Published in Transactions on Machine Learning Research (7/2025)

Where to Intervene: Action Selection in Deep Reinforcement
Learning

Wenbo Zhang wenbzl18Q@Quci.edu
Department of Statistics
University of California, Irvine

Hengrui Cai hengre1@uci.edu
Department of Statistics
University of California, Irvine

Reviewed on OpenReview: |https: //openreview. net/ forum? id=D3au9XkhWuy

Abstract

Deep reinforcement learning (RL) has gained widespread adoption in recent years but faces
significant challenges, particularly in unknown and complex environments. Among these,
high-dimensional action selection stands out as a critical problem. Existing works often
require a sophisticated prior design to eliminate redundancy in the action space, relying
heavily on domain expert experience or involving high computational complexity, which
limits their generalizability across different RL tasks. In this paper, we address these
challenges by proposing a general data-driven action selection approach with model-free
and computationally friendly properties. Our method not only selects minimal sufficient
actions but also controls the false discovery rate via knockoff sampling. More importantly,
we seamlessly integrate the action selection into deep RL methods during online training.
Empirical experiments validate the established theoretical guarantees, demonstrating that
our method surpasses various alternative techniques in terms of both performance in variable
selection and overall achieved rewards.

1 Introduction

Recent advances in deep reinforcement learning (RL) have attracted significant attention, with applications
spanning numerous fields such as robotics, games, healthcare, and finance (Kober et al., [2013; Kaiser et al.,
2019} [Kolm & Ritter}, 2020; |[Yu et al., 2021)). Despite their ability to handle sequential decision-making,
the practical utility of RL methods in real-world scenarios is often limited, especially in dealing with the
high-dimensional action spaces (Sunehag et al., [2015; [Kaiser et al.l 2019; [Sakryukin et al.| [2020; Xiao et al.
2020). High-dimensional action spaces are prevalent in “black box” systems, characterized by overloaded
actionable variables that are often abundant and redundant. Examples include precision medicine, where
numerous combinations of treatments and dosages are possible (see e.g., |Johnson et al., [2016; [Liu et al.l
2017} |Cai et all |2023a)); neuroscience, which involves various stimulation points and intensities (see e.g.,
Gershman et al., |2009); and robotics, particularly in muscle-driven robot control, where coordination of
numerous muscles is required (see e.g., |Schumacher et al., [2023]). Nevertheless, these high-dimensional action
spaces often contain many actions that are either ineffective or have a negligible impact on states and rewards.
Training RL models on the entire action space can result in substantial inefficiencies in both computation
and data collection.

To handle high dimensionality, a promising approach is to employ automatic dimension reduction techniques to
select only the essential minimum action set necessary for effectively learning the environment and optimizing
the policy based on the subspace. Having such a minimal yet sufficient action space can significantly
enhance learning efficiency, as agents can thoroughly explore a more concise set of actions (Zahavy et al.l

https://openreview.net/forum?id=D3au9XkWuy

Published in Transactions on Machine Learning Research (7/2025)

2018}, [Kanervisto et al.l [2020; [Jain et al., |2020; |Zhou et al., |2024). Moreover, a smaller action space can
reduce computational complexity, a notable benefit in deep RL, where neural networks are used for function
approximation (Sun et all |2011; Sadamoto et al., |2020). In practical scenarios, eliminating superfluous
actions saves the cost of extensive measurement equipment and thus allows a more comprehensive exploration
of available actions. Yet, existing works often require a sophisticated prior design to eliminate redundancy
in the action space (e.g., |Synnaeve et al. |2019; |Jiang et al., 2019; Farquhar et al., [2020; [Luo et al.l 2023,
relying heavily on domain expert experience or involving high computational complexity, limiting their
generalizability across different RL tasks.

In this paper, we propose a general data-driven action selection approach to identify the minimum sufficient
actions in the high-dimensional action space. To handle the complex environments often seen in deep RL, we
develop a novel variable selection approach called knockoff sampling (KS) for online RL, with theoretical
guarantees of false discovery rate control, inspired by the model-free knockoff method (Candes et al., |2018)).
The effectiveness of this action selection method is demonstrated in Fig. [1} A proximal policy optimization
(PPO) algorithm (Schulman et al.,|2017)) enhanced with variable selection outperforms its counterpart without
selection and achieves performance comparable to that of PPO trained with the pre-known true minimal
sufficient action. To remain computationally friendly, we design an adaptive strategy with a simple mask
operation that seamlessly integrates this action selection method into deep RL methods during online training.
Our method does not reduce the dimensionality of the action space itself but rather focuses on identifying
redundant actions and mitigating their influence during policy training to enhance sample efficiency and
significantly accelerate learning with implementation and interpretation advantages.

Our main contributions are fourfold:

e Conceptually, this work pioneers exploring high-dimensional action selection in online RL. We formally
define the sufficient action set as encompassing all influential actions and the minimal sufficient action set as
containing the smallest number of actions necessary for effective decision-making.

e Methodologically, our method bypasses the common challenge of creating accurate knockoff features in
model-free knockoffs. We use the established distribution of actions from the current policy network in online
RL to resample action values, producing exact knockoff features.

e Algorithm-wise, to flexibly integrate arbitrary variable selection into deep RL and eliminate the need to
initialize a new RL model after the selection, we design a binary hard mask approach based on the indices of
selected actions. This efficiently neutralizes the influence of non-chosen actions.

e Theoretically, to address the issues of highly dependent data in online RL, we couple our KS method with
sample splitting and majority vote; under commonly imposed conditions, we theoretically show our method
consistently identifies the minimal sufficient action set with false discovery rate control.

1.1 Related Works

Deep reinforcement learning has made significant breakthroughs in complex sequential decision-making
across various tasks (Mnih et all |2013; |Silver et al., [2016; |Schulman et al., [2017; [Haarnoja et al., [2018; |Cai
et al., [2021). Yet, several considerable obstacles exist when dealing with high-dimensional spaces using deep
RL. In terms of high dimensional state space, the state abstraction (Misra et al.l 2020; [Pavse & Hannal 2023)
has been studied to learn a mapping from the original state space to a much smaller abstract space to preserve
the original Markov decision process. Yet, these methods, such as bisimulation can be computationally
expensive and challenging when the state space is very large or has complex dynamics (Ruan et al.l [2015)).
Tied to our topic, it is hard to utilize such abstraction-based methods to implement transformed actions. This
redirects us to variable selection on the redundant state space (see e.g., [Kroon & Whiteson 2009; |Guo
& Brunskill, 2017). Recently, Hao et al.| (2021) combined LASSO with fitted Q-iteration to reduce states;
following this context, Ma et al.| (2023)) employs the knockoff method for state selection but with discrete
action spaces. However, all these works focus on the high dimensional state space in offline data, while our
method aims to extract sufficient and necessary actions during online learning.

For RL with the high-dimensional action space, especially for continuous actions, some studies (Synnaeve
et al.l 2019; [Farquhar et al.;|2020) transformed the continuous control problem into the combinatorial action

Published in Transactions on Machine Learning Research (7/2025)

5000 frrterrrerereresforsrererorsilorsresnsoetdeoreressesetlooreressesorhon

4500

4000

Average Reward
N w w
w o (%
o o o
o o o

2000 —— PPO with True Actions
—— PPO with KS

1500 —— PPO with All Actions

0.0 0.2 0.4 0.6 0.8 1.0
Total Enviroment Steps (6e4)
Figure 1: Average rewards under three proximal policy optimization (PPO) methods in a synthetic environment
with 54 actions (among which only 4 actions influence states and rewards). The green line refers to the PPO
trained based on the true influential actions, the red line refers to the PPO with the estimated minimal
sufficient actions by the proposed variable selection (KS), the black line represents the PPO with the entire
redundant action space, and the dashed line is the optimal reward. The red line outperforms the black line,
indicating the effectiveness of the variable selection step.

problem, by discretizing large action spaces into smaller subspaces. However, this transformation can lead to
a significant loss of precision and hence produce suboptimal solutions (Lee et al. [2018; [Tan et al., [2019;
2023). Other works (see e.g., Jiang et al], 2019} [Luo et al) [2023) focused on muscle control tasks
and used architectures reducing the action dimensionality before deploying RL methods. One recent study
by |Schumacher et al.| (2023) combined differential extrinsic plasticity with RL to control high-dimensional
large systems. Yet, all these works require specialized data collection, known joint ranges of actions, forced
dynamics, or desired behaviors of policies, before implementing RL. In contrast, our method is entirely
data-driven without prior knowledge of environments and thus can be generalized to tasks beyond muscle
control. Some studies (Zahavy et al., 2018;|Zhong et al., 2024) have also explored eliminating actions; however,
their approaches are limited to discrete action spaces and either require explicit elimination signals provided
by the environment or fit an inverse dynamics model of the environment.

Variable selection, also known as feature selection, is a critical process to choose the most relevant variables
representing the target outcome of interest, enhancing both model performance and interpretation. Over the
past few decades, many well-known methods have been established, ranging from classical LASSO, Fisher
score, and kernel dimension reduction (Tibshirani, 1996; Gu et al., 2012; |Chen et al., 2017; Zhou et al.,
2021), towards deep learning (Liang et al., 2018; [Baln et al., 2019; |Lee et alll 2021 |Cai et al., 2023b; |Zhang]
et al.L . Yet, these works either suffer from model-based constraints or lack theoretical guarantees. The
model-X knockoff method proposed by |Candes et al.| (2018) aims to achieve both goals via a general
variable selection framework for black-box algorithms with guarantees of false discovery rate control. Due to
its model-agnostic nature, the knockoff method has been extended to complement a wide range of variable
selection approaches (Sesia et al. 2017; Ma et al., 2021; Liu et al., [2022). The main price or central challenge
within the knockoff method lies in the generation of faithful knockoff features. Existing techniques either use
model-specific methods (see e.g., |Sesia et al., 2017} |Liu & Zheng, [2018) that assume the underlying covariate
distribution, or model-free approaches (see e.g., [Jordon et al [2018; Romano et all [2020) that utilize deep
generative models to obtain knockoffs without further assumptions on feature distribution. Owing to the
blessing of online RL, our method bypasses this challenge through the known joint distribution of actions
represented by the ongoing policy network, and thus can easily resample the action values to create exact
knockoff features.

