Styl3R: Instant 3D Stylized Reconstruction for
Arbitrary Scenes and Styles

Peng Wang!:2* Xiang Liu?* Peidong Liu?'
! Zhejiang University 2 Westlake University
{wangpeng,liupeidong}@westlake.edu.cn, liuxiangnick@gmail.com

Project Page

Arbitrary Scenes and Styles Stylized 3D Gaussians

Figure 1: Styl3R. Given unposed sparse-view images and an arbitrary style image, our method
predicts stylized 3D Gaussians in less than a second using a feed-forward network.

Abstract

Stylizing 3D scenes instantly while maintaining multi-view consistency and faith-
fully resembling a style image remains a significant challenge. Current state-of-the-
art 3D stylization methods typically involve computationally intensive test-time
optimization to transfer artistic features into a pretrained 3D representation, often
requiring dense posed input images. In contrast, leveraging recent advances in feed-
forward reconstruction models, we demonstrate a novel approach to achieve direct
3D stylization in less than a second using unposed sparse-view scene images and
an arbitrary style image. To address the inherent decoupling between reconstruc-
tion and stylization, we introduce a branched architecture that separates structure
modeling and appearance shading, effectively preventing stylistic transfer from
distorting the underlying 3D scene structure. Furthermore, we adapt an identity loss
to facilitate pre-training our stylization model through the novel view synthesis task.
This strategy also allows our model to retain its original reconstruction capabilities
while being fine-tuned for stylization. Comprehensive evaluations, using both
in-domain and out-of-domain datasets, demonstrate that our approach produces
high-quality stylized 3D content that achieve a superior blend of style and scene
appearance, while also outperforming existing methods in terms of multi-view
consistency and efficiency.

*Equal Contribution; T Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://nickisdope.github.io/Styl3R

1 Introduction

Recent advances in 3D reconstruction from 2D images [15, 27, 49] have made it increasingly practical
to generate high-quality 3D scenes from casual captures. However, integrating artistic features such
as the visual style of a reference image into these reconstructions remains technically challenging.
This difficulty arises from the fundamental mismatch between style transfer and 3D reconstruction:
altering the visual appearance to reflect a desired style often conflicts with the need to preserve
multi-view consistency and structural coherence in the reconstructed scene.

Creating stylized 3D scenes typically requires professional expertise, artistic creativity, and substantial
manual effort. While 2D image style transfer [9, 12, 20] has achieved impressive efficiency and
visual fidelity, naively extending these techniques to 3D often results in view-inconsistent stylization.
In contrast, recent 3D stylization methods [8, 23, 24, 54] offer improved appearance consistency but
rely on dense multi-view inputs, known camera poses, and time-consuming per-scene or per-style
optimization. These requirements render them impractical for casual users or time constrained
applications. This leads to a central question: How can we achieve fast, multi-view consistent 3D
stylization from a few unposed content images and an arbitrary style image — without requiring
test-time optimization?

To address this challenge, we propose Styl3R, a feed-forward network that jointly reconstructs
and stylizes 3D scenes from sparse, unposed content images and an arbitrary style image. Our
method flexibly handles 2 to 8 input content images, requiring no test-time optimization, no camera
supervision, and no scene- or style-specific fine-tuning, making it both practical and accessible for
real-world usages. For clarity, we summarize the key differences between prior methods and ours
in Table 1.

In particular, Styl3R adopts a dual-branch architecture consisting of a structure branch and an
appearance branch. The structure branch predicts the structural parameters of 3D Gaussians from
unposed content images by leveraging a dense geometry prior. The appearance branch, responsible
for determining the color of the 3D Gaussians, consists of transformer decoder layers that blend
style features with content features from multiple viewpoints. This design enables the generation
of photorealistic and stylized appearances while maintaining multi-view consistency. To further
preserve photometric shading capabilities during stylization fine-tuning, we introduce an identity loss
by randomly feeding a content image into the appearance branch, encouraging the model to retain its
ability to reconstruct the original appearance.

We evaluate our method on both in-domain and out-of-domain datasets. It outperforms prior ap-
proaches in terms of both multi-view consistency and efficiency, which producing high-quality 3D
stylized content in only 0.15 second.

Our main contributions are:

* We introduce a feed-forward network for 3D stylization that operates on sparse, unposed
content images and an arbitrary style image, does not require test-time optimization, and
generalizes well to out-of-domain inputs — making it practical for interactive applications.

* We design a dual-branch network architecture that decouples appearance and structure
modeling, effectively enhancing the joint learning of novel view synthesis and 3D stylization.

* Our method achieves state-of-the-art zero-shot 3D stylization performance, surpassing
existing zero-shot methods and approximate the efficacy of style-specific optimization
techniques, as demonstrated through both quantitative metrics and qualitative results.

2 Related Work

2D Style Transfer. The task of transferring the visual style of a reference image onto another
content image has been extensively studied. The seminal work [9] introduced neural style transfer by
iteratively optimizing the stylized image to match the Gram matrices of VGG-extracted features [36]
from both content and style images. Subsequent approaches, such as AdaIN [12], WCT [21],
LST [20], and SANet [31], reformulated the problem into a feed-forward setting by aligning the
feature statistics of content and style. With the emergence of transformer-based architectures [6, 42],
more recent methods like AdaAttN [25], StyleFormer [47], StyTr2 [5], S2ZWAT [52], and Master [40]

Sparse Scene Style View Pose Fast

Method ‘ View Zero-shot Zero-shot Consistency Free Inference
2D Methods [5, 12,25] | - X -
StyleRF [23] X X X X
3D StyleGaussian [24] X X X X
ARF [24] X X X X X
Styl3R (Ours) |

Table 1: Comparison with existing style transfer methods. 2D methods can instantly stylize images
after training without any additional tuning, but they fail to ensure multi-view consistency. Prior 3D
methods ensure consistency but rely on dense posed inputs and per-scene or per-style tuning, slowing
inference. Our method combines both strengths, achieving view-consistent stylization in under a
second without further tuning.

leverage attention mechanisms to enhance feature representation, moving beyond the limitations of
intermediate features extracted from pretrained VGG networks [36]. Despite progress in visual quality
and efficiency, 2D style transfer methods lack geometric awareness and multi-view consistency, often
causing artifacts when naively extended to 3D. In contrast, our method achieves geometry-consistent,
view-coherent stylization with fast inference and rendering.

