge into the student model. Furthermore, we provide a provable65

theoretical guideline for how to integrate the knowledge of different teachers, i.e., the integrated66

teacher probability should be close to the true class-Bayesian probability. More importantly, we67

prove theoretically that the optimal integrated teacher probability can monotonically approach the68

Bayesian class-probability as the number of teachers (SSL tasks) increases, which demonstrates that69

MGSSL has the theoretical potential to benefit from a wider range of teachers (SSL tasks). Extensive70

experiments on eight graph datasets have shown that by combining a few simple but classical pretext71

tasks, the resulting performance of MGSSL is comparable to that of state-of-the-art competitors.72

2 PRELIMINARIES73

Notations. Let G = (V, E ,X) denote an attributed graph, where V is the set of |V| = N nodes74

with features X = [x1,x2, · · · ,xN ] ∈ RN×d and E ⊆ V × V is the set of |E| edges between75

nodes. Following the common semi-supervised node classification setting, only a subset of node76

VL = {v1, v2, · · · , vL} with corresponding labels YL = {y1, y2, · · · , yL} are known, and we denote77

the labeled set as DL = (VL,YL) and unlabeled set as DU = (VU ,YU ), where VU = V\VL. The78

task of node classification aims to learn a GNN encoder fθ(·) and a linear prediction head gω(·) with79

the task loss Ltask(θ, ω) on labeled data DL, so that they can be used to infer the labels YU .80

Problem Statement. Given a GNN encoder fθ(·), a prediction head gω(·), and K losses of self-81

supervised tasks {L(1)
ssl (θ, η1),L

(2)
ssl (θ, η2), · · · ,L

(K)
ssl (θ, ηK)} with prediction heads {gηk

(·)}Kk=1,82

two common strategies for combining self-supervised task losses {L(k)
ssl (θ, ηk)}Kk=1 and semi-83

supervised loss Ltask(θ, ω) are Joint Training (JT) and Pre-train&Fine-tune (P&F), as shown in84

Fig. 2. The Joint Training strategy jointly trains the entire model under the supervision of down-85

stream and pretext tasks, which can be considered as a kind of multi-task learning, defined as86
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Figure 2: Illustration of the two training strategies, namely Joint Training and Pre-train&Fine-tune.

min
θ,ω,{ηk}K

k=1

Ltask(θ, ω) + α

K∑
k=1

λkL(k)
ssl (θ, ηk), (1)

where α is a trade-off hyperparameter and {λk}Kk=1 are task weights. The Pre-train&Fine-tune87

strategy works in a two-stage manner: (1) Pre-training the GNN encoder fθ(·) with self-supervised88

pretext tasks; and (2) Fine-tuning the pre-trained GNN encoder fθinit
(·) with a prediction head gω(·)89

under the supervision of a specific downstream task. The learning objective can be formulated as90

min
(θ,ω)

Ltask(θinit, ω), s.t. θinit, {η∗k}Kk=1 = argmin
θ,{ηk}K

k=1

K∑
k=1

λkL(k)
ssl (θ, ηk). (2)

A high-level overview of the two strategies is shown in Fig. 2. Without loss of generality, we mainly91

introduce our model for the P&F strategy, leaving extensions to the JT strategy in Appendix A.1.92

A vanilla solution to combine multiple pretext tasks is to set the task weight λk = 1
K (1 ≤ k ≤ K),93

i.e., to treat different tasks as equally important, but this completely ignores the importance of94

different tasks. Different from hand-crafted task weights, AutoSSL (Jin et al., 2021) and Pare-95

toGNN (Ju et al., 2022) propose to learn a set of task weights {λk}Kk=1 by some predefined pri-96

ors (e.g., graph homogeneity or Pareto optimality), such that fθ(·) trained with the weighted loss97 ∑K
k=1 λkL(k)

ssl (θ, ηk) can extract meaningful representations. Despite the great progress, they only98

globally learn a dataset-specific loss weight for each task, while completely ignoring the instance-99

level requirement that different instances (nodes) may have localized task preferences. In practice,100

it is difficult to extend loss weighting directly from the task level to the instance level; for exam-101

ple, the loss function of PAIRDIS involves two nodes, which is hardly compatible with the node-102

specific loss function of PAR. Therefore, we would like to develop an instance-level multi-task SSL103

framework that captures the knowledge behind each pretext task by training multiple teachers, and104

then integrates the knowledge of different teachers separately for each instance in the fine-tuning105

phase, instead of global loss weighting in the pre-training phase. More importantly, compared to106

loss weighting during pre-training, knowledge integration in the fine-tuning phase can fully utilize107

downstream supervision to learn not only dataset-specific but also task-specific SSL strategies.108

3 METHODOLOGY109

3.1 MULTI-TEACHER KNOWLEDGE DISTILLATION110

Intuitively, training with multiple pretext tasks enables the model to access richer information, which111

is beneficial for improving performance. However, this holds true only if we can well handle the112

compatibility problem between pretext tasks. To this end, we propose in this paper a novel multi-113

teacher knowledge distillation framework, as shown in Fig. 3, where we train multiple teachers with114

different pretext tasks to extract different levels of knowledge, which are then integrated through an115

instance-level knowledge integration module λγ(·, ·) and finally distilled into the student model. In116

the pre-training phase, we pre-trained each teacher model with a different pretext task, as follows117

θinitk , η∗k = argmin
θk,ηk

L(k)
ssl (θk, ηk), where 1 ≤ k ≤ K. (3)

In the fine-tuning phase, we fine-tune each teacher {θinitk , ωk} with downstream supervision, then118

integrate the knowledge of different teachers, and distill it into the student {θ, ω}, as follows119

min
θ,ω,γ

Ltask

(
θ, ω

)
+β

τ2

N

N∑
i=1

LKL

(
z̃i,

K∑
k=1

λγ(k, i)h̃
(k)
i

)
, s.t. θ∗k, ω

∗
k=argmin

(θk,ωk)

Ltask(θ
init
k , ωk) (4)

where LKL(·, ·) is the KL-divergence loss, β is a trade-off hyperparameter, τ is the distillation120

temperature, and τ2 is used to keep the gradient stability (Hinton et al., 2015). In addition, z̃i =121
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Figure 3: (a) Conventional multi-tasking self-supervised learning where the model is jointly trained
with multiple (globally) weighted pretext tasks. (b) Proposed multi-teacher knowledge distillation
framework, where we train each teacher with one pretext task, and then apply an instance-level
integration module to integrate the knowledge of different teachers for each instance separately.

σ(zi/τ), h̃
(k)
i = σ(h

(k)
i /τ), σ(·) = softmax(·) is the activation function, and zi = gω(fθ(G, i))122

and h
(k)
i = gω∗

k
(fθ∗

k
(G, i)) are the logits of node vi in the student model and k-th teacher model,123

respectively. MGSSL takes full account of the instance-level requirements and learns a customized124

knowledge integration strategy for each instance by a parameterized function λγ(·, ·), where λγ(k, i)125

denotes the importance weight of k-th pretext task for node vi, and it satisfies
∑K

k=1 λγ(k, i) =126

1. The parameters to be optimized in Eq. (4) during KD are the student model {θ, ω} and the127

weighting function λγ(·, ·) (parameterized by γ). Although each teacher model is frozen before128

KD, the integrated teacher (the optimality of teacher)
∑K

k=1 λγ(k, i)h̃
(k)
i changes as λγ(k, i) is129

updated during KD. Therefore, Eq. (4) essentially performs multi-teacher KD in an online fashion.130

3.2 TWO PARAMETERIZED KNOWLEDGE INTEGRATION SCHEMES131

A natural solution to achieve instance-level knowledge integration is to introduce a weighting func-132

tion λγ (· | γi) parameterized by γi ∈ RF . However, directly fitting each λγ (· | γi) (1 ≤ i ≤ N )133

locally involves solving NF parameters, which increases the over-fitting risk, given the limited la-134

bels in the graph. Therefore, we consider the amortization inference (Kingma & Welling, 2013)135

which avoids the optimization of parameter γi for each node locally and instead fits a shared neu-136

ral network. In this section, we introduce two knowledge integration schemes, MGSSL-LF and137

MGSSL-TS, to parameterize the weighting function λγ(·, ·), resulting in two specific instantiations.138

MGSSL-LF. To explicitly capture the localized importance of different teachers, we introduce a set139

of latent variables {µk}Kk=1 and associate each teacher with a latent factor µk ∈ RC to represent140

it. This scheme is inspired by latent factor models commonly applied in the recommender system141

(Koren, 2008), where each user or item corresponds to one latent factor used to summarize their142

implicit features. The importance weight of the k-th teacher to node vi can be calculated as follows143

λγ(k, i) =
exp (ζk,i)∑K

k′=1 exp (ζk′,i)
, where ζk,i = νT

(
µk ⊙ zi

)
. (5)

where ν ∈ RC is a global parameter vector to be learned, which determines whether or not the144

value of each dimension in
(
µk ⊙ zi

)
has a positive effect on the importance score. Larger λγ(k, i)145

denotes that the knowledge extracted by k-th teacher is more important to node vi.146

