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Abstract

Firms’ algorithm development practices are often homogeneous. Whether firms
train algorithms on similar data, aim at similar benchmarks, or rely on similar
pre-trained models, the result is correlated predictions. We model the impact of
correlated algorithms on competition in the context of personalized pricing. Our
analysis reveals that (/) higher correlation diminishes consumer welfare and (2)
as consumers become more price sensitive, firms are increasingly incentivized to
compromise on the accuracy of their predictions in exchange for coordination. We
demonstrate our theoretical results in a stylized empirical study where two firms
use personalized pricing algorithms to determine consumers’ willingness to pay.
Our results underscore the potential anti-competitive effects of algorithmic pricing
and highlight the need for refined antitrust approaches in the era of digital markets.

1 Introduction

Competing firms increasingly use algorithms to price their goods and services. For example, dynamic
pricing — where prices vary frequently, often in response to changes in supply or demand — is now
widespread in e-commerce [54]], airfare [29]], and ridesharing apps [3]]. In this work, we focus on
personalized pricing, where prices are tailored to different consumers based on their willingness to
pay. Companies have been observed to personalize prices in various domains, from travel websites
that use browser information to charge US-based customers more [35] to a recent lawsuit against
DoorDash alleging that the company is charging Apple users more in delivery fees [40].

The personalized pricing strategy where firms segment consumers and charge different prices to
each segment is known as “third-degree price discrimination” [51} 43]]. While third-degree price
discrimination can be accomplished by simple rules (e.g., “charge higher prices to Mac users”),
firms have recently turned to machine learning to segment consumers into smaller and more targeted
categories [[16]]. One such example is offering a fixed discount to a subset of consumers [[L7]], as has
been documented in ridesharing competitors Uber and Lyft (see Figure[7).

In theory, using algorithms to better price-discriminate can be positive for consumers because those
who are willing to pay less still get access to goods and services. Firms will inevitably make mistakes,
giving some discounts to those who would be willing to pay more and overlooking others who would
only buy with a discount. If these mistakes are not correlated, consumers can choose between a high
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and a low price. However, if pricing mistakes are correlated, firms are insulated from the competitive
cost of their mistakes: the price-sensitive consumer to whom one firm failed to offer a discount is
also not buying from a competitor [12].

Correlated predictions occur because firms often deploy algorithms with “shared components” such
as algorithms trained on similar datasets, aimed at similar benchmarks, or based on similar pre-trained
models [7]]. In other words, model development practices can be homogeneous. At the extreme, firms
might even adopt the same algorithm from a third party, creating an “algorithmic monoculture” with
perfect predictive correlation across firms [26]].

Contributions. Our work investigates how correlated algorithms impact competition in the context
of personalized pricing. This is in line with, and in many ways an extension of, several recent cases
brought by the Federal Trade Commission (FTC) involving multiple parties using the same pricing
algorithm, which allegedly inflated hotel [47] and rent prices [48]]. We build a game-theoretic model
of competition between two firms who use algorithms to price-discriminate. We find that:

1. Consumers are always worse off when competing firms’ algorithms are more correlated
(Theorem [.T)).

2. As consumers become more price sensitive, firms increasingly prefer to correlate their
algorithms (Theorem[4.2).

3. Firms are sometimes willing to give up non-trivial predictive performance in exchange for
correlation with competitors (Theorem [5.3).

In all, algorithmic homogenization allows firms to sustain higher prices, potentially resulting in
anti-competitive outcomes. Our work has implications for antitrust law, as governments seek to
promote competition and prevent collusion via algorithms. We expand on this connection in Section|[7]

2 Background and Related Work

Antitrust Law. The spirit of modern antitrust law is to promote competition. There is generally
broad consensus that an open and free market economy — which at its core fosters competition —
benefits consumers by lowering prices, spurring innovation, and increasing the quality of goods and
services [41},133, 20, [8]]. In the United States, antitrust enforcement relies on three sets of federal laws:
the Sherman Act, the Clayton Act, and the FTC Act, each prohibiting different actions that harm
competition. In this work, we will focus our attention to the parts of the Sherman Act and the FTC
Act that are intended to delineate which forms of collusion amongst competitors are illegal.

In general, agreement between competitors to fix prices or divide territory of operation is deemed
per se illegal, meaning that no further inquiry is needed as to the action’s effect on the market or the
parties’ intent in reaching such an agreement [44} 50]]. Establishing additional violations of anti-trust
law involves determining whether or not the alleged practice “unreasonably restricts trade” [49].
Absent proof of intent to form an agreement, firms are considered to engage in tacit collusion, which
is generally not illegal. For example, firms might exhibit “parallel business behavior” by changing
prices in response to market conditions or even consciously mirroring the public prices of their
competitors without intending to reach supra-competitive prices [45} 28]].

In evaluating the legality of parallel business behaviors, courts consider various “plus factors” that
might tip the scales from tacit to illegal collusion. Evidence that firms are motivated to collude and
take actions against their own economic self-interests are a common form of plus factor[27]].

Homogeneity, Monoculture, and Model Multiplicity. Our work builds on recent work in machine
learning on “algorithmic monoculture”, namely the state of affairs in which “many decision-makers
rely on the same algorithm" and in doing so correlate their behavior [26]. Existing literature focuses
on how monoculture harms the welfare of those who are subject to correlated algorithmic errors or
“homogeneous outcomes” [[7, 24, [36]]. Our work spotlights the harm to consumers that comes from
higher prices in the context of personalized pricing.

Our work is also related to the concept of “model multiplicity”, where arbitrarily many algorithms can
achieve maximal accuracy but differ in other desiderata such as fairness, robustness, or interpretability.
[6] showed that a model class’ variance is directly proportional to its multiplicity. We argue that
in the midst of competition, firms have a natural incentive to choose models with high correlation
(perhaps from a model class with less variance), which results in higher overall prices.



Economic Models of Oligopoly Pricing. We consider competition under a duopoly, which has been
extensively studied in the economics literature. The works most related to ours are game-theoretic
models of duopolies under Bayesian uncertainty [32} [10} [52] 22 140} [1]]. Much of this literature
considers whether firms have incentives to collude by sharing information with one another. Whether
a model will suggest that firms are rewarded for sharing information depends on a variety of modeling
choices including whether firms compete over production quantity [13]] or price [S)]. In our model,
as in these information-sharing models, firms’ information is parameterized by its performance and
degree of correlation. This allows us to reason about strategic decisions firms may make regarding
shared data, model components, or predictive algorithms.