3D Style Transfer. 3D stylization has been explored using various scene representations. Early
methods leveraged explicit forms like meshes [10] and point clouds [11, 17, 28], enabling style
transfer via differentiable rendering and geometric warping, but they struggled with complex scenes
due to limited expressiveness. Recent work adopts implicit representations like NeRF [27] and 3D
Gaussian Splatting (3DGS)[15]. StylizedNeRF[13] incorporates a 2D stylizer with view-consistent
losses; ARF [54] improves structural fidelity with feature matching; StyleRF [23] enables zero-shot
stylization via feature-space transformation; INS [7] disentangles style and content with geometric
regularization. For 3DGS, StyleGaussian [24] and [34] embed style features into Gaussian parameters;
SGSST [8] introduces multi-scale losses for high-res output; InstantStyleGaussian [51] stylizes via
dataset updates; StylizedGS [53] achieves controllable editing by disentangling content, style, and
structure. However, most methods require dense views, known poses, and per-scene optimization,
limiting their applicability in casual settings. Other recent efforts [30, 38] explore object-centric
stylization using attention and diffusion models (e.g. Zero123++ [35]) but suffer from high inference
times (~30s per object). In contrast, our method does not directly rely on the output of external
pretrained models and achieves stylization in under one second.

Feed Forward Generalizable 3D Reconstruction. Though NeRF [27] and 3DGS [15] achieve
high-quality view synthesis, they rely on dense, calibrated inputs and costly per-scene optimization,
hindering their practical usages for time-constrained applications. To address this, generalizable
reconstruction methods [3, 14, 44, 48, 50] have emerged, primarily leveraging geometric priors like
cost volumes or epipolar constraints to aggregate multi-view information from sparse inputs. In
parallel, feed-forward 3DGS pipelines [2, 4, 39] infer pixel-aligned Gaussians from image features
for efficient and high-quality rendering. More recent models [37, 49] advance this direction by
directly reconstructing 3D scenes from sparse, unposed images without the need for camera poses,
highlighting the potential of learning-based pipelines to generalize in a purely feed-forward manner.
Building upon this line of work, we propose a novel 3D stylization pipeline that disentangles structure
and appearance, unifying 3D reconstruction and style transfer in a single network.

3 Method

Given a set of sparse unposed images Z¢ = {I¢} ¥ | (I¢ € R¥*Wx3 where H and W are the height
and width of image, superscript c represents content) capturing a scene along with an arbitrary style
image I* € RH¥>*Wx3 (superscript s represents style), our task is to instantly get the stylized 3D
reconstruction of the scene represented by a set of pixel-aligned Gaussians G° = {gj}N XHXW
without compromising multi-view consistency and the underlying scene structure. These Gaussians

G* are parameterized by {(p;, o, r;, 5, ¢5) ;VXlHXW where ;. o, r;, s; and cj are the Gaus-
sian’s position, opacity, orientation, scale and stylized color. Alternatlvely, it is also able to predict

the non-stylized Gaussians G°, which share all the other attributes but have a different set of colors
{cC NXHXW compared to G*.

>

content
tokens

l style tokens

—_—
content
_—
B : : A tokens
shared iweights : | cross * attention
— M- — — i, T, S, < g
- \ 3
‘\ Gaussian | i} ~"(, § o7 Solized
style L Ay
tokens Params \ 7 i 3DGS
—Hl— — - ¢
" Non-stylized

3DGS

Figure 2: Overview of Styl3R. Our model consists of a structure branch and an appearance branch
that output different attributes of Gaussians. For the structure branch, sparse unposed images are
encoded by a shared content encoder, then content tokens of each image are separately fed into their
structure decoders with information sharing between other views. Attributes that govern the structure
of the scene are then regressed from structure heads. For the color branch, a style image is encoded
by the style encoder, then the output style tokens perform cross attention with content tokens from all
viewpoints in the stylization decoder. Finally the color of Gaussians are predicted from these blended
tokens output by this decoder, which compose all Gaussian parameters along with the output from
structure branch. Apart from style image, the appearance branch can also accept a content image
which gives the Gaussians their original colors.

Inspired by [5, 49], we propose a dual-branch architecture that separates the network into a structure
building branch and an appearance shading branch. In the appearance branch, we employ a stylization
decoder that first performs global self-attention across content tokens from all views to ensure multi-
view consistency, then injects style tokens to perform cross-attention with content tokens without
interfering the structure branch.

An overview of the pipeline is shown in Fig. 2. In this section, we first introduce the structure branch
that leverage dense geometry prior from DUSt3R [45] (Sec. 3.1). Then we illustrate the appearance
branch that governs the color of output Gaussians (Sec. 3.2). Finally, we design a training curriculum
that facilitate the learning of stylization while effectively preserving geometry prior (Sec. 3.3).

3.1 Structure Branch

In order to leverage the dense geometry prior from DUSt3R [45], we employ a ViT-based encoder-
decoder architecture to estimate the structure of the scene. A set of sparse unposed images Z¢

capturing the scene are first patchified and then encoded by a shared ViT encoder to a set of content
Nx Ly W . . .
tokens 7¢ = {tf},_,” ©, where p is the patch size. The encoded tokens from one view is then fed

into a ViT decoder which perform cross attention with concatenated tokens from all other views to
ensure channeling of multi-view information as in [49]. From these output tokens of the decoder for
each view, one DPT head [33] is employed to predict the center positions p; of Gaussians, another
DPT head regresses other structural attributes: orientations r, scales s; and opacities «;.

