
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PRIVACY AUDITING FOR LARGE LANGUAGE MODELS
WITH NATURAL IDENTIFIERS

Anonymous authors
Paper under double-blind review

ABSTRACT

The privacy auditing for large language models (LLMs) faces significant challenges.
Membership inference attacks, once considered a practical privacy auditing tool,
are unreliable for pretrained LLMs due to the lack of non-member data from the
same distribution as the member data. Exacerbating the situation further, the dataset
inference cannot be performed without such a non-member set. Finally, we lack
a formal post hoc auditing of training privacy guarantees. Previous differential
privacy auditing methods are impractical since they rely on inserting specially
crafted canary data during training, making audits on already pre-trained LLMs
impossible without expensive retraining. This work introduces natural identifiers
(NIDs) as a novel solution to these challenges. NIDs are structured random strings,
such as SSH keys, cryptographic hashes, and shortened URLs, which naturally
occur in common LLM training datasets. Their format enables the generation
of unlimited additional random strings from the same distribution, which can
act as non-members or alternative canaries for audit. Leveraging this property,
we show how NIDs support robust evaluation of membership inference attacks,
enable dataset inference for any suspect set containing NIDs, and facilitate post
hoc privacy auditing without retraining.

1 INTRODUCTION

Large language models (LLMs) are increasingly used in applications such as chatbots and text
generation, where they are often trained on sensitive data like private conversations. This makes the
need to ensure their privacy critically important. Significant research efforts have focused on both
empirical and formal auditing to assess LLM privacy. Empirical audits often rely on membership
inference attacks (MIAs) (Shokri et al., 2017; Carlini et al., 2022), where an adversary attempts to
determine whether a particular data point was part of the model’s training set. As an alternative,
dataset inference Maini et al. (2021; 2024); Dziedzic et al. (2022) has emerged, which generalizes
MIAs to evaluate whether an entire subset of data was used for training the LLM. On the other
hand, formal auditing of claimed privacy guarantees (Steinke et al., 2023; Jagielski et al., 2020; Nasr
et al., 2023), as those implemented through differential privacy (DP) (Dwork et al., 2006), attempt to
empirically approximate the theoretical training guarantees.

However, recent work (Duan et al., 2024; Maini et al., 2024) has demonstrated that existing MIAs for
LLMs (Mattern et al., 2023; Shi et al., 2024) are unreliable as practical tools for detecting privacy
leakage. Their reported success can be largely attributed to a distribution shift between member and
non-member data (Das et al., 2024), rather than their genuine ability to identify training data. When
evaluated on member and non-member data drawn from the same distribution, these attacks fail to
outperform random guessing (Maini et al., 2024), rendering them ineffective in realistic scenarios.
This shortcoming is rooted in a broader challenge, namely the inability to obtain non-member data
from the same distribution as the suspected members for most practical cases (Zhang et al., 2024a). It
also affects dataset inference, which depends on access to a private validation set that matches the
distribution of the suspect dataset and hinders its practical applicability.

In general, evaluating MIAs and dataset inference is challenging due to the limited availability of
suitable validation data. Currently, the only available validation set comes from the Pile dataset (Gao
et al., 2020), used to train the Pythia models (Biderman et al., 2023), restricting the community’s
ability to effectively assess their progress in detecting privacy risks or implementing protection in

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

more divers setups. The state-of-the-art formal post hoc privacy auditing methods (Steinke et al.,
2023; Jagielski et al., 2020; Nasr et al., 2023), which aim to empirically approximate theoretical
differential privacy guarantees, also cannot be applied to standard pre-trained LLMs. These methods
rely on the insertion of specially crafted canary data at training time, a step that standard LLMs
typically do not include.

