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ABSTRACT

Offline RL algorithms require careful regularization to avoid overfitting. One-step
methods perform regularization by doing just a single step of policy improvement,
while critic regularization methods do many steps of policy improvement with a
regularized objective. In this paper, we draw a close connection between these
methods: applying a multi-step critic regularization method with a regularization
coefficient of 1 yields the same policy as one-step RL. While practical implemen-
tations violate our assumptions and critic regularization is typically applied with
smaller regularization coefficients, our experiments nevertheless show that our
analysis makes accurate, testable predictions about practical offline RL methods
(CQL and one-step RL) with commonly-used hyperparameters.

1 INTRODUCTION

n-step RL …

critic
regularization

more regularization less regularization

Figure 1: Both n-step RL and critic regularization can
interpolate between behavioral cloning (left) and un-
regularized RL (right) by varying the regularization pa-
rameter. Endpoints of these regularization paths are the
same. We prove that these methods also obtain the same
policy for an intermediate degree of regularization.

Reinforcement learning (RL) algorithms tend
to perform better when regularized, especially
when given access to only limited data, and es-
pecially in batch (i.e., offline) settings where the
agent is unable to collect new experience. While
RL algorithms can be regularized using the same
tools as in supervised learning (e.g., weight de-
cay, dropout), our focus will be on regularization
methods unique to the RL setting (policy reg-
ularization, value regularization). Research on
these sorts of regularization has grown signifi-
cantly in recent years, yet theoretical work studying the tradeoffs between regularization methods
remains limited (Vieillard et al., 2020).

Many RL methods perform regularization, and can can be classified by whether they perform one
or many steps of policy improvement. One-step RL methods (Brandfonbrener et al., 2021; Peng
et al., 2019; Peters & Schaal, 2007; Peters et al., 2010) perform one step of policy iteration, updating
the policy to choose actions the are best according to the Q-function of the behavioral policy. The
policy is often regularized to not deviate far from the behavioral policy. In theory, policy iteration
can take a large number of iterations (Õ(|S||A|/(1− γ)) (Scherrer, 2013)) to converge, so one-step
RL (one step of policy iteration) fails to find the optimal policy on most tasks. Empirically, policy
iteration often converges in a smaller number of iterations (Sutton & Barto, 2018, Sec. 4.3), and
the policy after just a single iteration can sometimes achieve performance comparable to multi-step
RL methods (Brandfonbrener et al., 2021). Critic regularization methods modify the training of the
value function such that it predicts smaller returns for unseen actions (Kumar et al., 2020; Chebotar
et al., 2021; Yu et al., 2021; Hatch et al., 2022; Nachum et al., 2019; An et al., 2021; Bai et al., 2022;
Buckman et al., 2020). See Appendix A for a discussion of prior methods.

These RL regularization methods appear quite distinct. Critic regularization typically involves solving
a two-player game, whereby a policy predicts actions with high values while the critic decreases the
values predicted for those actions. Prior work (Kumar et al., 2020) has argued that a benefit from this
complexity is that the critic regularization ends up being propagated across time.

In this paper, we show that a certain type of actor and critic regularization can be equivalent, under
some assumptions. The key idea is that, when using a certain TD loss, the regularized critic updates
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converge not to the true Q-values, but rather the Q-values multiplied by an importance weight. For
the critic, these importance weights mean that the Q-values end up estimating the expected returns of
the behavioral policy (Qβ , as in many one-step methods (Peters et al., 2010; Peters & Schaal, 2007;
Peng et al., 2019; Brandfonbrener et al., 2021)), rather than the expected returns of the optimal policy
(Qπ). For the actor, these importance weights mean that the logarithm of the Q-values includes a term
that looks like a KL divergence. So, optimizing the policy with these Q-values results in a standard
form of actor regularization. Our analysis may help explain why prior work has found that one-step
RL and critic regularization methods can perform similarly on some (Brandfonbrener et al., 2021;
Emmons et al., 2021) (but not all (Kostrikov et al., 2021)) problems. While our results do not say
whether users should regularize the actor or critic in practice, they hint that one-step RL methods
may be a simpler way of achieving the theoretical and empirical properties of critic regularization on
RL tasks that require strong regularization.

2 A CONNECTION BETWEEN ONE-STEP RL AND CRITIC REGULARIZATION

This section will introduce our main result. We first introduce a new actor critic method, not because
we expect it to perform better than existing actor-critic methods, but rather because it allows us to
make precise a connection between actor and critic regularization. Sec. 2.2 then states the main result.
See Appendix B for a formal description of the notation and prior methods.

2.1 CLASSIFIER ACTOR CRITIC

The key to our analysis will be to treat Q-values like probabilities, so we define the critic loss in
terms of a cross-entropy loss, similar to prior work (Kalashnikov et al., 2018; Eysenbach et al., 2021).
Recalling that Q-values are positive (Sec. B.1), we transform the Q-values to have the correct range
by using Q

Q+1 ∈ [0, 1). We will minimize the cross-entropy loss applied to the transformed Q-values:

Ep(s,a)

[
CE
(

Q(s, a)

Q(s, a) + 1
;

yπ(s, a)

yπ(s, a) + 1

)]
(1)

const.
= −Ep(s,a)

[
yπ(s, a) log

Q(s, a)

Q(s, a) + 1
+ log

1

Q(s, a) + 1

]
≜ Lcritic(Q, π), (2)

In the last line we scale both the positive and negative term by yπ(s, a) + 1, a choice that does not
change the optimal classifier but reduces notational clutter. In tabular settings, this new critic objective
performs the same updates as Q-learning (Q(s, a) ← r(s, a) + γQ(s′, a′)), so it is guaranteed to
converge and produce the correct Q-values (see proof in Appendix Lemma 2.1). The actor objective
is to maximize the expected log of the Q-values:

max
π
Lactor(π) ≜ Ep(s)π(a|s) [log(Q

π(s, a))] where Qπ = argmin
Q

Lcritic(Q, π). (3)

While most actor-critic methods do not use the logarithm transformation, prior work on conditional
behavioral cloning (e.g., (Savinov et al., 2018; Ding et al., 2019; Sun et al., 2019; Ghosh et al.,
2020; Srivastava et al., 2019)) implicitly includes this transformation (Eysenbach et al., 2022). In the
absence of additional regularization, the optimal policy π(a | s) = 1(a = argmaxa′ Q(s, a′)) is the
same as the optimal policy for the standard actor objective (without the logarithm). We will call this
method classifier actor critic.

We next introduce a one-step version of this method, as well as a critic regularization variant that
resembles CQL. While we will implicitly use a regularization coefficient of 1 below, Appendix E.1
discusses versions of classifier actor critic with varying degrees of regularization.

One-step RL. To make classifier actor critic resemble one-step RL (Brandfonbrener et al., 2021),
we make two changes: estimating the value of the behavioral policy and adding a regularization term
to the actor objective. To estimate the value of the behavioral policy, we modify the critic loss to
sample the next action a′ from the behavioral policy (i.e., we use yβ(s, a) rather than yπ(s, a)). We
also regularize the policy by adding a relative entropy term to the actor loss, analogous to the reverse
KL penalty used in one-step RL:

max
π

Ep(s)π(a|s)

[
logQβ(s, a) + log β(a | s)− log π(a | s)

]
where Qβ(s, a) = argmin

Q
Lcritic(Q, β). (4)

In tabular settings, this critic objective estimates the Q-values for β(a | s) (Appendix Lemma 2.1).