3.2 Appearance Branch

To separate the colorization of Gaussians from the estimation of scene structure, we propose an
appearance branch that ensures the subsequent stylization would not degrade the learned geometry
prior in the structure branch. For ease of alignment between encoded content and style tokens, we
leverage the same architecture as content image encoder for style image encoder, but with a different
set of learnable weights. This ViT-based style encoder receives an arbitrary style image I° and then

Ax . o
outputs a set of style tokens 7° = {t5 }”_,” , which are then sent to the stylization decoder.

Stylization Decoder. Within the stylization decoder, content tokens 7 ¢ output by the content
encoder are stylized by style tokens 7°. Initially, 7 from multiple views are concatenated, and then

perform a global self-attention to get Te ensuring multi-view consistency. Then these self-attended

content tokens 7 are used to generate queries while style tokens 7* are used to generate keys and
values for the cross attention that blends these two streams of information as shown in Eq. 1.

T° = CrossAttention (T W<, T*WK T°W") D

where W®, WX and WV are the projection matrices to generate queries, keys and values for cross
attention. After this blending, stylization decoder finally outputs a set of stylized content tokens 7 ¢°.

Color Head. From these stylized content tokens 7 “*, a DPT head is used to predict the stylized
color ¢ for each Gaussian, which is adapted according to the given style image I°. These color

NxHxW

components {c3S =1 along with the other parameters regressed from the structure branch

NxHxW

compose the complete set of attributes {(p;, aj, 1,85, ¢%)} =1 for stylized Gaussians G°.

Content as Style. Worth noticing, a content image I can also be viewed as a special style image
that maps the content to its original appearance. This naturally leads the stylization of appearance
branch to normal photorealistic shading in novel view synthesis. Thus, inputting a content image
If to style branch will give us the non-stylized Gaussians G°. This insight is applied to facilitate
subsequent training.

3.3 Training Curriculum

Notably, 3D stylization and reconstruction are not inherently well aligned, as optimizing for style
loss may degrade the underlying 3D structure of the scene [8]. To address this, we adopt a two-
stage training curriculum. In the first stage, the model is trained to accurately estimate the scene
structure and perform standard photorealistic shading. After this stage, we proceed to a stylization
fine-tuning stage, during which the structure branch is frozen to ensure faithful preservation of the
scene geometry.

Novel View Synthesis Pre-training. At this stage, we train the whole model end-to-end for the
novel view synthesis (NVS) by solely using photometric loss calculated between novel view images
rendered from G and ground truth target RGB images as in Eq. 2. During NVS training, we randomly
input one content image I to the appearance branch. This encourages the appearance branch to
preserve the original scene color at this stage. After this pre-training phase, given a set of sparsely
unposed images, the structure branch can predict intricate 3D structure, while the appearance branch
is capable of performing photorealistic shading for Gaussians, which lays a solid foundation for the
next stylization fine-tuning stage.

Stylization Fine-tuning. Building upon the preceding novel view synthesis (NVS) pre-training,
the model can primarily focus on learning to stylize the appearance of the Gaussians. In each forward
pass, we input content images Z¢ and a style image I° to the network, which outputs the stylized
Gaussians G° to render stylized images at novel viewpoints. These images are used to calculate
the losses in Eq. 2 to update the appearance branch. As mentioned in [8], optimizing all Gaussians
parameters towards style loss can drastically degrade the structure of reconstructed scene, thus we
only fine-tune the appeareance branch during this stage, and freeze the structure branch.

In terms of loss functions, we first employ a weighted combination of style and content losses. For
the style loss, we measure the differences in mean and variance between novel view images rendered
from G* and the reference style image I®, computed over the relul_1, relu2_1, relu3_1, and
relu4_1 feature maps of VGG19 [36]. For the content loss, we compare the relu3_1 and relud_1
feature map responses between images rendered from G* and the corresponding ground-truth target
RGB images. Empirically, we find that incorporating both relu3_1 and relu4_1 in the content loss
more effectively preserves the structural fidelity of the original scene, compared to using a single
layer as commonly done in previous style transfer approaches [8, 54], as shown in Fig. 7.

Besides, to preserve the model’s NVS ability during stylization fine-tuning, we adapt the identity
loss from [31]. Apart from the style image I°, we also feed a randomly selected content image If to
the appearance branch to obtain the non-stylized Gaussians G°. Similar to the first stage, we also
minimize the photometric loss between novel view images rendered from G¢ and ground truth target
RGB images while optimizing style and content losses.

Style Content Ours StyleRF StyleGaussian ARF StyTr2
Figure 3: Novel View Transfer Comparision on RE10K. Despite limited image overlap, our method
generates stylized novel views that more faithfully capture style details while preserving the original
scene structure. In comparison, StyleRF [23] and StyleGaussian [24] tend to produce over-smoothed
results that deviate from the true color tone of the reference style. ARF [54] suffers from style
overflow, leading to significant loss of content appearance. As a 2D baseline, StyTr2 [5] operates
directly on ground-truth novel views, but fails to retain fine structural details of the scene.

Training Losses. The losses used in two training stages are summarized as below.

L= {Ephoto(gc)v NVS pre-training

.. . 2
ALgty1e(G®) + Leonent(G°) + Lpnoto(G€), stylization fine-tuning 2)

where Lphoto i8 the photometric loss which is a linear combination of MSE and LPIPS [55] loss with
weights of 1 and 0.05, respectively, and A = 10 is the weight for style loss.

Progressive Multi-view Training To stabilize multi-view training, we first pre-train the model on
the 2-view setting for the NVS task, which is then used to initialize the 4-view NVS training and
subsequent stylization fine-tuning. Though trained with 4 input views, our model can flexibly handle
2 to 8 views during inference as shown in Fig. 8.