Theoretical and Empirical Models of Personalized Pricing. A growing body of empirical, theoreti-
cal, and legal literature considers how personalized pricing interacts with concepts like competition
and privacy [4} 17,1918, [55 [11}138]]. Most related to our work are theoretical models of personalized
pricing in the context of competition. Both Rhodes and Zhou [39] and Baik and Larson [2] consider
models of competition in personalized pricing under first-degree price discrimination, when firms can
acquire perfect information about consumer valuations. In contrast, our model is designed to provide
insights when firms have imperfect but potentially correlated information.

3 Model

We consider a duopoly model where two firms sell identical goods. For each consumer, a firm decides
whether to offer a default price /" or a discounted price LTE] Both firms incur similar unit costs C,
leading to a per-unit profit of H = H" — C' and L = L" — C when pricing high and low, respectively.
We ignore consumers whose valuation V' for the good is less than L", and we define 6 to be the
fraction of consumers with valuation at least H TE] We will use 77 and 77, to refer to consumers with
valuations at least or strictly less than H" respectively

Consumer behavior. Consumers can purchase from either firm. Under perfect Bertrand competition,
each consumer would simply choose to purchase the lower-priced good. The economics literature
often relaxes the perfect competition assumption such that firms that price higher experience non-zero
demand [see, e.g., 53|. This may be because firms have finite supply, meaning consumers are forced
to purchase at a higher price when the low price goods sell out, or because some consumers are lazy
and take the first price they encounter that is below their valuation. We parameterize this model as
follows: When a consumer of type 77 is offered a price L" by one firm and H" by the other, they
purchase at price H" with probability o € [0, 0.5] and L” with probability 1 — o. Thus, for larger
values of o, consumers are less price-sensitive.

We assume that consumers never pay a price above their valuation and always make a purchase as
long as at least one firm offers a price below their valuation. Further, when a consumer is offered
two identical prices, they choose a firm to purchase from uniformly at random. An intuitive example
of this consumer behavior is riders choosing between ridesharing apps. When prices are the same,
potential riders are largely indifferent between two rideshare services (i.e., they do not have brand
loyalty). However, when prices differ and consumers are willing to pay the higher price, o models
the friction consumers face in comparing the two options. Perhaps some consumers check both apps
to shop for the lowest price, but others choose one app at random and take the first price.

3This is consistent with pricing via “couponing” [e.g., [I7]], a strategy according to which firms target offers
of fixed discounts (e.g., 20% off) to consumers.

“We note that H” and L" are exogenous to this model. One interpretation is that L" is the equilibrium price
under perfect competition. In our model, duopolists can extract more surplus from certain consumers via pricing
H".

*While a more sophisticated model might seek to directly estimate consumer willingness to pay,organizations
may in practice simplify continuous prediction problems into discrete ones [34] and collect data only at discrete
price points [16].
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Figure 1: Regions where firms following the algorithm’s recommendation is a Bayes Nash Equi-
librium (BNE) for independent models only (p = 0, light gray), identical models only (p = 1,
dark gray), and both (gradient). The gradient represents the difference in firm utility when p = 1
relative to p = 0; blue (red) signifies positive (negative) difference. Columns represent two values of
6 € {0.5,0.75}, while rows represent two values of H/L € {2,4}. The x-axis in each subfigure is &
and the y-axisis a = a1 = ao.

Firm 2 Firm 2
H L H L
_ H (2, I (cH,(1—0)L) , H | (0,0) | (0,L)
[7] Firm 1 (o)L of) .0 [r]Firm 17 (2.0) | (L. L)

Table 1: Payoff matrices for both firms when the consumer is willing to pay the high price (7, top)
and low price (7, bottom). Within each cell, we denote (Firm 1 payoff, Firm 2 payoff).

Firms’ utility and information structure. Our consumer choice model yields the payoff matrices
for the two firms for each consumer type shown in Table [T} Note that from firms’ perspective,
their utilities are with respect to unit profit as opposed to sale price. For ease of notation, we
will drop the superscript and use H, L to refer to firms’ pricing choices as well. We will denote
U;(+;7) as the utility/payoff for firm ¢ for a given action profile for 7 € {71, 7x}. For example,
Ui((H,L);7y) =cH and Us((H,L); ) = (1 — o) L.

Firms do not have perfect information. Instead, we assume that when a consumer arrives with features
x, each firm produces an algorithmic prediction p1 (z), p2(x) € {0, 1} designed to segment users
into types {71, 7r }. These algorithms are imperfect. For simplicity, we assume the algorithm has
equal true positive and true negative rates, which we will denote a; for firm 1: P[p;(z) =1 | 7] =
Plp1(x) = 0 | 71.] = a1. We define the same quantity for firm 2 and will refer to a from hereon as
the model’s performance. We will drop x and simply refer to the algorithmic prediction as p1, ps.

An important feature of our model is that p; and ps need not be independent conditioned on user
type. If, for example, both firms purchase data from a third party, their predictions may be correlated.
In the extreme case of algorithmic monoculture, they may use the same model provided by a third
party, meaning their predictions would be identical. We parameterize their correlation by p € [0, 1],
where p = 0 implies independence (p; L py | 7) and p = 1 implies maximal correlationﬂ When
a1 = ag, p = 1if and only if p; = ps deterministically. For now, we treat p as exogenous; we will
consider strategic choices impacting p in Section[5] We assume all parameters are known to both
ﬁrmsﬂ In total, our model has five free parameters summarized in Table

Equilibrium concept. A firm’s strategy space is simple: for each segment given by the algorithm, set
aprice in {L, H }. Because all parameters are known, firms know the joint distribution on pq, ps, 7.

SNote that when a1 # as, p1 and p2 cannot be perfectly correlated. See Appendixfor a formal definition
of p.
"This assumption is especially common in oligopolies with few players that interact with each other frequently.



Parameter Interpretation

6 €10,1] Frac. of consumers willing to pay H"
ai,as € [0.5,1]  Model performance for firms 1 & 2
o €10,0.5] Consumers’ indifference to price
p€[0,1] Degree of model correlation

Table 2: List of free parameters in the model.