2



Critic regularization. To emulate CQL, we modify the critic loss (Eq. 2) by adding a penalty
term that decreases the values for unseen actions. Whereas CQL applies this penalty to the Q-values
directly, we will apply it to the logarithm of the Q-values:1

Lr
critic(Q, π) ≜ Lcritic(Q, π) + λ

(
Ep(s)π(a|s) [log(Q(s, a) + 1)]− Ep(s)β(a|s) [log(Q(s, a) + 1)]

)
. (5)

2.2 MAIN RESULT

To relate one-step RL to critic regularization, we start by analyzing the Q-values learned by both
methods. We first show that the classifier critic converges to the correct Q-values:
Lemma 2.1. In the tabular setting, applying the critic update to policy π converges to Qπ:

argmin
Q

Lcritic(Q, π) = Qπ(s, a) for all states s and actions a. (6)

Because one-step RL trains the critic using Lcritic(Q, β), it learns Q-values corresponding to Qβ(s, a).

When regularization is added to the critic updates, it learns different Q-values. Perhaps surprisingly,
this regularization means that our estimates for the value of policy π(a | s) look like the value of the
original behavioral policy:
Lemma 2.2. In the tabular setting, applying regularized critic updates with λ = 1 to policy π
converges to the Q-values for the behavioral policy (β(a | s)), weighted by the ratio of the behavioral
and online policies:

argmin
Q

Lr
critic(Q, π) =

Qβ(s, a)β(a | s)
π(a | s) for all states s and actions a. (7)

Proof sketch. The ratio β(a|s)
π(a|s) above is an importance weight. Ordinarily, a TD backup for policy

π(a | s) would entail sampling an action a ∼ π(a | s). However, this importance weight means
that TD backup is effectively performed by sampling an action a ∼ β(a | s). Such a TD backup
resembles the TD backup for β(a | s). The full proof is in Appendix D.

Intuitively, this result says that critic regularization reweights the Q-values to assign higher values to
in-distribution actions, where β(a | s) is large. An unexpected part of this result is that the Q-values
correspond to the behavioral policy. Said in other words, critic regularization added to a multi-step
RL method (one using yπ(s, a)) yields the same critic as a one-step RL method (one using yβ(s, a)).
Our main result is a direct corollary of this Lemma:
Theorem 2.3. Let a behavioral policy β(a | s) be given and let Qβ(s, a) be the corresponding value
function. Let π(a | s) be an arbitrary policy (typically learned) with support constrained to β(a | s)
(i.e., π(a | s) > 0 =⇒ β(a | s) > 0). Let Qπ

r (s, a) be the critic obtained by the regularized critic
update (Eq. 5) to this policy with λ = 1. Then critic regularization results in the same policy as
one-step RL:

Eπ(a|s) [logQ
π
r (s, a)] = Eπ(a|s)

[
logQβ(s, a) + log β(a | s)− log π(a | s)

]
for all states s.

Since both forms of regularization result in the same objective for the actor, they must produce
the same policy in the end. While prior work has mentioned that critic regularization implicitly
regularizes the policy (Yu et al., 2021), this result shows that implicit regularization: under the
assumptions stated above, the implicit regularization of critic regularization results in the exact same
policy learning objective as one-step RL.

Limitations. Our theoretical analysis makes assumptions that may not always hold in practice.
For example, our results use a critic loss based on the cross entropy loss, while most (but not
all (Kalashnikov et al., 2018; Eysenbach et al., 2020b)) practical methods use the MSE. Our analysis
assumes that critic regularization arrives at an equilibrium, and ignores errors introduced by function
approximation and sampling.

1From a dimensional analysis perspective (Huntley, 1967), this choice makes sense because it allows the
penalty term to have the same “units” as the critic loss: log Q-values. A second motivation for regularizing the
logarithm is that the actor loss uses a logarithm.
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Extensions of the Analysis. We extend this analysis in three ways. First, we also show that a
similar connection can be established for lesser degrees of regularization (λ < 1) (see Appendix E.1).
Second, we show that a similar connection holds for RL problems defined via success examples (Pinto
& Gupta, 2016; Tung et al., 2018; Kalashnikov et al., 2021; Singh et al., 2019; Zolna et al., 2020;
Calandra et al., 2017; Eysenbach et al., 2021) These results use existing actor-critic method, rather
than classifier actor critic (see Appendix F). Third, we extend our analysis to multi-task settings
by looking at goal-conditioned RL problems. We again show that a one-step version of a recent
goal-conditioned RL method results in the same policy as a critic-regularized version of that same
method (see Appendix G). Taken together, these extensions show that the connection between actor
and critic regularization extends to other commonly-studied problem settings.

3 NUMERICAL SIMULATIONS

Our numerical simulations study whether the theoretical connection between actor and critic regular-
ization holds empirically.

3.1 EXACT EQUIVALENCE WHEN USING CLASSIFIER ACTOR CRITIC
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Figure 2: One-step RL and critic regularization produce
identical policies.

Our first experiment aims to validate our theoret-
ical result under the required assumptions: when
using classifier actor-critic as the RL algorithm,
and when using a tabular environment. We use
a 5 × 5 deterministic gridworld with 5 actions
(up/down/left/right/nothing). In Fig. 3 we plot
the action probabilities π(a | s) for the policies
produced by one-step RL and critic-regularized
classifier actor-critic (R2 ≥ 0.999). This result
confirms our theoretical results that these two
methods should produce identical policies.

3.2 PRACTICAL IMPLEMENTATIONS
EXHIBIT SIMILAR BEHAVIOR

Based on our theoretical analysis, we predict that practical implementations of one-step RL and
critic regularization will exhibit similar behavior, for a certain critic regularization coefficient. This
section studies the tabular setting, and the following section will use a continuous control benchmark.
For critic regularization, we used CQL (Kumar et al., 2020) together with soft value iteration;
following (Brandfonbrener et al., 2021), we implement one-step RL (reverse KL) using Q-learning.

(a) Q-learning (b) One-step RL (c) CQL

Figure 3: CQL can behave like one-step RL. We
design a gridworld so that one-step RL (c) learns a sub-
optimal policy. For the three cells highlighted in blue,
the optimal policy (b) navigates towards the high-reward
state (green) while the one-step RL policy (c) navigates
away from the high-reward state. (d) CQL with a large
regularization coefficient λ = 10 exhibits the same sub-
optimal behavior as one-step RL, taking actions that lead
away from the high-reward states. For clarity, we only
show the argmax action in each state; we omit the arrow
when the argmax action is “do nothing”.

We designed a deterministic gridworld so one-
step RL would fail to learn the optimal policy
(see Fig. 3 (left)). If CQL interpolates between
the behavioral policy (random) and the optimal
policy, then the argmax action would always be
the same as the action for π∗. Based on our
analysis, we make a different prediction: that
CQL will learn a policy similar to the one-step
RL policy. We show results in Fig. 3 (right),
just showing the argmax action for visual clar-
ity. The CQL policy takes actions away from
both the high-reward state and the low reward
state, similar to the behavioral policy but differ-
ent from both the behavioral policy and the opti-
mal policy. This experiment suggests that CQL
can exhibit behavior similar to one-step RL. In
Appendix C, we show additional experiments
that show that one-step RL is most similar to
CQL with a moderate regularization coefficient.
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3.3 TESTING PREDICTIONS ABOUT
EXISTING OFFLINE RL METHODS

Our final set of experiments studies whether our theoretical results can make accurate testable
predictions about practically-used regularization methods in a setting where they are commonly
used: offline RL benchmarks with continuous states and actions. For these experiments, we will use
well-tuned implementations of CQL and one-step RL from Hoffman et al. (2020), using the default
hyperparameters without modification. We made one change to the one-step RL implementation
to makethe comparison more fair: because CQL learns two Q functions and takes the minimum (a
trick introduced in Fujimoto et al. (2018)), we applied this same parametrization to the one-step RL
implementation. Since offline RL methods can perform different on datasets of varying quality (Wang
et al., 2020; Fujimoto & Gu, 2021; Paine et al., 2020; Wang et al., 2021; Fujimoto et al., 2019), we
will repeat our experiments on four datasets from the D4RL benchmark (Fu et al., 2020).
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Figure 4: Lower bound on Q-values.