4 Experiments

Datasets. We use a combination of RealEstate10K (RE10K) [56] and DL3DV [22] as our scene
dataset, covering both indoor and outdoor videos with diverse camera motion patterns. For style
supervision, we use WikiArt [32], and assign a unique style image to each scene in the training and
evaluation sets. This setup ensures that neither the test scenes nor styles were seen during training.

To evaluate zero-shot generalization, we test on the Tanks and Temples [16] dataset which is widely
used by prior 3D style transfer methods [8, 23, 24, 54].

Baselines. Since no existing methods can instantly stylize 3D reconstructions from sparse, unposed
content images and a style reference image (as outlined in Table 1), we carefully select a set of
representative baselines for comparison. For 2D-based approaches, we adopt a two-stage pipeline
using AdalN [12], AdaAttN [25], and StyTr2 [5]: we first extract ground-truth novel view images
and then apply each 2D stylization model to these images. For 3D-based methods, we compare
against ARF [54], StyleRF [23], and StyleGaussian [24], which perform 3D stylization but require
dense input views and test-time optimization. To ensure proper functionality, we train these methods

. 5 e s
Style Content Ours StyleRF StyleGaussian ARF
Figure 4: Cross-dataset generalization on Tanks and Temples dataset. Our model achieves
superior or comparable zero-shot style transfer on out-of-distribution data, outperforming style-free
baselines such as StyleRF [23] and StyleGaussian [24] that require per-scene optimization, and
matching the performance of ARF [54], which further demands per-scene and per-style optimization.

Consistency Stvlizati *’
ization
Method Short-range Long-range Y

LPIPS| RMSE| LPIPS| RMSE]

Time

AdaIN [12] | 0.163 0.063 0.323 0.111 | 0.004 s
8 AdaAttN [25] 0.224 0.071 0.331 0.098 | 0.024s
StyTr2 [5] 0.167 0.059 0.315 0.098 | 0.029 s

StyleRF [23] | 0.062 0.021 0.172 0.042 | 90 mins
A StyleGS [24] | 0.048 0.022 0.137 0.043 | 132 mins 8 -
“ ARF [54] 0.093 0.038 0.217 0.070 | 12 mins Ref. StyTr2 ours

Styl3R(Ours)| 0.044 0.022 0.107 0.038 | 0.147 s Figure 5: Visual Comparison. Visualizations
of different views produced by StyTr2 [5] and
Table 2: Quantitative Results. Performance com- our method. The highlighted regions (lamp
parison of Styl3R with 2D and 3D baselines on and bed sheet) show noticeable color discrep-
RE10K in terms of view consistency. Stylization ancies in StyTr2, while our approach maintains
time refers to processing time excluding IO time. consistent color across views.

with dense inputs, acknowledging that this gives them an advantage and makes the comparison
less favorable to our approach, which requires only sparse input views. Specifically, ARF [54]
requires both per-scene and per-style optimization; while StyleRF [23] and StyleGaussian [24]
support zero-shot style transfer, they still depend on per-scene optimization.

Evaluation Metrics. Because of the novel and under-explored nature of 3D stylization, there are few
metrics for assessing the quality of the stylization. Therefore, we evaluate the multi-view consistency
as in prior 3D stylization works [8, 23, 24]. We estimate optical flow between sequential images
using RAFT [41], then warp the earlier frame with softmax splatting [29]. Consistency is measured
by LPIPS [55] and RMSE between the warped and target images over valid pixels. Short- and long-
range consistency are computed between adjacent views and those seven frames apart, respectively.
We further employed ArtFID [46], a metric well aligned with human perceptual judgment by
jointly assessing content preservation and style fidelity, together with the RGB-uv histogram from
HistoGAN [1] to comprehensively evaluate the quality of color transfer. To evaluate novel view
synthesis quality, we report standard image similarity metrics: PSNR, SSIM, and LPIPS [55].

Method PSNR+ SSIM1 LPIPS | Input w/o identit}j loss w/ identity loss

pixelSplat [2] 23.848 0.806 0.185
MV Splat [4] 23.977 0.811 0.176
NoPoSplat [49] 25.033 0.838 0.160
NoPoSplat* 24.836 0.832 0.166
Ours 24.871 0.837 0.165

Ours-stylization ~ 24.055 0.820 0.179

Table 6: NVS comparison on RE10K. * de- Figure 6: Ablations. NVS results w/o and w/ iden-
notes 0-degree spherical harmonics, as used in tity loss during stylization fine-tuning. The former
our model, while [49] defaults to 4-degree. fails to retain the true color tone of the scene.

Input relu3_1 +relud 1 relu3_1 i Input relu3_1 +relud 1 relu3_1

Figure 7: Ablations. Styhzatlon results of model tralned w1th content loss consist of dlfferent layers.
Using relu3_1 and relu4_1 in content loss preserve the original scene appearance more faithfully.

User Study. We conducted an online | StyBR ARF StyleGS StyleRF _ StyTr2

user study to evaluate perceptual prefer- REIOK (%) | 5329 1413 667 81 2410

ences between our proposed approach
and alternative methods. Participants ToT (%) | 3878 2211 1156 3.06 2449

were asked to select the result they per- Table 3: User Study. Voting results for stylization.
ceived as exhibiting the most harmonious

. . Metric Sty3BR ARF StyleGS StyleRF StyTr2
integration of style and scene. In to- | Sty Y Y Y
ArtFID/RE10K ‘ 3512 4295 5575 4659 3893

{al’ agp,mxlm:;‘tel% 22222 Voltslijl“(ﬁée 5841{ AMFID|TnT 38.05 4898 5503 6481 3924
ected, including 1, or ’ H—gramiRElOK‘ 0230 0313 0465 0507 0241

for Tanks and Temples, and 392 for the p_grum|TnT 0241 0259 0379 0422 0247

ablation study. Table 4: ArtFID [46] and Histogram [1] for compari-
sions.