Thus, we assume that firms’ strategies form a Bayes Nash Equilibrium (BNE). We do not require that
firms price based on the algorithm’s predictions; in fact, for some parts of the parameter space, firms
may ignore the algorithm and either always or never offer the discount. We will focus on the region
where both firms choose to follow their algorithms at equilibrium (i.e., price-discriminate), which is

formally:
o JH, ifp=1
s'(p) = {L7 if p = 0.

The strategy profile (s*, s*) (i.e., both firms price-discriminate) is an equilibrium if and only if the
following conditions hold:

E [Ui((H,5%(p2));7) | pr = 1] > pIET[Ul((LS*(m));T) | pr=1]

p2,T

E [Ui((L,s"(p2));7) | p1 =0] > E[-E,T[Ul((Hvs*(pa));T) | p1=0].

p2,T p

Analogous conditions must hold for firm 2. Intuitively, expected utility when both firms follow the
algorithm’s recommendation (both when p; = 1 and when p; = 0) must be higher than when one
firm deviates.

4 Main Results

We find that (/) consumers are increasingly worse off as algorithms become more correlated; and (2)
firms exhibit stronger preferences for correlation as consumers become more price sensitive.

Figure [T| shows regions where both firms following the algorithm’s recommendation is a BNE for
independent models only (p = 0, light gray), identical models only (p = 1, dark gray), and both
(gradient), for various values of 0, 6, H/L, and a = a; = a. Within the gradient region, we calculate
the difference in firm utility between using perfectly correlated (i.e., identical) predictions (p = 1)
and completely independent predictions (p = 0). Blue (red) indicates a positive difference, meaning
that firms prefer using more correlated (more independent) predictions.

>

(1) Consumers are always worse off when pricing algorithms are correlated. When firms
pricing strategies are correlated (i.e., they price identically), consumers have less choice and must
accept the given price or forgo the good. Conversely, when firms price independently, consumers
often have the option to choose a lower price. We formalize this in Theorem .1}

Theorem 4.1. Fix o, a1, as, 8, and H/ L. For all p such that both firms following the algorithm’s
recommendation is a BNE, consumer welfare is decreasing in p.

All proofs can be found in Appendix |C| Our next few results describe when firms benefit by choosing
correlated algorithms (and thereby harming consumers).

(2) Higher consumer price sensitivity leads to a stronger firm preference for correlation. As
consumers become more price sensitive (i.e., o decreases), firms increasingly prefer to use more
correlated algorithms over more independent ones.

Theorem 4.2. Suppose, for fixed 0, a1, as, and H/L, both firms price-discriminating is a BNE when
p=paand p = pp, with pp > pa. Assuming both a1, as < 1, firms prefer pp when o < 2;(12[7_%)
and otherwise prefer p 4.
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Figure 2: Regions where firms using both correlated models and independent models are Pure Nash
Equilibra (first-stage game). An additional condition is that firms following the algorithm’s recom-
mendation must be a Bayes Nash Equilibrium (second-stage game). The x-axis is the performance
of the correlated algorithm a., and the y-axis is the performance of the independent algorithm a;.
The gradient represents the difference in firm utility when p = p, (correlated) at performance a,.
relative to the utility at p = 0 (independent) at performance a;; blue (red) signifies positive (negative)
difference. All subfigures show parameters for which firms have a preference for correlation at
a. = a; as per Theorem[4.1} with H/L = 3,0 = 0.75.

Intuitively, when consumers are more price sensitive, firms have a higher risk in pricing H because
they may get undercut by their competitor and only attain a small percentage of the market. In these
situations, firms prefer correlation because there is no risk of undercutting; both firms are guaranteed
to get the same prediction and therefore price the same way. On the other hand, conditioned on
pricing low, firms prefer independence: a firm would rather be undercutting its competitor than
pricing identically. The balance between these two competing forces—a preference for correlation
when pricing high and a preference for independence when pricing low—determine whether a firm
prefers correlation overall.

The tension between these forces is mediated by o, which determines the relative risk from being
undercut. Indeed, in Figure [I| we observe that within the gradient region (where both independent
and correlated models are equilibria), preference for correlation monotonically decreases (from blue
to red) as o increases. In the extreme case when o = 0.5 and so consumers are completely price
insensitive, firms always prefer independence. When a firm predicts p; = 1 and prices H accordingly,
there is zero risk in being undercut: the firm receives cH = 0.5H if 7 = 7y and 0 otherwise,
regardless of their opponent’s price. However, when a firm predicts p; = 0 and prices L, they would
in fact prefer that their opponent prices H so that they guarantee a sale when the consumer’s valuation
is low (7 = 711.).

S First-Stage Game: Strategic Correlation

Before two firms compete in price, they must first decide which algorithms to deploy. In this section,
we analyze strategic decisions that impact the degree of correlation p between firms’ predictions.

5.1 Model

Two firms choose between two model development processes. For ease of exposition, we will
illustrate an example where firms choose to either (/) collect their own training data or (2) buy
training data from the same vendor. Purchasing data or using their own data results in a model with
performance a. and a;, respectively. (For simplicity, we will assume that both models yield the same
performance.) In this section, we will abuse notation slightly and not refer to p as the algorithm;
instead, we will use a to refer to the algorithm with its associated performance.

When both firms buy data, their models are correlated at some p = p. > 0. When a firm collects their
own data, we make a simplifying assumption that their models make errors that are independent from
the errors of their competitor’s model (i.e., p = po = 0); in practice, independent data may not lead
to completely uncorrelated errors. We also note that any shared component in the model development
process — not just data procurement — can lead to correlated outcomes. For instance, our experiments
in Section [6] give firms a choice between two model classes that produce varying levels of correlation.



To summarize, firms are faced with the following payoff matrix:

Firm 2
b1 O [Ean(o"(ac)s" (@) | Epn(s*(ac)os (ar)
Qi Eﬂo(s*(ai)aS*(ac)) Eﬂo(s*(ai)vs*(ai))

where, for instance,
E, (5" (ac), 5" (ac)) = (E, (s*(ac), s*(ac)), E5 (s (ac), s (ac))
=( E [Ui((s%(ac),s"(ac));7)l,  E  [U2((s"(ac), s*(ac))); 7)])-

Qc,Qc,T;p=Pc Ac,Qc,T;p=pPc

We are interested in analyzing conditions under which equilibria exist. Two possible equilibria
are (1) both firms choose algorithm a, with correlation p., and (2) both firms choose algorithm a;,
resulting in independent outcomes p = pg = 0. From hereon, we will refer to scenario (1) and (2)
respectively as “correlated” and “independent’, ignoring the fact that other actions can also lead
to independent outcomes.

