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MoS2: Mixture of Scale and Shift Experts
for Text-Only Video Captioning

Anonymous Authors
ABSTRACT
Video captioning is a challenging task and typically requires video-
text paired data for training. However, manually annotating coher-
ent textual descriptions for videos is laborious and time-consuming.
To address this problem, we propose to utilize solely text data to
enhance video captioning models. Drawing inspiration from the
exceptional text generation capabilities demonstrated by large lan-
guage models (LLMs), we aim to leverage these models to generate
high-quality and high-diversity video captions for the target do-
main. Specifically, we prompt GPT-4 with few-shot target-domain
captions to generate a limited set of plausible video captions. Sub-
sequently, we continue to prompt GPT-4 with the generated cap-
tions to acquire large-scale captions. To fully exploit the generated
captions, we propose a Mixture of Scale and Shift experts (MoS2)
for efficient adaptation of pre-trained image captioning models for
video captioning. MoS2 estimates a probability distribution over
a collection of experts by a lightweight routing network, deter-
mining the allocation of tokens to appropriate experts. This dy-
namic adjustment mechanism allows for specific responses to in-
put features, thereby enhancing the model’s ability to handle data
variations. Our approach not only customizes model responses to
input variations, effectively addressing the distribution shift be-
tween synthetic and actual captions but also significantly reduces
the number of learnable parameters, allowing for more efficient
adaptations. With only text data, we achieve superior performance
and significantly narrow the performance gap between zero-shot
and fine-tuned models. Our method boosts video captioning per-
formance with the synthetic text data, thus substantially alleviat-
ing the dependence on paired and large-scale real data of the target
domain. The code will be publicly available.

CCS CONCEPTS
• Computing methodologies → Computer vision tasks; Nat-
ural language generation.

KEYWORDS
Video Captioning, Large Language Models, Mixture of Experts

1 INTRODUCTION
The objective of visual captioning is to generate coherent descrip-
tions for visual content automatically. Recent studies [2, 7, 22, 23,
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32, 46, 47, 50, 60] have demonstrated that large-scale pre-training
can significantly enhance zero-shot captioning performance. De-
spite notable advancements in zero-shot captioning methods [22,
24, 46], the performance of zero-shot captioningmethods is largely
lower compared to models [6, 13, 43, 48] fine-tuned with target-
domain data. However, adapting vision-language models for each
upcoming new domain is cumbersome, which requires fine-tuning
the models with domain-specific datasets containing visual-text
pairs. Besides expensive computational costs formodels fine-tuning,
building large-scale training datasets for captioning is also time-
consuming and labor-intensive.

To improve the captioning performance on the target domain
with lower training costs, some recent researches [11, 24, 34, 52]
attempt to fine-tune the text decoder of the vision-language mod-
els using only textual data. DeCap [24] first projects visual and text
embeddings into the CLIP space [35] and optimizes only the text
decoder on a dedicated text corpus for image captioning. Subse-
quent studies [11, 34, 52, 57] further enhance the efficacy of text-
only training by employing contrastive learning basedmodels [35].
Current text-only training captioning works only focus on image
captioning. These works extract textual training data from web-
scraped image-text pairs or corpora tailored for specific target do-
mains, potentially limiting the effectiveness and broad applications.
Although only textual descriptions (i.e., video captions) are required
for training, we believe extracting high-quality text data for video
captioning is even more challenging.

To cope with the issue of data collection, this work investigates
video captioning from a different perspective. Different from prior
works [6, 13, 28, 43, 48] fine-tune models with large-scale video-
text pairs of the target domain, we aim to improve the video cap-
tioning performance on the target domain with only a few (e.g.,
10-shot) textual training examples of the target domain. Inspired
by prior image captioning works [62], we try to generate a domain-
specific text-only corpus to achieve text-only training. Since LLMs
(e.g., GPT-4 [1]) have superior instruction-following and contex-
tual reasoning capabilities, we design few-shot instruction-following
prompts request GPT-4 [1] to generate captions that closely align
with the target domain. Compared to crawling text descriptions
from the web [10], there is no need to manually craft complex fil-
tering rules. In addition, the captions generated by LLMs are more
similar to human-like styles, of higher-quality, free from gram-
matical errors and meaningless symbols. LLMs offer precise con-
trol over the text generation process through prompt engineering,
which facilitates adherence to specific guidelines or themes.

Currrent pre-trained captioning models [2, 54? ] typically incor-
porate large vision encoders [9, 35] and employ LLMs [58, 59] as
the text decoders. Although only the text decoder is fine-tuned in

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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our text-only video captioning framework, optimizing all parame-
ters within a large-scale text decoder remains costly. To further im-
prove the training efficiency and preserve the foundational knowl-
edge learned from the large-scale pre-training, we further explore
parameter-efficient transfer learning, where a minimal set of pa-
rameters within the text decoder is updated.