Implementation details. We use Py-
Torch. The content and style encoder | ArtFID | Histogram | Votes (%)
adopts a standard ViT-Large architecture h3 layer 42.01 0.277 35.20
with a patch size 16, while the structure h3+h4 layer 35.83 0.239 64.80
and stylization decpd_elr 18 based on a ViT- Table 5: Ablations. The ArtFID, Histogram, and voting
Base model. We 1n1t1a}12e the encodgr, results for h3 and h3+hd layer.

decoder, and the Gaussian center predic-
tion head with pretrained weights from MASt3R [19], whereas the remaining layers are initialized
randomly. The model is trained on images with a resolution of 256 x 256. Besides, we use 0 degree
spherical harmonics for Gaussians following [8]. Training takes ~1.5 days on 8 NVIDIA A100 GPUs.

4.1 Experimental Results

3D Stylization Results. As shown in Fig. 3, Table 2, Table 3 and Table 4, our method outperforms
all baselines qualitatively and quantitatively. Visually, our stylizations achieve a more balanced trade-
off between content preservation and faithful style transfer. Among test-time optimization-based 3D
baselines, StyleRF [23] and StyleGaussian [24] often fail to reproduce the reference style’s color
tone accurately, resulting in overly whitened or darkened outputs. ARF [54], while better at capturing
style colors, tends to overfit and apply excessive stylization that obscures scene details. For example,
in the third row of Fig. 3, furniture in the living room becomes nearly indistinguishable due to heavy
sketch-line artifacts. As a 2D baseline, StyTr2 [5] generates visually pleasing results on individual
ground-truth novel views, but it lacks multi-view consistency, as evidenced in Table 2 and Fig. 5. In
contrast, our method consistently produces superior stylizations while maintaining the best short-
and long-range consistency metrics, benefiting from our attention mechanism that operates jointly
over multi-view content and style tokens. Although StyleRF achieves a slightly lower RMSE in
short-range evaluations, this is largely due to its over-smoothed outputs, as clearly illustrated in Fig. 3.

4-view model 2-view model 4-view model

. Input

Figure 8: Ablations. Results for 2-view and 4-view models when inputting 2 and 8 content images.
The 2-view model fails to align Gaussians across multiple views when provided with § input views.

ELTRN AR

= L) B
o ‘.. J M\M‘M 1 (
‘ W’EL’ e

S

= |

HARUN | R BRI\ 3

Figure 9: Application. Style Interpolation with 2 style irhages by interpolating their style tokens. It
can be observed that the style of the scene smoothly transit from one to another.

B
)|

Cross-Data Generalization. To evaluate the generalization performance of our method, we directly
apply it to the Tanks and Temples dataset [16], a widely used benchmark in prior works. As
shown in Fig. 4, our model demonstrates superior performance on out-of-distribution scenes such as
Garden, Ignatius, and Horse which are object-centric scenes that differ significantly from the RE10K
training data, outperforming existing state-of-the-art methods. Notably, even though StyleRF [23]
and StyleGaussian [24] are trained per scene, they fail to generalize to arbitrary style inputs. While
ARF [54] achieves better results in some scenes, it requires dense, calibrated views along with
per-scene and per-style optimization, limiting its practicality for time-constrained applications.

Novel View Synthesis. Our final model supports both stylized and standard 3D reconstruction,
depending on whether the input to the appearance branch is a style or content image. We report two
sets of metrics: one for the stylized output (Ours-stylization) and one for standard reconstruction
without stylization fine-tuning (Ours). As shown in Table 6, Ours achieves performance comparable to
NoPoSplat [49], despite not initializing the stylization decoder with pretrained weights. While Ours-
stylization shows a slight drop in performance, it enables simultaneous support for both photorealistic
and stylized reconstruction. Our results are from 2-view RE10K models, consistent with NoPoSplat.

Stylization Time. We define stylization time as the total time from receiving the input content and
style images to producing the final stylized outputs. This metric more practically reflects how quick a
user can obtain stylized results. For 3D methods, this includes both the reconstruction time and any
stylization-related training or optimization. As shown in Table 2, our method achieves significantly
faster stylization time than all existing 3D approaches, while approaching state-of-the-art 2D methods
in terms of speed.

4.2 Ablation Studies

Identity Loss to Preserve NVS Capability. We explore the necessity of identity loss during
stylization fine-tuning. It can be observed in Fig. 6 that the model fails to recover the original
appearance of the scene while performing NVS if we disable this loss.

Content Loss Layers. As in Sec. 3.3, using both relu3_1 and relu4_1 for the content loss better
preserves structural details without sacrificing artistic expression. As shown in Fig. 7 and Table 5,
relying solely on relu3_1 tends to cause the style to overwhelm the underlying scene structure.

Flexibility of Number of Input Views. As discussed in Sec. 3.3, our model trained with 4 content
images demonstrates strong generalization, effectively handling between 2 to 8 input views. As in
Fig. 8, both the 2-view and 4-view models produce satisfactory stylizations when given only 2 content
images. However, when the input is increased to 8 content images, the 2-view model struggles to
align Gaussians across views, resulting in duplicated artifacts such as multiple pillars and sofas. In
contrast, the 4-view model performs remarkably well, despite never being trained with 8-view inputs.

4.3 Application

Style Interpolation. We demonstrate an application of our model, style interpolation, in Fig. 9.
Specifically, we interpolate the style tokens from two reference style images before passing them to
the stylization decoder, producing a blended stylization that smoothly transitions between the two
styles. This approach can be easily extended to more than two styles by simply computing a weighted
sum of their respective style tokens.

5 Discussion

To clarify the motivation of our method, we provide a detailed comparison between two-stage
approaches, which first reconstruct 3DGS and then perform stylization, and our single-pass method
that achieves 3D stylization in an end-to-end manner.’

Two-stage methods:

* (+) High-fidelity geometry: The 3DGS model is optimized directly to fit the target scene
from dense image inputs, resulting in accurate geometry and detailed structures.

* (+) Scalable to large scenes: With sufficient optimization time and resources, this approach
can be extended to larger-scale environments.