MGSSL-TS. Unlike MGSSL-LF, which calculates importance weights based solely on the node147

embeddings of different teachers, MGSSL-TS takes into account the matching degree of each148

teacher-student pair to distill the most matched teacher knowledge into the student model. We149

separately project the node logits of the student zi = gω(fθ(G, i)) ∈ RC and each teacher150

h
(k)
i = gω∗

k
(fθ∗

k
(G, i)) ∈ RC into two subspaces via a linear transformation W ∈ RC×C . Then, the151

importance weight of k-th teacher (e.g., pretext task) to node vi can be calculated as follows152

λγ(k, i) =
exp (ζk,i)∑K

k′=1 exp (ζk′,i)
, where ζk,i =

(
Wzi

)T (
Wh

(k)
i

)
. (6)
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3.3 THEORETICAL GUIDELINE FOR HOW TO INTEGRATE153

We have established a unified MGSSL framework in Sec. 3.1 and designed two schemes to parame-154

terize λγ(·, ·) in Sec. 3.2. One more problem left to be solved is what is the criterion for knowledge155

integration, that is, how to optimize the learning of λγ(·, ·). In this section, we (P1) establish a156

provable theoretical guideline that tells us how to integrate, i.e., what is the criteria for constructing157

a relatively “good” integrated teacher; (P2) provide a theory-guided practical implementation; and158

(P3) present a theoretical justification for the potential of MGSSL to benefit from more teachers.159

3.3.1 PROVABLE THEORETICAL GUIDELINE160

Let’s define R(θ, ω)=Ex

[
Ey|x

[
ℓ
(
y, σ(gω(fθ(x))/τ)

)]]
=Ex

[
p∗(x)⊤l

(
gω(fθ(x))

)]
as Bayesian161

objective, where p∗(x)
.
= [P(y|x)]y∈[C] is the Bayesian class-probability. Besides, l

(
gω(fθ(x))

)
=162 (

ℓ(1, σ(gω(fθ(x))/τ)), · · · , ℓ(C, σ(gω(fθ(x))/τ))
)

is the loss vector, where ℓ(·, ·) is the cross-163

entropy loss and C is the number of category. We set pt(xi)
.
=
∑K

k=1 λγ(k, i)h̃
(k)
i to simplify the164

notations and rewrite the distillation term of Eq. (4) as a distillation objective, as follows165

1

N

N∑
i=1

LKL

(
z̃i,

K∑
k=1

λγ(k, i)h̃
(k)
i

)
∝ 1

N

N∑
i=1

pt(xi)
⊤l
(
gω(fθ(xi))

) .
= R̃(θ, ω), (7)

where the detailed derivation of Eq. (7) is available in Appendix A.2. Previous work (Menon166

et al., 2021) has provided a statistical perspective on single-teacher knowledge distillation, where167

a Bayesian teacher providing true class probabilities {p∗(xi)}Ni=1 can lower the variance of the168

downstream objective Ltask(θ, ω) = 1
N

∑N
i=1 e

⊤
yi
l
(
gω(fθ(xi))

)
, where e⊤yi

is the one-hot label of169

node vi; the reward of reducing variance is beneficial for improving generalization (Maurer & Pon-170

til, 2009). However, the teacher probabilities {h̃(k)
i }Kk=1 and Bayesian probability p∗(xi) are very171

likely to be linearly independent in the multi-teacher distillation framework, which means that we172

cannot guarantee pt(xi)=
∑K

k=1 λγ(k, i)h̃
(k)
i =p∗(xi) for node vi ∈ V by just adjusting weights173

{λγ(k, i)}Kk=1. In practice, the following Proposition 1 indicates that even an imperfect teacher174

pt(x) ̸=p∗(x) can still improve model generalization by approximating the Bayesian teacher p∗(x).175

Proposition 1 Consider a Bayesian teacher p∗(x) and an integrated teacher pt(x). Given N176

training samples S = {xi}Ni=1 ∼ PN , the difference between the distillation objective R̃(θ, ω) and177

Bayesian objective R(θ, ω) is bounded by Mean Square Errors (MSE) of their probabilities,178

E
S∼PN

[(
R̃(θ, ω)−R(θ, ω)

)2]
≤ 1

N
V

S∼PN

[
pt(x)⊤l

(
gω(fθ(x))

)]
+O

(
Ex

[
∥pt((x))− p∗((x))∥2

])2

(8)

where P is the data distribution of input data x, and the derivation of Eq. (8) is available in Appendix179

A.3. On the right-hand side of Eq. (8), the second term O
(
Ex

[
∥pt(x) − p∗(x)∥2

])2

dominates180

when N is sufficiently large, which suggests that the effectiveness of knowledge distillation is gov-181

erned by how close the teacher probability pt(x) are to the Bayesian probability p∗(x). The above182

discussion reached a theoretical guidance 1 for how to optimize λγ(·, ·) for knowledge integration.183

Guidance 1 The instance-level knowledge weights should be set (or learned) in such a way that the184

integrated teacher probability pt(x) is as close as possible to the true Bayesian probability p∗(x).185

Averaged

Weighted

Adaptive
(ours)

Bayesian
ProbabilityT5: PAIRSIM

T4: PAIRDIS

T1: PAR T2: CLU

T3: DGI

Figure 4: Illustration of the (2D) teacher
probability directions for three schemes.

Two heuristic schemes for integrating different levels186

of knowledge from multiple teachers are averaged and187

label-based weighted integration. However, the aver-188

aged and weighted schemes have little to do with Guid-189

ance 1, and they are at potential risk of failing to dif-190

ferentiate important teachers from irrelevant ones and191

misleading the student in the presence of low-quality192

teachers. An intuitive illustration of this problem is pro-193

vided in Fig. 4, where the integrated teacher probability194

pt(x) obtained by the averaged and weighted schemes195

not only does not come close but even deviates from196
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the true Bayesian probability p∗(x). Compared to heuristic schemes, this paper proposes two pa-197

rameterized knowledge integration schemes that adaptively adjust the knowledge weights to meet198

Guideline 1, which enables the integrated teacher probability closer to the true Bayesian probability.199

3.3.2 THEORY-GUIDED IMPLEMENTATION200

In practice, precisely estimating the squared error to p∗(x) by Guidance 1 is not feasible (since201

p∗(x) is usually unknown), but one can estimate the quality of the teacher probability pt(x) on202

a holdout set, e.g., by computing the log-loss or squared loss over one-hot labels. This inspired203

us to approximately treat p∗(x) ≈ ey on the training set and optimize λγ(·, ·) by minimizing the204

cross-entropy loss LW = 1
|VL|

∑
i∈VL

ℓ(pt(x),p∗(x)). The learned λγ(·, ·) can then be used to205

infer the proper teacher probability pt(xi) for unlabeled data vi ∈ VU . While such estimations are206

often imperfect, they help to detect poor teacher probabilities, especially for those unlabeled data.207

Such an approximate estimation method was originally proposed by Menon et al. (2021), where208

a large number of simulation experiments are provided to demonstrate the effectiveness of such209

estimation from a statistical perspective. In this paper, we extend it from single-teacher distillation to210

a multi-teacher distillation setting and take it as a criterion to guide the optimization of the weighting211

function λγ(·, ·). The mean squared errors over one-hot labels on the training and testing sets in212

Fig. 7 have demonstrated the effectiveness of such estimations when p∗(x) is unknown in practice.213

3.3.3 THEORETICAL JUSTIFICATION214

Next, we derive the following Theorem 1, a theoretical justification to demonstrate the advantages of215

MGSSL under the multi-task learning setting, which theoretically proves that the optimal integrated216

teacher pt(x) can monotonically approximate p∗(x) as the number of teachers K increases.217

Theorem 1 Define ∆(K)=min
∥∥pt(xi)−p∗(xi)

∥∥
2
=min

∥∥∑K
k=1 λγ(k, i)h̃i

(k)
−p∗(xi)

∥∥
2

with218

K(K ≥ 1) given teachers, then we have (1) ∆(K + 1) ≤ ∆(K), and (2) limK→∞ ∆(K) = 0.219

where the above derivation is available in Appendix A.4. The theorem 1 indicates MGSSL is en-220

dowed with the theoretical potential to benefit from more teachers, i.e., it has advantages in handling221

the task-level compatibility, which is also supported by the experimental results in Sec. 4.3. The222

pseudo-code of the proposed MGSSL framework is summarized in Algorithm 1 in Appendix A.5.223

4 EXPERIMENTAL EVALUATION224

In this section, we evaluate MGSSL on eight datasets by answering five questions. Q1: Can MGSSL225

achieve better performance compared to training with individual tasks? Q2: How does MGSSL com-226

pare to state-of-the-art graph SSL baselines? Q3: Can MGSSL learn instance-level and customized227

SSL task combinations? Q4: Can MGSSL learn high-quality integrated teacher probabilities pt(x)?228

Q5: How do the performance of MGSSL-LF and MGSSL-TS compare to other heuristics knowl-229

edge integration approaches? Can MGSSL consistently benefit from multiple teachers (tasks)?230

Dataset. The effectiveness of the MGSSL framework is evaluated on eight real-world datasets, in-231

cluding Cora (Sen et al., 2008), Citeseer (Giles et al., 1998), Pubmed (McCallum et al., 2000),232

Coauthor-CS, Coauthor-Physics, Amazon-Photo, Amazon-Computers (Shchur et al., 2018), and233

ogbn-arxiv (Hu et al., 2020). A statistical overview of these eight datasets is placed in Appendix234