As a solution to all the above-mentioned problems, in this work, we identify natural identifiers
(NIDs). NIDs are structured random strings, generated according to some well-defined criteria,
such as SSH keys, outputs from secure hash algorithms (e.g., MD5 or SHA1), shortened URLs, or
cryptocurrency wallet addresses. We observe that these strings are naturally included in datasets,
such as code repositories (e.g., GitHub) and discussion platforms (e.g., StackExchange), that are used
as part of the training corpora for state-of-the-art LLMs.1 Our unique insight is that each of the
popular NIDs has a known generation function that we can leverage to generate an unlimited
number of validation (non-member) data points from the same distribution as the NIDs which
are naturally included in real-world suspect sets.

We show how to leverage NIDs as a test-benchmark for existing and novel MIAs against pre-trained
LLMs. To this end, we use the NIDs that had been included in the LLM’s training data as the member
set and generate further NIDs from the same type as validation set from the same distribution. These
two sets can then be used to evaluate the attacks. NIDs also make dataset inference practically
applicable, as one only has to identify NID types in the data subset that is suspected to be included
in an LLM’s training data, generate a validation set consisting of NIDs of the same type, i.e., from
the same distribution, and then to perform the dataset inference procedure. We empirically analyze
this approach in a controlled environment, using open-source LLMs and their known training data.
Specifically, we use the Pythia suite of models with the Pile dataset and the OLMo models. For OLMo
models, we extend their training data, the Dolma dataset, with a post-hoc validation set using the
identified NIDs. Across all the data subsets, our NID-based dataset inference successfully achieves
p-values below 0.1 for distinguishing between training and validation data splits. Additionally, it
does not falsely identify data as being used during training, i.e., we do not observe any false positives,
with p-values exceeding 0.5, when the validation set from the Pile is selected as the suspected set.

The NIDs also enable us to perform post hoc privacy auditing for LLMs. We build on the currently
fastest single training run auditing approach (Steinke et al., 2023), which needs to include dedicated
canaries in the training set. We demonstrate that when NIDs naturally occur in the training set, we
can construct the auditing set of NIDs from the same type post hoc and retroactively assess the
privacy guarantees of any LLM without the requirement of retraining from scratch. This alleviates
the prohibitively expensive retraining and makes auditing practical for existing models.

In summary, we introduce NIDs as the solution to three pressing challenges in LLM privacy research
and practical privacy assessment. Utilizing NIDs, we construct a test bench with member and non-
member data from the same distribution to systematically evaluate the performance of existing and
future MIAs and dataset inference approaches on diverse state-of-the-art LLMs. We demonstrate how
to leverage the NIDs to perform dataset inference in practical scenarios and to conduct truly post hoc
privacy auditing. Through extensive empirical evaluation of the Pythia suite and the Pile dataset, we
demonstrate the effectiveness of NIDs as a tool for auditing and analyzing privacy risks in LLMs.

2 BACKGROUND

Membership Inference (MI) (Shokri et al., 2017) aims to determine whether a specific data point
was included in a model’s training set. MI has diverse applications, and in this work, we focus on
their use for privacy auditing (Steinke et al., 2023). While Membership Inference Attacks (MIAs)
have been extensively explored for small scale models, MI for LLMs is a much more challenging
problem. The latest work Duan et al. (2024); Maini et al. (2024); Zhang et al. (2024a) indicates that
the success reported by previous MIAs on LLMs (Mattern et al., 2023; Shi et al., 2024) is rather due
to a distribution shift than to the attacks’ ability to distinguish between the member and non-member

1Indeed, we observe that the publicly available datasets used to train popular LLMs, such as the Pile (Gao
et al., 2020) or Dolma (Soldaini et al., 2024), contain 30637 and 23571 different types of NIDs, respectively—
showcasing the practical availability of NIDs. This large number of NID-types and new types constantly
emerging, makes it impossible to omit them through the web crawlers, thus NIDs are less prone to be excluded
from the LLMs’ training set.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

data. A prominent example is temporal distribution shifts that occur when data before a specific
cutoff date is selected as members and data after the point is treated as non-members and both differ
in language, wording, or formatting styles. When evaluated in the correct setting without distribution
shift, Maini et al. (2024) showed that most attacks do not outperform random guessing. Another issue
when using MIAs for auditing LLM training is their need for shadow models (Meeus et al., 2024;
Eichler et al., 2024; Carlini et al., 2022), i.e., models with the same architecture trained on different
splits of the data, which become prohibitively expensive to train as LLMs grow in size. To address
these challenges, we create a new benchmark based on NIDs to provide a robust evaluation of MIAs
on LLMs.