Existing parameter-efficient fine-tuning techniques, though ef-
fective, typically assume minor differences between training and
target domains. However, our approach, which prompts LLMs to
generate domain-specific text, still faces challenges stemming from
the distribution shift between synthetic and actual captions. To
counter this, we develop a novel architecture, the Mixture of Scale
and Shift Experts (MoS2), which incorporates input-dependent adapt-
ability into themodel’s parameters. A lightweight routing network
estimates a probability distribution over a collection of experts, de-
termining the allocation of tokens to appropriate experts. This dy-
namic adjustment mechanism allows for specific responses to in-
put features, thereby enhancing the model’s ability to handle data
variations. Unlike traditional Mixture-of-Experts (MoE) networks
that employ dense feed-forward networks with a high parameter
count, our method simplifies the expert components to scale or
shift factors, which significantly reduces the number of param-
eters, aligning with our goal of efficient training. Consequently,
adaptive scale and shift factors are applied to individual tokens, en-
hancing flexibility and overall performance. By employing MoS2,
our approach not only customizes model responses to input vari-
ations, effectively addressing the distribution shift between syn-
thetic and actual captions but also significantly reduces the num-
ber of learnable parameters, allowing for more efficient adapta-
tions. Following the fine-tuning of the text decoder, we integrate it
with the associate vision encoder for enhanced video captioning.

This paper presents a parameter-efficient text-only video cap-
tioning method trained with synthetic target-domain data. Exten-
sive experiments compared to state-of-the-art methods validate
the superiority of our proposed text-only video captioningmethod.
The key contributions of this paper are summarized as follows:

• We conduct text-only training for video captioning for the
first time and validate its effectiveness.We design in-context
prompts to guide GPT-4 in generating diverse, high-quality
domain-specific captions, which streamlines the construc-
tion of domain-specific corpora,minimizing reliance on paired
data and associated costs.

• We propose a novel mixture of scale and shift architecture
to address the distribution shift between synthetic and ac-
tual captions, which not only enhances the flexibility and
performance of the model but also significantly reduces the
number of parameters requiring updates.

• On three commonly used benchmarks,MoS2 improves state-
of-the-art few-shot video captioningmethods by +13.6, +11.3
and +3.6 in CIDEr score. Remarkably, on MSRVTT dataset,
MoS2 with 10 real target-domain caption examples achieves
95.7% performance of themodelwith 130K real target-domain
data.

2 RELATED WORKS
Text-Only Captioning. With the popularity of CLIP [35], re-

cent researches [8, 19, 24, 31, 39, 41, 44, 56] attempt to improve im-
age captioning by leveraging the aligned latent space. ZeroCap [41]
aims to generate descriptions with the highest CLIP similarity to
the image by combining CLIP with large language models. Despite
the correlated CLIP text and visual latent space, the modality gap
still hinders the generation of high-quality captions. DeCap [24]
learns a text decoder on text-only data and projects visual embed-
ding into CLIP text embedding space to reduce the modality gap,
achieving excellent zero-shot image captioning performance. Nev-
ertheless, these methods rely on pre-trained contrastive models,
and the inherent discrepancy between generative and contrastive
paradigms could potentially constrain performance. In response,
our work seeks to enhance video captioning using pre-trained im-
age captioning models. Furthermore, we utilize GPT-4 to generate
domain-specific and high-quality corpora, aiming to bolster text-
only captioning capabilities.

Parameter-Efficient Learning. With the increasingmodel sizes,
fully fine-tuning all parameters becomes increasingly cumbersome.
To reduce the computational burden, researchers explore alterna-
tive parameter-efficient learning methods that only train a few pa-
rameters [14, 15, 21, 25, 40, 55]. One pioneering approach [14] in-
serts lightweight adapters into transformer layers, achieving com-
parable performance with full fine-tuning. Prompt Tuning [21, 25,
58] appends a group of learnable prefix tokens to language models
to guide downstream tasks, while keeping the entire model frozen.
In this paper, we investigate representative parameter-efficientmeth-
ods for video captioning and introduce a novel mixture of scale
and shift architecture tuningmethods, which improves themodel’s
flexibility and performance while preserving a minimal number of
trainable parameters.

Mixture of Experts. Mixture of Experts (MoE) models, charac-
terized by their scalable capacity and enhanced performance, have
gained prominence in the development of large languagemodels [18].
These models leverage a trainable gating mechanism [38], which
dynamically allocates inputs to specific experts, enabling sparse
activation to augment capacity without significantly increasing
computational demands. Nevertheless, achieving optimal load bal-
ance among the experts remains a challenge. To address this, [20]
introduces a novel automatic load balancing strategy by incorpo-
rating a loss term that promotes more uniform activation of ex-
perts. Furthermore, [30] introduced an importance term to miti-
gate imbalances caused by the self-reinforcing effect of expert uti-
lization. Building on these foundational advancements, our work
introduces a novel architecture, theMixture of Scale and Shift, which
significantly enhances video captioning capabilitieswithwhilemin-
imizing the increase in trainable parameters.