2 Problem Setup

2.1 Notations

Consider a Markov Decision Process (MDP) characterized by the tuple (S,.A, p,r,), in which both the state
space S and the action space A are continuous. The state transition probability, denoted as p: S x S x A —

Published in Transactions on Machine Learning Research (7/2025)

[0,0), is an unknown probability density function that determines the likelihood of transitioning to a next
state s;11 € S, given the current state s; € S and the action a; € A. The environment provides a reward,
bounded within [rmin, "max], for each transition, expressed as r : & X A — [Fmin, "max]- The discount factor,
represented by v € (0,1), influences the weighting of future rewards. We denote a generic tuple consisting
of the current state, action, reward, and subsequent state as (S, A, R¢,S¢+1). The Markovian property
of MDP is that given the current state S; and action Ay, the current R; and the next state S;;; are
conditionally independent of the past trajectory history. Consider A; € RP where p is very large indicating a
high dimensional action space. We utilize pr(s:) and pr(st,a:) to denote the state and state-action marginal
distributions, respectively, of the trajectory distribution generated by a policy 7(a; | s¢). The notation J ()
is used to represent the expected discounted reward under this policy: J(7) = 3, E(s, a,)~p, [7'7 (St,2¢)] .
The goal of RL is to maximize the expected sum of discounted rewards above. This can be extended to a
more general maximum entropy objective with the expected entropy of the policy over p, (s;).

2.2 Minimal Sufficient Action Set in Online RL

To address the high-dimensional action space, we propose to utilize variable selection instead of representation
for practical usefulness. To achieve this goal, we first formally define the minimal sufficient action set.
Denote the subvector of A; indexed by components in G as A; ¢ with an index set G C {1,2,...,p}. Let
G°={1,...,p}\G be the complement of G.

Definition 2.1. (Sufficient Action Set) We say G is the sufficient action (index) set in an MDP if

Rt L At,GC | St, At,G, St+1 1 At,G"‘ | Stht,Gv for all ¢ Z 0.

The sufficient action set can be seen as a sufficient conditional set to achieve past and future independence.
The sufficient action set may not be unique.

Definition 2.2. (Minimal Sufficient Action Set) We say G is the minimal sufficient action set in an
MDP if it has the smallest cardinality among all sufficient action sets.

Unlike the sufficient action set, there is only one unique minimal sufficient action set to achieve conditional
independence if there are no identical action variables in the environment. We also call G¢ the redundant set
when G is the minimal sufficient action (index) set. Here, to achieve such a minimal sufficient action set, one
should also require the states S; to be the sufficient states, so there is no useless state (Ma et al.l 2023) to
introduce related redundant actions that possibly lead to ineffective exploration or data inefficiency. Without
loss of generality, we assume sufficient states throughout this paper and focus on eliminating the influence of
redundant actions in a high-dimensional action space. Our goal is to identify the minimal sufficient action set
for online deep reinforcement learning to improve exploration.

2.3 Preliminary: Knockoff Variable Selection

Without making additional assumptions on the dependence among variables, in this work, we utilize the
model-X knockoffs (Candes et al., 2018 for flexible variable selection, which ensures finite-sample control of
the false discovery rate (FDR). We first briefly review the model-X knockoffs (Candes et all |2018) in the
supervised regresston setting with independent samples, which will be leveraged later as the base variable
selector of our proposed method for dependent data in the online RL setting.

Suppose we have n i.i.d. samples from a population, each of the form (X,Y), where X = (X1,...,X,) € R?
and the outcome Y € R. We further denote Y as an n-dimensional response vector and X as an n X p matrix
of covariates by aggregating n samples. The variable selection problem stems from the fact that, in many
real-world scenarios, the outcome variable Y is influenced by only a small subset of the predictors X. Formally,
the goal is to identify a subset of indices G C {1,...,p}, with |G|< p, such that the conditional distribution
Fy|x depends only on the variables { X} eq, and Y is conditionally independent of the remaining variables
given this subset. That is,

Y L X; [{Xp}ree forall jé¢G.

Published in Transactions on Machine Learning Research (7/2025)

The variable selection is looking for the Markov blanket G, i.e., the "smallest" subset G such that conditionally
on {X; }j cc Y is independent of all other variables. To ensure the uniqueness of relevant variables in the
Markov blanket, pairwise independence is introduced as follows.

Definition 2.3. A variable X is said to be "null" if and only if Y is independent of X; conditionally on
the other variables X_; = {X1,... X} \{Xj}, otherwise said to be "nonnull" or relevant. The set of null
variables is denoted by Ho C {1,...p}.

For a selected subset G of the covariates constructed from data and some pre-specified level ¢ € (0,1),
the false discovery rate (FDR) and modified FDR (mFDR) associated with G are formally defined as
FDR := E{|G (Ho|/max(1,|G|)} and mFDR := E{|G N Ho|/(1/q+ |G|)}, respectively, where || denotes the
cardinality of a set. Here, FDR is the expected proportion of falsely selected variables among the selected set,
and mFDR offers a less conservative measurement by adjusting the denominator. Knockoff variable selection
aims to discover as many relevant (conditionally dependent) variables as possible while keeping the FDR
under control.

Towards this goal, the model-X knockoff generates an n X p matrix X = (1, -, &p) as knockoff features that
have the similar properties as the collected covariates. This matrix is constructed by the joint distribution of
X and satisfies:

X1Y|X and (X, X)ewape) = (X, X), (1)

for each subset 2 within the set {1,---,p}, where swap(Q2) indicates the operation of swapping such that
for each j € Q, the j-th and (j + p)-th columns are interchanged. Here, the swap is performed between

corresponding coordinates of X and X, and we must ensure that the knockoffs are constructed such that
the joint distribution remains invariant under coordinate-wise swaps. The notation 4 signifies equality in
distribution. After obtaining knockoff features, let D= {X, X , Y} denote an augmented dataset and we can
calculate the feature importance scores Z; and Z; ; for each variable x; and its corresponding knockoff ; based
on any regression or machine learning methods like lasso or random forest. Define the function f: R? — R
as an anti-symmetric function, meaning that f(u,v) = —f(v u) for all u,v € R?, e.g., f(u,v) = u —v. Set
knockoff statistics W = (Wy,..., W,) where W; = f(Z;, Z;) in such a way that higher values of W; indicate
stronger evidence of the significance of x; belng 1nﬂuentlal covariate. The j-th variable is Selected if its
corresponding W; is at least a certain threshold 7, when the target FDR level is a. Then the set of chosen

variables can be represented as 7= {j : W; > 74}, where

=i {r >0 EUEH TG = 0 < o] @

#i{ielpl:W; =1}

The knockoff procedure controls the mFDR at a pre-specified level a, ensuring that the approximated expected
proportion of false positives among the selected variables does not exceed a. A more conservative variant,
known as Knockoffs+, can be used to provide guaranteed control of the FDR. More details can be found in
(Candes et al., 2018).

3 Online Deep RL with Variable Selection

To identify the minimal sufficient action set in online deep RL, we integrate the action selection into RL to find
truly influential actions during the training process. Its advantages are manifold. Firstly, its model-agnostic
nature ensures compatibility across various RL architectures and algorithms. Moreover, its data-driven
characteristic allows for straightforward application across diverse scenarios, thereby increasing practical
utility. Crucially, the action selection boosts the explainability and reliability of RL systems by clearly
delineating actions that contribute to model performance. In the following, we first introduce an action-
selected exploration strategy for online deep RL in Section followed by the model-free knockoff-sampling
method for action selection in Section

Published in Transactions on Machine Learning Research (7/2025)

3.1 Action-Selected Exploration Algorithm

We propose an innovative action-selected exploration for deep RL. Suppose at a predefined time step ¢ = T,
a set of actions G is identified from the buffered data, where the cardinality of G (|G|) is d, with d < p
indicting a size of selected actions. A critical challenge arises in leveraging the insights gained from action
selection for updating the deep RL models. The conventional approach of constructing an entirely new
model based on the selected actions is not only time-consuming but also inefficient, particularly in dynamic,
non-stationary environments where the requisite action sets are subject to frequent changes. Although our
study primarily focuses on stationary environments, the inefficiency of model reinitialization post-selection
remains a notable concern.

To seamlessly and efficiently integrate action selection results into deep RL, we propose to mask the non-
selected actions and remove their influence once a hard mask is constructed, and thus is flexible to integrate
with arbitrary variable selection method. Specifically, in continuous control tasks, deep RL algorithms utilize a
policy network my to sample a certain action a given current state s, namely a ~ my (- | s). Here, we use the
Gaussian policy as an illustrative example, but it can be flexibly generalized to other distributions. Assume
the policy network is parameterized by a multivariate Gaussian with the diagonal covariance matrix as:

a N (1(s), ding (0 ())?)

where p and o are parameterized functions to output mean and standard deviations. Each time we obtain
an action from the policy network. The updates of the policy network my and the action-value function
Q4 usually involve sampled actions a; and log mg (a; | s;), which is the log density of sampled actions. Our
strategy is to use a binary mask to set them to a certain constant value during the forward pass, and it will
block the gradient when doing backpropagation and also remove influence when fitting a function. Given a
selected action set G, we focus on integrating this selection into the model components Q4(a,s) and mg(a | s).
To facilitate this, we define a selection vector m = (mq,---,m,) € {0,1}?, where m; = 1if i € G and 0
otherwise. This vector enables the application of a selection mask to both the Q4 and my as follows.

For g4, we use the hard mask to remove the influence of non-selected actions during) function fitting,

QZL(EL S) = Q¢(m ©a, S)7 (3)

where ©® is the element-wise product. The adoption of action selection can reduce bias in the @ function
fitting when sufficient action is correctly identified. It can also reduce variance by decreasing the complexity
of the hypothesis space of the @ function.

For 7y, considering the necessity of updating the policy network via policy gradient, we integrate a hard
mask into the logarithm of the policy probability. The modified log probability is formulated as

logmg*(a|s) =m- (logmg(as | s),...,logmg(a, | s)), (4)

where - is the dot product. This masking of the log probability helps mitigate the likelihood of encountering
extremely high entropy values, thereby facilitating a more stable and efficient training process. We demonstrate
the integration of action selection into deep RL as detailed in Algorithm [I]

Remark 3.1. Here, we focus on the case where actions are parameterized as diagonal Gaussian which are
conditionally independent given states. However, our method can be easily extended to the correlated actions,
with details provided in Appendix [F]

Remark 3.2. In scenarios where the algorithm exclusively employs the state-value function Vy(s), the use of
the mask operation is unnecessary. Our empirical studies suggest that, even without masking, the model
maintains robust performance. This implies that updates to the policy network may hold greater significance
than those to the critic in certain contexts.