A.6. Each set of experiments is run five times with different random seeds, and the average accuracy235

and standard deviation are reported as performance metrics. Due to space limitations, we defer the236

implementation details and the best hyperparameter settings for each dataset to Appendix A.7.237

Baseline. To evaluate the capability of MGSSL in multi-tasking graph SSL, we follow Jin et al.238

(2021) to consider five classical tasks (1) PAR (You et al., 2020b), which predicts pseudo-labels239

from graph partitioning; (2) CLU (You et al., 2020b), which predicts pseudo-labels from K-means240

clustering on node features; (3) DGI (Velickovic et al., 2019), which maximizes the mutual infor-241

mation between graph and node representations; (4) PAIRDIS (Jin et al., 2020), which predicts the242

shortest path length between nodes; and (5) PAIRSIM (Jin et al., 2020), which predicts the feature243

similarity between nodes. The detailed methodologies for these five tasks and the reasons why we244

selected them can be found in Appendix A.8. Moreover, we compare MGSSL with some representa-245

tive SSL baselines in Table. 2, including GMI (Peng et al., 2020), MVGRL (Hassani & Khasahmadi,246
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Table 1: Performance comparison of single- and multi-task learning, where bold and underline
denote the best metrics in multi- and single-task learning. Besides, we mark those metrics in multi-
task learning that are poorer to vanilla GCNs and (the best) single-task learning as red and blue.

Dataset Setting GCNs
Single Self-Supervised Task Learning Multi Self-Supervised Task Learning

PAR CLU DGI PAIRDIS PAIRSIM Vanilla AutoSSL ParetoGNN MGSSL-LF MGSSL-TS

Cora
JT 81.72±0.52 83.52±0.39 82.34±0.46 83.28±0.33 82.92±0.41 83.16±0.38 81.50±0.40 83.78±0.45 83.56±0.41 84.68±0.39 85.32±0.32

P&F 81.72±0.52 82.38±0.31 81.42±0.35 82.10±0.44 81.92±0.42 82.44±0.36 80.74±0.38 82.96±0.43 83.34±0.41 84.22±0.28 84.38±0.27

Citeseer
JT 71.48±0.46 72.72±0.36 72.14±0.50 73.08±0.45 73.16±0.42 72.90±0.45 72.30±0.50 73.30±0.37 73.54±0.45 74.34±0.31 74.20±0.42

P&F 71.48±0.46 72.36±0.58 71.84±0.49 72.52±0.37 72.22±0.53 71.98±0.62 71.64±0.49 72.76±0.44 72.98±0.51 73.58±0.56 73.70±0.76

Pubmed
JT 79.26±0.40 82.16±0.54 80.92±0.36 81.50±0.43 81.22±0.55 80.50±0.54 80.86±0.50 82.72±0.35 82.90±0.40 82.66±0.32 82.82±0.29

P&F 79.26±0.40 79.56±0.39 79.12±0.47 79.90±0.52 79.64±0.48 79.34±0.60 78.90±0.54 80.14±0.41 79.95±0.47 80.62±0.25 80.54±0.42

CS
JT 91.04±0.45 92.30±0.67 92.94±0.70 92.66±0.69 92.48±0.55 93.12±0.64 92.16±0.60 93.54±0.46 93.38±0.42 93.86±0.36 93.46±0.25

P&F 91.04±0.45 91.28±0.55 91.36±0.63 91.80±0.73 91.44±0.49 91.62±0.47 91.42±0.57 92.48±0.45 92.24±0.49 92.36±0.45 91.94±0.33

Physics
JT 93.06±0.55 94.08±0.56 94.12±0.49 94.74±0.46 94.62±0.63 94.40±0.48 93.94±0.47 95.10±0.42 95.28±0.48 95.74±0.38 95.54±0.35

P&F 93.06±0.55 93.18±0.71 93.50±0.53 93.92±0.60 94.04±0.56 93.34±0.73 93.40±0.50 93.88±0.45 93.43±0.57 94.80±0.29 94.96±0.43

Photo
JT 91.90±0.46 92.54±0.60 93.04±0.55 92.46±0.70 92.32±0.55 92.82±0.78 91.52±0.61 92.94±0.40 92.76±0.50 93.98±0.29 94.22±0.31

P&F 91.90±0.46 92.24±0.49 92.58±0.66 92.02±0.59 92.10±0.52 92.42±0.44 90.84±0.51 92.36±0.45 92.78±0.54 93.32±0.37 93.52±0.41

Computers
JT 86.36±0.65 87.48±0.65 87.96±0.72 88.08±0.64 87.62±0.52 88.40±0.72 86.58±0.50 88.72±0.44 88.90±0.47 89.56±0.34 89.72±0.28

P&F 86.36±0.65 86.72±0.78 87.74±0.80 87.36±0.73 86.52±0.65 87.20±0.69 85.90±0.57 88.00±0.49 88.14±0.63 88.68±0.42 88.42±0.33

ogbn-arxiv
JT 71.16±0.32 71.84±0.28 71.72±0.40 72.04±0.25 72.18±0.30 71.90±0.33 70.94±0.33 72.26±0.25 72.30±0.23 72.66±0.26 72.72±0.22

P&F 71.16±0.32 71.78±0.37 71.54±0.36 71.96±0.28 71.90±0.33 71.62±0.29 70.56±0.31 72.08±0.24 72.24±0.27 72.52±0.31 72.60±0.25

Table 2: Performance comparison with classical self-supervised algorithms under the Joint Training
setting, where bold and underline denote the best and second metrics on each dataset, respectively.

Method Cora Citeseer Pubmed CS Physics Photo Computers ogbn-arxiv Avg. Rank ↓
GCNs 81.72±0.52 71.48±0.46 79.26±0.40 91.04±0.45 93.06±0.55 91.90±0.46 86.36±0.65 71.16±0.32 12.13
DGI 83.28±0.33 73.08±0.45 81.50±0.43 92.66±0.69 94.74±0.46 92.46±0.70 88.08±0.64 72.04±0.25 9.63
GMI 82.94±0.40 73.22±0.38 81.20±0.35 92.76±0.56 OOM 92.74±0.56 88.20±0.45 OOM 10.00
MVGRL 83.36±0.43 72.66±0.37 81.74±0.41 92.84±0.39 OOM 93.06±0.45 88.36±0.51 OOM 8.67
GRACE 80.80±0.38 72.24±0.44 79.96±0.46 91.94±0.37 93.64±0.47 91.92±0.43 87.44±0.49 OOM 11.86
GCA 84.34±0.45 73.72±0.37 81.98±0.42 93.30±0.42 94.78±0.52 93.30±0.36 88.74±0.37 OOM 5.71
GraphMAE 84.20±0.40 73.40±0.40 81.10±0.40 93.44±0.41 94.56±0.48 93.54±0.45 88.90±0.43 71.75±0.17 6.75
CG3 83.76±0.39 73.54±0.40 81.58±0.36 93.02±0.51 94.90±0.39 93.68±0.48 88.42±0.42 72.40±0.24 6.25
BGRL 84.82±0.41 73.96±0.35 82.20±0.34 93.58±0.29 95.12±0.44 93.48±0.51 89.08±0.38 72.80±0.20 3.13

AutoSSL 83.78±0.45 73.30±0.57 82.72±0.35 93.54±0.46 95.10±0.42 92.94±0.40 88.72±0.44 72.26±0.25 5.75
ParetoGNN 83.56±0.41 73.54±0.45 82.90±0.40 93.38±0.42 95.28±0.48 92.76±0.50 88.90±0.47 72.30±0.23 5.13
MGSSL-LF 84.68±0.39 74.34±0.31 82.66±0.32 93.86±0.36 95.74±0.38 93.98±0.29 89.56±0.34 72.66±0.26 2.13
MGSSL-TS 85.32±0.32 74.20±0.42 82.82±0.29 93.46±0.25 95.54±0.35 94.22±0.31 89.72±0.28 72.72±0.22 1.88

2020), GRACE (Zhu et al., 2020a), GCA (Zhu et al., 2020b), GraphMAE (Hou et al., 2022), CG3247

(Wan et al., 2020), and BGRL (Thakoor et al., 2021), AutoSSL (Jin et al., 2021), and ParetoGNN248

(Ju et al., 2022). Due to space limitations, we defer the discussion of related work on graph SSL249

and automated learning to Appendix A.9. In this paper, we mainly demonstrate the effectiveness250

of MGSSL using the node classification task, but MGSSL also has the potential to be extended to251

other tasks, including graph regression (e.g, molecular property prediction), node clustering, link252

prediction, and vision tasks, and we place the relevant preliminary results in Appendix A.10.253

4.1 PERFORMANCE COMPARISON254

Performance Comparison with Individual Tasks (Q1). We report the results for single- and multi-255

tasking learning under two training strategies, i.e., Joint Training (JT) and Pre-train&Fine-tune256

(P&F) in Table. 1, from which we make three observations: (1) The performance of individual257

pretext tasks depends heavily on the datasets, and there does not exist an “optimal” task that works258

for all datasets. (2) Simply averaging task losses over all tasks (Vanilla) may cause a serious259

task-level compatibility problem, whose performance is not only inferior to training with individual260

tasks (marked in blue), but even poorer than vanilla GCNs (marked in red). (3) As an automated self-261

supervised learning approach, AutoSSL performs better than Vanilla, but still lags far behind262

our MGSSL overall on eight graph datasets. Apart from the results reported in Table. 1 with GCN263