3 METHOD
In this section, we present our refined text-only video captioning
pipeline. In Section 3.1, we introduce the text-only captioning set-
ting. Subsequently, Section 3.2 details our innovative parameter-
efficient tuning method, which allows the model to dynamically
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1. the person is slicing the vegetables for cooking 

the food

2. a small duck is talking to another duck

3. a man opening a box with art work

4. people are frying food in a restaurant and the 

place is nice

5. person is presenting a revolver on the table

6. a slide show of guitars with metal like music 

playing in the background

7. there is a new vehicle parked on the road

8. a man is explaining what the birds color 

means

10. their is a monkey crying for food the monkey 

looks cute

1. a cat is chasing a laser pointer across the room
2. children are playing tag in the park
3. the chef is decorating a cake with icing
4. two dogs are playing fetch with a frisbee

5. a person is planting flowers in the garden
6. the instructor is giving a pottery-making demo
7. a fisherman is casting his line into the lake

8. someone is assembling a computer from 
scratch
9. the baker is kneading dough for bread
10. a couple is dancing salsa in the living room

11. the mechanic is fixing a broken bicycle
12. the DJ is mixing tracks at a club
13. a bird watcher is observing rare species in the 
wild

13. someone is making homemade candles
14. a skateboarder
15. a family is having a picnic in the park
16. the teacher is explaining a mat

17. …

Stage I: In-domain text synthesis.

Stage III: Video captioning inference.

Stage II: Parameter-efficient text-only training.
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Figure 1: Overview of our text-only video captioning pipeline.We develop a three-stage pipeline for text-only video captioning.
Initially, using few-shot caption samples, we employ GPT-4 to generate in-domain captions. Subsequently, we enhance the
text decoder through parameter-efficient fine-tuning, integrating a Mixture of Scale and Shift Expert layer (MoS2). Finally, the
refined text decoder is combined with a visual encoder to facilitate video captioning.

adjust its parameters in response to varying inputs. Section 3.3 dis-
cusses the training loss, while Section 3.4 describes the inference
pipeline for video captioning. The overall pipeline is illustrated in
Figure 1.

3.1 Text-Only Captioning Setting
Text-Only Video Captioning Pipeline. Thedevelopment of vi-

sual captioning systems typically commences with the curation
of a paired dataset. Unfortunately, the manual annotation of such
datasets is both time-consuming and laborious. Curating video cap-
tioning datasets is evenmore arduous than image captioning datasets,
as annotators must invest additional time to comprehend the dy-
namic and complex content of videos.

Recent research attempts text-only captioning, aiming to reduce
the reliance on paired datasets. Text-only captioning seeks to en-
hance caption performance in specific domains using solely tex-
tual data. This task offers two configurations based on text data
availability: full-text and few-shot. In the full-text scenario, all rel-
evant textual data from the target domain are employed to opti-
mize the text decoder, thereby maximizing performance within
that domain. Conversely, the few-shot setting, characterized by
limited text availability, does not support comprehensive model
fine-tuning. Previous text-only captioning methods mainly focus
on the full-text configuration. Nonetheless, full-text configuration

is usually impractical, primarily because caption datasets are typi-
cally manually annotated, which is both labor-intensive and time-
consuming. Consequently, producing high-quality in-domain cap-
tions for target domains remains a challenging endeavor.

In response, our study explores an alternative setting, better
suited for real-world applications. We aim to enhance captioning
performance by leveraging minimal text samples from the target
domain. We attempt to leverage LLMs’ instruction-following and
contextual reasoning capabilities to produce captions that are not
only high in quality but also diverse and well-aligned with the tar-
get domain.We employ LLMs to exploit their instruction-following
and contextual reasoning capabilities, aiming to produce captions
that are not only high-quality but also closely aligned with the
target domain. Subsequently, we employ the synthesized data to
fine-tune the text decoder, enhancing the model’s captioning per-
formance within on the target domain.

In-DomainText Synthesis. Inspired by the remarkable instruction-
following capability of large language models (LLMs), we propose
leveragingChatGPT or languageGPT-4 [1] to synthesize in-domain
captions, thereby reducing annotation costs. Specifically, we ran-
domly select 10 captions from the downstream dataset and con-
struct a ”few-shot” instruction-following prompt, as illustrated in
Table 1.
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System: You are an expert in video caption annotation.
Human: Your task is to generate diverse and plausible cap-
tions that are consistent with the following sample anno-
tations: {five sample captions}.
Assistant: {another five captions}.
Human: Your generated captions are plausible. Please gen-
erate another 100 diverse and plausible captions that are
consistent with the sample annotations. Your captions
must cover diverse and plausible content that could be
found in YouTube videos. Do not include any explana-
tions, just provide the 100 generated captions.

Table 1: Prompt for in-domain text synthesis.

This prompt encourages the LLMs to generate captions that align
with the provided sample captions. However, the text synthesized
in this way has a high percentage of duplicates. Tomitigate this, we
incorporate the generated text back into the prompt. Specifically,
we randomly sample captions from both the selected downstream
and synthesized captions and then prompt ChatGPT or GPT-4 [1]
with the novel prompt. This self-instructed technique injects ran-
domness into the prompt, effectively reducing text repetition. In
preliminary experiments, we compare the performance of Chat-
GPT andGPT-4 [1] and find that GPT-4 consistently provides higher
quality captions, consistent with [29]. Our methodology enables
the synthesis of in-domain captions without the need to access vi-
sual data.