Formally, the following condition must hold for both firms correlating to be a Pure Nash Equilibrium
(PNE):

By (s™(ac), 5" (ac)) > By, (s™(ai), 5™ (ac)) and B (s™(ac), 8" (ac)) > B (s™(ac), 5" (a:))

and similarly for both firms choosing independence:

Ep, (s™(ai), s™(a:)) = By, (s™(ac), s"(a;)) and B (s*(ai), s™(a:)) = Ep, (s™(ai), s™(ac))-

As with the previous section, we focus our attention on the strategy s* of price-discriminating. As
such, an additional necessary condition for equilibrium is that in the downstream second-stage game,
both firms following the algorithm’s recommendation is a BNE.

5.2 Results

Our main result is that under certain conditions, there always exists some regime where correlating is
preferred to independence, even when the correlated algorithm has worse performance. Critically,
as mentioned before, the following theorems only apply for parameter spaces where firms play the
strategy s* of price-discriminating. We will also define o*(#, R) = 51201 a

S0(R=1)° where R = I as the
maximum threshold on o for firms to prefer correlation, as per Theorem

Theorem 5.1. When a; > a., both firms choosing independence is always a PNE.

We next establish the conditions under which both firms correlating are in equilibrium, which comes
directly from Theorem 4.2}

Corollary 5.2 (Corollary to Thm@.2). If, at a; = a., firms have a strict preference for correlation
(0 < 0*(0, R)), then correlating is strictly a PNE, i.e.,

36 >0s.t E}ic(s*(ac)7 s*(ae)) > E;O (s*(a;),s"(ac)) + 0,¥i € {1, 2}.

With Theorem [5.1]and Corollary [5.2]in hand, we can now state our final result.

Theorem 5.3. Suppose, at a; = a., that 0 < 0*(0, R). Then 3 a; > a. such that both correlation
and independence are PNE and correlation is preferred over independence.

In other words, Theorem 5.3]says that given a preference for correlation at a; = a., there are settings
where firms are willing to sacrifice accuracy to gain correlation with one another. We will demonstrate
this effect in Section[6l

Figure 2] shows the various regions where both correlation and independence are PNE. All subfigures
show model parameters for which firms have a preference for correlation at a; = a.. As expected,



—_
L)
~—
—_
(=2
~

1.0 Firm 1 Firms 1-2 Firm 1
Model Models IE':[' 0.04 o 1 ¢ = | Price Sensitivity
0.9| MM Logistic Regression (LR) . LR-LR g%\ 0.1
Random Forest (RF) RF-RF =8 0.02{ — 0.25
: [
ENY . . || - — 0.4
" 11 50
B 28
0.7 = xZ
. - -0.02
=
1 o)
Acc. PrecisionRecall TNR  AUC Correlation 2.5 5.0 7.5 10.0 125
Metric Ratio of High to Low Price (H/L)

Figure 3: (a) [Left] Accuracy, precision, recall, true negative rate (TNR), and area under ROC
curve (AUC) for Firm 1 deploying a logistic regression (LR) or random forest (RF) model. [Right]
Correlation between both firms’ models when they both use logistic regression (LR-LR) or both use
random forests (RF-RF). Error bars indicate 95% confidence intervals over 15 seeds. (b) Utility when
both firms use logistic regression models (LR-LR) subtracted by utility when both firms use random
forests (RF-RF). Greater than O indicates a preference for correlation at the expense of predictive
performance. z-axis varies the proportion of H (high price) to L (low price), and line colors indicate
different values of o, where a lighter color means higher consumer sensitivity to price. Shaded
region indicates 95% confidence intervals over 15 seeds. Results for Firm 2 are omitted because of
symmetry — since both firms face the same model options, their results are identically distributed.
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Figure 4: Best response matrices for the two firms where the action space is to deploy a logistic
regression (LR) or random forest (RF) model, over five select model parameters. Best response for
Firms 1 and 2 are highlighted in blue and red, respectively. Nash equilibria exist when both blue and
red are highlighted in the same box (e.g., (LR, LR) in the middle subfigure). When both (LR, LR)
and (RF, RF) are equilibria, a yellow square indicates higher firm utility between the two. Grey boxes
are “invalid” regions because following the algorithm would not have been a BNE in the downstream
game where firms compete on prices. These results use the average firm utility over 15 seeds.

all subfigures have a region at a; > a. where correlation is still preferred to independence despite
having a lower performance (blue gradient region). It seems that higher price sensitivity and a higher
correlation option tend to increase the valid region of e. For example, when § = 0.75, H/L = 3,0 =
0.1, and p. = 1, firms would rather correlate at a performance of a. = 0.6 than have a much more
informative independent model of a; = 0.72.

6 Empirical Study

We now demonstrate our theoretical results in a stylized game between two firms who are predicting
income based on demographic attributes. We use ACSIncome data [[15]], which contains US Census
data from 2018. The task is to predict whether or not a person’s income is greater than $50,000.

6.1 Setup: Different Model Classes

Our experiment involves two firms. Each firm chooses between a better performing (random forests)
and worse performing (logistic regression) model. However, logistic regression — despite having
worse performance — has lower variance, meaning that it is likely to be more correlated when the
opposing firm also chooses the same model class. We will show empirically that firms may prefer to
sacrifice predictive performance in exchange for correlation, which leads to lower consumer welfare.



Both firms train and test on Census data in California. The test set is 30% of the data (n = 58, 700)
and is fixed across both firms. We randomly split half of the remaining 70% as the training set for
Firm 1, and the other half for Firm 2, each having 35% of the entire data to train (n = 68, 482). We
repeat the training data splits over 15 random seeds.