Lower bounds on Q-values. One oft-cited
benefit of critic regularization is that it has guar-
antees about value-estimation (Kumar et al.,
2020): under appropriate assumptions, the
learned value function will underestimate the
discounted expected returns of the policy. Be-
cause our analysis shows a conenction between
one-step RL and critic regularization, it raises
the question of whether one-step RL methods
have similar value-estimation properties. Taken
at face value, this hypothesis seems obvious: the behavioral critic estimates the value of the behavioral
policy, so it should underestimate the value of any policy that is better than the behavioral policy.
Despite this, the lower bound property of methods like one-step RL are rarely discussed, suggesting
that it has yet to be widely appreciated. The results, shown in Fig. 4 for medium-expert dataset
and Appendix Fig. 8 for all datasets, confirm our theoretical predictions while also questioning the
claim that critic regularization methods are always preferable for ensuring underestimation.
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Figure 5: CQL causes actor regularization.

Critic regularization causes actor regularization.
Our analysis in Sec. 2 not only suggests that one-step
RL methods might inherit properties of critic regular-
ization (as studied in the previous section), but also
suggests that critic regularization methods may be-
have like one-step methods. In particular, while critic
regularization methods such as CQL do not explic-
itly regularize their actor, we hypothesize that they
implicitly regularize the actor (Lemma 2.2), similar
to how one-step RL methods explicitly regularize the
actor. We measure the MSE between the action in the
dataset and the action predicted by the learned policy. We show results on the medium-expert
dataset in Fig. 5 and all datasets in Appendix Fig. 9. While directly regularizing the actor leads to
MSE errors that are ∼ 3× smaller, theses plot nevertheless show that critic regularization indirectly
regularizes the actor.

4 CONCLUSION

In this paper, we drew a connection between two seemingly-distinct RL regularization methods:
one-step RL and critic regularization. While our analysis made assumptions that are typically violated
in practice, it nonetheless made accurate, testable predictions about practical methods with commonly-
used hyperparameters: critic regularization methods can behave like one-step methods, and vice versa.
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A RELATED WORK

Regularization has been applied to RL in many different ways (Neu et al., 2017; Geist et al., 2019),
and features prominantly in offline RL methods (Lange et al., 2012; Levine et al., 2020). While RL
algorithms can be regularized using the same techniques as in supervised learning (e.g., weight decay,
dropout), our focus will be on regularization methods unique to the RL setting. Such RL-specific
regularization methods can be categorized based on whether they regularize the actor or the critic.

One-step RL methods (Brandfonbrener et al., 2021; Gülçehre et al., 2020; Peters & Schaal, 2007;
Peng et al., 2019; Peters et al., 2010; Wang et al., 2018) apply a single step of policy improvement
to the behavioral policy. These methods first estimate the Q-values of the behavioral policy, either
via regression or iterative Bellman updates. Then, these methods optimize the policy to maximize
these Q-values minus an actor regularizer. Many goal-conditioned or task-conditioned imitation
learning methods (Savinov et al., 2018; Ding et al., 2019; Sun et al., 2019; Ghosh et al., 2020; Paster
et al., 2020; Yang et al., 2021; Srivastava et al., 2019; Kumar et al., 2019b; Chen et al., 2021; Lynch
& Sermanet, 2021; Li et al., 2020; Eysenbach et al., 2020a) also fits into this mold (Eysenbach et al.,
2022), yielding policies that maximize the Q-values of the behavioral policy while avoiding unseen
actions. One-step methods are typically simple to implement and computationally efficient.

Critic regularization methods instead modify the objective for the Q-function so that it predicts lower
returns for unseen actions (Kumar et al., 2020; Chebotar et al., 2021; Yu et al., 2021; Hatch et al.,
2022; Nachum et al., 2019; An et al., 2021; Bai et al., 2022; Buckman et al., 2020). Critic regular-
ization methods are typically more challenging to implement correctly and more computationally
demanding (Kumar et al., 2020; Nachum et al., 2019; Bai et al., 2022; An et al., 2021), but can lead
to better results on some challenging problems (Kostrikov et al., 2021) Our analysis will show that
one-step RL is equivalent to a certain type of critic regularization. This result is surprising because
it suggests that, for certain losses and hyperparameters, one-step RL yields the same solution as a
multi-step RL method.

Some regularization methods do not fit exactly into these two categories. Methods like KL control
regularize both the actor and the reward function (Geist et al., 2019; Ziebart, 2010; Haarnoja et al.,
2018; Abdolmaleki et al., 2018; Wu et al., 2019; Jaques et al., 2019; Rezaeifar et al., 2022). Other
methods methods only regularize the policy used in the critic updates (Fujimoto et al., 2019; Kumar
et al., 2019a).

B BACKGROUND

We start by defining the single-task RL problem, and then introduce prototypical examples of one-step
RL and critic regularization. We then introduce an actor critic algorithm we will use for our analysis.

B.1 NOTATION

We assume an MDP with states s, actions a, initial state distribution p0(s0), dynamics p(s′ | s, a),
and reward function r(s, a). Without loss of generality, we assume rewards are positive, adding a
positive constant to all rewards can make them all positive without changing the optimal policy. We
will learn a Markovian policy π(a | s) to maximize the expected discounted sum of rewards:

max
π

Eπ(τ)

[
∞∑
t=0

γtr(st, at) | s0 ∼ p0(s0)

]
,

where π(τ) = p(s0)
∏∞

t=0 π(at | st)p(st+1 | st, at) is the probability of policy π sampling an
infinite-length trajectory τ = (s0, a0, · · · ). We define Q-values for policy π(a | s) as

Qπ(s, a) = Eπ(τ)

[
∞∑
t=0

r(st, at) | s0 = s, a0 = a

]
.

Note that the reward being positive implies that the Q-values are also positive, Qπ(s, a) > 0. Since
we focus on the offline setting, we will consider two policies: β(a | s) is the behavioral policy
that collected the dataset, and π(a | s) is the online policy output by the algorithm that attempts to
maximize the rewards. We will use p(s, a, s′) to denote the empirical distribution of transitions in an
offline dataset, and p(s, a) and p(s) denote the corresponding marginal distributions. The behavioral
policy is defined as β(a | s) = p(a | s).
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B.2 EXAMPLES OF REGULARIZATION IN RL

While actor and critic regularization methods can be implemented in many ways, we introduce two
prototypical examples below to make our discussion more concrete.