3.2 Mixture of Scale and Shift Experts
TTo match the distribution of a target dataset, SSF [26] incorpo-
rates scale and shift factors to modulate deep features extracted by
a pre-trained model. Specifically, modifies an input token 𝒙 ∈ R𝑑
by scaling and shifting as follows:

𝒛 = 𝒙 ⊙ 𝜸 + 𝜷, (1)

where 𝜸 ∈ R𝑑 and 𝜷 ∈ R𝑑 represent learnable affine transform pa-
rameters. ⊙ denotes the dot product, and 𝒛 signifies the adjusted to-
ken. However, their scale and shift factors are input-independent,
potentially constraining the model’s expressive capacity. To ad-
dress this limitation, we propose an adaptive learning mechanism
for scale and shift parameters that tailors to the specific inputs:

𝒛 = 𝒙 ⊙ 𝜸𝒙 + 𝜷𝒙 , (2)

where 𝜸𝒙 and 𝜷𝒙 are input-dependent scale and shift factors, al-
lowing for a more flexible and responsive model adaptation.

A straightforwardmethod for determining input-dependent scale
and shift factors involves employing an MLP to estimate these fac-
tors. However, such an approach introduces a significant number
of learnable parameters, which can lead to unstable training and
suboptimal performance, especially in scenarios with limited train-
ing data. Moreover, there is a distribution shift between synthetic
and actual captions, further increasing learning difficulty. To miti-
gate these challenges, we propose a novel approach that constructs

a sparse Mixture of Scale and Shift expert model (MoS2). We de-
fine a collection of discrete scale and shift experts, coupled with
a lightweight routing network tasked with predicting a probabil-
ity distribution among these experts. Subsequently, the top-k ex-
perts with the highest probabilities are aggregated to formulate
the input-dependent scale and shift factors. The MoS2 architec-
ture aims to reduce the number of parameters to be updated and
simplify the estimation of scale and shift factors. As opposed to
SSF [26], our MoS2 model can adaptively adjust to varying inputs
and enhance themodel’s capacity, thereby improving performance
in downstream tasks.The architecture of MoS2 is depicted in Fig. 2.

The mixture of scale components comprises a routing network,
denoted as 𝐺 , in conjunction with 𝑛 scale experts, represented as
𝚪 = {𝜸1,𝜸2, . . . ,𝜸𝒏},𝜸𝒊 ∈ R𝑑 . We derived the input-dependent
scale factor 𝜸𝒙 from the weighted summation of adaptively se-
lected scale experts. Formally, for the input token 𝒙 , the routing
network generates an 𝑛-dimensional probability distribution 𝑔(𝒙)
across the scale experts:

𝑔(𝒙) = Softmax
(
𝒙 ⊗𝑾𝒈 + 𝝐

)
, (3)

where 𝑾𝒈 ∈ R𝑑×𝑛 signifies the trainable weight of the router, ⊗
denotes matrix multiplication, and 𝝐 refers to Gumbel noise [17],
facilitating weighted sampling from a distribution. It is flexible to
choose the appropriate routing network andwe choose a single lin-
ear layer for simplicity. Subsequently, we identify the top-𝑘 scale
experts with the highest probabilities and normalize the probabil-
ity distribution as follows:

𝑔𝑛 (𝒙) = Norm (Top (𝑔(𝒙), 𝑘)) , (4)
where 𝑔𝑛 (𝒙) denotes the normalized distribution, 𝑘 signifies the
number of experts chosen per token, and the Norm function ad-
justs the output by dividing each element by their cumulative sum.
The input-adaptive scale factor is then computed via a weighted
summation of the selected experts:

𝜸𝒙 =
𝑘∑
𝑖=1

𝑔𝑛 (𝒙)𝑖 ⊙ 𝜸𝑖 . (5)

In a parallel manner, we define a collection of shift experts, 𝑩 =
{𝜷1, 𝜷2, . . . , 𝜷𝑛}, and estimate their probability distribution 𝑔′ (𝒙)
via a shift router, described as:

𝑔′ (𝒙) = Softmax
(
𝒙 ⊗𝑾 ′

𝒈 + 𝝐
)
, (6)

where 𝑾 ′
𝒈 denotes the trainable weight of the shift router. Subse-

quently, we identify top-𝑘 shift experts with the highest probabili-
ties and normalize the probability distribution:

𝑔′𝑛 (𝒙) = Norm
(
Top

(
𝑔′ (𝒙), 𝑘

) )
. (7)

The input-dependent shift vector is derived through a weighted
aggregation of these selected shift experts:

𝜷𝒙 =
𝑘∑
𝑖=1

𝑔′ (𝒙)𝑖 ⊙ 𝜷𝑖 . (8)

Upon determining the input-dependent scale,𝜸𝒙 , and shift, 𝜷𝒙 , we
proceed to adjust the hidden representations accordingly as pre-
scribed in Eq. (2).