Figure3[a) shows the performance for both firms when training one logistic regression (LR) model
and one random forest (RF) model, as well as the correlation between the two firms when they both
employ the same model class. Note that RF outperform the LR across many performance metrics:
accuracy, precision, recall, true negative rate (TNR), and area under ROC curve (AUC). This is by
design — our goal is to simulate a scenario where firms have a choice between a more correlated
model with worse performance (LR) and a better performing but less correlated model (RF). See
Appendix [D.T] for additional details. This model multiplicity setup is one of many ways firms can
correlate their models. Refer to Appendix [D.2] where firms can independently choose to procure the
same third-party data to correlate their outcomes.

6.2 Results

Preference for Correlation. Figure [3[b) shows the difference in utility when both firms use logistic
regression models (LR-LR) subtracted by the utility when both firms use random forests (RF-RF),
over multiple values of H/L and o. A positive difference indicates a preference for correlation. We
observe that both firms tend to prefer correlation more when o is low (consumers are more price
sensitive) and the ratio between H and L prices is large. As per Theorem .2} correlation is most
beneficial to firms when there is a high risk of being undercut by the opponent; therefore firms would
rather have certainty about the other firm’s actions than a better performing model.

When Correlation is in Equilibrium. We next model firms’ choice of algorithms in a first-stage
game. Figure ] shows best response matrices for both firms when given the option to deploy a logistic
regression (LR) or a random forest (RF), over various values of o and H/L. Cells with a blue and red
cross indicate a Pure Nash Equilibrium (PNE) for that action profile. In the extremes, when H/L is
too low or too high, firms will never choose to follow their personalized pricing algorithms to begin
with (grey cells) because always pricing low or high will give a higher expected utility. When H/L is
moderate, less correlation (RF, RF) is always a PNE as per Theorem@ More correlation (LR, LR)
is a PNE under the condition outlined in Corollary @ Finally, when both (LR, LR) and (RF, RF)
are PNE, the difference in performance between LR and RF are small enough such that (LR, LR) is
higher in utility (yellow cell) than (RF, RF) as per Theorem[5.3]

7 Discussion

Correlation is a mechanism to sustain higher prices. When firms make up a duopoly, using
more correlated algorithms allows firms to better price discriminate and reduce competition, which
increases prices. When algorithms are not correlated, firms naturally attempt to undercut their
opponent in order to extract more surplus and the high price equilibrium cannot be sustained. This
undercutting will continue to lower prices until firms reach a new equilibrium.

Firms prefer lower variance models under competition. Lower variance models have less predic-
tive multiplicity [6], and thus predictive errors are more correlated. Our empirical study suggests
that in the midst of competition, firms are pushed to adopt simpler models (i.e., higher bias, lower
variance) on the margins.

Correlation of any form may induce collusive outcomes. Models can become correlated in a variety
of ways, such as using the same pre-trained model or training on similar data. In Appendix
we demonstrate that firms may tend to buy the same third-party data that degrades their models’
performance in exchange for higher correlation, resulting in collusive outcomes.

Publicly signalling choice of model may prompt collusion. Expanding on [21]], [28) 454] suggests
that adopting a pricing algorithm that transparently “broadcasts” its intentions can be an invitation
for other firms to collude on price. Currently there is little precedent for broadcasting intention by
publicly adopting an inferior model. However, our model suggests that this may be a risk. Assume
that both correlated models (LR, LR) and independent models (RF, RF) are equilibria (e.g., middle
subfigure of Figure[2)) and assume further that firms currently use (RF, RF). In order for firms to reach
the collusive outcome of (LR, LR) without explicit communication or agreement, one firm would



need to switch to LR at the expense of their own utility (because they are leaving an equilibrium state)
in the hopes that their opponent will follow suit. This action could be treated as a form of signalling.
Sending a (costly) signal by adopting an inferior model suggests that a firm took an action that was
against its own (short-term) economic self-interest but eventually led to collusive outcomes. Antitrust
law may need to determine whether public announcement of model choice can be anti-competitive in
the same way that public announcement of intent to price high can be anti-competitive.

8 Conclusion

Taken together, these results suggest that firms will sometimes prefer a less accurate personalized
pricing algorithm when doing so allows them to better correlate their behavior with their competitors,
per[Theorem 5.3] This behavior reduces consumer welfare, per[Theorem 4.1] Furthermore, as firms
are more likely to prefer correlated algorithms when consumers are price sensitive per[Theorem 4.2
the consumers most likely to suffer are those to whom the price matters most. Our results add to
the growing body of scholarship suggesting that the ease of collusion that algorithmic price-setting
facilitates may support a revision of traditional anti-trust standards [30} [19] 28]].
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A Other Related Work

Algorithmic (Tacit) Collusion. In general, legal scholars consider three broad mechanisms for
algorithmic collusion. First, an algorithm can act as a tool that aids humans in explicitly sustaining
cartel-like behavior. Second, an algorithm can be a hub that coordinates actions, or be the sole
algorithm used among competitors. Third, highly sophisticated algorithms can learn each other’s
behaviors and collectively achieve supra-competitive prices without explicit communication. From
the first to third category, the likelihood that the behavior is illegal decreases or, at best, the action
becomes more likely to fall into a contested grey area [42]. This is because humans become less
involved in achieving collusion, making it harder to prove an intent or conspiracy to agree to fix
prices. Recent legal scholarship has raised concerns about the potential for algorithms to facilitate
tacit collusion, which falls somewhere between the second and third category. Various works have
proposed legal and legislative pathways to expand the powers of regulatory agencies [28] or methods
to more effectively screen and audit for tacit collusion [31} 23]

However, the mechanisms for algorithmic tacit collusion have not been extensively studied. Several
theoretical papers have found collusive outcomes under the third mechanism for algorithmic collusion,
where sufficiently sophisticated reinforcement learning models interact and compete in prices over
time [25, 137, [14]. Our work formally analyzes a novel mechanism for tacit collusion based on the
widespread correlation of algorithmic decisions.

B Model (Continued)

B.1 Correlation Parameter

We parameterize correlation between two models p; and p, with p € [0, 1], see Tablefor the joint
distribution on P[py, p2, 7]. Note that in the case where p = 1 and a; = ag, we are modeling a
scenario where both firms are using the same algorithm (i.e., monoculture).