Dataset Inference (DI) (Maini et al., 2021) aims to resolve whether a given dataset was used to train
a model. Thus, in comparison to MIAs, DI operates on the dataset level and was initially designed
to protect the model’s ownership. The core idea in the original method, designed for supervised
learning, is that classifiers tend to repel training examples further from decision boundaries, whereas
test examples, having no impact on the model’s parameters, remain closer to these boundaries. This
concept was later adapted to self-supervised learning (SSL) models (Dziedzic et al., 2022), leveraging
the insight that the representations of training data induce substantially different distribution then
representations of test data. Dataset inference was also extended to LLMs (Maini et al., 2024),
enabling the detection of datasets used during their training.

However, DI always relies on an access to a private validation set from the same distribution as a
suspect set. Prior work (Zhang et al., 2024a) argues that this makes DI inapplicable for real-world
use-cases where such data is usually not available. As a solution, they propose to inject random and
meaningless canaries into the data and then test how the LLM ranks the selected canary among all
alternatives. Since they assume access to the generator of the random canaries, they can provide the
corresponding validation data points and avoid distribution shifts. The approach’s reliance on fully
random strings might also reduce the practical applicability of this approach since content creators
would have to artificially include such specialized strings into their datasets and hide them from
human readers. Additionally, web crawlers can be trained to omit such arbitrary context-free strings
when scraping the data from the Internet, reducing the likelihood of this data to getting included into
LLMs’ training data. Finally, this solution does not work for already existing LLMs which were
trained without injected canaries. In contrast, our observation is that we can leverage NIDs that
naturally are included in LLMs’ training sets, mitigating the necessity from inserting purely random
strings and enabling auditing of existing pre-trained LLMs without retraining.

Differential Privacy (DP) (Dwork et al., 2006) is a mathematical framework that provides a rigorous
framework for limiting privacy leakage, ensuring that no individual’s data significantly impacts the
outcome of a computation. Formally, a randomized mechanism M satisfies (ε, δ)-DP if, for any two
inputs x and x′ differing by a single individual’s data and any measurable set S, the following holds:

P [M(x) ∈ S] ≤ eεP [M(x′) ∈ S] + δ.

In this definition, ε bounds the privacy leakage, while δ represents the probability of this bound to
fail.

Auditing DP. Privacy audits attempt to empirically estimate a lower bound on the privacy parameters
ε and δ post training. These audits help evaluate the tightness of the theoretical analysis (Jagielski
et al., 2020; Nasr et al., 2023) and can also reveal errors in the mathematical analysis or flaws in the
algorithm’s implementation (Tramer et al., 2022). In general, privacy auditing relies on retraining
models and inserting canaries during training (Jagielski et al., 2020; Nasr et al., 2023; Steinke et al.,
2023). While Steinke et al. (2023) limit the computational overhead by proposing a privacy auditing
technique that can operate with a single training run, for large LLMs with trillions of parameters,
even this might be prohibitively expensive. We build on their approach and leverage NIDs to remove
the need for retraining altogether.

Canary Exposure (Carlini et al., 2019) is a method to rigorously quantify data leakage in machine
learning models. It relies on inserting random sequences called canaries into the model’s training
dataset. Then, it measures exposure of this data point as the decrease in perplexity of the model on
this data vs other similar random sequences not seen during training. Formally, exposure can be
defined as follows: Given m canaries C = {c}mi , which are sampled and added into the model’s
training set, and n references, i.e., other random strings, R = {r}ni that are sampled and withheld for
comparison, we compute the exposure for each canary ci using the rank of its loss, ℓ(ci), among the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

losses of all references ri, in the following way:

Exposure(ci) = log2(n)− log2(Rank(ℓ(ci), {ℓ(ri)}ni=1)).