* (-) No instant stylization support: There is currently no method that directly takes a trained
3DGS and outputs a stylized version without additional test-time optimization. Even the
closest work (e.g., StyleGaussian) requires post-processing like VGG feature embedding.

* (-) Inefficient: The optimization-heavy pipeline is unsuitable for interactive or time-
sensitive applications such as AR or mobile capture.

* (-) Requires expert setup: Users must collect dense, accurately posed input images to fit
3DGS properly, limiting accessibility for casual creators.

Single-pass methods (ours):

* (+) Fast inference: The model runs in a single forward pass with no test-time optimization,
enabling nearly real-time 3D stylization—ideal for interactive or mobile scenarios.

* (+) User-friendly: The pipeline accepts a small set of casually captured images and produces
a stylized 3D scene in an end-to-end manner, making it accessible to non-experts.

* (-) Data-hungry: Training requires a large and diverse dataset to generalize across various
scene types and artistic styles.

* (=) Lower reconstruction quality: Feed-forward models typically prioritize speed and
generalization over precise geometric fidelity.

* (-) Limited scalability: Current implementations may face memory constraints (e.g.,
VRAM bottlenecks) and require architectural adjustments or more training data to handle
large-scale environments.

6 Conclusion

This paper introduces a feed-forward network for instant 3D stylization from sparse, unposed input
views and a single reference style image, which generalizes to arbitrary scenes and styles without test-
time optimization. The network is composed of a structure branch and an appearance branch, jointly
enabling consistent novel view synthesis and stylization. Extensive experiments demonstrate that our
method outperforms existing baselines in zero-shot stylization quality, while achieving significantly
faster inference speed, making it more practical for real-world and interactive applications. It is worth
noting that our method currently supports only static scenes; extending it to handle dynamic scenarios
is an important direction for future work.

Acknowledgements. This work was supported in part by NSFC under Grant 62202389, in part by
a grant from the Westlake University-Muyuan Joint Research Institute, and in part by the Westlake
Education Foundation.

Throughout this section, “(+)” and “(-)” denote advantages and disadvantages, respectively.

10

References

[1] Mahmoud Afifi, Marcus A Brubaker, and Michael S Brown. Histogan: Controlling colors
of gan-generated and real images via color histograms. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 7941-7950, 2021.

[2] David Charatan, Sizhe Lester Li, Andrea Tagliasacchi, and Vincent Sitzmann. pixelsplat: 3d
gaussian splats from image pairs for scalable generalizable 3d reconstruction. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 19457-19467,
2024.

[3] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang, Fanbo Xiang, Jingyi Yu, and
Hao Su. Mvsnerf: Fast generalizable radiance field reconstruction from multi-view stereo. In
Proceedings of the IEEE/CVF international conference on computer vision, pages 14124-14133,
2021.

[4] Yuedong Chen, Haofei Xu, Chuanxia Zheng, Bohan Zhuang, Marc Pollefeys, Andreas Geiger,
Tat-Jen Cham, and Jianfei Cai. Mvsplat: Efficient 3d gaussian splatting from sparse multi-view
images. In European Conference on Computer Vision, pages 370-386. Springer, 2024.

[5] Yingying Deng, Fan Tang, Weiming Dong, Chongyang Ma, Xingjia Pan, Lei Wang, and
Changsheng Xu. Stytr2: Image style transfer with transformers. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 11326-11336, 2022.

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[7] Zhiwen Fan, Yifan Jiang, Peihao Wang, Xinyu Gong, Dejia Xu, and Zhangyang Wang. Unified
implicit neural stylization. In European Conference on Computer Vision, 2022.

[8] Bruno Galerne, Jianling Wang, Lara Raad, and Jean-Michel Morel. Sgsst: Scaling gaussian
splatting styletransfer. Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2025.

[9] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using convolutional
neural networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2414-2423, 2016.

[10] Lukas Hollein, Justin Johnson, and Matthias NieBner. Stylemesh: Style transfer for indoor 3d
scene reconstructions. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6198—6208, 2022.

[11] Hsin-Ping Huang, Hung-Yu Tseng, Saurabh Saini, Maneesh Singh, and Ming-Hsuan Yang.
Learning to stylize novel views. In ICCV, 2021.

[12] Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance
normalization. In ICCV, 2017.

[13] Yi-Hua Huang, Yue He, Yu-Jie Yuan, Yu-Kun Lai, and Lin Gao. Stylizednerf: Consistent 3d
scene stylization as stylized nerf via 2d-3d mutual learning. In Computer Vision and Pattern
Recognition (CVPR), 2022.

[14] Mohammad Mahdi Johari, Yann Lepoittevin, and Frangois Fleuret. Geonerf: Generalizing nerf
with geometry priors. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 18365—-18375, 2022.

[15] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Drettakis. 3d gaussian
splatting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4), July
2023.

[16] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Bench-
marking large-scale scene reconstruction. ACM Transactions on Graphics, 36(4), 2017.

11

[17] Georgios Kopanas, Julien Philip, Thomas Leimkiihler, and George Drettakis. Point-based
neural rendering with per-view optimization. Computer Graphics Forum (Proceedings of the
Eurographics Symposium on Rendering), 40(4), June 2021.

[18] Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio Caggiano,
Sean Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, Patrick Labatut, Daniel Haziza,
Luca Wehrstedt, Jeremy Reizenstein, and Grigory Sizov. xformers: A modular and hack-
able transformer modelling library. https://github.com/facebookresearch/xformers,
2022.

[19] Vincent Leroy, Yohann Cabon, and Jérome Revaud. Grounding image matching in 3d with
mast3r. In European Conference on Computer Vision, pages 71-91. Springer, 2024.

[20] Xueting Li, Sifei Liu, Jan Kautz, and Ming-Hsuan Yang. Learning linear transformations for
fast arbitrary style transfer. In IEEE Conference on Computer Vision and Pattern Recognition,
2019.