3.2 Knockoff-Sampling for Action Selection

Despite the large volume of variable selection (VS) methods (see e.g., [Tibshiranil, [1996; |Gu et al.l [2012;
Chen et al., [2017; [Liang et al.l [2018; Balin et al.; 2019} [Lee et al., 2021)), these works either suffer from

Published in Transactions on Machine Learning Research (7/2025)

Algorithm 1 Action-Selected Exploration in Reinforcement Learning

Require: FDR rate a, majority voting ratio I', max steps 7', variable selection step T
Begin: Initialize the selection set G = {}, policy 7y, value function parameter ¢, augmented replay buffer
D
while steps smaller than T do
Sample a; ~ g (- | s¢)
Sample knockoff copy a; ~ 7y (- | s¢)
St+1 ™~ Env (at, St)
D+ DU {St7 at, {1/, T, St—‘,—l}
if t =T, then
Utilize a variable selection algorithm (optional: Knockoff-Sampling in Algorithm) on D to obtain
the estimated minimal sufficient action set G
Generate a mask m based on G to prune RL networks based on equation zm(l equation
end if
if it’s time to update then
update ¢ and 6 based on the specific RL algorithm used
end if
end while

Algorithm 2 Knockoff-Sampling Variable Selection

Require: FDR rate «, majority voting ratio I', data buffer D = {(s;, as, &, 7¢,8141) } 23
Split D into non-overlapping sets {Dk}le and let y; = (r¢,s:+1) as the response vector
for k=1,...K do

for i-th dimension in {y,};> do
Apply a machine learning algorithm to all (s¢,as, a;,y:) € Dy to construct feature importance statistics
Z; i and ZM for the j-th action and its knockoff copy, respectively, for each j € [p].
end for
for each j € [p] do
Set Zj = max; Zj’i, Zj = Imax; Zj’h and Wj = f (Zj, Zj)
end for R
Utilize the threshold 7, defined in equation 2, and get Gy, = {j € [p| : W; > 74}
end for R
return G := {j e{l,...,p}: Zle]l (j € Gk) > KF}

model-based constraints or lack theoretical guarantees. The traditional VS often identifies unimportant actions,
leading to a high false discovery rate and further causing performance degeneration, as shown in Fig. [2l To
provide a general action selection approach for deep RL with false discovery rate control, we propose a novel
knockoff-sampling (KS) method that handles dependent data in the online setting with a model-agnostic
nature as follows.

Suppose now we have a data buffer with the size M, collected from N trajectories where each trajectory
has length 7} for j = 1,... N and Zjvzl T; = M. Each time we obtain an action from the policy network,
we also resample a knockoff copy conditional on the same state a; ~ 7y (- | s¢), and append it to the buffer.
The transition tuples thus is redefined as (S;, A, At, R;,Siy1). Note that steps within each trajectory are
temporally dependent. To address the issues of highly dependent data in online RL, we couple our method
with sample splitting and majority vote following [Ma et al.| (2023). The proposed KS method consists of
three steps as summarized in Algorithm [2} 1. Sample Splitting; 2. Knockoff-Sampling Variable Selection; 3.
Majority Vote. We detail each step below.

1. Sample Splitting: We first split all transition tuples (St,At,:&t,Rt,StH) into K non-overlapping
sub-datasets. This process results in a segmentation of the dataset D into distinct subsets Dy, for k € [K].
We combine response variables and denote Y; = (Ry, Si11) to simplify the notation, based on the target

Published in Transactions on Machine Learning Research (7/2025)

Ant-v4 PPO Ant-v4 SAC

—— PPO + True Actions 14001 —— PPO + True Actions
—— PPO +KS —— PPO +KS
—— PPO+VS 12001 — ppo + Vs

1000

800

600

Average Return
Average Return

400

200

—=200

—200

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Total Enviroment Steps (1e6) Total Enviroment Steps (1e6)

Figure 2: Learning curves in the Ant-v4 environment reveal that the Knockoff Sampling (KS) method
outperforms the traditional Variable Selection (VS) method. When implemented with either the Proximal
Policy Optimization (PPO) or Soft-Actor-Critic (SAC) algorithm, KS achieves performance comparable to
that of the true actions by automatically setting optimal thresholds to filter out redundant actions, whereas
VS often selects useless actions, leading to a high false discovery rate.

outcomes in Definition Here, each sequence (S, Ay, .&t,Yt) is assigned to Dy if ¢ mod K = k — 1.
Subsequent to this division, any two sequences located within the same subset Dy, either originate from the
same trajectory with a temporal separation of no less than K or stem from different trajectories. If the
system adheres to S-mixing conditions (Bradleyl |2005)), then a careful selection (Berbee, [1987) can allow us
to assert that transition sequences within each subset Dj are approximately independent.

2. Knockoff-Sampling Variable Selection: For each data subset Dy, we select a minimal sufficient action
set using the model-X knockoffs as the base selector. Unlike the knockoff method detailed in Section [2.3]
that either constructs knockoff features based on second-order machines or estimates the full distribution,
we directly sample a knockoff copy of actions from the policy network, i.e., a; ~ mg (- | s;). This helps us to
bypass the common challenge of creating accurate knockoff features in model-free knockoffs. We theoretically
validate that the sampled knockoffs in online RL meet the swapping property equation [I]in Section @] For
every single dimension i of the outcome vector Y; = (R, S¢+1), we use a general machine learning method
(e.g., LASSO, random forest, neural networks) to provide variable importance scores Z;; and Z] ; for the
] th dimension of actions and its knockoff copy, respectively. By the maximum score Z = max; Z;; and
Zj = max; ij the selected action set G , is then obtained following the same procedure in Section after
computing knockoff statistics W.

3. Majority Vote: To combine the results on the whole K folds, we calculate the frequency of subsets
where the j-th action is chosen, i.e., p; = Zszl I(j € Gi)/K, and establish the ultimate selection of actions

G= {j : p; > T'}, with I" being a predetermined cutoff between 0 and 1.

4 Theoretical Results

Without loss of generality, we assume that the data buffer D consists of N i.i.d. finite-horizon trajectories,
each of length T, which can be summarized as NT transition tuples. We first define two properties to
establish theoretical results.

Definition 4.1. (Flip Sign Property for Augmented Data) Knockoff statistics W = (W7,..., Wp)T
satisfies property on the augmented data matrix Dy = [Ak, A, Sy, Yk] if for any j € [p] and Q C [p],

~ 7WZ ([AkaAk] ;SkaYk) P lf] € Q7
i |Ak, A Y. = .
Wi <[ko k]swap(m S, k> {WZ ([Ak, Ak] .Sk, Yi), otherwise,

where Ay, A, € RNT/K)xP denote the matrices of the actions and their knockoffs, Sy, € RINT/K)xd denote

the matrice of state, Yj, € RWT/K)xd+1 denotes the response matrix, and [Ak, Ak]swap(ﬂ) is obtained by

swapping all j-th columns in Ay, Ay, for je .

Published in Transactions on Machine Learning Research (7/2025)

The above flip sign property is a common property that needs to be satisfied in knockoff-type methods. We
show that our method automatically satisfies this property in Lemma of the Appendix.

We now define the S-mixing coefficient, which quantifies the strength of dependence between observations
separated by a time lag in a stochastic process.

Definition 4.2. (8-mixing Coefficient, Bradley| (2005)). For a sequence of random variables {X;}, define its
[-mixing coefficient as

B(i) := sup S (finoo,fﬁ_’m)
mEeZ
Using this definition, we now introduce the concept of exponential S-mixing, which describes processes where
the dependence decays at an exponential rate.

Definition 4.3. (Stationarity and Exponential $-Mixing) The process {(S;, Ay, R¢)},~, is stationary
and exponentially S-mixing if its S-mixing coefficient at time lag k is of the order p* for some 0 < p < 1

This exponential S-mixing condition has been assumed in the RL literature (see e.g., |Antos et al.| [2008} |Dai
et al.l 2018]) to derive the theoretical results for the dependent data. Such a condition quantifies the decay in
dependence as the future moves farther from the past to achieve the dependence of the future on the past.
Based on the above definitions, we establish the following false discovery control results of our method.

Theorem 4.4. Set the number of sample splits K = kolog(NT) for some ko > — log™* p where p is defined
in Definition|4.5 Assume that the following assumption hold: the process {(S¢, A, Ry)},~ is stationary and
exponentially [-mixing. B

Then @k obtained by Algom'thm@ with the standard knockoffs controls the modified FDR (mFDR),
mFDR < a+O{K '(NT)"°},
where the constant ¢ = —kglog(p) —1 > 0.

The proof can be mainly divided into two parts. Firstly, we show that valid mFDR control can be achieved
when data are independent. Then, for dependent data satisfying the S-mixing condition, the upper bound can
be relaxed to account for the cost of dependence, which vanishes as the number of samples in Dy, approaches
infinity. Finally, a combination of the two would provide the final upper bound on mFDR control. The
detailed proof is in Appendix [} This theorem provides a theoretical guarantee for controlling the modified
false discovery rate by our proposed method at a pre-specified level a with a small order term that goes to
zero as the sample size goes to infinity. In reinforcement learning, this ensures the identification of a minimal
sufficient set of actions with a controlled error tolerance, which is essential for efficient learning. Our method
selects and only utilizes those relevant actions, avoiding irrelevant ones that could degrade policy performance
and lead to unnecessary costs.

5 Experiments

Experiment Setup We aim to answer whether the variable selection is helpful for deep RL training when the
action dimension is high and redundant. We conduct experiments on standard locomotion tasks in MuJoCo
(Todorov et all|2012) and treatment allocation tasks calibrated from electronic health records (EHR), the
MIMIC-IIT dataset (Johnson et al., |2016). The environment details are in Table of the Appendix. Here,
we focus on two representative actor-critic algorithms, Proximal Policy Optimization (PPO) (Schulman et al.,
2017) and Soft-Actor-Critic (SAC) (Haarnoja et al.| 2018). We adopt the implementation from Open Al
Spinning up Framework (Achiam) 2018]). For SAC, the implementation involves fitting both Q4 and 7y, and
we use a mask on both components. For PPO, it fits Vj and 7y, hence we only combine the mask with my.
Tables [B.] and [B.2 summarize the hyperparameters we used. We set the FDR rate o = 0.1 and voting ratio
I' = 0.5 in all settings. All the experiments are conducted on the server with 4x NVIDIA RTX A6000 GPU.