It is noteworthy that our approach could converge to SSF [26] if
the router matrices𝑾𝒈 and𝑾 ′

𝒈 are optimized to exhibit repetitive
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Figure 2: Overview of Mixture of Scale and Shift expert model (MoS2). For each individual token, top-𝑘 scale and shift experts
are selected to construct input-dependent scale and shift factor.The factors are subsequently applied to themselves, enhancing
the model’s responsiveness to varying input conditions.

column patterns. We allocate distinct parameters to the routers of
scale and shift to the representation capacity of the model. More-
over, by increasing 𝑛 while maintaining 𝑘 constant, we are able
to enhance the adaptability of the model without significantly af-
fecting its computational demand. It operates independently per
token and is orthogonal to the attention mechanism. During adap-
tation, we freeze the pre-trained weights, with updates applied
exclusively to the MoS2 parameters. The selective adaptability of
MoS2 enables the model to dynamically adjust its parameters in re-
sponse to specific inputs, substantially improving the adaptability
for downstream applications.

LoadBalancing Loss. OurMoS2, characterized as a lightweight
Mixture of Expert (MoE) architecture, confronts a load-balancing
challenge in the absence of regularizationmechanisms. Specifically,
unregularized routing networks are prone to allocating dispropor-
tionate weights to a small subset of experts, regardless of the in-
put. This imbalance is self-reinforcing [30], with preferred experts
receiving enhanced training, thereby increasing their likelihood
of selection in subsequent routing decisions. To counteract this
imbalance, we introduce a load-balancing loss function designed
that penalizes the over-reliance on any single expert. The impor-
tance of an expert is quantified as the mean routing probability
assigned to that expert across a batch. Our objective is to ensure
a balanced utilization of experts by penalizing those with high-
importance scores. For a batch consisting of𝑇 tokens, represented
as 𝑿 = {𝒙1, 𝑥2, . . . , 𝒙𝑇 }, the load balancing loss, L𝑙𝑏 , is formulated

as follows:

L𝑙𝑏 = 𝑛
𝑛∑
𝑖=1

𝑝𝑖 ⊙ 𝑞𝑖 ,

𝑝𝑖 =
1
𝑇

∑
𝒙∈𝑿

𝑝𝑖 (𝒙),

𝑞𝑖 =
1
𝑇

∑
𝒙∈𝑿

1{argmax 𝑝 (𝒙) = 𝑖},

(9)

where 𝑛 denotes the number of experts, 𝑝𝑖 represents the batch-
averaged routing probability for expert 𝑖 , 𝑝 (𝒙) ∈ R𝑛 signifies the
router probability for token 𝒙 , and𝑞𝑖 indicates the proportion of to-
kens dispatched to expert 𝑖 ,1 being the indicator function.The load
balancing loss ensures that the training process remains balanced,
fostering an equitable distribution of learning across all experts.
The final load balance loss is computed by averaging across all
mixture of scale and shift modules, which we omit it for simplicity.
Through the load balancing loss, the training process is calibrated
to ensure a balanced, equitable distribution of learning opportuni-
ties across all experts, thereby mitigating the risk of over-reliance
on a limited subset of the available experts.

3.3 Text-Only Training
In light of the substantial costs and effort required for manually an-
notating paired datasets, our study aims to enhance video caption-
ing through an innovative approach that relies solely on text data.
We incorporated our designed MoS2 layer into the text decoder
ℎ, positioned after layer normalization, multi-head attention, and
pointwise feed-forward networks. The MoS2 layer is fine-tuned
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Table 2: Comparison with state-of-the-art methods on MSR-
VTT [49] test split. Bold and underline indicate the best and
second best performance respectively.The terms ”All”, ”Full-
text”, and ”Text” refer to the use of all data from the target
domain, all text data, and partial text data, respectively.
Method All Full-text Text B4 M R C

Zero-shot
Yue Zhao et al. [60] 7 7 7 - - - 48.2
PaLM2-VAdapter [47] 7 7 7 - - - 47.7
InternVideo2 [46] 7 7 7 - - - 43.5
BLIP-2 [22] 7 7 7 29.5 25 53.4 48.0

Few-shot
Open-Flamingo-3B [3] 7 7 3 24.8 24.3 51.1 38.2
Open-Flamingo-9B [3] 7 7 3 30.1 25.4 54.9 47.2
MoS2 (ours) 7 7 3 40.3 28.2 60.4 58.5

Full-text
CLIPRe [39] 7 3 3 10.2 18.8 - 19.9
DeCap [24] 7 3 3 23.1 23.6 - 34.8
MoS2 (ours) 7 3 3 44.5 29.9 62.7 61.1

Fine-tuning
MV-GPT [37] 3 3 3 48.9 38.7 64 60
Vid2Seq [51] 3 3 3 - 30.8 - 64.6
HiTeA [53] 3 3 3 - - - 65.1

on our synthesized in-domain captions. Specifically, we employ
casual language modeling [36] to train MoS2, which involves pre-
dicting the current text token conditioned on the preceding tokens.
Formally, we minimize the following loss:

L𝑙𝑚 = − 1
|𝒕 |

|𝒕 |∑
𝑖=1

logℎ𝜌 (𝒕𝑖 | 𝒕<𝑖 ) , (10)

where 𝜌 represents the parameters of the MoS2 layer. The overall
training loss incorporates both the causal language modeling loss,
L𝑐 , and the load balancing term for MoS2, L𝑏 , is expressed as:

L = L𝑙𝑚 + 𝛼L𝑙𝑏 , (11)

with𝛼 representing the coefficient for the load balancing term. Our
methodology, leveraging text-only training data, significantly re-
duces reliance on paired datasets. The text-only training paradigm,
coupled with the incorporation of the MoS2 layer, offers a promis-
ing avenue for advancing video captioning capabilities, without
the necessity for extensive manual data annotation. After train-
ing, we can combine the visual encoder with the fine-tuned text
decoder for video captioning.