Example of one-step RL: Brandfonbrener et al. (2021). One-step RL first estimates the Q-values
of the behavioral policy (Qβ(s, a)), and then optimizes the policy to maximize the Q-values minus a
actor regularizer. While the actor regularizer can take different forms and the Q-values can be learned
via regression, we will use a reverse KL regularizer and TD-style critic update so that the objective is
similar to critic regularization:

max
π

Ep(s)π(a|s)

[
Qβ(s, a) + λ(log β(a | s)− log π(a | s))

]
(8)

where Qβ = argmin
Q

Ep(s,a)

[(
Q(s, a)− yβ(s, a)

)2]
and yβ(s, a) ≜ r(s, a) + γEp(s′|s,a)

β(a′|s′)

[
Q(s′, a′)

]
.

where λ is the regularization coefficient and β(a | s) is an estimate of the behavioral policy, typically
learned via behavioral cloning. Here and in the rest of the paper, the TD targets y(s, a) are not
considered learnable (i.e., we would apply a stop-gradient operator). This one-step critic loss is
different from the multi-step critic losses used in other RL methods (e.g., TD3, SVG(0)) because it
uses the TD target yβ(s, a) (corresponds to a fixed policy) rather than yπ(s, a) (corresponding to a
sequence of learned policies). One-step RL amounts to performing one step of policy iteration, rather
than full policy optimization. While truncating the iterations of policy iteration can be suboptimal, it
can also be interpreted as a form of early stopping regularization.

Example of critic regularization: Kumar et al. (2020). CQL (Kumar et al., 2020) modifies the
standard Bellman loss to include an additional term that decreases the values predicted for unseen
actions. The actor objective is to maximize Q values; some CQL implementations also regularize the
actor loss (Hoffman et al., 2020; Kumar et al., 2020)). The objectives can then be written as

max
π

Ep(s)π(a|s) [Q
π(s, a)] (9)

where Q = argmin
Q

Ep(s,a)

[
(Q(s, a)− yπ(s, a))2

]
+ λ

(
Ep(s)π(a|s) [Q(s, a)]− Ep(s)β(a|s) [Q(s, a)]

)
.

The second term decreases the Q-values for unseen actions (those sampled from π(a | s)) while the
third term increases the values predicted for seen actions (those sampled from the behavioral policy
β(a | s)). Unlike standard temporal difference methods, the CQL updates resemble a competitive
game between the actor and the critic. In practice, this cyclic dependency can create unstable
learning (Kumar et al., 2020; Hoffman et al., 2020).

B.3 HOW ARE THESE METHODS CONNECTED?

Prior work has observed that one-step methods and critic regularization methods perform similarly
on many (Fujimoto & Gu, 2021; Emmons et al., 2021) (but not all (Kostrikov et al., 2021)) tasks.
Despite the differences in objectives and implementations of these two methods (and, more broadly,
the actor/critic regularization methods for which they are prototypes), are there deeper, unifying
connections between the methods?

In the next section, we introduce a different actor-critic method that will allow us to draw a connection
between one-step RL and critic regularization. We experimentally validate this equivalence in Sec. 3.1.
Despite its difference from practically-used methods, such as one-step RL and CQL, we will show
that it makes accurate predictions about the behavior of these practical methods (Sec. 3.2 and 3.3).

C ADDITIONAL EXPERIMENTS

How often does one-step RL approximate CQL? To show that the results in Fig. 3 are not
cherry-picked, we repeated this experiment using 100 MDPs that are structurally similar to that in
Fig. 3, but where the locations of the high-reward and low reward state are randomized. In each
randomly generated MDP, we determine whether CQL exhibits behavior similar to one-step RL by
looking at the states where CQL takes actions that differ from the reward-maximizing actions (as
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moderate regularization coefficient.
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Figure 8: Q-value under/over-estimation. (Top) Experiments on benchmark datasets of varying quality show
that one-step RL underestimates the Q-values. (Bottom) Despite the theoretical guarantees about critic regular-
ization (CQL) yielding underestimates, in practice we observe that the values learned via critic regularization can
sometimes overestimate the actual returns. We plot the mean and standard deviation across five random seeds.

determined by running Q-learning with unlimited data). Since there are five total actions, a random
policy would have a similarity score of 20%. As shown in Fig. 6, the similarity score is significantly
higher than chance for the vast majority of MDPs, showing that one-step RL and CQL(λ = 10)
produce similar policies on most such gridworlds.

When does one-step RL approximate CQL? Because one-step RL is highly regularized (policy
iteration is truncated after just one step), one might imagine that it would be most similar to CQL
with a very large regularization coefficient. To study this, we use the same environment (Fig. 3) and
measure the fraction of states where one-step RL and CQL choose the same argmax action. As shown
in Fig. 7, one-step RL is most similar to CQL with moderate regularization (λ = 10), and is less
similar to CQL with a very strong regularization.

12



0.0 0.5 1.0
gradient steps 1e6

0.1

0.2

ac
to

r M
SE

 lo
ss

medium-expert

0.0 0.5 1.0
gradient steps 1e6

0.30

0.35

medium-replay

0.0 0.5 1.0
gradient steps 1e6

0.05

0.10

0.15
medium

0.0 0.5 1.0
gradient steps 1e6

1.0

1.1
random

Figure 9: Critic regularization causes actor regularization. Performing critic regularization via CQL
implicitly results in actor regularization, similar to one-step RL: the MSE between the predicted actions and the
dataset actions decreases. We plot the mean and standard deviation across five random seeds.

13



D PROOFS

D.1 PROOF OF LEMMA 2.1

Proof. As the cross entropy loss is minimized when the predictions equal the labels, updates for
Lcritic(Q, π) can be written as Q(s,a)

Q(s,a)+1 ←
yπ(s,a)

yπ(s,a)+1 . If the updates are performed by averaging over
all possible next states (e.g., in the tabular setting), these updates are equivalent to directly updating
Q(s, a)← yπ(s, a) = r(s, a)+γEp(s′|s,a)π(a′|s′) [Q(s′, a′)], which is the standard policy evaluation
update for policy π(a | s). Thus, we can invoke the standard result that policy evaluation converges
to Qπ (Agarwal et al., 2019, Theorem 1.14.) to argue that updates for Lcritic likewise converge to
Qπ .

In this proof, the TD targets were the expectation over the next state and next action. If Eq. 2 were
optimized using a single-sample estimate of this expectation, y = r(s, a) + γQ(s′, a′), then the
updates would be biased:

Q(s, a)

Q(s, a) + 1
← E

[
y

y + 1

]
≤ E[y]

E[y] + 1
=

yπ(s, a)

yπ(s, a) + 1
.

In settings with stochastic transitions or policies, these updates would result in estimating a lower
bound on Qπ(s, a).

D.2 PROOF OF THEOREM 2.3

Proof. Our proof proceeds in three steps. First, we derive the update equations for the regularized
critic update. That is, if we maintained a table of Q-values, what would the new value for Q(s, a)
be? Second, we show that these updates are equivalent to performing policy evaluation on a re-
parametrized critic Q̃(s, a) = Q(s, a)π(a|s)β(a|s) . We invoke the standard results for policy evaluation

to prove convergence that Q̃(s, a) convergences. Finally, we undo the reparametrization to obtain
convergence results for Q(s, a).

Step 0. We start by rearranging the regularized critic objective:

Lr
critic(Q, π) ≜ Lcritic(Q, π) +

(
Ep(s)π(a|s) [log(Q(s, a) + 1)]− Ep(s)β(a|s) [log(Q(s, a) + 1)]

)
= −Ep(s,a)

[
yπ(s, a) log

Q(s, a)

Q(s, a) + 1
+ log

1

Q(s, a) + 1

]
+

(
Ep(s)π(a|s) [log(Q(s, a) + 1)]− Ep(s)β(a|s) [log(Q(s, a) + 1)]

)
= −Ep(s,a)

[
yπ(s, a) log

Q(s, a)

Q(s, a) + 1
+
�������
log

1

Q(s, a) + 1

]
−
(
((((((((((((
Ep(s)π(a|s)

[
log

1

Q(s, a) + 1

]
+ Ep(s)β(a|s)

[
log

1

Q(s, a) + 1

])
= −Ep(s,a)

[
yπ(s, a) log

Q(s, a)

Q(s, a) + 1

]
+ Ep(s)β(a|s)

[
log

1

Q(s, a) + 1

]
.