The rank assigns a value ranging from 1 (indicating that ci’s loss is lower than all references) to
n+ 1 (indicating that ci’s loss is higher than all references). The higher the exposure is, the more
likely that the model was trained on the given canary. The rank of 1 and corresponding exposure of
log2(n) indicates the highest memorization of the data in the model. In the case of no memorization,
assuming high values of n, the rank will be around n/2, and the corresponding exposure of ln. We
leverage this canary exposure metric for our privacy auditing since it can be interpreted with respect
to the true positive ratios (TPRs) and false positive ratios (FPRs) of MIAs (Jagielski, 2023), enabling
estimation of a lower bound on privacy leakage.

3 NATURAL IDENTIFIERS (NIDS)

We introduce NIDs, explore their natural occurrence, and provide the intuition on how they address
key challenges in LLM privacy research. We then present the notation and formalization of NIDs,
which will serve as the foundation for the subsequent sections.

3.1 NIDS IN THE WILD

On a conceptual basis, NIDs are structured random strings, generated according to some well-
defined function. Prominent examples include SSH keys, outputs from secure hash algorithms (e.g.,
MD5 or SHA1, SHA256), shortened URLs, or cryptocurrency wallet addresses. Such strings are
omnipresent on the internet, e.g., in code repositories (e.g., GitHub) and discussion platforms (e.g.,
StackExchange).

Since large parts of the data used to pre-train state-of-the-art LLMs are simply crawled from the
internet, these NIDs get naturally included in the LLMs’ training sets. We analyzed a wide range
of popular LLM training datasets, including the Pile (Gao et al., 2020) and Dolma (Soldaini et al.,
2024), and identified that all of them contain multiple types of NIDs with many examples per type.
We provide an overview on the analyzed subsets and contained NIDs in Table 2.

The main reason why these (partially random) strings are not removed from the data by the web
crawler when composing the dataset is the severe difficulty of identifying them. This results from the
fact that in contrast to truly random strings, such as the canaries by Zhang et al. (2024a), NIDs can
carry a meaning in their given context. Additionally, new types of NIDs, e.g., produced through novel
URL shortening approaches, are emerging continuously. Hence, even when using regex filtering
on currently known NIDs, a significant amount of (potentially new) NIDs are likely to remain in
the datasets. In fact, we observe in Table 2 that even highly filtered and curated datasets, such as
Dolma (Soldaini et al., 2024) contain significant fractions of NIDs. This makes our solutions for
LLM privacy based on them stealthy and widely applicable.

3.2 LEVERAGING NIDS

What makes NIDs special is their rigorously specified format in combination with a sequence of
random characters. Given that their format is known, it becomes possible to generate an infinite
number of other random strings that follow the same distribution. In the following, we present
the intuition on how this property contributes to solving three of the most pressing challenges in
LLM privacy research. Further details and formalization of the respective problems and the solution
enabled through NIDs are presented in the next sections, respectively.

1) NIDs provide a MIA-benchmark. As discussed in the previous section, the progress by current
MIAs is hard to measure because of the lack of non-member data from the exact same distribution
as the member data. Additionally, due to the LLMs’ sheer sizes, retraining the models or shadow
copies for MIAs becomes prohibitively expensive, limiting evaluation further. NIDs can overcome
both limitations and be used to provide a benchmark for existing and future MIA attacks. Given
that state-of-the-art pretrained LLMs have NIDs in their training data, we can generate a large set of
validation data from exactly the same distribution. Using this validation set and its corresponding
NID-based training members, novel and existing MIAs can be evaluated without distribution shift

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: NID-benchmark for Pythia-12b. The AUC for MIAs between the NIDs and the corre-
sponding GIDs on various subsets of the Pile dataset.