[21] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, and Ming-Hsuan Yang. Universal
style transfer via feature transforms. Advances in neural information processing systems, 30,
2017.

[22] Andrew Liu, Richard Tucker, Varun Jampani, Ameesh Makadia, Noah Snavely, and Angjoo
Kanazawa. Infinite nature: Perpetual view generation of natural scenes from a single image.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 14458—
14467, 2021.

[23] Kunhao Liu, Fangneng Zhan, Yiwen Chen, Jiahui Zhang, Yingchen Yu, Abdulmotaleb El Saddik,
Shijian Lu, and Eric P Xing. Stylerf: Zero-shot 3d style transfer of neural radiance fields. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
8338-8348, 2023.

[24] Kunhao Liu, Fangneng Zhan, Muyu Xu, Christian Theobalt, Ling Shao, and Shijian Lu.
Stylegaussian: Instant 3d style transfer with gaussian splatting. In SIGGRAPH Asia 2024
Technical Communications, pages 1-4, 2024.

[25] Songhua Liu, Tianwei Lin, Dongliang He, Fu Li, Meiling Wang, Xin Li, Zhengxing Sun, Qian
Li, and Errui Ding. Adaattn: Revisit attention mechanism in arbitrary neural style transfer. In
Proceedings of the IEEE International Conference on Computer Vision, 2021.

[26] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari, Ravi
Ramamoorthi, Ren Ng, and Abhishek Kar. Local light field fusion: Practical view synthesis
with prescriptive sampling guidelines. ACM Transactions on Graphics (TOG), 2019.

[27] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi,
and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV,
2020.

[28] Fangzhou Mu, Jian Wang, Yicheng Wu, and Yin Li. 3d photo stylization: Learning to generate
stylized novel views from a single image. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 16273-16282, 2022.

[29] Simon Niklaus and Feng Liu. Softmax splatting for video frame interpolation, 2020.

[30] Ipek Oztas, Duygu Ceylan, and Aysegul Dundar. 3d stylization via large reconstruction model,
2025.

[31] Dae Young Park and Kwang Hee Lee. Arbitrary style transfer with style-attentional networks.
In proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
5880-5888, 2019.

[32] Fred Phillips and Brandy Mackintosh. Wiki art gallery, inc.: A case for critical thinking. Issues
in Accounting Education, 26(3):593-608, 2011.

12

https://github.com/facebookresearch/xformers

[33] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction.
In Proceedings of the IEEE/CVF international conference on computer vision, pages 12179—
12188, 2021.

[34] Abhishek Saroha, Mariia Gladkova, Cecilia Curreli, Dominik Muhle, Tarun Yenamandra,
and Daniel Cremers. Gaussian splatting in style. In DAGM German Conference on Pattern
Recognition, pages 234-251. Springer, 2024.

[35] Ruoxi Shi, Hansheng Chen, Zhuoyang Zhang, Minghua Liu, Chao Xu, Xinyue Wei, Linghao
Chen, Chong Zeng, and Hao Su. Zero123++: a single image to consistent multi-view diffusion
base model, 2023.

[36] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[37] Brandon Smart, Chuanxia Zheng, Iro Laina, and Victor Adrian Prisacariu. Splatt3r: Zero-shot
gaussian splatting from uncalibrated image pairs. arXiv preprint arXiv:2408.13912, 2024.

[38] Bingjie Song, Xin Huang, Ruting Xie, Xue Wang, and Qing Wang. Style3d: Attention-guided
multi-view style transfer for 3d object generation, 2024.

[39] Stanislaw Szymanowicz, Chrisitian Rupprecht, and Andrea Vedaldi. Splatter image: Ultra-fast
single-view 3d reconstruction. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 10208—-10217, 2024.

[40] Hao Tang, Songhua Liu, Tianwei Lin, Shaoli Huang, Fu Li, Dongliang He, and Xinchao Wang.
Master: Meta style transformer for controllable zero-shot and few-shot artistic style transfer. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages

18329-18338, 2023.
[41] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow, 2020.

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[43] Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
Novotny. Vggt: Visual geometry grounded transformer. In Proceedings of the Computer Vision
and Pattern Recognition Conference, pages 5294-5306, 2025.

[44] Qiangian Wang, Zhicheng Wang, Kyle Genova, Pratul P Srinivasan, Howard Zhou, Jonathan T
Barron, Ricardo Martin-Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet: Learning
multi-view image-based rendering. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 4690-4699, 2021.

[45] Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r:
Geometric 3d vision made easy. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 20697-20709, 2024.

[46] Matthias Wright and Bjorn Ommer. Artfid: Quantitative evaluation of neural style transfer. In
DAGM German Conference on Pattern Recognition, pages 560-576. Springer, 2022.

[47] Xiaolei Wu, Zhihao Hu, Lu Sheng, and Dong Xu. Styleformer: Real-time arbitrary style transfer
via parametric style composition. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 14618-14627, 2021.

[48] Han Xu, Jiteng Yuan, and Jiayi Ma. Murf: Mutually reinforcing multi-modal image registration
and fusion. IEEE transactions on pattern analysis and machine intelligence, 45(10):12148—
12166, 2023.

[49] Botao Ye, Sifei Liu, Haofei Xu, Li Xueting, Marc Pollefeys, Ming-Hsuan Yang, and Peng

Songyou. No pose, no problem: Surprisingly simple 3d gaussian splats from sparse unposed
images. In The Thirteenth International Conference on Learning Representations, 2025.

13

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural radiance fields
from one or few images. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 45784587, 2021.

Xin-Yi Yu, Jun-Xin Yu, Li-Bo Zhou, Yan Wei, and Lin-Lin Ou. Instantstylegaussian: Efficient
art style transfer with 3d gaussian splatting. arXiv preprint arXiv:2408.04249, 2024.

Chiyu Zhang, Xiaogang Xu, Lei Wang, Zaiyan Dai, and Jun Yang. S2wat: Image style transfer
via hierarchical vision transformer using strips window attention. In Proceedings of the AAAI
conference on artificial intelligence, 2024.