For the cancelation on the third line, we used the fact that p(s, a) = p(s)β(a | s).
Step 1. To start, note that the regularized critic update is equivalent to a weighted classification loss:
positive examples are sampled (s, a) ∼ p(s)β(a | s) and receive weight yπ(s,a)

yπ(s,a)+1 , and negative
examples are sampled (s, a) ∼ p(s)π(a | s) and receive weight 1

yπ(s,a)+1 . The Bayes’ optimal
classifier is given by

Q(s, a)

Q(s, a) + 1
=

yπ(s,a)
yπ(s,a)+1

p(s)β(a | s)
yπ(s,a)

yπ(s,a)+1
p(s)β(a | s) + 1

yπ(s,a)+1
p(s)π(a | s)

=
yπ(s, a)β(a | s)

yπ(s, a)β(a | s) + π(a | s) .

Solving for Q(s, a) on the left hand side, the optimal value for Q(s, a) is given by

Q(s, a) = yπ(s, a)
β(a | s)
π(a | s)

= (r(s, a) + Ep(s′|s,a)π(a′|s′)[Q(s′, a′)])
β(a | s)
π(a | s)

. (10)
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This equation tells us what each update for the regularized critic loss does.

Step 2. To analyze these updates, we define Q̃(s, a) ≜ Q(s, a)π(a|s)β(a|s) . Then these updates can be

written using Q̃(s, a) as

Q̃(s, a)
β(a | s)
π(a | s)

=

(
r(s, a) + Ep(s′|s,a)π(a′|s′)

[
Q̃(s′, a′)

β(a′ | s′)
π(a′ | s′)

])
β(a | s)
π(a | s)

, (11)

which can be simplified to

Q̃(s, a) = r(s, a) + Ep(s′|s,a)β(a′|s′)

[
Q̃(s′, a′)

]
. (12)

Note that the ratio β(a′|s′)
π(a′|s′) inside the expectation acts like an importance weight, so that the expectation

over π(a′ | s′) becomes an expectation over β(a′ | s′). Thus, the regularized critic updates
are equivalent to perform policy evaluation on Q̃(s, a). An immediately consequence is that the
regularized critic updates converge, and they converge to Q̃∗(s, a) = Qβ(s, a).

Step 3. Finally, we translate these convergence results for Q̃(s, a) into convergence results for
Q(s, a). Written in terms of the original Q-values, we see that the optimal critic for the regularized
critic update is

Q∗(s, a) = Q̃∗(s, a)
β(a | s)
π(a | s)

= Qβ(s, a)
β(a | s)
π(a | s)

. (13)

E VARYING THE REGULARIZATION COEFFICIENT

While our main analysis (Theorem 2.3)showed that regularization and critic regularization yield the
same policy when these regularizers are applied with a certain strength, in practice the strength of
regularization is controlled by a hyperparameter. This hyperparameter raises a question: does the
connection between one-step RL and critic regularization hold for different values of this hyperpa-
rameter?

In this section, we show that there remains a precise connection between actor and critic regularization,
even for different values of this hyperparameter. This result not only suggests that the connection is
stronger than initially suggested by the main result. Proving this connection also helps highlight how
many regularization methods can be cast from a similar mold.

E.1 A REGULARIZATION COEFFICIENT.

We start by modifying the actor regularizer and critic regularizer introduced in Sec. 2.1 to include an
additional hyperparameter.

Mixture policy. Both the actor and critic losses will make use of a mixture policy, (1− λ)π(a |
s) + λβ(a | s), where λ ∈ [0, 1] will be a hyperparameter. Larger values of λ yield a mixture
policy that is closer to the behavioral policy; this will correspond to higher degrees of regularization.
Mixtures of policies are commonly used in practice (Kumar et al., 2020, Appendix F),(Villaflor et al.,
2020, Eq. 11), (Finn et al., 2016, Sec. 4.3) (Lyu et al., 2022) (Hazan et al., 2019, Eq. 2.5), even though
it rarely appears in theoretical offline RL literature. Indeed, because critic regularization resembles a
two-player zero-sum game, mixture policies might even be required to find a (Nash) equilibrium of
the critic regularizer (Nash, 1951).

λ-weighted critic loss. With this concept of a mixture policy, we define the λ-weighted actor and
critic regularizers. For the λ-weighted critic loss, we will change how the TD targets are computed.
Instead of sampling the next action from π or β, we will sample the next action from a λTD-weighted
combination of these two policies, reminiscent of how prior work has regularized the actions sampled
for the TD backup (Fujimoto et al., 2019; Zhou et al., 2020):

yλTD ≜ y(1−λ)π+λβ(s, a) = r(s, a) + γE p(s′|s,a)
(1−λTD)π(a|s)+λTDβ(a|s)

[Q(s′, a′)].
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When introducing one-step RL in Sec. 2.1, we used λTD = 1.

Using this TD target, the λ-weighted critic loss can now be written as a combination of the un-
regularized objective (Eq. 2) plus the regularized objective (Eq. 5):

Lr
critic(Q,λcritic) ≜ (1− λcritic)

(
−Ep(s,a)

[
yλTD(s, a)

yλTD(s, a) + 1
log

Q(s, a)

Q(s, a) + 1
+

1

yλTD(s, a) + 1
log

1

Q(s, a) + 1

])
+ λ

(
−E p(s,a)

a−∼π(·|s)

[
yλTD(s, a)

yλTD(s, a) + 1
log

Q(s, a)

Q(s, a) + 1
+

1

yλTD(s, a) + 1
log

1

Q(s, a) + 1

])

= −E p(s,a)

a−∼(1−λcritic)π(·|s)+λcriticβ(·|s)

[
yλTD(s, a)

yλTD(s, a) + 1
log

Q(s, a)

Q(s, a) + 1
+

1

yλTD(s, a) + 1
log

1

Q(s, a−) + 1

]
.

(14)

The second line rewrites this objective: the first term looks the same as the original “positive” term
in the critic objective, while the “negative” term uses actions sampled from a mixture of the current
policy and the behavioral policy. When λcritic = 1, we recover the regularized critic loss introduced
in Sec. 2.1.

λ-weighted actor loss. Finally, the strength of the actor regularizer can be controlled by changing
the reverse KL penalty. While it may seem like changing the reward scale would varying the strength
of the actor loss, this is not the case for classifier actor critic because of the log(·) in the actor loss.
Instead, we will relax the reverse KL penalty between the learned policy π(a | s) and the behavioral
policy β(a | s) so that only the mixture policy only needs to be close to behavioral policy:

Lr
actor(π, λKL) ≜ Ep(s)π(a|s) [logQ(s, a) + log β(a | s)− log ((1− λKL)π(a | s) + λKLβ(a | s))] . (15)

As indicated on the second line, replacing β(a | s) with the mixture policy has an effect similar to
that of decreasing the weight applied to the KL penalty. The approximation on the second line is
determined by the Jensen Gap (Abramovich & Persson, 2016; Gao et al., 2017). When introducing
one-step RL in Sec. 2.1, we used λKL = 1, together with λTD = 1.