T ‘ b1 ‘ D2 ‘ P[plaP?aT]

g | 1 | 1 | 8laras + p(min(ay,as) — ajaz))
T | 1 | 0| 8la1(l —ag) — p(min(ay,as) — aras)]
7 | 0 | 1 | 0[(1—ai)as — p(min(ai,az) — ajas)]
g | 0 | 0 | 0[1—a1— a2+ ajas + p(min(ay, as) — ajasz)]
T | 1 1 | (1-6)[1-a;— a2+ aas + p(min(a,az) — aras)]
| 1] 0 | (1-=0)[(1-a)az — p(min(ar,as) — ajaz)]
| 0 | 1 | (1=0)a1(1—az2)— p(min(ar,as) — ajaz)]
| 0 | 0 | (1—20)[ajaz+ p(min(ay,as) — ajas)]
Table 3: Joint distribution P[p1, p2, 7.
C Proofs

C.1 Consumer Welfare and Proof of Theorem 4.1

Before proving the theorem, we will introduce some additional notation. Let W ((-);7) denote
consumer welfare under the action profile (-) and demand state 7. We define consumer welfare as
the consumer valuation of the good subtracted by the cost of the good. As such, we define two
additional variables V7, V to be consumers’ expected valuation under 77, and 7z, respectively. Let
0, = Vi, — L" and similarly for 6y = Vg — H". By definition, d1,, 6 > 0 — otherwise, consumers
will not purchase the good. Consumer welfare under the various actions and demand states can be
summarized in Table
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TH 7L

Firm 2 Firm 2

H L H L

Firm 1 H On g+ (1 —0o)(H"—L") H| 0 |
og+(1—0o)(H" — L") og + (H"— L") L | ;| 0

Table 4: Consumer welfare under all action possibilities and both demand states (7, 7r.).

Proof. We will denote expected consumer welfare for a given value of p as

E [W((s"(p1),5"(p2)); 7))

P1,p2,Tp
Our goal is to show that

d

CTP Pl,pz,‘r;p[W((s*(pl)’ S*(p2));7-)] < 0.

Our approach will be to show that increasing p increases the likelihood that p; = po, which in turn
reduces consumer welfare. First, observe that

E_[W((s (), s"(p2))im)] = E_ [W((s*(p1), 5" (p2));7) [ pr =p2] Pr_[p1=po]

P1,P2,T;p P1,P2,T;p P1,P2,T;pP
+ E  [W((s"(p1),s"(p2));7) | p1 #p2] Pr  [p1 # pol.
P1,P2,T;p P1,P2,T;pP

We will show that

E_ [W((s"(p1),s"(p2));7) | pr = pe]

and

E [W((s™(p1),s"(p2));7) | p1 # p2]

P1,P2,T;ip

do not depend on p.

E [W((s*(p1),s"(p2));7) [p1=p2] = E_ [W((s"(P1),8"(p2));7) [ p1 = p2, T =7Tu] Pr [ry | p1 = po]
P1,P2,T;pP P1,P2,T;pP P1,P2,T;p
+ B [W((s"(p1),s"(p2))i7) | p1 =p2,7=71] Pr [rp|p1=po]
P1,P2,T;pP P1,P2,T;pP
=W((s*(p1),s"(p2)); ) Pr [ [ p1 = po]
P1,P2,T;pP
+ W((s*(p1), 5" (p2)); 7’L)p1 II?QYT.I)[TL | p1 = p2]

Note that by definition, P]rphpz;p[p1 =py | T = 75| = Prpl,pQ;p[pl g | T =) =
Prp, ps.7ip[P1 = D2]. Therefore,

Proplr = 70] Prp, poplpr = p2 | 7 = 71]

Pr |[r=r7 = = =1-0
pl’pz"r;p[ zlp=pi Prp, poiplp1 = p2]

Pr [r=7g|p=ps]= TriplT = TH] rm,pzw[p_l p2 | 7 =TH] —0
PLp2,TiP Prp, poiplp1 = p2]

This implies

E  [W((s™(p1),s"(p2));7) [ 1 = p2] = OW((s™(p1), 8" (p2)); 7r) + (1 = O)W (5" (p1), ™ (p2)); 72)-

P1,p2,7T;p

A similar argument shows that B, p,, ., [W((s*(p1),s*(p2)); 7) | p1 # p2] does not depend on p.
Next, we will show that that

E [W((s"(p1),5"(p2));7) [ p1 = p2] < pl’Igg’T[W((S*(m),8*(p2));7) | p1 #p2], (D

P1,p2,T
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meaning that consumers have higher expected utility when offered different prices. Because 7 is
independent of the event p; = po, we can analyze each T € {7, 7y } separately. For 74,

E [W((s"(p1),s"(p2)):Ta) | p1 = p2, 7 = TH| — 0n :pP;E pr=p2=1|p1 =po,7=71a|W((H,H);Tar) — )
P1,P2 1,P2
+ Pr[pr=p2=0[p1=p27=7u](W(L,L); 1) — On)

P1,P2

= Pripr=pr=1|p1=p2,7=7H|-0

P1,P2
+ Prpr=p2=0|p1=po,7=7g)(H — L")
P1,P2

_ 1—a;—ax+(1—p)ajaz + pmin(ay,az)
1—a1 —as+2(1—p)ajas + 2pmin(ay, as)

(H" = L")

(1 - 1)

<

N | =

because a; and ay are both at least 0.5. Similarly,

E [W((s*(p1),s*(p2)); 7a) | p1 # D2y T = Tr] — 6 = (1 — o) (H" — L")

Pp1,pP2

1
> —(H"—-L"
> (T - I)
since o < 0.5, meaning

1E W((s"(p1),s"(p2)); 7)) [ pr = p2, 7 = 7] < mEpQ[W((s*(m),s*(pg));TH) | p1 # p2, T = TH],
(2)

Next, observe that

E [W((s"(p1)s™(p2))i ) [ p1 = p2, 7 = 71] < pEJW((S*(pl%5*(192));7/;) | p1 # p2, 7 =71

P1,p2

3)
simply because the left hand side is at most d;, and the right hand side is deterministically dy..
Combining (Z) and (3)) and using the fact that 7 is independent of the event p; = p proves (I). As a
result,

d

B WO 0507 = 0 (B V600570 [ =i, e =]

P1,P2,T;P

OB W (1), (02))i7) | b1 £ ) (1— P p[plzpzo)

Db1,p2,T D1,p2,T;

- ( E W((s (1), 5" (02))i7) | pr = ol

Pp1,p2,T

- E [W((s"(p1),s"(p2));7) | P #m]) L pr [y =]

P1,p2,T dp pi,p2,7mip

= ( E [W((s*(p1),5"(p2));7) | 1 = p2]
P1,P2,T

- B V(005" pa))in) [ 1 )

Pp1,p2,T

d .
. d—pl —a; —az+ (1 — p)ajas + pmin(ay, az)
<0,

where the last line follows by () and using the fact that

d .
d—pl — a1 —az + (1 — p)ajas + pmin(ay, az) > 0.