Semi-synthetic MuJoCo Environments We chose three tasks: Ant, HalfCheetah, and Hopper. To
increase the dimension of action space, we artificially add extra p actions to the raw action space and consider
two scenarios, p = 20 and 50. For each setting, we run experiments over 2 x 10° and 10 steps for SAC and

Published in Transactions on Machine Learning Research (7/2025)

Ant-v4 with Extra 20 Actions (Beginning State) HalfCheetah-v4 with Extra 20 Actions (Beginning State) Hopper-v4 with Extra 20 Actions (Beginning State)
— PPO+KS — PO+ ks —— PPO+KS
—— PO + True Actions 3000] — PPO + True Actions 25004 — PO + True Actions
— PPO + All Actions —— PPO + Al Actions —— PO + All Actions
2000

1500

Average Return
8

Average Return

8

00 10 00 10 00 10

2 04 06 04 06 04 06
Total Enviroment Steps (1e6) Total Enviroment Steps (1e6) Total Enviroment Steps (1e6)

(a) PPO Ant p = 20 (Initial) (b) PPO Cheetah p = 20 (Initial) (¢) PPO Hopper p = 20 (Initial)

Ant-v4 with Extra 50 Actions (Beginning State) HalfCheetah-v4 with Extra 50 Actions (Beginning State) Hopper-v4 with Extra 50 Actions (Beginning State)
— PPO+KS 5001 ppo + ks 2500] — PPO+KS
—— PPO + True Actions 3000{ —— PPO + True Actions —— PPO + True Actions
8001 _ ppo + All Actions —— PPO + All Actions —— PPO + All Actions
2500 2000

n

§ 2000 £
1500

Average Return
Average Retu

1000

500

00 08 10 00 02 08 10 00 08 10

04 06 04 06 04 0%6
Total Enviroment Steps (1e6) Total Enviroment Steps (1e6) Total Enviroment Steps (1e6)

(d) PPO Ant p = 50 (Initial) (e) PPO Cheetah p = 50 (Initial) (f) PPO Hopper p = 50 (Initial)

Figure 3: Learning curves for PPO in the MujoCo environments with different approaches during the initial
stage. In all experiments, our knockoff sampling (KS) method not only performs comparably to the true
actions but also consistently delivers higher rewards than using all actions.

3000
— PPO +KS — PPO +KS — PPO+KS
—— PPO + True Actions 2500 —— PPO + True Actions —— PPO + True Actions
—— PPO + All Actions —— PPO + All Actions 20001 — PPO + All Actions

S s

10 00

600
2000

1500 1500

1000

Average Retu
Average Retum
g 8

Average Retu

8

~500 o
10 00

i)

04 056 04 06 04 06
Total Enviroment Steps (1e6) Total Enviroment Steps (1e6) Total Enviroment Steps (1e6)

(a) PPO Ant p = 50 (Middle) (b) PPO Cheetah p = 50 (Middle) (c) PPO Hopper p = 50 (Middle)

Figure 4: Learning curves for PPO in the MujoCo environments during the middle stage, where the red line
indicates the time point we utilize the proposed KS. After identifying the essential action set, the policy can
be more efficient and achieve higher rewards than continuing training on all actions.

PPO, respectively, averaged over 10 training runs. The running steps for SAC and PPO are set adaptively
to obtain better exploration for each method and save computation costs, as the main goal is to show how
action selection can improve sample efficiency rather than compare these two methods. For each evaluation
point, we run 10 test trajectories and average their reward as the average return. Besides RL algorithm
performance, we also evaluate variable selection performance in terms of True Positive Rate (TPR), False
Positive Rate (FPR), and FDR.

Action Selection in the Initial Stage of Training We utilize action selection in the beginning stage of the
training. For both methods, we utilize the first 4000 samples for variable selection and then use the selection
results to build a hard mask for action in deep RL models. We compare our knockoff sampling (KS) method
with the baseline of selecting all actions (All) to evaluate the impact of integrating a masking mechanism
with a selection strategy in deep RL. We also provide the experimental results with only ground-truth actions
selected (True) as a reference. To reduce the computational complexity, we choose LASSO (Tibshirani, [1996])
as our base variable selection algorithm for KS. Here, selecting all actions (All) and ground-truth actions
(True) are the cases where RL models are trained on the whole action space and minimal sufficient action
space, respectively. Hence, the model corresponding to ground-truth action has smaller parameters than all
other methods because its initialization is based on the minimal sufficient action set. The results are shown
in Fig.] for PPO, Fig. for SAC, and Table [1] for all numerical details. Due to space constraints, we
mainly present the PPO figures in the main text. In all cases, we find that KS-guided models outperform

10

Published in Transactions on Machine Learning Research (7/2025)

Table 1: Results on the PPO and SAC for three Mujoco tasks: Ant, HalfCheetah, and Hopper. Action
selection is utilized at the beginning stage of RL training. The final reward is the performance evaluation for
the agent after training. The best-performing results between KS and All are highlighted in bold.

Env RL Algo. p Selection Ant
TPR (1) FDR () FPR (J) Reward (1)
0 True 1.00 0.0 0.00 567.77
KS 1.00 0.01 0.01 507.90
PPO 20 All 1.00 0.71 1.00 202.65
KS 1.00 0.00 0.00 572.39
- 50 All 1.00 0.86 1.00 151.66
0 True 1.00 0.00 0.00 817.95
KS 1.00 0.01 0.01 937.74
SAC 20 Al 1.00 0.71 1.00 12.61
KS 1.00 0.00 0.00 731.73
50 All 1.00 0.86 1.00 —208.04
0 True 1.00 0.0 0.00 2130.55
KS 1.00 0.01 001 2237.08
PPO 20 Al 1.00 0.77 1.00 1356.46
KS 1.00 0.00 000 193227
50 All 1.00 0.89 1.00 619.67
HalfCheetah 0 True 1.00 0.00 0.00 6610.05
KS 1.00 0.00 000 6607.55
SAC 20 All 1.00 0.77 1.00 5631.20
KS 1.00 0.00 000 6873.95
50 All 1.00 0.89 1.00 474824
0 True 1.00 0.0 0.00 1736.65
KS 1.00 0.00 000 154083
PPO 20 All 1.00 0.87 1.00 1205.12
KS 1.00 0.00 000 171082
Hopper 50 All 1.00 0.94 1.00 703.08
0 True 1.00 0.00 0.00 511,00
KS 1.00 0.00 000 216581
SAC 20 Al 1.00 0.87 1.00 398.75
KS 1.00 0.00 000 2424.09
50 All 1.00 0.94 1.00 137.67

those trained on the whole action space in terms of average return and have much lower FDR and FPR,
with larger improvement gains as p increases. This empirically validates our theory of FDR, control with the
proposed KS method, demonstrating that action selection can enhance learning efficiency during the initial
stages of RL training where action space is high and redundant.

Action Selection in the Middle Stage of Training To show whether action selection can be used in
the middle stage of training to remedy the inefficiency brought by exploring the whole action space, we
conduct experiments where in the first half of the training steps the models are trained on the whole action
space, and in the middle of the stage, we utilize action selection and build hard masks for them and then
continue training for the rest of the steps. We compare our KS method with selecting all actions (All) and
ground-truth actions (True) similarly. The results in Fig. 4| and Fig. reveal a notable pattern: agents
initially struggle to learn effectively, but mid-stage variable selection significantly improves their performance,
with models trained on the correct actions. This demonstrates the effectiveness of mid-stage variable selection
in enhancing learning outcomes.

11

Published in Transactions on Machine Learning Research (7/2025)

—— PPO +KS
—— PPO + All Actions
—— PPO + lattice

—— PPO + gsde

-

Frequency

10

Average Return

0 5 10 15 20 25 30
0.6 0.8 1.0 Treatment Index
Total Enviroment Steps (2e4)

(a) Learning curves of treatment allocation environments. (b) Treatment Selection frequency of KS method

Figure 5: Results for PPO in the treatment allocation environments during the initial stage using different
approaches. The learning curves of various methods are shown on the left, while the selection frequencies from
our method are presented on the right, with red bars indicating the essential treatments. Our approach, KS,
demonstrates improved performance over time compared to using all actions. In contrast, latent exploration-
based methods such as Lattice and gSDE exhibit degraded performance.

Treatment Allocation for Sepsis Patients We evaluate our method using PPO and utilize the first
1000 samples for action selection during the initial stage of training. In addition to our proposed KS method
and the baseline that uses all actions, we include two latent exploration-based baselines: Lattice (Chiappa
et al.| 2024) and gSDE (Raffin et al., [2022)). While both Lattice and gSDE operate over the full action space,
they incorporate temporally correlated Gaussian noise into the training process, where the noise variance is
learned from latent representations. Experiments are conducted over 2 x 10% time steps, with results averaged
across 5 independent runs. At each evaluation point, we generate 5 test trajectories and report the average
return. The results are presented in Fig. and Fig. Our method consistently achieves more stable
and superior performance compared to all other approaches in Fig. As shown in Fig. KS effectively
identifies treatments directly relevant to sepsis management, such as vaso_dose and iv_input, which are
closely tied to key physiological indicators. Importantly, KS avoids selecting those non-essential treatments
like beta_blocker and diuretic, which may influence patient dynamics but have no direct effect on the
SOFA score, making them less relevant for optimizing sepsis-specific outcomes. In contrast, Lattice and gSDE
exhibit slower convergence and, in some cases, degraded performance, potentially due to over-exploration. We
also observe that these methods are sensitive to the initialization of the log standard deviation and the scaling
of latent representations, which can lead to unstable learning dynamics. In comparison, our method requires
less parameter tuning and demonstrates greater robustness across different environments. These findings
highlight the potential of KS for enabling more targeted, interpretable, and efficient treatment strategies in
real-world medical decision-making applications.