In summary, the strength of the actor and critic regularizers can be controlled through additional
hyperparameters (λcritic, λTD, λKL). Indeed, it is typical for offline RL methods to require many
hyperparameters (Brandfonbrener et al., 2021; Lu et al., 2021; Paine et al., 2020; Wu et al., 2019),
and performance is sensitive to their settings. However, the close connection that we have shown
between actor and critic regularizers allows us to decrease the number of hyperparameters.

E.2 ANALYSIS

In our main result (Thm. 2.3), we showed that one-stel RL and critic regularization are equivalent
when λcritic = λTD = λKL = 1. This is a large value for the regularization strength, and we now
consider what happens for smaller degrees of regularization: is there still a connection between
one-step RL and critic regularization?

The following theorem will prove that this is the case. In particular, applying critic regularization
with coefficient λcritic yields the same policy as applying one-step RL with λTD = λKL = λcritic. That
is, there is a very simple recipe for converting the hyperparameters for critic regularization into the
hyperparameters for one-step RL.

Theorem E.1. Let policy π(a | s) be given, let Qβ(s, a) be the Q-function of the behavioral
policy, and let QλTD

r (s, a, λcritic) be the critic obtained by the λcritic-weighted regularized critic update
(Eq. 14) using TD targets yλTD(s, a). If λcritic = λTD = λKL, then the λKL-weighted actor loss (Eq. 15)
is equivalent to the un-regularized policy objective using the regularized critic:

Ep(s)π(a|s) [logQ(s, a) + log β(a | s)− log ((1− λKL)π(a | s) + λKLβ(a | s))]

= Eπ(a|s)

[
logQλTD

r (s, a, λcritic)
]

for all states s.

While we used the cross entropy loss for this result, it turns out that the result also holds for the more
standard MSE loss (we omit the proof for brevity).
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Limitations. Before presenting the proof in Sec. E.3, we discuss a few limitations of this result.
Like the rest of the analysis in this paper, the form of the critic regularizer is different from that often
used in practice. Additionally, our analysis assumes ignores many sources of errors (e.g., sampling,
function approximation), and assumes that each objective is optimized exactly.

E.3 PROOF OF THEOREM E.1

Proof. We start by defining the fixed point of the λ-weighted regularized critic loss. Like in the
single-task setting, this loss resembles a weighted classification problem, so we can write down the
Bayes’ optimal classifier as

Q(s, a)

Q(s, a) + 1
=

yλTD (s,a)

yλTD (s,a)+1
p(s)β(a | s)

yλTD (s,a)

yλTD (s,a)+1
p(s)β(a | s) + 1

yλTD (s,a)+1
p(s)((1− λcritic)π(a | s) + λcriticβ(a | s))

=
yλTD(s, a)β(a | s)

yλTD(s, a)β(a | s) + (1− λcritic)π(a | s) + λcriticβ(a | s) .

Solving for Q(s, a) on the left hand side, the optimal value for Q(s, a) is given by

Q(s, a) = yλTD(s, a)
β(a | s)

(1− λcritic)π(a | s) + λcriticβ(a | s)

= (r(s, a) + Ep(s′|s,a),a′∼(1−λTD),π(·|s′)+λTDβ(·|s)[Q(s′, a′)])
β(a | s)

(1− λcritic)π(a | s) + λcriticβ(a | s) .

(16)

Note that the next action a′ is sampled from a mixture policy defined by λTD. This equation tells us
what each update for the λ-weighted regularized critic loss does.

To analyze these updates, we define

Q̃(s, a) ≜ Q(s, a)
(1− λcritic)π(a | s) + λcriticβ(a | s)

β(a | s) .

Like before, the ratio β(a′|s′)
(1−λTD)π(a′|s′)+λTDβ(a′|s′) can act like an importance weight. When λTD =

λcritic, then this importance weight cancels with the sampling distribution, providing the following
identity:

Ep(s′|s,a),a′∼(1−λTD),π(·|s′)+λTDβ(·|s)[Q(s′, a′)]

= Ep(s′|s,a),a′∼(1−λTD),π(·|s′)+λTDβ(·|s)

[
Q̃(s, a)

β(a | s)
(1− λcritic)π(a | s) + λcriticβ(a | s)

]
= Ep(s′|s,a),a′∼β(·|s′)[Q̃(s, a)].

Substituting this identity in Eq. 16, we can write the updates using Q̃(s, a):

Q̃(s, a)
β(a | s)

(1− λcritic)π(a | s) + λcriticβ(a | s)

=
(
r(s, a) + Ep(s′|s,a),a′∼β(·|s′)[Q̃(s, a)]

) β(a | s)
(1− λcritic)π(a | s) + λcriticβ(a | s) ,

which can be simplified to

Q̃(s, a) = r(s, a) + Ep(s′|s,a),a′∼β(·|s′)[Q̃(s, a)].

We then translate these convergence results for Q̃(s, a) into convergence results for Q(s, a). Written
in terms of the original Q-values, we see that the optimal critic for the regularized critic update is

Q∗(s, a) = Qβ(s, a)
β(a | s)

(1− λcritic)π(a | s) + λcriticβ(a | s)
. (17)

Note that this holds for any value of λcritic = λTD ∈ [0, 1]. This result suggests that two common
forms of regularization, decreasing the values predicted at unseen actions and regularizing the actions
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used in the TD backup, can produce the same effect: a critic that estimates the Q-values of the
behavioral policy (multiplied by some importance weight).

Finally, substitute this Q-function into the un-regularized actor loss, we see that the result is equivalent
to the λ-weighted actor loss:

Ep(s)π(a|s) [logQ
∗(s, a)] =Ep(s)π(a|s)

[
logQβ(s, a) + log β(a | s)− log ((1− λKL)π(a | s) + λKLβ(a | s))︸ ︷︷ ︸

λ-weighted actor regularizer

]

F REGULARIZATION FOR GOAL-CONDITIONED PROBLEMS

Like single-task RL problems, goal-conditioned RL problems have also been approached with
both one-step methods (Ghosh et al., 2020; Ding et al., 2019; Sun et al., 2019) and critic regular-
ization (Chebotar et al., 2021). In these problems, the aim is to learn a goal-conditioned policy
π(a | s, sg) that maximizes the expected discounted sum of goal-conditioned rewards rg(s, a), where
goals are sampled sg ∼ pg(sg):

max
π

Epg(sg)Eπ(τ |sg)

[ ∞∑
t=0

γtrg(st, at)

]
.

We will use the goal-conditioned reward function rg(s, a) = p(s′ = sg | s, a), which is defined in
terms of the environment dynamics. In settings with discrete states, maximizing this reward function
is equivalent to maximizing the sparse indicator reward function (rg(s, a) = 1(sg = s)).

In this section, we show that one-step RL and critic regularization are equivalent for a certain goal-
conditioned actor-critic method. Unlike our analysis in the single-task setting, this analysis here uses
an existing method, C-learning (Eysenbach et al., 2020b). C-learning is a TD method that already
makes use of the cross entropy loss for training the critic:

max
Q

(1− γ)Ep(s,a,s′)

[
log

Q(s, a, sg = s′)

Q(s, a, sg = s′) + 1

]
+ γEp(s,a)pg(sg)

[
yπ(s, a, s) log

Q(s, a, sg)

Q(s, a, sg) + 1

]
+ Ep(s,a)pg(sg)

[
log

1

Q(s, a, sg = s′) + 1

]
,

where yπ(s, a, sg) = Ep(s′|s,a)π(a′|s′,sg) [Q(s′, a′, sg)] serves the role of the TD target.