3.4 Video Captioning Inference
We integrate our text-only training pipeline and the MoS2 archi-
tecture into BLIP-2 [22] model for video captioning. BLIP-2 [22]
connects a frozen visual encoder and a large language model by
a lightweight perceiver-based [16] transformer, Q-Former, which
facilitates the integration of image encoders with large language
models, thereby bootstrapping vision-to-language generativemod-
eling. For video inputs containing multiple frames, we simply con-
catenate the frame-level visual representations before processing
with the Q-Former.

Table 3: Comparison with state-of-the-art methods on
MSVD [5] test split. Bold and underline indicate the best and
second best performance respectively.The terms ”All”, ”Full-
text”, and ”Text” refer to the use of all data from the target
domain, all text data, and partial text data, respectively.
Method All Full-text Text B4 M R C

Zero-shot
Uni-Perceiver [63] 7 7 7 20.3 25.8 52.1 45.7
InternVideo2 [46] 7 7 7 - - - 93.1
BLIP-2 [22] 7 7 7 38.9 35.0 68.5 87.1

Few-shot
Open-Flamingo-3B [3] 7 7 3 61.0 39.5 75.7 122.5
Open-Flamingo-9B [3] 7 7 3 65.7 41.9 78.8 128.9
MoS2 (ours) 7 7 3 67.5 44.8 81.2 142.5

Full-text
MoS2 (ours) 7 3 3 65.2 44.6 81.1 143.4

Fine-tuning
Uni-Perceiver [63] 3 3 3 61.5 42.3 79.0 131.0
Vid2Seq [51] 3 3 3 - - - 146.2
HiTeA [53] 3 3 3 - - - 146.9

4 EXPERIMENTS
4.1 Experimental Setup
We start from BLIP-2 [22], a pre-trained image captioning model
equipped with ViT-G from EVA-CLIP [9] and OPT-2.7B [59]. Fur-
ther improvement can be achieved by augmenting the model with
a more powerful visual encoder and textual decoder. We evaluate
our approach on three popular video captioning benchmarks, in-
cluding MSRVTT [49], MSVD [5], and VATEX [45]. We evaluate
the quality of generated captions using four standard captioning
evaluation metrics, including BLEU-4 (B4) [33], METEOR (M) [4],
ROUGE-L (R) [27], and CIDEr (C) [42]. Additional experimental
details are provided in the appendix.

4.2 Main Results
Table 2, Table 3 and Table 4 presents the video captioning results in
both few-shot and full-text settings. Our method significantly sur-
passes the previous state-of-the-art in the few-shot setting, demon-
strated by CIDEr score enhancements of +13.6, +11.3, and +3.6 on
the MSVD, MSRVTT, and VATEX datasets, respectively. Addition-
ally, compared to the zero-shot outcomes of BLIP-2, our approach
leveraging few-shot in-domain text synthesis shows remarkable
improvements, with increases in CIDEr scores of +55.4, +10.5, and
+10.4 across these datasets. Notably, our few-shot result outper-
forms the fine-tuning result of Uni-Perceiver [63] on the MSVD
dataset. Specifically, we attained a CIDEr score of 142.5, surpass-
ing the score of 131.0 achieved by Uni-Perceiver [63], which is pre-
trained on extensive image-text and video-text pairs. These results
highlight the effectiveness of our novel few-shot in-domain text
synthesis and a mixture of scale and shift tuning methods. Addi-
tionally, the minor discrepancies observed between our few-shot
and full-text results suggest that our text generation technique suc-
cessfully captures the critical elements of the original datasets, un-
derscoring the robustness of our methods. In the full-text setting,
our approach outperforms the state-of-the-art method DeCap [24],
by a margin of +26.3 on MSRVTT, recording a CIDEr score of 61.1
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Table 4: Comparison with state-of-the-art methods on VA-
TEX [45] public test split. Bold and underline indicate the
best and second best performance respectively. The terms
”All”, ”Full-text”, and ”Text” refer to the use of all data from
the target domain, all text data, and partial text data, respec-
tively.