Action Selection is Fast and Lightweight With just a few thousand data points and a lightweight machine
learning algorithm like random forest or LASSO, the whole action selection process outlined in Algorithm
completes in under 20 seconds—including knockoff threshold determination. This is significantly faster
and less computationally intensive than the RL training part. Even when incorporating more sophisticated
feature selection methods, the additional computational overhead remains negligible compared to the time
required for RL training. Moreover, for the RL agent’s deep neural network, only a few lightweight masking
parameters are introduced, which have minimal effects on both training and inference speed. Yet, these in
turn substantially enhance policy optimization.

Additional Experiments We conduct additional experiments to visualize the action distribution during
training, both with and without masking. The results indicate that masking promotes a more focused and
potentially more effective learning process. Furthermore, we increase the PPO step size from 10 to 4 x 10°,
demonstrating that our method achieves both high efficiency and improved performance. Additionally, we
investigate whether network capacity plays a critical role in addressing high-dimensional action problems.
However, we find that merely increasing network capacity does not necessarily simplify the learning process.
Detailed results can be found in Appendix

12

Published in Transactions on Machine Learning Research (7/2025)

6 Conclusion, Limitation, and Future Work

In this work, we address the high-dimensional action selection problem in online RL. We formally define
the objective of action selection by identifying a minimal sufficient action set. We innovate by integrating a
knockoff-sampling variable selection into broadly applicable deep RL algorithms. Empirical evaluations in
synthetic robotics and treatment allocation environments demonstrate the enhanced efficacy of our approach.
Yet, a notable constraint of our method is its singular application during the training phase, coupled with the
potential risk of overlooking essential actions with weak signals. Inadequate action selection could degrade the
agent’s performance. Intriguing future research includes extending our methodology to incorporate multiple
and adaptive selection stages. This adaptation could counterbalance initial omissions in action selection.
Additionally, formulating an effective termination criterion for this process represents another compelling
research direction.

Acknowledgements

The authors thank the Action Editor and anonymous reviewers for their constructive and insightful feedback.
This work was supported by the National Science Foundation under grant DMS-CDS&E-MSS No. 2401271.

References

Joshua Achiam. Spinning Up in Deep Reinforcement Learning. 2018.

Andras Antos, Csaba Szepesvari, and Rémi Munos. Learning near-optimal policies with bellman-residual
minimization based fitted policy iteration and a single sample path. Machine Learning, 71:89-129, 2008.

Muhammed Fatih Balin, Abubakar Abid, and James Zou. Concrete autoencoders: Differentiable feature
selection and reconstruction. In International conference on machine learning, pp. 444-453. PMLR, 2019.

Rina Foygel Barber and Emmanuel J Candés. Controlling the false discovery rate via knockoffs. 2015.

Henry Berbee. Convergence rates in the strong law for bounded mixing sequences. Probability theory and
related fields, 74(2):255-270, 1987.

Richard C Bradley. Basic properties of strong mixing conditions. a survey and some open questions. 2005.

Hengrui Cai, Chengchun Shi, Rui Song, and Wenbin Lu. Deep jump learning for off-policy evaluation in
continuous treatment settings. Advances in Neural Information Processing Systems, 34:15285-15300, 2021.

Hengrui Cai, Chengchun Shi, Rui Song, and Wenbin Lu. Jump interval-learning for individualized decision
making with continuous treatments. Journal of Machine Learning Research, 24(140):1-92, 2023a.

Hengrui Cai, Yixin Wang, Michael Jordan, and Rui Song. On learning necessary and sufficient causal graphs.
Advances in Neural Information Processing Systems, 36:42148-42160, 2023b.

Emmanuel Candes, Yingying Fan, Lucas Janson, and Jinchi Lv. Panning for gold:‘model-x’knockoffs for
high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B: Statistical
Methodology, 80(3):551-577, 2018.

Jianbo Chen, Mitchell Stern, Martin J Wainwright, and Michael I Jordan. Kernel feature selection via
conditional covariance minimization. Advances in Neural Information Processing Systems, 30, 2017.

Alberto Silvio Chiappa, Alessandro Marin Vargas, Ann Huang, and Alexander Mathis. Latent exploration
for reinforcement learning. Advances in Neural Information Processing Systems, 36, 2024.

Bo Dai, Albert Shaw, Lihong Li, Lin Xiao, Niao He, Zhen Liu, Jianshu Chen, and Le Song. Sbeed: Convergent
reinforcement learning with nonlinear function approximation. In International conference on machine
learning, pp. 1125-1134. PMLR, 2018.

13

Published in Transactions on Machine Learning Research (7/2025)

Gregory Farquhar, Laura Gustafson, Zeming Lin, Shimon Whiteson, Nicolas Usunier, and Gabriel Synnaeve.
Growing action spaces. In International Conference on Machine Learning, pp. 3040-3051. PMLR, 2020.

Max H Farrell, Tengyuan Liang, and Sanjog Misra. Deep neural networks for estimation and inference.
Econometrica, 89(1):181-213, 2021.

Samuel J Gershman, Bijan Pesaran, and Nathaniel D Daw. Human reinforcement learning subdivides
structured action spaces by learning effector-specific values. Journal of Neuroscience, 29(43):13524-13531,
20009.

Quanquan Gu, Zhenhui Li, and Jiawei Han. Generalized fisher score for feature selection. arXiv preprint
arXiv:1202.3725, 2012.

Zhaohan Daniel Guo and Emma Brunskill. Sample efficient feature selection for factored mdps. arXiv preprint
arXiv:1703.03454, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pp. 1861-1870. PMLR, 2018.

Botao Hao, Yaqi Duan, Tor Lattimore, Csaba Szepesvari, and Mengdi Wang. Sparse feature selection makes
batch reinforcement learning more sample efficient. In International Conference on Machine Learning, pp.
4063-4073. PMLR, 2021.

Vishal Jain, William Fedus, Hugo Larochelle, Doina Precup, and Marc G Bellemare. Algorithmic improvements
for deep reinforcement learning applied to interactive fiction. In Proceedings of the AAAT Conference on
Artificial Intelligence, volume 34, pp. 4328-4336, 2020.

Yifeng Jiang, Tom Van Wouwe, Friedl De Groote, and C Karen Liu. Synthesis of biologically realistic human
motion using joint torque actuation. ACM Transactions On Graphics (TOG), 38(4):1-12, 2019.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad Ghassemi,
Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii, a freely accessible
critical care database. Scientific data, 3(1):1-9, 2016.

James Jordon, Jinsung Yoon, and Mihaela van der Schaar. Knockoffgan: Generating knockoffs for feature

selection using generative adversarial networks. In International conference on learning representations,
2018.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad Czechowski,
Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based reinforcement learning
for atari. arXiv preprint arXiv:1903.00374, 2019.

Anssi Kanervisto, Christian Scheller, and Ville Hautaméki. Action space shaping in deep reinforcement
learning. In 2020 IEEE conference on games (CoG), pp. 479-486. IEEE, 2020.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238-1274, 2013.

Petter N Kolm and Gordon Ritter. Modern perspectives on reinforcement learning in finance. Modern
Perspectives on Reinforcement Learning in Finance (September 6, 2019). The Journal of Machine Learning
in Finance, 1(1), 2020.

Mark Kroon and Shimon Whiteson. Automatic feature selection for model-based reinforcement learning
in factored mdps. In 2009 International Conference on Machine Learning and Applications, pp. 324-330.
IEEE, 2009.

Changhee Lee, Fergus Imrie, and Mihaela van der Schaar. Self-supervision enhanced feature selection with
correlated gates. In International Conference on Learning Representations, 2021.

14

Published in Transactions on Machine Learning Research (7/2025)

Kyowoon Lee, Sol-A Kim, Jaesik Choi, and Seong-Whan Lee. Deep reinforcement learning in continuous
action spaces: a case study in the game of simulated curling. In International conference on machine
learning, pp. 2937-2946. PMLR, 2018.

Yuhan Li, Wenzhuo Zhou, and Ruoqing Zhu. Quasi-optimal reinforcement learning with continuous actions.
arXiv preprint arXiv:2301.08940, 2023.

Faming Liang, Qizhai Li, and Lei Zhou. Bayesian neural networks for selection of drug sensitive genes.
Journal of the American Statistical Association, 113(523):955-972, 2018.

Jingyuan Liu, Ao Sun, and Yuan Ke. A generalized knockoff procedure for fdr control in structural change
detection. Journal of Econometrics, 2022.

Ying Liu and Cheng Zheng. Auto-encoding knockoff generator for fdr controlled variable selection. arXiv
preprint arXiv:1809.10765, 2018.

Ying Liu, Brent Logan, Ning Liu, Zhiyuan Xu, Jian Tang, and Yangzhi Wang. Deep reinforcement learning for
dynamic treatment regimes on medical registry data. In 2017 IEEE international conference on healthcare
informatics (ICHI), pp. 380-385. IEEE, 2017.

Shuzhen Luo, Ghaith Androwis, Sergei Adamovich, Erick Nunez, Hao Su, and Xianlian Zhou. Robust
walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep
reinforcement learning. Journal of neuroengineering and rehabilitation, 20(1):1-19, 2023.

Shiyang Ma, James Dalgleish, Justin Lee, Chen Wang, Linxi Liu, Richard Gill, Joseph D Buxbaum, Wendy K
Chung, Hugues Aschard, Edwin K Silverman, et al. Powerful gene-based testing by integrating long-range
chromatin interactions and knockoff genotypes. Proceedings of the National Academy of Sciences, 118(47):
€2105191118, 2021.

Tao Ma, Hengrui Cai, Zhengling Qi, Chengchun Shi, and Eric B Laber. Sequential knockoffs for variable
selection in reinforcement learning. arXiv preprint arXiv:2303.14281, 2023.

Dipendra Misra, Mikael Henaff, Akshay Krishnamurthy, and John Langford. Kinematic state abstraction and
provably efficient rich-observation reinforcement learning. In International conference on machine learning,
pp. 6961-6971. PMLR, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

Brahma S Pavse and Josiah P Hanna. Scaling marginalized importance sampling to high-dimensional state-
spaces via state abstraction. In Proceedings of the AAAT Conference on Artificial Intelligence, volume 37,
pp. 9417-9425, 2023.

Antonin Raffin, Jens Kober, and Freek Stulp. Smooth exploration for robotic reinforcement learning. In
Conference on Robot Learning, pp. 1634-1644. PMLR, 2022.

Yaniv Romano, Matteo Sesia, and Emmanuel Candes. Deep knockoffs. Journal of the American Statistical
Association, 115(532):1861-1872, 2020.