This inequality is strict as long as a1, a2 < 1 (otherwise p has no impact on the joint distribution of
P1,D2, 7). O
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C.2 Proof of Theorem

Proof. The following condition for Firm 1 must hold for them to prefer prefer p = pg over p = pa:

E  [U((s"(p1),s"(p2); 1] > E  [Ui((s™(p1), 5" (p2)); 7))

P1,P2,T;P=pPB P1,P2,T;P=PA

For ease of notation, let A = min(ai, a2) — ajaz andlet A, = pg — pa > 0. We will see that the
probabilities cancel out when subtracting p = pp to p = p4, leaving only the A and A, terms:

>y > Til(s* (1), 5" (p2); 7] [Plp1, p2, 75 p = pB] — Plpr,p2, T3 p = pa]] > 0
p1€{0,1} p2€{0,1} T€{TH, T}

HOAA, L(1—0)AA, LOAA,

— HobAA, + —L(1-60)AA, — LO(1 — 0)AA, + >0

%AA,)[HG(I — %)+ L(200 — 1)] > 0

We can derive the same exact inequality for firm 2. When min(aq, a2) — ajas # 0 (or, when both
ai,as < 1), we get
HO—- L

S 9H-1L)

We can further show that lower o monotonically increases preference for correlation:

%AAP[HOO —20) + L(200 — 1) =2AA,0(L — H),
which is always negative because L < H by definition. O

C.3 Proof of Theorem

Proof. The main intuition behind this proof is that an algorithm with performance a; can simulate an
algorithm with lower performance a.. Recall that we define s* to be the optimal strategy of following
the algorithm. Let s™* be the strategy of doing the opposite of the algorithm’s recommendations. We
define s’ to be the following strategy:

ooy s*(a;), wp.q
‘o) ={ 0, i
where ¢ = %‘L_Il The strategy s’(a;) is equivalent in expectation to s*(a.) in terms of firm utility.
To see this, we will prove that the conditional distribution P[7|s(a;)] is equivalent to P[7|s*(a.)]:

Plr = 1|8’ (a;) = 1] = Plr = 75" (a.) = 1]
Pls'(a;) = 1|7 = 7 |P[7H] B Pls*(a.) = 1|7 = 5] P[TH]

P[s'(a;) = 1|7 = g |Prg] + P[s'(a;) = 1|7 = 7.]P[rz]  Pls*(ac) = 1|7 = 75|Plrg] + Pls*(a.) = 1|7 = 71]P[7L]

and

Plr = 1y|s'(a;) = 0] = Plr = 7g|s™(a.) = 0]
P[s'(a;) = 0|7 = T |P[TH] B Pls*(a.) = 0|7 = 5] P[TH]

P[s'(a;) = 0|7 = g |P[rg] + P[s'(a;) = 0|7 = 7.]P[rz]  P[s*(a.) = O|7 = 7 |P[rr| + P[s*(a.) = 0|7 = 71]P[L]
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Based on the Bayes’ Rule expansion above, it suffices to prove the following equivalences:

Pls'(a;) = 1|7 = 7] = P[s*(a.) = 1|7 = 73] “)

P[s'(a;) = 1|t = 71] = P[s*(a.) = 1|7 = 7] (5)
Proof of (@):
Pls'(a;) = 1|7 = i) = qP[s"(ac) = 1|7 = 7u| + (1 = @)P[s™(ac) = 1|7 = 7]
= P[5 (0¢) = 1|7 = 7]+ (1 — g)P[s" (a) = O} = 4]

ac—i—ai—l_ ai_ac(l—a-): .
2q; —1 " 2a;—1 ! ¢

=gqa; +(1-¢)(1-a;) =
=P[s*(a;) = 1|7 = 74

Proof of (3):
P[s'(ai) = 1|7 = 1] = qP[s"(ac) = 1|7 = 71] + (1 = P[s™"(ac) = 1|7 = 71]
— P[5 (ac) = 1] = 7] + (1 — q)Pls"(ac) = Ol = 72]
ai — ac achai_l(l—ai):

| (2a; — 1)(1 — ac)
20, — 1" T 2a, — 1

2ai71

=1 -qa;i+q(l—a;)= =1-ac

=P[s*(ac) = 1|7 = 71]

Note that the space of possible accuracies is @ > 0.5 for an algorithm to be useful. When a. = 0.5,
a; > 0.5 by assumption of the Theorem and therefore ¢ is never undefined. Then,

Bp, [(s™(ai), s™(a:))] = By, [(s'(a:), 5™ (a:))] = Ep,[(5™(ac), 5% (a2))],

and similarly for Firm 2.

C.4 Proof of Corollary[5.2]

Proof. We will show that the condition for a strict preference for correlation (in the second-stage
game) is equivalent to correlation being strictly in equilibrium (in the first-stage game). We first start
with the preference correlation in the proof for Theorem 4.2:

E _ [Ui((s"(p),s™(p2));m)l > E _ [Un((s"(p1), 5" (p2)); 7)]-

P1,P2,T;p=pPB P1,P2,T;P=PA

Since this condition is for any p4 < pp, we will let pp = p. and p4 = 0. Further, we will change
the p notation to a. and a; where relevant, since a; = a. by assumption.