The first two terms increase the Q-values while the last term decreases the Q-values. The actor is
updated to maximize the Q-values. While this objective for the actor can be written in many ways, we
will write it as maximizing a log ratio because it will allow us to draw a precise equivalence between
actor and critic regularization:

max
π

Epg(sg)p(s)π(a|s,sg) [logQ(s, a, sg)]

We will now consider variants of C-learning that incorporate actor and critic regularization.

One-step RL. We will consider a variant of C-learning that resembles one-step RL (Brandfonbrener
et al., 2021). The critic update will be similar to before, but the next-actions sampled for the TD
updates will be sampled from the marginal behavioral policy:

max
Q

(1− γ)Ep(s,a,s′)

[
log

Q(s, a, sg = s′)

Q(s, a, sg = s′) + 1

]
+ γEp(s,a)pg(sg)

[
yβ(s, a, s) log

Q(s, a, sg)

Q(s, a, sg) + 1

]
+ Ep(s,a)pg(sg)

[
log

1

Q(s, a, sg = s′) + 1

]
,

where yβ(s, a, sg) = Ep(s′|s,a)β(a′|s′)[Q(s′, a′, sg)]. The actor update will be modified to include a
reverse KL divergence:

max
π

Ep(s)pg(sg)π(a|s,sg) [logQ(s, a, sg) + log β(a | s)− π(a | s, sg)] . (18)
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Note that we are regularizing the policy to be similar to the average behavioral policy, β(a | s).
Compared to regularization towards a goal-conditioned behavioral policy β(a | s, sg), this choice
gives the policy additional flexibility: when trying to reach goal sg , it is allowed to take actions that
were not taken by β(a | s, sg), as long as they were taken by the behavioral policy when trying to
reach some other goal s′g .

Critic regularization. To regularize the critic, we will modify the “negative” term in the C-learning
objective to use actions sampled from the policy:

max
Q

(1− γ)Ep(s,a,s′)

[
log

Q(s, a, sg = s′)

Q(s, a, sg = s′) + 1

]
(19)

+ γEp(s,a)pg(sg)

[
yπ(s, a, sg) log

Q(s, a, sg)

Q(s, a, sg) + 1

]
(20)

+ Ep(s)pg(sg)a∼π(·|s,sg)

[
log

1

Q(s, a, sg) + 1

]
. (21)

F.1 ANALYSIS FOR GOAL-CONDITIONED PROBLEMS

Like in the single-task setting, these two forms of regularization yield the same fixed points:
Theorem F.1. Let policy π(a | s, sg) be given, let Qβ(s, a, sg) be the Q-values for the marginal
behavioral policy β(a | s) and let Qπ

r (s, a, sg) be the critic obtained by the regularized critic update
(Eq. 21). Then performing regularized policy updates (Eq. 18) using the behavioral critic is equivalent
to the un-regularized policy objective using the regularized critic:

Eπ(a|s,sg)
[
logQβ(s, a, sg) + log β(a | s)− log π(a | s, sg)

]
= Eπ(a|s,sg) [logQ

π
r (s, a, sg)]

for all states s and goals sg .

Proof. We start by determining the fixed point of critic-regularized C-learning. Like in the single-task
setting, the C-learning objective resembles a weighted-classification problem, so we can write down
the Bayes’ optimal classifier as

Q(s, a, sg)

Q(s, a, sg) + 1
=

((1− γ)p(s′ = sg | s, a) + γp(s = sg)y(s
′, sg))β(a | s)

((1− γ)p(s′ = sg | s, a) + γp(s = sg)y(s′, sg))β(a | s) + p(sg)π(a | s, sg)
.

Solving for Q(s, a, sg) on the left hand side, the optimal value for Q(s, a, sg) is given by

Q(s, a, sg) = ((1− γ)p(s′ = sg | s, a) + γp(s = sg)y(s
′, sg))

β(a | s)
π(a | s, sg)

This tells us what each critic-regularized C-learning update does.

To analyze these updates, we define Q̃(s, a, sg) ≜ Q(s, a, sg)
π(a|s,sg)
β(a|s) . Then these updates can be

written using Q̃(s, a, sg) as

Q̃(s, a, sg)
β(a | s)

π(a | s, sg)
=

(
(1− γ)p(s′ = sg | s, a) + γEp(s′|s,a)π(a′|s′,sg)

[
Q̃(s′, a′, sg)

β(a′ | s′)
π(a′ | s′, sg)

])
β(a | s)

π(a | s, sg)
.

These updates can be simplified to

Q̃(s, a, sg) = (1− γ)p(s′ = sg | s, a) + γEp(s′|s,a)β(a′|s′)

[
Q̃(s′, a′, sg)

]
.

Like before, the ratio β(a′|s′)
π(a′|s′,sg) inside the expectation acts like an importance weight. Thus, the

regularized critic updates are equivalent to perform policy evaluation on Q̃(s, a, sg). Note that this is
estimating the probability that the average behavioral policy β(a | s) reaches goal sg; this is not the
probability that a goal-directed behavioral policy β(a | s, sg) reaches the goal.

Finally, we translate these convergence results for Q̃(s, a, sg) into convergence results for Q(s, a, sg).
Written in terms of the original Q-values, we see that the optimal critic for the regularized critic
update is

Q∗(s, a, sg) = Q̃∗(s, a, sg)
β(a | s)

π(a | s, sg)
= Qβ(·|·)(s, a, sg)

β(a | s)
π(a | s, sg)

.
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Thus, critic regularization implicitly regularizes the actor objective so that it is the same objective as
one-step RL:

Ep(s),sg∼p(s),π(a|s,sg) [logQ
∗(s, a, sg)]

= Ep(s),sg∼p(s),π(a|s,sg)

[
logQβ(·|·)(s, a, sg) + log β(a | s)− log π(a | s, sg)

]
.

G REGULARIZATION FOR EXAMPLE-BASED CONTROL PROBLEMS

While specifying tasks in terms of reward functions is standard for MDPs, it can be difficult for
real-world applications of RL. So, prior work has looked at specifying tasks by goal states (as in
the previous section) or sets of states representing good outcomes (Pinto & Gupta, 2016; Tung
et al., 2018; Fu et al., 2018). In addition to requiring more flexible and user-friend forms of task
specification, these algorithms targeted at real-world applications often demand regularization. In the
same way that prior goal-conditioned RL algorithms have employed critic regularization, so too have
prior example-based control algorithms (Singh et al., 2019; Hatch et al., 2022). In this section, we
extend our analysis to regularization of an example-based control algorithm. Again, we will show
that a certain form of critic regularization is equivalent to regularizing the actor.

We first define the problem of example-based control (Fu et al., 2018). In these problems, the agent is
given a small collection of states s ∼ pe(s), which are examples of successful outcomes. The aim is
to learn a policy π(a | s) that maximizes the probability of reaching a success state:

max
π

Ep(sg)Eπ(τ |sg)

[ ∞∑
t=0

γtpe(st)

]
.

Note that this objective function is exactly equivalent to a reward-maximization problem, with a
reward function r(s, a) = pe(st).

In this section, we show that one-step RL and critic regularization are equivalent for a certain example-
based control algorithm. Unlike our analysis in the single-task setting, this analysis here uses an
existing method, RCE (Eysenbach et al., 2021). RCE is a TD method that already makes use of the
cross entropy loss for training the critic:

max
Q

(1− γ)Epe(s)β(a|s)

[
log

Q(s, a)

Q(s, a) + 1

]
+ Ep(s,a)

[
γyπ(s, a) log

Q(s, a)

Q(s, a) + 1
+ log

1

Q(s, a) + 1

]
,

where yπ(s, a) = Ep(s′|s,a)π(a′|s′)[Q(s′, a′)] serves the role of the TD target. The first two terms
increase the Q-values while the last term decreases the Q-values. The actor is updated to maximize
the Q-values. While this objective for the actor can be written in many ways, we will write it as
maximizing a log ratio because it will allow us to draw a precise equivalence between actor and critic
regularization:

max
π

Ep(s)π(a|s) [logQ(s, a)]

We will now consider variants of RCE that incorporate actor and critic regularization.