(Kipf & Welling, 2016) as the backbone, we also experiment with GAT (Veličković et al., 2017) and264

GraphSAGE (Hamilton et al., 2017) as the backbones, respectively, in Appendix A.11.265

Performance Comparison with Representative SSL Baselines (Q2). We compare MGSSL with266

several representative graph SSL baselines under the JT setting (the results under the P&F setting are267

placed in Appendix A.12). As can be seen from the results reported in Table. 2, by combining just268

a few simple and classical pretext tasks, the resulting performance is comparable to that of several269

state-of-the-art self-supervised baselines. For example, MGSSL-LF and MGSSL-TS perform better270
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Figure 5: Illustration of average knowledge weights for nodes with different node degree ranges.
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(a) MGSSL-LF on Citeseer
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(b) MGSSL-TS on Citeseer
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(d) MGSSL-TS on CS

Figure 6: Evolution process of average knowledge weights for nodes with a degree range of [4, 6].

than all other baselines on 5 out of 8 datasets. More importantly, we find that MGSSL outperforms271

previous multi-tasking SSL baselines, AutoSSL and ParetoGNN, by a large margin on eight datasets.272

4.2 LOCALIZED SSL TASKS AND LEARNING CURVES273

Localized and Customized SSL Strategies (Q3). To answer Q3, we visualize the average knowl-274

edge weights learned by MGSSL-LF and MGSSL-TS at different node degree ranges on the Cite-275

seer and Coatuhor-CS datasets. From the heatmaps shown in Fig. 5, we can make three impor-276

tant observations: (1) The learned knowledge weights vary a lot from dataset to dataset. For277

example, Citeseer can benefit more from pretext tasks - DGI and PAIRDIS, while the tasks of278

CLU and PAIRSIM are more beneficial for Coauthor-CS. (2) The knowledge weights learned by279

MGSSL-LF and MGSSL-TS are very similar on the same dataset, suggesting that they do uncover280

some “essence”. (3) The knowledge weights vary greatly across different node degrees, and this281

variation is almost monotonic. For example, as the node degree increases on Citeseer, the depen-282

dence of nodes on DGI increases, while the dependence on PAIRDIS gradually decreases, which283

indicates that MGSSL has advantages in learning instance-level and customized SSL strategies.284

Furthermore, we also provide in Fig. 6 the evolution process of knowledge weights for nodes with a285

degree range of [4, 6] on the Citeseer and Coatuhor-CS datasets. The weights of five tasks eventually286

become stable and converge to steady values, corresponding to the results in Fig. 5. For instance,287

the weight of the CLU pretext task eventually converges to a value close to 0 in Fig. 6(a), at which288

point this task essentially quits training and contributes little to the performance improvement.289

Learning Curves (Q4). Since the true Bayesian probability p∗(x) is often unknown in practice, it is290

not feasible to directly estimate the squared errors between pt(x) and p∗(x). Therefore, we follow291

Menon et al. (2021) to estimate the quality of the teacher probability pt(x) by computing the Mean292

Squared Errors (MSE) over one-hot labels. We provide the curves of MSE and accuracy during293

training in Fig. 7, from which we observe that the MSE gradually decreases while the accuracy294

gradually increases on both the training and testing sets as the training proceeds. This justifies the295

theoretical Guideline 1 and shows the effectiveness of the two knowledge integration schemes.296

4.3 EVALUATION ON KNOWLEDGE INTEGRATION AND TEACHER NUMBER (Q5)297

We compare MGSSL-LF and MGSSL-TS with three heuristic knowledge integration schemes,298

including (1) Random, setting λγ(k, i) randomly in the range of [0,1]; (2) Average, setting299

λγ(k, i) = 1/K throughout training, and (3) Weighted, calculating cross-entropy as weights300

on the labeled nodes, and using average weights for unlabeled nodes. For a fair comparison, we per-301

form softmax activation for each scheme to satisfy
∑K

k=1 λγ(k, i)=1. Note that all these schemes302

are implemented based on our multi-teacher KD framework. We provide the performance of these303
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(b) MGSSL-TS on Citeseer
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(c) MGSSL-LF on CS

0 50 100 150 200
Epochs

0.6

0.7

0.8

0.9

1.0

St
ud

en
t A

cc
ur

ac
y

0.006
0.008
0.010
0.012
0.014
0.016
0.018

Te
ac

he
r M

SE
 fo

r T
ra

in
in

g

0.00

0.01

0.02

0.03

0.04

Te
ac

he
r M

SE
 fo

r T
es

tin
g

Train ACC
Test Acc
Train MSE
Test MSE

(d) MGSSL-TS on CS

Figure 7: Illustrations of the learning curves of (a-b) Mean Squared Errors (MSE) of teacher proba-
bility pt(x) over the one-hot labels on the training and testing sets and (c-d) classification accuracy
on the training and testing sets, to estimate the quality of the teacher probability pt(x).
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Figure 8: (a-b) Ablation study on knowledge integration under different numbers of teachers (with
numerical values in Appendix A.13). (c-d) Parameter sensitivity analyses on loss weights α and β.

schemes under five different numbers of teachers in Fig. 8(a) and Fig. 8(b), from which we can make304

three observations: (1) Random does not benefit from multiple teachers and is even poorer than the305

one trained with one individual task; (2) Average and Weighted cannot always benefit from306

multiple teachers; for example, the Weighted scheme trained with five pretext task is inferior to307

the one trained with four pretext tasks on the Citeseer dataset; (3) MGSSL-LF and MGSSL-TS both308

perform better than the other three heuristics under various numbers of teachers. More importantly,309

both MGSSL-LF and MGSSL-TS can consistently benefit from more teachers, which aligns with310

Theorem 1. Further results on more teachers (up to 10 teachers) can be found in Appendix A.14.311

4.4 PARAMETER SENSITIVITY & COMPUTATIONAL EFFICIENCY312

We provide the hyperparameter sensitivity analysis on two key hyperparameters, e.g., loss weights313

α and β in Fig. 8(c) and Fig. 8(d), from which it is clear that (1) setting the loss weight α of314

pretext tasks too large or too small is detrimental to extracting informative knowledge; (2) a large315

β usually yields good performance, which illustrates the effectiveness of the distillation term in316

Eq. (4). In practice, we can determine α and β by selecting the model with the highest accuracy on317

the validation set through the grid search. Due to space limitations, we place the analysis of the time318

complexity of MGSSL and the experimental results of the computational efficiency (i.e., the running319

time) in Appendix A.15, from which we find that compared to the joint training of multiple tasks320

by loss weighting, MGSSL not only does not increase but even has an advantage in the training time.321

5 CONCLUSION322

Over the past few years, there are hundreds of graph SSL algorithms proposed, which inspired us323

to move our attention away from designing more pretext tasks and towards making more effective324

use of those already on hand. In this paper, we propose a novel multi-teacher knowledge distillation325

framework for Multi-tasking Graph Self-Supervised Learning (MGSSL) to learn instance-level task326

preferences for each instance separately. More importantly, we provide a theoretical guideline and327

two adaptive knowledge integration schemes to integrate the knowledge from different teachers.328

Extensive experiments show that MGSSL can benefit from multiple pretext tasks and significantly329

improve the performance of individual tasks. While MGSSL automates the task selection for each330

node, it is still preliminary work, as how to construct a suitable pool of pretext tasks still requires331

human labor. In this sense, “full” automation is still desired and needs to be pursued in the future.332
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APPENDIX484

A.1 EXTENSIONS TO THE Joint Training485

To adapt MGSSL to the Joint Training setting, we defined the learning objective as follows486

min
θ,ω,γ

Ltask

(
θ, ω

)
+ β

τ2

N

N∑
i=1

LKL

(
(z̃i),

K∑
k=1

λγ(k, i)(h̃
(k)
i )

)
s.t. θ∗k, ω

∗
k, η

∗
k = argmin

θk,ωk,ηk

Ltask(θk, ωk) + αL(k)
ssl (θk, ηk), where 1 ≤ k ≤ K

(A.1)

A.2 DISTILLATION OBJECTIVE REWRITING487

We rewrite the distillation term of Eq. (4) in the form of R̃(θ, ω) in Eq. (7), as follows488

1

N

N∑
i=1

LKL

(
z̃i,

K∑
k=1

λγ(k, i)h̃
(k)
i
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)

=
1

N

N∑
i=1

pt(xi) log
pt(xi)

z̃i
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1

N

N∑
i=1

I
(
pt(xi)

)
− pt(xi) log z̃i

(A.2)

where I(·) denotes the information entropy. In this paper, the distillation objective is used to mainly489

optimize parameters fθ(·) and gω(·) of the student model and will not directly optimize the weight-490

ing function λγ (k, i). As a result, although pt(xi) =
∑K

k=1 λγ(k, i)h̃
(k)
i may be different from491

one training epoch to another, pt(x) can be considered as unoptimizable in each training epoch.492

Therefore, we can directly omit the term L
(
pt(xi)

)
and derive the following proportional equation,493

1

N

N∑
i=1

L
(
pt(xi)