Method Video Full-text Text B4 M R C

Zero-shot
ChatBridge [61] 7 7 7 - - - 48.9
OneLLM [12] 7 7 7 - - - 43.8
EffShoRtViViT [32] 7 7 7 - - - 43.6
PaLM2-VAdapter [47] 7 7 7 - - - 53.0
InternVideo2 [46] 7 7 7 - - - 49.2
BLIP-2 [22] 7 7 7 21.7 19.9 45.8 39.9

Few-shot
Open-Flamingo-9B [3] 7 7 3 25.4 20.2 46.8 41.8
Flamingo-3B [2] 7 7 3 - - - 40.1
Flamingo-9B [2] 7 7 3 - - - 39.5
Flamingo-80B [2] 7 7 3 - - - 46.7
MoS2 (ours) 7 7 3 28.7 21.9 46.7 50.3

Full-text
DeCap [24] 7 3 3 21.3 20.7 - 43.1
MoS2 (ours) 7 3 3 28.6 22.6 47.4 53.1

Fine-tuning
PaLI-3 [7] 3 3 3 - - - 66.9
SwinBERT [28] 3 3 3 38.7 26.2 53.2 73.0
VideoCoCa [50] 3 3 3 39.7 - 54.5 77.8

Table 5: Comparison with state-of-the-art parameter-
efficiency learning methods.

Method Params B4 M R C Mean

SSF [26] 0.2M 39.2 27.4 58.9 56.8 45.6
BitFit [55] 0.9M 38.5 27.2 59.0 55.9 45.1
LLaMA-Adapter [58] 1.3M 39.1 27.5 59.6 57.0 45.8
LoRA [15] 13.1M 39.1 27.3 59.1 56.8 45.6
Adapter [14] 52.6M 39.7 27.7 59.7 57.8 46.2
Full fine-tuning 2,651.6M 38.9 27.8 59.5 57.3 45.9
MoS2 (ours) 10.5M 40.3 28.2 60.4 58.5 46.8

against 34.8. These findings suggest that our parameter-efficient
tuning approach adeptly adapts pre-trained image captioningmod-
els for video captioning tasks, effectively narrowing the perfor-
mance gap between zero-shot and fine-tuning results.

4.3 Ablation Study
We conduct comprehensive ablation analysis on theMSR-VTT [49]
dataset with our synthesized corpus. We use mean of BLEU-4 [33],
METEOR [4], ROUGE-L [27], and CIDEr [42] as the primary eval-
uation metric for robustness.

Parameter Efficiency. We conduct a comparative analysis of
the state-of-the-art parameter-efficient tuningmethods, as detailed
in Table 5. Our proposed tuningmethod, MoS2, demonstrates supe-
rior performance across all metrics while maintaining competitive
trainable parameters, at a reduced parameter count of 10.5M. This
denotes a notable advancement in learning efficiency, achieving a
delicate balance between parameter count and performance. The

Table 6: Ablation on number of experts 𝑛.
𝑛 Params B4 M R C Mean

4 1.3M 39.1 27.7 59.4 57.2 45.8
8 2.6M 39.1 27.8 59.5 57.3 45.9
16 5.2M 39.6 28.0 59.8 57.8 46.3
32 10.5M 39.6 28.0 60.0 57.9 46.4

Table 7: Ablation on top-𝑘 .
𝑘 B4 M R C Mean

2 39.6 28.0 60.0 57.9 46.4
4 39.5 27.8 59.5 57.5 46.1
8 39.4 27.9 59.5 57.8 46.1
16 39.6 27.8 59.6 57.7 46.2
32 39.6 27.8 59.6 57.8 46.2

SSF [26] method introduces input-independent scale and shift fac-
tors, requiring a minimal number of trainable parameters (0.2M),
and demonstrates significant parameter efficiency by delivering
commendable performance. Conversely, BitFit [55], which adjusts
only the bias term, fails to achieve a performance increase. The
LLMaM-Adapter [58] method, which prepends learnable adapta-
tion prompts to word tokens, exhibits enhanced performance with
a slightly increased parameter count, underscoring the efficacy of
prompts for fine-tuning Transformer models. The above methods
are characterized by a limited number of trainable parameters, wherein
only trainable vectors are employed. LoRA introduces trainable
rank decomposition matrices into each layer of the Transformer
architecture, resulting in a considerable increase in the parame-
ter count. Adapter [14] utilizes 52.6M parameters and achieves the
second-best result. Full fine-tuning, with the most trainable pa-
rameters, does not achieve the best performance, implying that
no need to update so many parameters. Similarly, the Adapter in-
corporates MLP, further increasing the total number of trainable
parameters to 52.6 million, achieving the second-best performance.
Notably, full fine-tuning, which utilizes the highest number of train-
able parameters, does not yield the best results, suggesting that
updating an extensive array of parameters is not necessary for op-
timal performance.

Number of Experts. The quantity of expert models plays a cru-
cial role in MoE-based models. We attempt to increase the number
of scale and shift expert models, as shown in Table 6. Our experi-
mental findings indicate a direct correlation between an increase
in the number of expert models and enhanced model performance.
Nonetheless, considering the parameter efficiency, we ultimately
select 32 expert models, opting not to expand further.

Top-𝑘 Routing. Presented in Table 7, we investigate the effect
of varying the number of expert models (𝑘) selected by each token.
Our findings indicate that increasing 𝑘 does not improve perfor-
mance. Therefore, we set 𝑘 = 2 for subsequent analyses.