Sherry Ruan, Gheorghe Comanici, Prakash Panangaden, and Doina Precup. Representation discovery
for mdps using bisimulation metrics. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 29, 2015.

Tomonori Sadamoto, Aranya Chakrabortty, and Jun-ichi Imura. Fast online reinforcement learning control
using state-space dimensionality reduction. IEEE Transactions on Control of Network Systems, 8(1):
342-353, 2020.

Andrey Sakryukin, Chedy Raissi, and Mohan Kankanhalli. Inferring dgn structure for high-dimensional
continuous control. In International Conference on Machine Learning, pp. 8408-8416. PMLR, 2020.

15

Published in Transactions on Machine Learning Research (7/2025)

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Pierre Schumacher, Daniel Haeufle, Dieter Biichler, Syn Schmitt, and Georg Martius. DEP-RL: Embodied
exploration for reinforcement learning in overactuated and musculoskeletal systems. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=
C-xa_D30Tj6.

Matteo Sesia, Chiara Sabatti, and Emmanuel J Candées. Gene hunting with knockoffs for hidden markov
models. arXiv preprint arXiv:1706.04677, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484-489, 2016.

Xueqing Sun, Tao Mao, Laura Ray, Dongqing Shi, and Jerald Kralik. Hierarchical state-abstracted and
socially augmented g-learning for reducing complexity in agent-based learning. Journal of Control Theory
and Applications, 9:440-450, 2011.

Peter Sunehag, Richard Evans, Gabriel Dulac-Arnold, Yori Zwols, Daniel Visentin, and Ben Coppin. Deep
reinforcement learning with attention for slate markov decision processes with high-dimensional states and
actions. arXiv preprint arXiv:1512.01124, 2015.

Gabriel Synnaeve, Jonas Gehring, Zeming Lin, Daniel Haziza, Nicolas Usunier, Danielle Rothermel, Vegard
Mella, Da Ju, Nicolas Carion, Laura Gustafson, et al. Growing up together: Structured exploration for
large action spaces. 2019.

Huachun Tan, Hailong Zhang, Jiankun Peng, Zhuxi Jiang, and Yuankai Wu. Energy management of hybrid
electric bus based on deep reinforcement learning in continuous state and action space. Energy Conversion
and Management, 195:548-560, 2019.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society
Series B: Statistical Methodology, 58(1):267-288, 1996.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pp. 5026-5033. IEEE, 2012.

Baicen Xiao, Qifan Lu, Bhaskar Ramasubramanian, Andrew Clark, Linda Bushnell, and Radha Poovendran.
Fresh: Interactive reward shaping in high-dimensional state spaces using human feedback. arXiv preprint
arXiv:2001.06781, 2020.

Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. Reinforcement learning in healthcare: A survey.
ACM Computing Surveys (CSUR), 55(1):1-36, 2021.

Tom Zahavy, Matan Haroush, Nadav Merlis, Daniel J Mankowitz, and Shie Mannor. Learn what not to learn:
Action elimination with deep reinforcement learning. Advances in neural information processing systems,
31, 2018.

Wenbo Zhang, Tong Wu, Yunlong Wang, Yong Cai, and Hengrui Cai. Towards trustworthy explanation: On
causal rationalization. In International Conference on Machine Learning, pp. 41715-41736. PMLR, 2023.

Dianyu Zhong, Yiqin Yang, and Qianchuan Zhao. No prior mask: Eliminate redundant action for deep
reinforcement learning. In Proceedings of the AAAT Conference on Artificial Intelligence, volume 38, pp.
17078-17086, 2024.

Wenzhuo Zhou, Ruoqging Zhu, and Donglin Zeng. A parsimonious personalized dose-finding model via
dimension reduction. Biometrika, 108(3):643-659, 2021.

Wenzhuo Zhou, Ruoqing Zhu, and Annie Qu. Estimating optimal infinite horizon dynamic treatment regimes
via pt-learning. Journal of the American Statistical Association, 119(545):625-638, 2024.

16

https://openreview.net/forum?id=C-xa_D3oTj6
https://openreview.net/forum?id=C-xa_D3oTj6

Published in Transactions on Machine Learning Research (7/2025)

A Comparison with Closely Related Work

Ma et al.| (2023) adopted a two-stage framework, performing variable selection offline before applying
reinforcement learning. This design is ill-suited for online settings, where dynamic environments require
frequent updates to the action set. Moreover, their approach relies on strong data-generating assumptions
that restrict its applicability in realistic scenarios. In contrast, our method integrates action selection into the
online RL process via a learned masking mechanism, allowing real-time adaptation to environmental shifts.
This not only removes the dependency on stringent assumptions but also supports seamless integration with
deep RL algorithms, such as PPO and SAC, which were not addressed in their work.

Zahavy et al.| (2018) introduced an action elimination method that relies on explicit elimination signals from
the environment to identify invalid actions. While effective in certain settings, this approach depends on
domain-specific feedback that may not always be available. Our method avoids this reliance by implicitly iden-
tifying essential actions through learned representations, enabling broader applicability without handcrafted
elimination signals or external supervision.

Zhong et al.| (2024) proposed a method that constructs an action mask using an inverse dynamics model trained
prior to policy learning. However, fitting such a model is computationally demanding in high-dimensional
state spaces and is completely decoupled from the learning process, making it less responsive to evolving
environments. Additionally, extending their approach—or |Zahavy et al| (2018)—to continuous action spaces
typically requires discretization, which introduces challenges such as loss of precision and the need to carefully
tune bin sizes. In contrast, our method operates directly in the continuous action space, preserving precision
and scalability while enabling efficient, end-to-end learning.

B Implementation Details

We adopt the implementation from Open AI Spinning up Framework (Achiaml [2018]). Tables and
show the hyperparameters for the RL algorithms we used in our experiments. We set the FDR rate a = 0.1
and voting ratio 7 = 0.5 for our knockoff method in all settings. All the experiments are conducted in the
server with 4x NVIDIA RTX A6000 GPU.

Table B.1: PPO Hyperparameters

Parameter Mujoco EHR
optimizer Adam Adam
learning rate 7 3.0-107* 3.0-1073
learning rate V 1.0-1073% 1.0-1073
learning rate schedule constant constant
discount () 0.99 0.99
number of hidden layers (all networks) 2 2
number of hidden units per layer [64, 32] [64, 32]
number of samples per minibatch 256 100
number of steps per rollout 1000 100
non-linearity ReLU ReLU
gSDE

initial log o 0 0
Full std matrix Yes Yes
Lattice

initial log o 0 0
Full std matrix Yes Yes
Std clip (0.001,1) (0.001,1)

17

Published in Transactions on Machine Learning Research (7/2025)

Table B.2: SAC Hyperparameters

Parameter Mujoco
optimizer Adam
learning rate m 3.0-1074
learning rate Q 3.0-107%
learning rate schedule constant
discount (vy) 0.9
replay buffer size 1-106
number of hidden layers (all networks) 2
number of hidden units per layer [256, 256]
number of samples per minibatch 256
non-linearity ReLU

entropy coefficient («) 0.2
warm-up steps 1.0-10%

Table C.1: Summary of Environments

Env Dimension of Action Dimension of State
Ant 8 27
HalfCheetah 6 17
Hopper 3 11
EHR 20 46

C More Experimental Results and Analyses

We list the dimension of action and state in terms of the environments we used in Table

C.1 MuloCo

The results for the initial stage are shown in Fig. and Table[I] For different environments, action selection
difficulty varies, and Hopper is the easiest one where the proposed KS method can correctly select the minimal
sufficient action set. Also, the patterns of the results for PPO and SAC are similar. One observation is that
KS can select all the sufficient actions with all TPRs equal to 1. It is shown that KS is efficient in selecting
only the minimal sufficient action set in almost all scenarios, which also empirically validates our theory of
FDR control under the proposed method.

C.2 Treatment Allocation for Sepsis Patients

We utilize the MIMIC-III Clinical Database to construct our environment for Sepsis patients. We filter and
clean the data to collect 250,000 data points from the database.

State Space. The observed state s; € R0 encompasses a broad spectrum of clinical and laboratory variables
for assessing patient health and outcomes in a medical setting, such as demographic information (gender,
age), physiological metrics (weight, vital signs such as heart rate, blood pressure, respiratory rate, oxygen
saturation, temperature), and neurological status. The transition is modeled by s; = fp(s;—1,a:—1) + €, where
fo 1s a fitted long short-term memory (LSTM) and ¢ is the random noise to represent the perturbation.

Action Space. The action a; € R3" includes treatments such as vasopressors and intravenous fluids, which
are commonly administered in sepsis management to stabilize blood pressure and maintain fluid balance, in
total 4 actions. Additionally, we incorporate other medications, beta-blockers, and diuretics, which—although
not primarily intended for sepsis—may be prescribed to manage comorbid conditions like hypertension or
fluid overload that often coexist with or complicate sepsis. These treatments are considered less essential

18

Published in Transactions on Machine Learning Research (7/2025)

1500

1250

Average Return

Ant-v4 with Extra 20 Actions (Beginning State)

— SAC+KS
—— SAC + True Actions
—— SAC + All Actions |

0
-250
oo 0 06 1o
Total Enviroment Steps (2e5)
(a) SAC Ant p =20
Ant-v4 with Extra 50 Actions (Beginning State)
1400 — SAC +Ks
—— SAC + True Actions
12009 sac + All Actions
1000
5 800
&
3 600
g 400
2
200
0
0 NM“\NWW/\’WM»WWW\
L) 02 04 06) 1o
Total Enviroment Steps (2e5)
(d) SAC Ant p =50
Ant-v4 with Extra 20 Actions (Beginning State)
— PPO+KS
s00] —— PPO + True Actions
— PPO + Al Actions
. 600
2 400
&
§ 200
2
0
-200
0o 04 06 1o
Total Enviroment Steps (1e6)
(g) PPO Ant p =20
Ant-v4 with Extra 50 Actions (Beginning State)
1000 po 4 ks
—— PPO + True Actions
8001 — ppo + All Actions
¢ 600
€ 400
g 200
E
0
~200
00 08 10

Figure C.1: Results of SAC and PPO when using different variable selection approaches during the initial

stage.