)
−pt(xi) log z̃i ∝

1
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i=1

−pt(xi) log z̃i=
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) .
= R̃(θ, ω)

where l
(
gω(fθ(xi))

)
=
(
ℓ(1, z̃i), ℓ(2, z̃i), · · · , ℓ(C, z̃i)

)
denotes the cross-entropy loss vector.494

A.3 PROOF ON PROPOSITION 1495

Proposition 1 Consider a Bayesian teacher p∗(x) and an integrated teacher pt(x). Given N496

training samples S = {xi}Ni=1 ∼ PN , the difference between the distillation objective R̃(θ, ω) and497

Bayesian objective R(θ, ω) is bounded by Mean Square Errors (MSE) of their probabilities,498

E
S∼PN

[(
R̃(θ, ω)−R(θ, ω)

)2]
≤ 1

N
V

S∼PN

[
pt(x)⊤l

(
gω(fθ(x))

)]
+O

(
Ex

[
∥pt((x))− p∗((x))∥2

])2

(A.3)

Proof 1 Given N training samples S = {xi}Ni=1 ∼ PN randomly sampled from the data distribu-499

tion P of input data x, let’s start the derivation from the left side of the equation, as follows500

E
S∼PN

[(
R̃(θ, ω)−R(θ, ω)

)2
]
= V

S∼PN

[(
R̃(θ, ω)−R(θ, ω)

)]
+ E

S∼PN
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R̃(θ, ω)−R(θ, ω)

)]2
(A.4)

Since R(θ, ω) = Ex

[
p∗(x)⊤l

(
gω(fθ(x))

)]
will not change with the training samples S, we have501

V
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R̃(θ, ω)−R(θ, ω)
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S∼PN

[
R̃(θ, ω)

]
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N
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(
gω(fθ(x))

)] (A.5)

Furthermore, we have502

E
S∼PN

R(θ, ω)= E
S∼PN

Ex

[
p∗(x)⊤l

(
gω(fθ(x))

)]
=Ex

[
p∗(x)⊤l

(
gω(fθ(x))

)]
= R(θ, ω) (A.6)
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, and503

E
S∼PN

R̃(θ, ω) = E
S∼PN

1
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pt(xi)
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=Ex
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(A.7)

Therefore, we can derive the second term on the right-hand side in Eq. (A.4), as follows504
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(A.8)

where the inequality holds according to Cauchy-Schwartz inequality (Steele, 2004). Combining the505

derivations of Eq. (A.5) and Eq. (A.8) into Eq. (A.4), we obtain the final inequality as follows506
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(A.9)

A.4 PROOF OF THEOREM 1507

Theorem 1 Define ∆(K)=min
∥∥pt(xi)−p∗(xi)

∥∥
2
=min

∥∥∑K
k=1 λγ(k, i)h̃i

(k)
−p∗(xi)

∥∥
2

with508

K(K ≥ 1) given teachers, then we have (1) ∆(K + 1) ≤ ∆(K), and (2) limK→∞ ∆(K) = 0.509

Proof. Let us simplify the symbol λγ(k, i) to λk and consider the case with K teachers, we have510
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(A.10)

Next, let’s consider the case with (K + 1) teachers, as follows511
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(A.11)

where the equality in the fourth row of Eq. (A.11) holds under the condition that512
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(A.12)

15



Under review as a conference paper at ICLR 2024

Let K ≥ 2 be the number of teachers, and the results of the K-th iteration can be defined as follows:513
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Since sin

(
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(k)
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∥∥
2
·
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(k)
∥∥

2

)
≤ 1, and the equality holds when and only when ∆pk−1514

and h̃i

(k)
are orthogonal, which in practice is hard to be satisfied, we have limK→∞ ∆(K) = 0.515

A.5 PSEUDO CODE OF MGSSL516

The pseudo-code of the proposed MGSSL framework is summarized in Algorithm 1.517

Algorithm 1 Algorithm for the Multi-teacher Knowledge Distillation framework for MGSSL
Input: Graph G = (V, E ,X), Number of Pretext Tasks: K, and Number of Epochs: T .
Output: Predicted Labels YU , GNN Enocder fθ(·), and Prediction Head gω(·).

1: Randomly initialize the parameters of K teacher models and a student model.
2: Pre-train each teacher with individual task by Eq. (3) to get pre-trained parameters {θ∗k, ω∗

k}Kk=1.
3: for t ∈ {0, 1, · · · , T − 1} do
4: Output logits

{
h
(k)
i = gω∗

k
(fθ∗

k
(G, i))

}K

k=1
from the pre-trained teachers and freeze them.

5: Integrate the knowledge of different teachers by pt(xi) =
∑K

k=1 λγ(k, i)σ(h
(k)
i /τ).

6: Jointly perform distillation by Eq. (4) and optimize the function λγ(·, ·) with loss LW .
7: end for
8: return Predicted labels YU , GNN encoder fθ(·), and prediction head gω(·).

A.6 DATASET STATISTICS518

Eight publicly available graph datasets are used to evaluate the proposed MGSSL framework. An519

overview summary of the statistical characteristics of datasets is given in Table. A1. For the three520

small-scale datasets, namely Cora, Citeseer, and Pubmed, we follow the data splitting strategy by521

Kipf & Welling (2016). For the four large-scale datasets, namely Coauthor-CS, Coauthor-Physics,522

Amazon-Photo, and Amazon-Computers, we follow Zhang et al. (2021); Luo et al. (2021) to ran-523

domly split the data into train/val/test sets, and each random seed corresponds to a different splitting.524

For the ogbn-arxiv dataset, we use the public data splits provided by the authors (Hu et al., 2020).525

Table A1: Statistical information of the datasets.

Dataset Cora Citeseer Pubmed Photo CS Physics Computers ogbn-arxiv

# Nodes 2708 3327 19717 7650 18333 34493 13752 169343
# Edges 5278 4614 44324 119081 81894 247962 245861 1166243
# Features 1433 3703 500 745 6805 8415 767 128
# Classes 7 6 3 8 15 5 10 40
Label Rate 5.2% 3.6% 0.3% 2.1% 1.6% 0.3% 1.5% 53.7%
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A.7 HYPERPARAMETER SETTINGS526

The following hyperparameters are set the same for all datasets: Adam optimizer with learn-527

ing rate lr = 0.01 (0.001 for ogb-arxiv) and weight decay w = 5e-4; Epoch E = 500;528

Layer number L = 1 (2 for ogb-arxiv). The other dataset-specific hyperparameters are deter-529

mined by an AutoML toolkit NNI with the hyperparameter search spaces as: hidden dimension530

F = {32, 64, 128, 256, 512}; distillation temperature τ = {1, 1.2, 1.5, 2, 3, 4, 5}, and loss weights531

α, β = {0.1, 0.5, 1, 5, 10, 20, 30}. For a fairer comparison, the model with the highest validation532

accuracy is selected for testing. Besides, the best hyperparameter choices for each dataset are avail-533

able in the supplementary. Moreover, the experiments on both baselines and our approach are im-534

plemented based on the standard implementation in the DGL library (Wang et al., 2019) using the535

PyTorch 1.6.0 with Intel(R) Xeon(R) Gold 6240R @ 2.40GHz CPU and NVIDIA V100 GPU.536

A.8 DETAILS ON FIVE PRETEXT TASKS537

In this paper, we evaluate the capability of MGSSL in automatic pretext tasks combinatorial search538

with five classical pretext tasks, including PAR (You et al., 2020b), CLU (You et al., 2020b), DGI539

(Velickovic et al., 2019), PAIRDIS (Jin et al., 2020), and PAIRSIM (Jin et al., 2020). Our motiva-540

tions for selecting these five pretext tasks are 4-fold: (1) Fair comparison. To make a fair comparison541

with previous methods (e.g., AutoSSL), we keep in line with it in the setting of pretext tasks, i.e.,542

using the same pool of pretext tasks. (2) Simple but classical. We should pick those pretext tasks543

that are simple but classical enough, rather than those that are overly complex, not time-tested, and544

not well known. This is to avoid, whether the resulting performance gains come from our proposed545

MGSSL or from the complexity of the selected pretext task itself, becoming incomprehensible and546

hard to explain. (3) Comprehensive. Different pretext tasks implicitly involve different inductive547

biases, so it is important to consider different aspects comprehensively when selecting pretext tasks,548

rather than picking too many homogeneous and similar tasks. (4) Applicability. There is no con-549

flict at all between Graph SSL automation and designing more powerful pretext tasks; as a general550

framework, MGSSL is applicable to other more complex self-supervised tasks. However, the focus551

of this paper is on the knowledge distillation framework rather than on the specific task design, and552

it is also impractical to enumerate all existing graph SSL methods in a limited space.553

PAR and CLU. The pretext task of Node Clustering (CLU) pre-assigns a pseudo-label ŷi, e.g.,554

the cluster index, to each node vi ∈ V by K-means clustering algorithm (MacQueen, 1965). The555

learning objective of this pretext task can then be formulated as a classification problem, as follows556

Lssl (θ, η) =
1

N

∑
vi∈V

ℓ
(
gη(fθ(G, i), ŷi

)
(A.13)