One-step RL. We will consider a variant of RCE that resembles one-step RL (Brandfonbrener
et al., 2021). The critic update will be similar to before, but the next-actions sampled for the TD
updates will be sampled from the behavioral policy:

max
Q

(1− γ)Epe(s)β(a|s)

[
log

Q(s, a)

Q(s, a) + 1

]
+ Ep(s,a)

[
γyβ(s, a) log

Q(s, a)

Q(s, a) + 1
+ log

1

Q(s, a) + 1

]
,

where yβ(s, a) = Ep(s′|s,a)β(a′|s′)[Q(s′, a′)]. The actor update will be modified to include a reverse
KL divergence:

max
π

Ep(s),π(a|s) [logQ(s, a) + log β(a | s)− π(a | s)] . (22)

Critic regularization. To regularize the critic, we will modify the “negative” term in the RCE
objective to use actions sampled from the policy:

(1− γ)Epe(s)β(a|s)

[
log

Q(s, a)

Q(s, a) + 1

]
+ Ep(s,a),a−∼π(·|s)

[
γyπ(s, a) log

Q(s, a)

Q(s, a) + 1
+ log

1

Q(s, a−) + 1

]
,

(23)
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G.1 ANALYSIS FOR EXAMPLE-BASED CONTROL PROBLEMS

Like in the single-task setting, these two forms of regularization yield the same fixed points:
Theorem G.1. Let policy π(a | s) be given, let Qβ(s, a) be the Q-values for the behavioral policy
β(a | s) and let Qπ

r (s, a) be the critic obtained by the regularized critic update (Eq. 23). Then
performing regularized policy updates (Eq. 22) using the behavioral critic is equivalent to the
un-regularized policy objective using the regularized critic:

Eπ(a|s)
[
logQβ(s, a) + log β(a | s)− log π(a | s)

]
= Eπ(a|s) [logQ

π
r (s, a)]

for all states s.

Proof. We start by determining the fixed point of critic-regularized RCE. Like in the single-task
setting, The RCE objective resembles a weighted-classification problem, so we can write down the
Bayes’ optimal classifier as

Q(s, a)

Q(s, a) + 1
=

((1− γ)pe(s) + γyπ(s, a))β(a | s)
((1− γ)pe(s) + γyπ(s, a))β(a | s) + π(a | s) .

Solving for Q(s, a) on the left hand side, the optimal value for Q(s, a) is given by

Q(s, a) = ((1− γ)pe(s) + γyπ(s, a))
β(a | s)
π(a | s)

This tells us what each critic-regularized RCE update does.

To analyze these updates, we define Q̃(s, a) ≜ Q(s, a)π(a|s)β(a|s) . Then these updates can be written

using Q̃(s, a) as

Q̃(s, a)
β(a | s)
π(a | s) =

(
(1− γ)pe(s) + γEp(s′|s,a)π(a′|s′)

[
Q̃(s′, a′)

β(a′ | s′)
π(a′ | s′)

])
β(a | s)
π(a | s) .

These updates can be simplified to

Q̃(s, a) = (1− γ)pe(s) + γEp(s′|s,a)β(a′|s′)

[
Q̃(s′, a′)

]
.

Like before, the ratio β(a′|s′)
π(a′|s′) inside the expectation acts like an importance weight. Thus, the

regularized critic updates are equivalent to perform policy evaluation on Q̃(s, a).

Finally, we translate these convergence results for Q̃(s, a) into convergence results for Q(s, a).
Written in terms of the original Q-values, we see that the optimal critic for the regularized critic
update is

Q∗(s, a) = Q̃∗(s, a)
β(a | s)
π(a | s)

= Qβ(s, a)
β(a | s)
π(a | s)

.

Thus, critic regularization implicitly regularizes the actor objective so that it is the same objective as
one-step RL:

Ep(s),π(a|s) [logQ
∗(s, a)] = Ep(s),π(a|s)

[
logQβ(s, a) + log β(a | s)− log π(a | s)

]
.

H EXPERIMENTAL DETAILS

H.1 TABULAR EXPERIMENTS

Implementing critic regularization for classifier actor critic. The objective for critic regular-
ization in contrastive actor critic (Eq. 5) is nontrivial to optimize because of the cyclic dependency
between the policy and the critic: simply alternating between optimizing the actor and the critic does
not converge. In our experiments, we update the critic using an exponential moving average of the
policy, as proposed in Wen et al. (2021). We found that this decision was sufficient for ensuring
convergence. When applying CQL in the tabular setting (Figures 3 and 6), we did not do this because
soft value iteration represents the policy implicitly in terms of the value function.

21



Fig. 2 (left) The initial state and goal state are located in opposite corners. The reward function is
+1 for reaching the goal and 0 otherwise. We use a dataset of 20 trajectories, 50 steps each, collected
by a random policy. We use γ = 0.95 and train for 20k full-batch updates, using a learning rate of
1e-2. The Q table is randomly initialized using a standard normal distribution.

Fig. 2 (center) The initial state and goal state are located in adjacent corners. The goal state has a
reward of +3.5, the states between the initial state and goal state have a reward +1, and all other states
(including the initial state) have a reward of +2. We use a dataset of 20 trajectories, 50 steps each,
collected by a random policy. We use γ = 0.95 and train for 20k full-batch updates, using a learning
rate of 1e-2. The Q table is randomly initialized using a standard normal distribution.

Fig. 2 (right) The initial state and goal state are located in adjacent corners. The reward is +0.01
at the goal state and 0 otherwise. We use a dataset of 1 trajectories with 10 steps, which traces the
following path:

[(0, 0), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (0, 4), (0, 4), (0, 4), (0, 4)].

We use γ = 0.95 and train for 10k full-batch updates, using a learning rate of 1e-2. The Q table is
randomly initialized using a standard normal distribution.

Fig. 3 There is a bad state (reward of−10) next to the optimal state (reward of +1), so the behavioral
policy navigates away from the optimal state. We generate 10 trajectories of length 100 from a
uniform random policy. We use γ = 0.95 and train each method for 10k full-batch updates. The Q
table is randomly initialized using a standard normal distribution. One-step RL performs SARSA
updates while CQL performs soft value iteration (as suggested in the CQL paper).

Fig. 6 We generate 100 random variants of Fig. 3 by randomly sampling the high-reward state and
low-reward state (without replacement). The datasets are generated in the same way.

Fig. 7 We use the same environment and dataset as in Fig. 3, but train the CQL agent with varying
values of λ, each with 5 random seeds. We train the one-step RL agent for 5 random seeds. For each
point on the X axis of Fig. 7, we compare compute 5× 5 pairwise comparisons and report the mean
and standard deviation.

H.2 CONTINUOUS CONTROL EXPERIMENTS

For the experiments in Figures 8 and 9, we used the implementation of one-step RL (reverse KL) and
CQL provided by Hoffman et al. (2020). We choose this implementation because it is well tuned and
uses similar hyperparameters for the two methods. As mentioned in the main text, the only change
we made to the implementation was adding the twin-Q trick to one-step RL, such that it matched
the critic architecture used by CQL. We did not change any of the other hyperparameters, including
hyperparameters controlling the regularization strength.
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