04 056
Total Enviroment Steps (1e6)

(j) PPO Ant p = 50

HalfCheetah-v4 with Extra 20 Actions (Beginning State)

— SAC+Ks

70007 SAC + True Actions
6000] —— SAC + All Actions
£ 5000
3 a000
£ 3000
< 2000
1000
o
00 04 0’6 1o
Total Enviroment Steps (2¢5)
(b) SAC HalfCheetah p = 20
HalfCheetah-v4 with Extra 50 Actions (Beginning State)
— sAC+Ks
6000{ —— SAC + True Actions
—— SAC + All Actions
5000
2 4000
&
8 3000
g
< 2000
1000
0
00 () 06 To
Total Enviroment Steps (2e5)
(e) SAC HalfCheetah p = 50
HalfCheetah-v4 with Extra 20 Actions (Beginning State)
3001 — pro + ks
3000] — PPO + True Actions
—— PPO + Al Actions
2500
£ 2000
% 1500
§ 1000
2
500
0
-500
00 04 06 To
Total Enviroment Steps (1e6)
(h) PPO HalfCheetah p = 20
HalfCheetah-v4 with Extra 50 Actions (Beginning State)
39001 ppo + ks
3000] — PPO + True Actions
—— PPO + Al Actions
2500
£ 2000
% 1500 v
§ 1000
E
500
o
500

04 06 08 10
Total Enviroment Steps (1e6)

(k) PPO HalfCheetah p = 50

19

3500

3000

g

2000

1500

Average Return

8 8

°

2500

2000

g

000

Average Return

8

Hopper-v4 with Extra 20 Actions (Beginning State)

— SAC+KS
—— SAC + True Actions
—— SAC + All Actions

04 06
Total Enviroment Steps (2e5)

(c) SAC Hopper p = 20

Hopper-v4 with Extra 50 Actions (Beginning State)

— SAC+KS
—— SAC + True Actions
—— SAC + All Actions

04 06
Total Enviroment Steps (2e5)

(f) SAC Hopper p = 50

Hopper-v4 with Extra 20 Actions (Beginning State)

— PPO+KS
—— PPO + True Actions
—— PPO + All Actions

04 06
Total Enviroment Steps (1e6)

(i) PPO Hopper p = 20

Hopper-v4 with Extra 50 Actions (Beginning State)

2500

2000

1500

Average Return
g

8

— PPO+KS
— PPO + True Actions
—— PPO + All Actions |

04 06
Total Enviroment Steps (1e6)

(1) PPO Hopper p = 50

Published in Transactions on Machine Learning Research (7/2025)

12001 "

1000
800
600

400

Average Return

200

-200

~400

14001 -~

1200
1000
800

600

Average Return

400

200

-200

400

200

Average Return

-200

400

200

Average Return

-200

Figure C.2: Learning curves in the MujoCo environments with our method during the middle stage, where
the red line indicates the time we utilize KS. After identifying a less redundant action set, the policy can be

Vertical Line at x=5
— SAC+KS

—— SAC + True Actions
—— SAC + All Actions

04 06 10
Total Enviroment Steps (2e5)

(a) SAC Ant p =20

Vertical Line at x=5
— SAC+KS

—— SAC + True Actions
—— SAC + All Actions

04 06
Total Enviroment Steps (25)

(d) SAC Ant p =50

— PPO +KS
—— PPO + True Actions
—— PPO + All Actions

iz

04 056
Total Enviroment Steps (1e6)

(g) PPO Ant p =20

— PPO+KS
—— PPO + True Actions
—— PPO + All Actions

!

Average Return

04 056
Total Enviroment Steps (1e6)

(j) PPO Ant p = 50

7000] - Vertical Line at x=5
— SAC+KS
6000{ —— SAC + True Actions -
—— SAC + All Actions
< 5000 WM
£ 4000 4
3000 L
< 2000
1000
0

04 06
Total Enviroment Steps (2e5)

(b) SAC HalfCheetah p = 20

7000] - Vertical Line at x=5
—— SAC+Ks
6000 —— SAC + True Actions

—— SAC + All Actions

& a000
& 3000
]
< 2000
1000
0
00 () 06 To
Total Enviroment Steps (2e5)
(e) SAC HalfCheetah p = 50
3000
— PPO+KS
2500{ —— PPO + True Actions
— PPO + Al Actions
2000
3 1500
&
9
£ 1000
2
< 500
o
-500

00 10

04 06
Total Enviroment Steps (1e6)

(h) PPO HalfCheetah p = 20

3000

— PPO +KS

2500] —— PPO + True Actions.
—— PPO + All Actions
2000

1500

o B
8 8

~500

00 08 10

04 06
Total Enviroment Steps (1e6)

(k) PPO HalfCheetah p = 50

2000

1500

1000

Average Return

500

2000

1500

1000

Average Return

500

- Vertical Line at x=5
— SAC+KS

—— SAC + True Actions
—— SAC + All Actions

04 06
Total Enviroment Steps (2e5)

(c) SAC Hopper p = 20

-~ Vertical Line at x=5
— SAC+KS

—— SAC + True Actions
—— SAC + All Actions

04 06
Total Enviroment Steps (2e5)

(f) SAC Hopper p = 50

— PPO+KS
—— PPO + True Actions
—— PPO + All Actions

. sANnE

04 06
Total Enviroment Steps (1e6)

(i) PPO Hopper p = 20

— PPO+KS
—— PPO + True Actions
—— PPO + All Actions

04 06
Total Enviroment Steps (1e6)

(1) PPO Hopper p = 50

more efficient and achieve higher rewards than continuing training on all actions.

or potentially redundant in the context of sepsis management. To further increase the complexity of the
environment, we augment the action space with treatments and medications that have minimal relevance to

sepsis, thereby making the decision-making task more challenging.

Reward Function. The overall reward at each timestep is composed of two components, represented as
re =15 + 1 where r{ denotes the SOFA-based sepsis reward and 7] captures a health-conditioned bonus.
The sepsis reward r; reflects changes in the patient’s SOFA score, assigning +1.0 if the score decreases
(indicating clinical improvement), and —1.0 if the score increases (indicating deterioration). In addition to this
primary reward signal, we introduce a health-conditioned bonus 7" which provides supplementary guidance
based on the patient’s overall physiological state s; and the administered treatment a;. This component

allows the reward function to capture nuanced aspects of patient health beyond SOFA score dynamics.

20

Average Return

Published in Transactions on Machine Learning Research (7/2025)

Action Dimension 1 Action Dimension 2 Action Dimension 3 Action Dimension 4

2
]
g
04
02
00
10 -05 00 s 10 10 -05 00 05 10 10 -05 00 05 10 10 -05 00 os 10
Action Values Action Values Action Values Action Values
Action Dimension 5 Action Dimension 6 Action Dimension 7 Action Dimension 8
o8
06
2
]
c
@
Q

10 -05 00 05 10 -0 -05 00 05 10 -0 -05 00 05 10 10 -05 00 o5 10
Action Values Action Values Action Values Action Values

[Initial Training [Middle of training without KS [Middle of training with KS

Figure D.1: The distributions of actions in 3 stages: initial training, middle of training without KS, and
middle of training with KS. It can be seen that with KS, the actions have slightly less variance than other
methods, which could be a positive indicator of a more focused and potentially more effective learning process.

Ant-high with Extra 20 Actions (Beginning State) HalfCheetah-high with Extra 20 Actions (Beginning State) Hopper-high with Extra 20 Actions (Beginning State)
—— PPO + All Actions 6000

— PPO +KS

—— PPO + All Actions
— PPO +KS

—— PPO + All Actions

4000

4000 5000

4000
3000

| U 1
ik ‘1 : i

Al
3000 \
2000 2000 i

2000

Average Return
Average Return

1000 1000 1000

0.0 0.2 0.8 1.0 0.0

0.4 0.6 0.4 0.6 0.4 0.6
Total Enviroment Steps (4e6) Total Enviroment Steps (4e6) Total Enviroment Steps (4e6)

(a) Learning Curves (b) Learning Curves (¢) Learning Curves

Figure D.2: Learning curves in the MujoCo environments with 4e6 steps.

Termination of an episode is achieved based on the patient’s mortality rate reaching the minimum (SOFA
Score being 0) or the patient’s mortality rate reaching the maximum (SOFA score being 24). We also
observe that Weight-kg and cumulated-balance have minimal influence on Sepsis; therefore, we treat them as
non-essential state variables and exclude them when constructing the response y; for variable selection.

21

Published in Transactions on Machine Learning Research (7/2025)

Table C.2: List of state and action variables with their corresponding indices in the Treatment Allocation
Environment for Sepsis Patients. Here, red indicates essential treatments, and light red represents non-
essential treatments and ineffective treatments.

State Index | State Name Action Index | Action Name
0 gender 0
1 age 1
2 elixhauser 2
3 re_admission 3
4 Weight_ kg 4 beta__blocker
5 GCS 5 diuretic
6 HR 6 antihistamine
7 SysBP 7 proton_ pump__inhibitor
8 MeanBP 8 statin
9 DiaBP 9 metformin
10 RR 10 calcium_ channel blocker
11 SpO2 11 antidepressant
12 Temp_ C 12 antipsychotic
13 Fi0o2 1 13 antacid
14 Potassium 14 levothyroxine
15 Sodium 15 NSAID
16 Chloride 16 laxative
17 Glucose 17 multivitamin
18 BUN 18 topical _ointment
19 Creatinine 19 cough_ suppressant
20 Magnesium 20 homeopathic_ remedy
21 Calcium 21 herbal__supplement
22 Tonised_ Ca 22 eye_ drops
23 CO2_mEqL 23 muscle_ relaxant
24 SGOT 24 antihypertensive class B
25 SGPT 25 sleep__aid
26 Total bili 26 nasal_decongestant
27 Albumin 27 acne_treatment
28 Hb 28 antiemetic
29 WBC_ count 29 vitamin_ D_ supplement
30 Platelets count
31 PTT
32 PT
33 INR
34 Arterial pH
35 pa02
36 paCO2
37 Arterial BE
38 Arterial lactate
39 HCO3
40 mechvent
41 Shock Index
42 PaO2 FiO2
43 cumulated_ balance
44 SOFA
45 SIRS

22

Average Return

Published in Transactions on Machine Learning Research (7/2025)

Ant-high with Extra 20 Actions (Beginning State) HalfCheetah-high with Extra 20 Actions (Beginning State) Hopper-high with Extra 20 Actions (Beginning State)

3000
—— KS: Network = 64+32

3000 Al Actions: Network = 64+32

—— All Actions: Network = 128+64

2500 All Actions: Network = 256*128

—— KS: Network = 64*32

—— All Actions: Network = 64*32
— All Actions: Network = 128+64
—— All Actions: Network = 256*128

800 ' — Ks: Network = 64*32
—— Al Actions: Network = 64*32
600 — All Actions: Network = 128+64
—— Al Actions: Network = 256*128

2500

2000

2000
1500

1000 1500

Average Return
Average Return

1000

500
-200

1.0 0.0 0.2

0.4 0.6 0.4 0.6 0.4 0.6
Total Enviroment Steps (1e6) Total Enviroment Steps (1e6) Total Enviroment Steps (1e6)

(a) Learning Curves (b) Learning Curves (c) Learning Curves

Figure D.3: Learning curves in the MujoCo environments with different network sizes.