When node attributes are not available, another choice to obtain pseudo-labels is based on the topol-557

ogy of the graph structure. Specifically, graph partitioning (PAR) predicts partition pseudo-labels558

obtained by the Metis graph partition (Karypis & Kumar, 1998). While CLU and PAR are very559

similar, they extract feature-level and topology-level knowledge from the graph, respectively. A key560

hyperparameter of them is the category number of pseudo-labels #P, which is set to #P=10 for CLU561

and #P=400 (100 for Amazon-Photo and Amazon-Computers, 1000 for Citeseer) for PAR, follow-562

ing the settings by Jin et al. (2021). In practice, CLU can be easily extended to other variants by563

adopting other data clustering algorithms (Wu et al., 2022c;b).564

DGI. Deep Graph Infomax (DGI) is proposed to contrast the node representations and correspond-565

ing high-level summary of graphs. First, it applies an augmentation transformation T (·) to obtain566

an augmented graph G̃ = T (G). Then a shared graph encoder fθ(·) is applied to obtain node em-567

beddings hi = fθ(G, i) and h̃i = fθ(G̃, i). Besides, a global mean pooling is applied to obtain the568

graph-level representation hg̃ = 1
N

∑N
i=1 h̃i. Finally, the learning objective is defined as follows569

Lssl(θ) = − 1

N

∑
vi∈V

MI (hg̃,hi) (A.14)

where MI(·, ·) is the InfoNCE mutual information estimator (Gutmann & Hyvärinen, 2010), where570

the negative samples to contrast with hg̃ is {hj}j ̸=i. The pretext task of DGI extracts knowledge at571

17



Under review as a conference paper at ICLR 2024

the graph level. To improve the computational efficiency for large-scale graphs, we will randomly572

sample 2000 nodes to contrast the representations between these sampled nodes and the whole graph.573

PAIRDIS. The pretext task of PAIRDIS aims to guide the model to preserve global topology in-574

formation by predicting the shortest path length between nodes. It first randomly samples a certain575

amount of node pairs S and calculates the pairwise node shortest path length di,j = d(vi, vj) for576

node pairs (vi, vj) ∈ S . Furthermore, it groups the shortest path lengths into four categories:577

Ci,j =0, Ci,j =1, Ci,j =2, and Ci,j =3 corresponding to di,j =1, di,j =2, di,j =3, and di,j ≥ 4,578

respectively. The learning objective can be formulated as a multi-class classification problem,579

Lssl (θ, η) =
1

|S|
∑

(vi,vi)∈S

ℓ
(
gη
(
|fθ(G)vi − fθ(G)vj |

)
, Ci,j

)
(A.15)

where ℓ(·) denotes the cross entropy loss and gη(·) linearly maps the input to a 1-dimension value.580

A key hyperparameter in PAIRDIS is the size of S, which is set to |S| = 400 for all eight datasets.581

PAIRSIM. Unlike PAIRDIS, which focuses on the global topology, PAIRSIM adopts link prediction582

as a pretext task to predict feature similarities between node pairs and thus capture local connectivity583

information from the graph. PAIRSIM first masks m edges M ∈ E and also samples m edges584

M ∈ {(vi, vj)|vi, vj ∈ V and (vi, vj) /∈ E}. Then, the learning objective of PAIRSIM is to predict585

whether there exists a link between a given node pair, which can be formulated as follows586

Lssl (θ, η) =
1

2m

( ∑
ei,j∈M

ℓ
(
gη(|fθ(G, i)− fθ(G, j)|), 1

)
+

∑
ei,j∈M

ℓ
(
gη(|fθ(G, i)− fθ(G, j)|), 0

))
where ℓ(·) denotes the cross entropy and gη(·) linearly maps the input to a 1-dimension value. The587

task of PAIRSIM aims to help the GNN model learn more local structural information. A key588

hyperparameter in PAIRSIM is the size of M, which is set to |M| = 400 by default for all datasets.589

A.9 DISCUSSION ON RELATED WORK590

Graph Self-supervised Learning (SSL). The primary goal of graph SSL is to learn transferable591

knowledge from unlabeled data through well-designed pretext tasks. There have been hundreds of592

SSL pretext tasks proposed in the past few years. For example, DSSL (Xiao et al., 2022) performs593

self-supervised learning on non-homophilous graphs, which can leverage both useful local structure594

and global semantic information. Besides, Kim et al. (2022) proposes a Discrepancy-based Self-595

supervised LeArning (D-SLA) framework that aims to learn the exact discrepancy between the orig-596

inal and the perturbed graphs by using a discriminator. Moreover, a recent SSL work, GraphAME597

(Hou et al., 2022) proposes a masked autoencoder that extends masked modeling to graphs by per-598

forming masked feature reconstruction and re-mask decoding. We refer interested readers to the599

recent surveys (Wu et al., 2021; Xie et al., 2021; Liu et al., 2021) for more information. Despite the600

great success, these methods mostly focus on designing more powerful but complex self-supervised601

pretext tasks, with little effort to explore how to leverage multiple existing tasks more efficiently.602

Automated Machine Learning. One of the most related topics to us is the automated loss function603

search (Zhao et al., 2021; Weber et al., 2020; Hutter et al., 2019; Waring et al., 2020; Yao et al.,604

2018). However, most of these methods are specifically designed for image data and may not be ap-605

plicable to graph-structured data. For example, the loss function of PAIRDIS involves two nodes,606

which is hardly compatible with the node-specific loss function of PAR. A recent work JOAO (You607

et al., 2021) on graph contrastive learning is proposed to automatically select data augmentation,608

but it is tailored for graph classification and single-task contrastive learning and is difficult to ex-609

tend to multi-task self-supervised learning. Another related work is AUX-TS (Han et al., 2021),610

which adaptively combines different auxiliary tasks in order to generalize to other tasks during the611

fine-tuning stage of transfer learning, which is hard to extend directly to the graph self-supervised612

learning setting. Besides, BGNN (Guo et al., 2022) proposes a novel adaptive knowledge distillation613

framework to sequentially transfer knowledge from multiple GNNs into a student GNN. However,614

their main contribution is to sequentially enhance GNN representation learning in an adaptive and615

“boosting” manner, rather than learning to weigh multiple different teachers at the same time as done616

in our work. Moreover, DMTGAT (Wang et al.) formulates GNN architecture search as a bi-level617

multi-objective optimization problem (BL-MOP) to find a set of Pareto architectures and their Pareto618
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weights. However, the above works (Guo et al., 2022; Wang et al.) has little to do with the topic of619

our work, i.e., multi-task graph self-supervised learning. A recent work, ParetoGNN (Ju et al., 2022),620

is very close to our work. ParetoGNN is simultaneously self-supervised by multiple pretext tasks,621

which are dynamically reconciled to promote the Pareto optimality during pre-training, such that the622

graph encoder actively learns knowledge from every pretext task while minimizing potential con-623

flicts. Another closest work, AutoSSL (Jin et al., 2021), formulates the automated self-supervised624

task search as a bi-level optimization problem and solves it via meta-gradient descent.625

Graph Knowledge Distillation. Recent years have witnessed the great success of graph knowledge626

distillation in learning graph representations. Several previous works on graph distillation try to dis-627

till knowledge from large teacher GNNs to smaller student GNNs, termed as GNN-to-GNN knowl-628

edge distillation (KD) (Zhang et al., 2020; Ren et al., 2021). For example, KDGA (Wu et al., 2022a)629

investigates how to distill knowledge from the augmented graph to the original graph to address dis-630

tributional shifts. The other branch of graph knowledge distillation is to directly distill from teacher631

GNNs to lightweight student MLPs, termed GNN-to-MLP KD. For example, GLNN (Zhang et al.,632

2021) directly distills knowledge from teacher GNNs to vanilla MLPs by imposing KL-divergence633

between their logits. Besides, FF-G2M (Wu et al., 2023a) propose to factorize GNN knowledge634

into low- and high-frequency components in the spectral domain and propose a novel framework to635

distill both low- and high-frequency knowledge from teacher GNNs into student MLPs. Moreover,636

RKD (Wu et al., 2023b) quantifies the reliability of knowledge for reliable knowledge distillation.637

Despite the great progress made, none of the above knowledge distillation works have anything to do638

with self-supervised learning. The main purpose of these efforts is to distill knowledge from GNNs639

to lightweight GNN or MLP, not involving either knowledge integration or multi-teacher KD.640

A.10 RESULTS FOR GRAPH CLASSIFICATION AND VISION TASKS641

To further evaluate how well MGSSL works on other graph-related tasks, we consider three classic642

graph-related tasks, including graph regression, node clustering, and link prediction. In terms of643

the task of graph regression, we report in Table. A2 the performance (ROC-AUC) of five classical644

pretext tasks (e.g., AttrMask, ContextPred, GPT-GNN, GraphCL, and Graph LoG) for the molecular645

property prediction task on 8 molecular datasets. Besides, we evaluate the performance of Loss646

Weighting and MGSSL-TS in the multi-tasking setting. Note that AutoSSL and ParetoGNN are not647

included in the comparison since they are not applicable to graph-level regression tasks. From the648

results in Table. A2, it can be seen that MGSSL-TS performs better than all single-task models and649

outperforms Loss Weighting by a wide margin. In addition, we take FeatRec, TopoRec, RepDecor,650

MI-NG, and MI-NSG as pretext tasks and compare the performance of AutoSSL, ParetoGNN, and651

MGSSL-TS on node clustering and link prediction tasks, which are measured by the NMI and652

AUC metrics, respectively. The reported results in Table. A3 (node clustering) and Table. A4 (link653

prediction) also demonstrate the superiority of MGSSL-TS over AutoSSL and ParetoGNN.654

Table A2: Performance (ROC-AUC, %) comparison of the five baseline teachers, vanilla Loss
Weighting, and MGSSL-TS for the graph-level task of molecular property prediction. The arrows
indicate whether the two methods improve relative to the average performance of the five baselines.