LoadBalance Loss Coefficient. As load balancing significantly
influences the performance of MoE models, we incorporate a load
balance loss term into our method. As demonstrated in Table 8, an
appropriate load balance loss coefficient, specifically set at 𝛼 = 0.1,
notably improves performance by +3.3. This finding highlights the
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Table 8: Ablation on load balance loss coefficient 𝛼 .

𝛼 B4 M R C Mean

1 39.6 28.0 60.0 57.9 46.4
0.2 39.6 28.1 60.3 57.8 46.5
0.1 40.0 28.1 60.4 58.3 46.7
0.05 39.8 28.0 60.5 58.0 46.6
0 36.3 27.2 57.8 52.3 43.4

Table 9: Ablation on mixture of scale and shift.

Scale Shift Params B4 M R C Mean

3 5.2M 34.7 26.5 56.1 50.3 41.9
3 5.2M 40.1 28.1 60.1 58.4 46.7

3 3 10.5M 40.3 28.2 60.4 58.5 46.9

Table 10: Ablation on number of MoS2 layers.

Type (#Layers) Params B4 M R C Mean

Interleaved (4) 5.2M 40.1 28.1 60.2 57.9 46.6
Interleaved (8) 10.5M 40.0 28.1 60.4 58.3 46.7
Interleaved (16) 21.0M 39.5 28.0 60.5 57.7 46.4
First (8) 10.5M 37.5 27.5 58.9 54.0 44.5
Middle (4) 5.2M 40.3 28.1 60.2 58.7 46.8
Middle (8) 10.5M 40.3 28.2 60.4 58.5 46.9
Middle (16) 21.0M 39.2 28.1 60.3 57.2 46.2
Last (8) 10.5M 38.4 27.5 59.6 56.3 45.5

essential role of the load balance loss term in boosting the efficacy
of MoE models.

Different Components. We conduct ablation experiments on
the two expert models, specifically analyzing the effects of remov-
ing the mixture of scale or the mixture of shift components. As
indicated in Table 9, omitting the mixture of shift results in a sig-
nificant performance decrease of -5, whereas eliminating the mix-
ture of scale leads to a marginal reduction of -0.2. We hypothesize
that the more pronounced effect of omitting the mixture of shift
could be attributed to its incorporation as residuals to the hidden
states, which likely stabilizes the gradient and simplifies the train-
ing process. In contrast, the mixture of scale directly multiplies the
hidden states, potentially introducing greater variability in model
training.

Insertion Layers. We investigate the distribution of MoS2 lay-
ers within Transformer models to determine their optimal place-
ment. Our findings, presented in Table 10, indicate that incorporat-
ing MoS2 into the middle eight layers of the Transformer signifi-
cantly enhances performance relative to other configurations such
as the initial or final eight layers, or an interleaved arrangement.
Additionally, we observed that an increase in the total number of
layers does not consistently improve performance; rather, themost
effective enhancement is achieved through the middle eight layers.

Insertion Locations. We analyze the placement of components
within the Transformer block. As demonstrated in Table 11, remov-
ingMoS2 subsequent to layer normalization substantially degrades

Table 11: Ablation on MoS2 location within Transformer
block.

Location Params B4 M R C Mean

w/o norm 5.2M 39.0 28.0 59.8 57.5 46.1
w/o attn 7.9M 40.1 28.0 60.3 58.3 46.7
w/o FFN 7.9M 40.2 28.0 60.2 57.7 46.5
MoS2 (ours) 10.5M 40.0 28.1 60.4 58.3 46.7
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Figure 3: Performance of MoS2 under different training data
scales.

performance, more so than its removal after the feed-forward net-
work (FFN). Conversely, eliminatingMoS2 subsequent to the atten-
tion layers has a negligible impact on performance; nevertheless,
we maintain MoS2 in this position by default.

Number of Text. We evaluate the impact of increasing the num-
ber of synthetic text on model performance, as depicted in Fig. 3.
Our results indicate a consistent enhancement in model efficacy
correlating with increased text quantities, suggesting potential for
further gains. This trend demonstrates that the synthetic texts gen-
erated by our approach effectively encapsulate critical aspects of
the target domain knowledge.

5 CONCLUSION
Thiswork presents a refined text-only training pipeline that signifi-
cantly enhances the usability and performance of domain-specific
captioning. By leveraging GPT-4 to create high-quality, domain-
specific captions, we successfully reduce dependency on extensive
paired data, thereby reducing associated annotation costs and la-
bor.We also introduce theMixture of Scale and Shift Experts (MoS2)
architecture, which effectivelymitigates distribution shifts between
synthetic and real captions, thereby enhancing model flexibility.
MoS2 outperforms state-of-the-art methods in both few-shot and
full-text video captioning across three established benchmarks. Re-
markably, MoS2 achieves near full-text model performance with
only minimal real training examples (10-shot), demonstrating the
viability of using large language models (LLMs) to generate train-
ing data and underscoring the potential of parameter-efficient learn-
ing techniques in domain-specific applications.
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