Dingxi Zhang, Yu-Jie Yuan, Zhuoxun Chen, Fang-Lue Zhang, Zhenliang He, Shiguang Shan,
and Lin Gao. Stylizedgs: Controllable stylization for 3d gaussian splatting. arXiv preprint
arXiv:2404.05220, 2024.

Kai Zhang, Nick Kolkin, Sai Bi, Fujun Luan, Zexiang Xu, Eli Shechtman, and Noah Snavely.
Arf: Artistic radiance fields. In European Conference on Computer Vision, pages 717-733.
Springer, 2022.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The Unreason-
able Effectiveness of Deep Features as a Perceptual Metric. In Computer Vision and Pattern
Recognition (CVPR), pages 586-595, 2018.

Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnifica-

tion: learning view synthesis using multiplane images. ACM Transactions on Graphics (TOG),
37(4):1-12, 2018.

14

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We have stated the contributions and scope in the Abstract and Introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: It is discussed at the end of the Conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

15

Justification: The paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We have presented the information in experimental section.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16

Answer:

Justification: The code will not be submitted along with paper, but we may release the code
later on Github.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The training and test details are adequately stated in the Implementation Details
section.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The quantitative results are not accompanied by error bars, confidence intervals
nor statistical significance tests.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the type of computational resources used in Implementation Details
section.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research conducted in the paper conform the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: As discussed in the introduction and conclusion, our method is significantly
more user-friendly for casual users engaging in interactive artistic creation.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The model does not have a high risk for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all corresponding papers throughout the paper for the code and data
we use.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19

paperswithcode.com/datasets

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The work does not involve the introduction of new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

20

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

Appendix

In the supplementary, we provide the following:

* more implementation details, including architecture and training hyperparameters for our
model in Sec. A;

* more technical details on training 2D and 3D baselines in Sec. A;
* more visual results of our model and comparisons with baselines in Sec. B;

e limitations of our model in Sec. C.

We highly recommend visiting our project website for a more comprehensive demonstration of our
method’s stylization quality and temporal consistency. The website features:

* qualitative comparisons with baselines on the RE10K [56] and Tanks and Temples [16]
datasets;

* more out-of-domain stylization results on the Tanks and Temples and NeRF LLFF [26]
datasets;

* style interpolation examples showcasing transitions between three different styles.

A More Implementation Details

Training. In terms of optimization, we employ AdamW optimizer. For Novel View Synthesis
(NVS) pretraining, we train the stylization decoder, color head and structure head with initial learning
rate of 2 x 10~%, and fine-tune the other parameters with 2 x 10~°. Then for stylization fine-tuning,
we continue optimizing the color head and stylization decoder with initial learning rate of 2 x 10~*
and fine-tune only the style encoder with 2 x 1075, and keep all the other parameters in the structure
branch fixed.

Architecture. To expedite the inference of network, we use the flash attention implementation from
xFormers [18] in all of our encoders and decoders. As in [49], we feed the tokens from the 1-st, 7-th,
10-th and 13-rd block into DPT [33] for upsampling.

Baselines Training. For the 2D methods (StyTr2 [5], AdalIN [12], AdaAttN [25]), we directly
utilize their publicly released pretrained checkpoints, available at StyTr2 code , AdaIN code, and
AdaAttN code, respectively. As these methods do not support 3D reconstruction from 2D images, we
apply them directly to stylize the ground-truth 2D novel views, bypassing any reconstruction process.

In contrast, the 3D methods (ARF [54], StyleRF [23], StyleGaussian [24]) are unable to reconstruct
geometry from sparse, unposed inputs. Therefore, we train them using all available scene images (on
average, more than 100 per scene) along with their corresponding camera poses. This setup results in
an unfair comparison with our method, which operates on sparse and unposed inputs.

B More Visual Results

We present additional qualitative results in Fig. 10, Fig. 11, Fig. 12, Fig. 13, and Fig. 14, which
highlight the superior performance of our method compared to prior state-of-the-art style transfer
approaches. While existing 3D methods rely on densely posed images, our approach enables instant
3D stylization across arbitrary scenes and styles without such constraints.

More Comparisons with Baselines. To better showcase the superiority of our method, we visualize
more comparison results with 3D baseline methods on different scenes and styles, as shown in Fig. 10.

More Visual Results of Our Method. To validate our method is compatible with arbitrary scenes
and styles, we show stylization results with exhaustive combinations from randomly selected scenes
and styles, as shown in Fig. 11, Fig. 12, Fig. 13 and Fig. 14.

22

https://nickisdope.github.io/Styl3R/
https://github.com/diyiiyiii/StyTR-2
https://github.com/naoto0804/pytorch-AdaIN
https://github.com/Huage001/AdaAttN

C Limitations

Inherited from the base model [49], our method is currently limited to 2—8 input views and low-
resolution scenarios (256 x 256). The former limitation could be alleviated by replacing the base
model with VGGT [43], while the latter could be partially mitigated by fine-tuning the current model
on higher-resolution data. However, ultra-high-resolution scenarios remain challenging due to VRAM
constraints.

23

Style Content Ours StyleRF StyleGaussian ARF
Figure 10: Novel View Transfer Comparision on RE10K. Our method faithfully preserves style and
scene structure, even with limited image overlap. In contrast, StyleRF [23] and StyleGaussian [24]
produce over-smoothed results with inaccurate color tones, while ARF [54] suffers from style

overflow.

24

25

">~ _ Content r -
Style >~o | 'y

26

Figure 13: Addftional Results on RE10K from Our Method.

27

Figure 14: Additional Results on RE10K from Our Method.

28

	Introduction
	Related Work
	Method
	Structure Branch
	Appearance Branch
	Training Curriculum

	Experiments
	Experimental Results
	Ablation Studies
	Application

	Discussion
	Conclusion
	More Implementation Details
	More Visual Results
	Limitations