Method BACE BBBP ClinTox SIDER Tox21 Toxcast MUV HIV Avg. Rank

AttrMask 77.4±0.2 65.3±1.6 70.3±7.5 55.1±0.7 74.4±0.5 62.6±0.1 75.4±2.7 75.9±0.4 4.50
ContextPred 77.3±1.0 69.0±2.0 66.9±7.6 58.7±1.6 72.9±0.8 61.7±0.7 73.6±0.3 76.1±2.4 4.63
GPT-GNN 78.6±2.9 65.3±1.5 56.1±8.9 57.9±0.2 74.3±0.7 63.3±0.3 75.6±1.8 74.8±1.4 4.25
GraphCL 77.5±1.6 69.9±1.6 72.1±4.7 59.9±1.5 75.1±0.8 62.8±0.7 75.1±1.5 74.5±0.6 3.13

GraphLoG 78.1±1.0 66.4±2.8 64.1±3.4 59.5±2.4 73.9±1.4 62.3±0.6 73.5±1.0 75.5±0.5 5.00

Loss Weighting 76.5±0.7 ↓ 67.2±1.2 ↑ 62.8±6.0 ↓ 56.4±1.3 ↓ 72.6±1.0 ↓ 60.4±1.2 ↓ 74.2±2.1 ↓ 76.6±1.5 ↑ 5.38
MGSSL-TS 79.7±1.4 ↑ 70.8±1.5↑ 73.5±4.5↑ 60.7±1.7 ↑ 74.7±1.2 ↑ 64.4±0.9↑ 76.4±1.9 ↑ 78.2±1.0↑ 1.13

Furthermore, we evaluate the applicability of MGSSL to image data by considering three classical655

vision tasks, including image classification (evaluated by Recall@5) on ImageNet, object category656

detection (evaluated by mAP) on PASCAL VOC 2007, and depth prediction (% Pixels below 1.25)657

on NYU v2. Four different classical visual pretext tasks are taken into account, including Relative658

Position, Colorization, Exemplar Nets, and Motion Segmentation (Doersch & Zisserman, 2017). To659

adapt MGSSL to vision tasks, we conduct graph construction by taking images as nodes and con-660
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Table A3: Performance (NMI) comparison of five (single-task) teachers and three multi-tasking
methods for the node clustering task, where bold and underline denote the best and second metrics.

Method Wiki-CS Pubmed AM-Photo AM-Computers Co-CS Co-Physics Avg. Rank

FeatRec 43.04±1.92 30.24±0.01 63.25±1.41 43.83±1.30 74.61±1.04 37.83±0.01 5.33
TopoRec 36.06±1.25 19.22±0.02 66.27±1.06 48.51±1.68 69.83±0.45 48.15±0.22 6.00
RepDecor 34.96±0.59 26.51±0.33 61.28±1.31 49.78±1.02 66.53±1.63 47.65±0.70 6.17

MI-NG 39.78±0.24 24.70±0.61 65.32±1.57 48.78±0.56 66.16±0.62 49.98±0.54 5.50
MI-NSG 47.77±0.14 24.34±0.01 55.92±1.01 49.61±0.55 74.91±0.82 56.83±0.01 4.50

AutoSSL 36.99±0.21 28.99±0.26 64.06±0.65 41.85±0.36 74.04±0.22 55.23±0.18 5.33
ParetoGNN 47.52±0.29 34.74±0.06 68.25±1.25 52.53±0.34 74.94±0.98 60.43±0.13 2.00
MGSSL-TS 48.20±1.47 32.82±0.28 69.49±1.37 53.20±0.49 76.10±1.18 61.51±0.23 1.17

Table A4: Performance (AUC) comparison of five (single-task) teachers and three multi-tasking
methods for the link prediction task, where bold and underline denote the best and second metrics.

Method Wiki-CS Pubmed AM-Photo AM-Computers Co-CS Co-Physics Avg. Rank

FeatRec 95.79±0.05 93.96±0.05 95.47±0.15 90.51±0.17 96.51±0.02 95.97±0.06 4.67
TopoRec 92.69±0.25 94.17±0.94 95.13±1.25 95.89±0.12 96.43±0.37 97.98±0.01 4.67
RepDecor 93.64±0.09 87.55±0.06 94.86±0.16 86.45±0.57 94.00±0.16 96.48±0.08 6.67

MI-NG 92.48±0.08 91.48±0.17 95.33±0.05 94.19±0.04 97.83±0.11 90.18±0.15 5.67
MI-NSG 95.90±0.04 92.22±0.02 95.22±0.64 94.11±0.07 92.13±0.01 93.13±0.06 5.67

AutoSSL 93.86±0.02 86.84±1.30 95.57±0.13 93.99±0.03 95.71±0.15 95.93±0.07 5.67
ParetoGNN 96.48±0.01 94.58±0.02 96.08±0.08 97.16±0.04 98.18±0.02 98.33±0.03 1.67
MGSSL-TS 96.89±0.02 95.26±0.24 96.76±0.15 96.80±0.11 97.77±0.08 98.50±0.06 1.33

necting the k-Nearest Neighbors (kNN) of each image to build edges. As can be seen from the661

experimental results in Table. A5, the MGSSL-TS can consistently outperform each of the individ-662

ual tasks as well as Loss Weighting across three visual tasks and datasets. Furthermore, we have also663

provided the results of constructing the graph by thresholding, where two images with cosine simi-664

larity greater than 0.7 will be connected by an edge. The results in Table. A5 show that constructing665

the graph by kNN outperforms thresholding, and we speculate that this is because kNN guarantees666

the balance of node degrees in the constructed graph and prevents the over-squeezing problem that is667

common in graph learning. Note that we provide preliminary results on three graph-related tasks and668

three vision tasks only to demonstrate the potential of the proposed MGSSL framework for handling669

general multi-task self-supervised learning, and deeper exploration will be left for future work.670

Table A5: Performance comparisons on three classical visual tasks, including image classification
on ImageNet, object category detection on PASCAL VOC, and depth prediction on NYU v2.

Graph Construction Method ImageNet PASCAL NYU

Recall@5 mAP % Pixels below 1.25

-

Relative Position 59.2 66.8 80.5
Colorization 62.1 65.5 71.8
Exemplar Nets 53.4 60.1 71.3
Motion Segmentation 60.9 64.5 74.6

k-Nearest Neighbor Loss Weighting 65.3 63.8 78.3
MGSSL-TS 69.4 73.2 81.7

Thresholding Loss Weighting 64.5 64.3 76.8
MGSSL-TS 67.7 70.5 79.5

A.11 APPLICABILITY TO DIFFERENT GNN ARCHITECTURES671

We report the performance of Vanilla, AutoSSL, and MGSSL-TS on five large-scale datasets (CS,672

Physics, Photo, Computers, and ogbn-arxiv) under the JT setting, respectively. Table. A6 shows that673

our MGSSL-TS works well for all three classic GNN architectures, especially with GATs, where674

MGSSL significantly outperforms the previous important baseline, AutoSSL, by a large margin.675
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Table A6: Comparison of the applicability to three GNN architectures on five datasets.

GNN Architecture Method CS Physics Photo Computers ogbn-arxiv

GCNs Vanilla 92.16 93.94 91.52 86.58 70.94
GCNs AutoSSL 93.54 95.10 92.94 88.72 72.26
GCNs MGSSL-TS 93.46 95.54 94.22 89.72 72.72
GATs Vanilla 91.86 93.58 91.76 86.74 70.74
GATs AutoSSL 92.80 94.82 93.04 88.46 71.96
GATs MGSSL-TS 93.70 95.76 94.18 89.88 72.84
GrapgSAGE Vanilla 92.30 93.86 91.80 86.50 70.80
GrapgSAGE AutoSSL 93.28 95.14 93.16 88.68 72.10
GrapgSAGE MGSSL-TS 93.52 95.48 94.30 89.64 72.66

A.12 PERFORMANCE IN THE P&F SETTING676

We compare MGSSL-TS with several representative graph SSL baselines under the P&F setting677

in Table. A7, where we present the performance improvement of MGSSL-TS over AutoSSL and678

ParetoGNN. As you can see, MGSSL also has significant advantages under the P&F setting.679

Table A7: Performance comparison with classical self-supervised baselines in the P&F setting,
where bold and underline denote the best and second metrics on each dataset, respectively.