E _ [Uh((s%(ac),s™(ac));m)] > E  [Ur((s"(ai),s%(ac)); 7],

QcyQc,TiP=pPe a;,ac,7;p=0

which is equivalent to the condition that both firms using correlated models is in equilibrium; this
strict inequality implies a strict equilibrium. Symmetric argument applies for Firm 2. O

C.5 Proof of Theorem 3.3

Proof. First, both firms using independent algorithms is always a PNE when a; > a. as per Theo-

rem[3.1]

We will next state what is needed to prove the theorem. When firms have a preference for correlation
at a; = a., both firms using correlated algorithms should be a PNE when a; = a. + ¢, for small
enough e:

Je>0st E) .(ac,ac) > E,

p0,8*

(a; + € ac) (6)
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On top of that, firms also prefer correlated algorithms over independence at a; = a. + €, for small
enough e:

Je>0st. E},DS*(CLC, ac) > E} (a; + e a; +¢). ™

pPo,8*

The proofs for (€) and (7) come from Corollary [5.2] which states that when firms strictly prefer
correlation at a; = a., correlating is J-strictly a PNE:

36> 0s.t. E;C’S*(aC7 ) > EpO o+ (aiyac) + 96,
We define the following shorthand:
A E) (ac, ac)
B ; o= (ai,ac)
C(e) ; o (a; + € a)
D(e) o (a; +€,a; +¢€)
Put another way, Corollary [5.2] states that
36>0st. A>B+94 (8a)
A>C(e)+ 6 (8b)
A>D(e)+46 (8¢c)

ate =0 and a; = a. because B = C(e = 0) = D(e = 0). Since C/(€) and D(e) are continuous in €,
(6) and (7) are true by (8b) and (Bc).
O

D Experiments (continued)

D.1 Additional Details for Model Multiplicity Setup

We chose the following model hyperparameters to simulate a higher performance for random forests
compared to logistic regression:

Model Hyperparameters

Logistic Regression  ¢1-penalty, saga solver
Random Forest - #trees =9
- min # samples in each leaf =7
- weight: 1.2x for negative class

All unspecified hyperparameters use the default values set by [scikit-learn.

D.2 Additional Experiments: Data Procurement

D.2.1 Setup

)

Our experiment involves two firms who may independently choose to correlate with each others
models by using overlapping datasets. Firm 1 trains on Census data in Texas while Firm 2 trains
on Census data in Florida. They both have the option to purchase supplementary data of worse
quality from a third-party, which in this case is Census data from California whose labels have been
perturbed 25% of the time. In doing so, we are giving firms the choice of correlating their models at
the expense of predictive accuracy.

In order to smoothly interpolate between independence and correlation, we define a parameter ; for
instance, Firm 1 can use the training data (1 — ) TX 4+~ CA, and similarly for Firm 2. If both firms
use v = 0, there is no overlap in training data and their resulting models will be the least correlated.
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Figure 5: (a) [Left] Correlation between both firms’ models in the empirical study across various
values of 7. 7 = 0 (1) corresponds to no overlap (full overlap) in training data. [Middle and Right]
Accuracy of Firm 1 and 2’s models over various values of «y. Error bars are 95% confidence intervals
over 15 seeds. (b) Difference in utility between +y at the x-axis and v = 0 (no overlap in training data)
for the empirical study, over various values of H/L and o. Top and bottom rows correspond to Firm
1 and 2’s utilities, respectively. Shaded regions indicate 95% confidence intervals over 15 seeds.

Conversely, when both firms use v = 1, their training data is identical and their models will be the
most correlated.

We randomly sample n = 200, 000 datapoints from TX, FL, and CA in order to standardize the
effect of . We then further sample -y proportion of each dataset to ensure that all training data used
have exactly n observations. We run this experiment over 15 random seeds, and over y € [0, 1] in
0.1 increments. Both firms train the same model class (random forests) and have the same test data:
Census data from Illinois.

D.2.2 Results: Second-Stage Game

Figure[5]a) shows the predictive accuracy for both firms and the correlation between both firms as
~ varies. As expected, accuracy monotonically decreases and correlation monotonically increases
as v increases since firms use more and more of the same lower-quality training data. We observe
a significant decrease in accuracy for both firms when v = 1, presumably because both models no
longer receive the more predictive signal from their original training data.

Figure [5(b) shows the difference in utility between - at the x-axis and v = 0 (independent datasets).
When this difference is above 0 (blue dashed line), firms have a preference for correlation at that
~ value. We observe such a preference for correlation when consumers are more price sensitive
(lower o) and when the ratio between the H and L prices is larger, as per Theorem Firms prefer
correlation even when accuracy marginally decreases (subfigure (a)); this happens particularly when
there is a high risk of being undercut, making correlating especially beneficial even at the expense of
predictive accuracy. However, firms no longer prefer correlation when the trade-off in accuracy is too
high (e.g., Firm 1 in v = 1). We note that firms are asymmetric: because their models’ accuracies
differ at various +, they do not always prefer correlation in the same way, but the general trends
remain.

D.2.3 Results: First-Stage Game

We also model firms’ decision to correlate at a particular . In particular, Figure [6] shows the best
response matrices for both firms in choosing various values of v, over various model parameters
(H/L, o). Cells with a red and blue cross indicate a Pure Nash Equilibrium. In general. higher
correlation () is only in equilibrium for higher H/L and lower o, which reflect the same trends
as the second-stage game. For example, When H/L = 6,0 = 0.1, the sole equilibrium exists at
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Figure 6: Best response matrices for the two firms in the empirical study, over three select model
parameters. v = 0 means no overlap in training data (least correlated) while v = 1 indicates identical
training data (most correlated). Best response for Firms 1 and 2 are highlighted in blue and red,
respectively. Nash equilibria exist when both blue and red are highlighted in the same box (e.g.,
(0,0) in the left subfigure). Grey boxes are “invalid” regions because following the algorithm would
not have been a BNE in the downstream game where firms compete in prices. These results use the
average firm utility over X seeds.

(0.9,0.7). When H/L increases to 10, equilibrium is at (1, 1). We note, however, that in extreme
H/L values, certain regions are “invalid” in the sense that firms would not follow the algorithm in
the downstream second-stage game (grey cells).

E Additional Results

E.1 Firms choose to correlate, even when algorithms are uninformative

Figure [T] displays regions where firms following the algorithm’s recommendation is a BNE for
independent models only (light gray) and correlated models only (dark gray). When a = 0.5,
independent models are never in equlibrium because the algorithms are as good as random. However,
when a = 0.5 and models are correlated, firms may still choose to follow the algorithm. This region
is more likely to be in low o regimes — where there is the highest risk in being undercut by one’s
opponent — and therefore there is value in coordinating actions despite the model having no predictive
power.

F Miscellaneous
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Figure 7: Examples of discounts offer to potential riders on Uber (left) and Lyft (middle). Rightmost
figure explains Uber’s “flash promo” offering.
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