D Supporting Analyses

We conducted additional experiments regarding the distribution of actions that were sampled over the training
period. The new results are summarized in Figure Based on the results together with existing figures in
the main text, we can conclude that there exist changes regarding the distribution of actions that are sampled
during different periods of training, which could be a positive indicator of a more focused and potentially
more effective learning process.

Since we only use steps for PPO training, which might be able to converge in the end, we further add the
steps to 4e6. The new results are summarized in Figure Based on the results together with existing
figures in the main text, we can conclude that the benefit of the proposed framework is both sample efficiency
and performance.

We also conducted additional experiments by increasing the network size. The new results under MujoCo
with different network sizes are summarized in Figure where we can conclude that the network capacity
has a certain influence on the performance of All Action. However, simply increasing the network capacity
unnecessarily makes learning easier. In addition, the proposed method consistently performs better than All
Action, no matter how we increase the network size, which indicates that the performance difference results
from the redundancy of the action space. In addition, we admit there are other factors that affect how the
agent learns with a larger action dimension, such as regularization techniques, albeit with limited influence
compared with the redundancy of the action space.

E Dimensionality Reduction and Estimation Bias

A common concern in feature or action space reduction is the potential introduction of bias due to the
restriction of the hypothesis space, particularly when informative variables are inadvertently excluded. In
our setting, however, the redundant actions are conditionally independent of both the reward and the next
state, and thus can be regarded as nuisance variables that do not contribute meaningful information to the
decision-making process. When these actions are correctly identified and excluded, the resulting reduction in
dimensionality does not increase bias in principle. In fact, including irrelevant or weakly related features
may introduce additional bias and variance by complicating the model-fitting process. Moreover, from a
theoretical perspective, reducing the input dimensionality is beneficial for both bias and variance. According
to established results in deep learning theory (Farrell et all, 2021)), the error bound for value or policy
estimation using multilayer perceptrons is on the order of O(n=%/(8+4)) where d denotes input dimensionality,
n is the sample size, and § is the Holder smoothness parameter. Thus, selecting a minimal set of sufficient
actions and removing redundant ones leads to improved sample efficiency and more accurate value function
approximation.

23

Published in Transactions on Machine Learning Research (7/2025)

F Extend to Correlated Actions

Now, assume the policy network is parameterized by a multivariate Gaussian with a covariance matrix as:
an~N(u(s),2(s)),

where p and ¥ are parameterized functions to output the mean and covariance matrix.

Since the actions are correlated, we couldn’t mask the individual log g (a; | s). To solve this problem, we
can transform the non-selected actions to be conditional independent first.

Given a selected action set G, we define a selection vector m = (my, - -, myp) € {0,1}P, where m; = 11if i € G
and 0 otherwise. Then we mask the covariance matrix as follows:
S (s) X(s)y; ifm; =landm,; =1,i#j
S):s
Y10 if m; = 0,0r mj = 0,i # j.
The masking only changes non-selected actions to be independent and removes their influence on selected

actions, which still keeps the covariance structure of selected actions. Then we can easily mask the log density
of non-selected actions.

G Machine Learning Algorithm for Calculating Importance Scores

The feature importance score Z; ; for the i—th outcome (the reward or the next state) and the j—th action is
computed by fitting this outcome based on all inputs using a machine learning method. Specifically, this
process fits a predictive model f (x) to estimate a target variable y, where y corresponds to either the reward
or the next state, the feature vector x comprises the current state, action, and a knockoff copy, and the
function f can be the function classes of LASSO, random forests, or neural networks. The importance score of
a specific variable corresponds to its estimated coefficient in LASSO, its feature importance score in random
forests, or its weight/gradient in neural networks. Separate models are constructed for each target outcome
as detailed in Algorithm 2]

The only requirement for the machine learning method is that it satisfies a fairness constraint, ensuring that
exchanging an original feature with its knockoff counterpart results solely in the corresponding exchange of
the model’s importance score for those features. This condition is typically met by standard tabular machine
learning algorithms.

H Extension to Non-stationary Environments

In the context of our paper, stationarity refers to the policy being fixed and the transition dynamics and
reward function remaining unchanged. Hence, in the common batch update setting, the data collected
between policy updates can be treated as stationary. Our method can accommodate different forms of
non-stationarity.

When non-stationarity arises solely due to policy updates—while the environment’s dynamics and rewards
remain unchanged—our method can effectively handle this scenario by conducting knockoff variable selection
within each batch. This approach boosts policy optimization by ensuring that action masking is informed by
relevant, stable data. To enhance robustness, we can also extend our selection procedure to operate every k
batch, leading to more stable and adaptive masking throughout training.

In cases where non-stationarity stems from changes in the transition dynamics or reward function—which is
rare in simulated environments like MuJoCo but plausible in real-world scenarios—the problem becomes
more challenging. Nonetheless, our method remains effective under the realistic assumption of piecewise
stationarity. By integrating change point detection, we can segment the data into stationary intervals and
apply feature selection within each segment. This ensures that the selected action subset remains relevant
and informative, thereby preserving and even enhancing policy optimization.

24

Published in Transactions on Machine Learning Research (7/2025)

I Technical Proofs

1.1 Preliminary Results

Before we prove Theorem 1, we first provide a preliminary lemma of our procedure that can enable the
flip-sign property of W-statistics. This property can be used to prove Theorem 1 when observations are
independent. Now we focus on one data split D, and assume the data are independent.

Lemma I.1. Ay and Sy are a action and a state matriz. For any subset Q C {1,...,p}, and A}, obatined
by resampling, we have

([Ak A ey St) = ([Ars Ak] 1),

where swap(Q) represents swapping the j-th entry of Ay, and Ay for all j € Q.

The proof of Lemma is based on the property of constructed variables where A and :A have the same
marginal distribution and the whole joint distribution is symmetrical in terms of Ay and A.

In the following, we show that the exchangeability holds jointly on actions, states, and rewards when swapping
null variables.
Lemma 1.2, Let Ho C {1,...,p} be the indices of the null variables, for any subset Q C H,

d

([Ak,Ak] Sk,Yk> = ([Ax, Ar] .Sk, Yr),

swap(Q2) ’
where Y, is a response including the next state and reward.

Proof: Based on the exchangeability proved in Lemma we can directly utilize the proof of Lemma 3.2 in
Candes et al. (2018). We just need to extend the derivation by conditioning on Sy and show equivalence by
swapping action variables in {2 one by one. We omit further details of the proof.

Lemma I.3.

~ - -1, ifieq
W ([Ak,Ak]swap(Q) 7SkaYk> =W ([AkvAk] ’Sk’Yk) ' {4_1’ otherwise

Proof: We require the method for constructing W to satisfy a fairness requirement so that swapping two
variables would have the only effect of swapping corresponding feature importance scores. The fairness
constraint is satisfied with many general machine learning algorithms, like LASSO and random forest. Once
the fairness constraint is satisfied, W will be anti-symmetric, and the equality above automatically holds.

Lemma I.4. Assume the flip-coin property in Lemma is satisfied, on data Dy, the selection @k obtained
from applying knockoff method in Algorithm 2 controls modified FDR (mFDR), e.g.

mFDR (ék) <a.

Proof: For statistics W calculated, we denote Wyap(q) to be the W-statistics computed after the swap w.r.t.

Qc{1,...,p}. Now consider a sign vector ¢ € {+1}? independent of W = [, ..., WP]T, where ¢; = 1 for
all non-null state variables and P (¢; = 1) = 1/2 are independent for all null state variables. Then for such e,
denote Q := {i : ¢, = —1}, which is a subset of H(by the assumption (and recall that H is the collection of
all null variables). By Lemma [[.3| we know

(W1 S €]y Wp : Gp) = I/I/vswap(Q)'

For convenience, we also use h to denote a measurable mapping function from a data set to its W-statistics,
ie., on [sy, 8k, ak, y&l,

W = h (A, Ak, Sk, Yy) .

25

Published in Transactions on Machine Learning Research (7/2025)

Then we can get:

Wswap(ﬂ) = ([Ak7 Ak} Q) Sk, Yk)

(I:Aka Ak] aSkHYk) = Wa

h
swap
L

where the second equality (in distribution) is due to Lemma and h is measurable. The rest of the proof
will be the same as that for Theorems 1 and 2 in Barber & Candes| (2015)).

.2 Proof of Theorem 4.4

Using Lemma we can show that if the data points in Dy are independent, then mF DR can be controlled.
Now we want to weaken the independence assumption to stationarity and exponential S-mixing assumption
in Based on Lemma the following proof is essentially the same as Theorem 1 in |Ma et al.| (2023]). We
will omit those steps for brevity.

26

	Introduction
	Related Works

	Problem Setup
	Notations
	Minimal Sufficient Action Set in Online RL
	Preliminary: Knockoff Variable Selection

	Online Deep RL with Variable Selection
	Action-Selected Exploration Algorithm
	Knockoff-Sampling for Action Selection

	Theoretical Results
	Experiments
	Conclusion, Limitation, and Future Work
	Comparison with Closely Related Work
	Implementation Details
	More Experimental Results and Analyses
	MuJoCo
	Treatment Allocation for Sepsis Patients

	Supporting Analyses
	Dimensionality Reduction and Estimation Bias
	Extend to Correlated Actions
	Machine Learning Algorithm for Calculating Importance Scores
	Extension to Non-stationary Environments
	 Technical Proofs
	Preliminary Results
	 Proof of Theorem 4.4