Method Cora Citeseer Pubmed CS Physics Photo Computers

GCNs 81.72 71.48 79.26 91.04 93.06 91.90 86.36
DGI 82.30 71.80 76.80 91.39 93.42 92.11 87.19
GMI 83.00 72.40 79.90 91.46 93.60 92.22 87.43
MVGRL 82.90 72.60 79.40 91.69 93.79 92.50 87.89
GRACE 80.00 71.70 79.50 91.21 93.12 92.01 86.83
GCA 82.86 72.64 79.78 91.84 93.80 92.40 87.95
BGRL 83.48 72.81 80.30 92.10 94.24 92.89 88.28

AutoSSL 82.96 72.76 80.14 92.48 93.88 92.36 88.00
ParetoGNN 83.34 72.98 79.95 92.24 94.43 92.78 88.14
MGSSL-LF 84.22 73.58 80.62 92.36 94.80 93.32 88.68
MGSSL-TS 84.38 73.70 80.54 91.94 94.96 93.52 88.42

∆AutoSSL +1.71% +1.29% +0.60% -0.13% +1.15% +1.26% +0.48%
∆ParetoGNN +1.25% +0.99% +0.84% +0.13% +0.56% +0.80% +0.32%

A.13 DETAILS ON EXPERIMENTAL RESULTS680

Table. A8 provides the numerical values of results in Fig. 8(a) and Fig. 8(b). The settings of five681

teacher combinations are (1) one teacher: PAR; (2) two teachers: PAR and CLU; (3) three teachers:682

PAR, CLU, and DGI; (4) four teachers: PAR, CLU, DGI, and PAIRDIS; and (5) five teachers:683

PAR, CLU, DGI, PAIRDIS, and PAIRSIM. As shown in Table. A9, MGSSL-LF and MGSSL-TS684

always perform better than other heuristic methods; more importantly, their performance increases685

consistently with the number of teachers, reaching the best at a number of five teachers.686

Table A8: Ablation study on knowledge integration under different number of teachers, where bold
and underline denote the best and second metrics for each teacher number, respectively. The best
performance (i.e., the optimal teacher number) for each integration scheme is marked in blue.

Method Citeseer Coauthor-CS

1 (+PAR) 2 (+CLU) 3 (+DGI) 4 (+PAIRDIS) 5 (+PAIRSIM) 1 (+PAR) 2 (+CLU) 3 (+DGI) 4 (+PAIRDIS) 5 (+PAIRSIM)

Random 72.72±0.36 72.96±0.47 72.66±0.39 72.94±0.43 72.86±0.45 92.30±0.67 92.12±0.54 92.68±0.47 92.38±0.53 92.26±0.64

Average 72.72±0.36 73.04±0.34 72.92±0.42 73.16±0.39 73.26±0.37 92.30±0.67 92.36±0.49 92.48±0.60 93.02±0.55 93.16±0.47

Weighted 72.72±0.36 73.16±0.32 73.24±0.46 73.40±0.43 73.36±0.40 92.30±0.67 92.52±0.46 92.90±0.51 92.76±0.39 93.28±0.53

MGSSL-LF 72.72±0.36 73.56±0.39 73.68±0.33 74.18±0.40 74.34±0.31 92.30±0.67 92.64±0.44 93.30±0.37 93.68±0.52 93.86±0.36

MGSSL-TS 72.72±0.36 73.24±0.44 73.34±0.40 73.58±0.38 74.20±0.42 92.30±0.67 92.88±0.34 93.04±0.26 93.38±0.31 93.46±0.25
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A.14 RESULTS ON MORE TEACHERS687

We conduct an ablation study of knowledge integration with more numbers of teachers in Fig. A1,688

which also takes into account those SOTA SSL baselines in Table. 2. It can be seen that MGSSL-TS689

can consistently benefit from more teachers and outperform the Average and Weighted integrations,690

especially with a larger number of teachers. However, as the number of teachers increases, the per-691

formance improvements may eventually reach a theoretical maximum, as bounded by Theorem. 1.692
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Figure A1: Ablation study on knowledge integration under different numbers of teachers (pretext
tasks), where MGSSL-TS can consistently benefit from more teachers, outperforming the Average
and Weighted integration, especially with a larger number of teachers. However, as the number of
teachers increases, the performance gains reach a theoretical maximum, as bounded by Theorem. 1.

A.15 TIME COMPLEXITY AND COMPUTATIONAL EFFICIENCY693

The time complexity of MGSSL mainly comes from three parts: (1) Teacher Training O(K(|V|dF +694

|E|F )); (2) Knowledge Integration O(K|V|F ); and (3) Knowledge Distillation O(|V|F ), where d695

and F are the dimensions of input and hidden spaces. The total time complexity O(K(|V|dF +696

|E|F )) is linear w.r.t the number of nodes |V| and edges |E|, and the number of teachers (SSL tasks)697

K. In practice, K is usually less than 10, and more importantly, we can reduce the complexity of698

Teacher Training from O(K(|V|dF + |E|F )) to O((|V|dF + |E|F )) by parallelizing the training of699

multiple teachers on hardware devices such as GPUs. We compare the training time of MGSSL with700

the joint training (JOINT-T) of multiple pretext tasks with fixed loss weights in Table. A9. It can be701

seen that while MGSSL needs to train multiple teacher models separately, it still has advantages over702

JOINT-T in terms of training time, mainly because: (1) each teacher in MGSSL can be trained in703

parallel, which greatly reduces the time expense; (2) the training with multiple tasks is more difficult704

to optimize than the training with one single task, so each training epoch of JOINT-T takes longer705

time than MGSSL; and (3) JOINT-T is more difficult to converge with higher complexity, i.e., it706

requires more training epochs to converge. Instead, MGSSL takes much less time for each model,707

resulting in less overall training time. (4) MGSSL-LF and MGSSL-TS differ only in their knowledge708

integration schemes, so their overall training time is very close and much less than JOINT-T.709

Table A9: Comparison of the computational costs (training time) of three methods on nine datasets.

Method Cora Citeseer Pubmed CS Physics Photo Computers ogbn-arxiv ogbn-products

JOINT-T 17.87s 18.57s 75.18s 98.83s 171.61s 36.73s 51.90s 1362.28s 6.41×104s
MGSSL-LF 15.42s 16.09s 68.31s 91.76s 158.73s 32.61s 45.96s 1289.73s 5.89×104s
MGSSL-TS 15.53s 16.22s 68.67s 92.14s 159.24s 32.84s 46.26s 1294.67s 5.96×104s

A.16 DISTILLED KNOWLEDGE ANALYSIS FROM A FREQUENCY PERSPECTIVE710

We follow previous work (Wu et al., 2023a) in decomposing knowledge into high- and low-711

frequency components, which are measured by mean cosine similarity and KL-divergence, respec-712
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tively. The low-frequency knowledge of five teacher models and the student model is measured by713

the mean cosine similarity of nodes with their 1-order neighbors. In addition, the high-frequency714

knowledge is measured by the KL-divergence between the pairwise distances of five teacher models715

with the student model. See Appendix D of Wu et al. (2023a) for details on how to measure high-716

/low- frequency knowledge. We provide a comparison of high- and low-frequency knowledge for717

the five teacher and student models in Fig. A2, from which it can be observed that (1) low-frequency718

knowledge (a.k.a., common knowledge) from multiple teachers can be well learned by the student,719

and (2) the student model learns high-frequency knowledge differently from each teacher. A smaller720

KL-divergence metric indicates better distillation of high-frequency knowledge from the teacher.721
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Figure A2: Low-/High- frequency Knowledge analysis on the Cora dataset. The low-frequency
knowledge of five teachers and one student is measured by mean cosine similarity. The high-
frequency knowledge is measured by KL-divergence between five teachers with the student model.

A.17 SYMBOL TABLE722

Unless particularly specified, the symbols used in this paper are illustrated in Table. A10.723
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Table A10: Symbols used in this paper.

Symbols Descriptions

Rm m-dimensional Euclidean space

x,x,X Scalar, vector, matrix

G A graph g = (V, E ,X)

V Node set in the graph G
E Edge set in the graph G
X Node feature matrix in the graph G
N Number of nodes in the graph G
(VL,YL) Labeled set of nodes and labels

(VU ,YU ) Unlabeled set of nodes and labels

fθ(·) GNN encoder of the student model

gη(·) Prediction head of the student model

fθk(·) GNN encoder of the k-th teacher model

gηk
(·) Prediction head of the k-th teacher model

fθ∗
k
(·) Pre-trained GNN encoder of the k-th teacher model

gη∗
k
(·) Pre-trained prediction head of the k-th teacher model

Ltask(θ, ω) loss of downstream task

L(k)
ssl (θk, ωk) loss of the k-th SSL pretext task

λk loss weight of the k-th SSL pretext task

λγ(·, ·) weighting function parameterized by γ

xi input node feature of node vi

zi output logit of node vi in the student model

h
(k)
i output logit of node vi in the k-th teacher model

z̃i = σ(zi/τ) activated logit of node vi in the student model

h̃
(k)
i = σ(h

(k)
i /τ) activated logit of node vi in the k-th teacher model

R(θ, ω) Bayesian objective

p∗(x) Bayesian class-probability

R̃(θ, ω) Distillation objective

pt(xi)
.
=
∑K

k=1 λγ(k, i)h̃
(k)
i Integrated teacher probability

yi Ground-Truth label of node vi

e⊤yi
One-hot label of node vi

ℓ(·, ·) Cross-entropy loss

LKL(·, ·) KL-divergence loss

C Number of category

K Number of SSL pretext tasks (teachers)

τ Temperature coefficient

α, β Loss weights

θ, η, γ,µk,ν,W Learnable model parameters
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