Pile Github StackExchange Train Average
MIA Train Test Train Test Train Test UbuntuIRC Wikipediaen PubMedCentral HackerNews Pile-CC ArXiv Train Test

Loss 58.6 50.3 71.8 51.1 50.3 50.9 50.3 50.6 50.6 60.5 51.1 50.4 54.9 50.7
Min-K% 57.6 51.0 68.4 50.6 50.7 51.2 51.1 50.6 50.7 60.5 52.3 51.0 54.8 50.9
Min-K%++ 56.9 51.4 71.2 50.3 50.8 51.9 51.1 51.3 51.1 69.7 53.2 50.9 56.2 51.2
ReCALL 53.5 50.2 50.6 50.3 50.0 51.1 50.3 51.3 50.2 57.8 50.1 50.2 51.6 50.5
ReCALL (Hinge) 51.3 50.1 53.3 50.4 50.4 51.4 50.5 51.9 50.8 50.3 50.4 50.0 51.0 50.6
Hinge 58.7 50.5 71.8 51.5 50.4 50.5 50.4 50.4 50.5 60.8 50.9 50.4 54.9 50.8

and without retraining. The biggest advantage is that this approach allows to eventually assess MIAs
on a wide range of state-of-the-art existing pre-trained LLMs, namely all of them that hold some
NIDs in their training data—providing a broad attack evaluation setup. We showcase the usefulness
of NIDs as a MIA-benchmark in Section 4.

2) NIDs enable DI. With the same reasoning, NIDs enable DI for any suspect set (i.e., a dataset for
which we want to assess whether it has been used to train a given LLM (Maini et al., 2024)) that
contains NIDs. Again, we can generate a set of IDs that follow the exact same distribution as the
NIDs in the suspect set and use them as a validation set for the DI. In case the LLM has been trained
on the suspect set, it will react differently on the NIDs included in the suspect set and their generated
counterparts from the validation set. Otherwise, it it was not trained on the suspect set, its behavior
will be the same over both sets, as both NIDs and their generated counterparts will just be the same
type of random strings for the LLM. Thereby, it is possible to identify whether the suspect set was
indeed used to train the model. We detail the use of NIDs for DI in Section 5.

3) NIDs facilitate post hoc privacy audits. Finally, we can use NIDs to perform a post hoc privacy
audit for LLMs trained with DP, as long as there are NIDs in the LLMs’ training data. To do so,
we build on the one-run privacy audit by Steinke et al. (2023). In their method, they select a set of
data points to be included or excluded during a training run. After training, an auditor attempts to
infer whether each data point was included or excluded, with the option to abstain from guessing in
uncertain cases. The fraction of correct guesses provides a lower bound on the privacy parameters.
Using our NIDs, it is no longer necessary to retrain the model. Instead, we generate random samples
from the same distribution as the ones seen during training. The NIDs as natural canaries can be
ranked against the generated ones, with respect to their exposure, for auditing without any retraining,
i.e., truly post hoc.

3.3 FORMALIZING NIDS

An identifier (ID) v is constructed in the following way v := W (z), z ∈ Z , where z is a random
sequence that comes from a known independent distribution Z (or more generally a source of
randomness), and W is a generation function. Additionally, we define a set of IDs, generated by a
generation function W , as V := {W (z) : z ∈ Z}. A Natural Identifier (NIDs) is an ID that is part of
a real dataset. Given an NID, using the corresponding generation function W , we can generate many
new IDs, which we refer to as Generated Identifiers (GIDs). GIDs are IDs that are not part of any
real dataset, but generated based on an NID.

As a concrete example, to generate the RSA (Rivest et al., 1978) private and public keys, we provide
a pair of two randomly selected prime numbers p and q, thus, in this case, our z = pq. Then,
given a NID, which represent a public RSA key, can use the corresponding generation function
W (z) := RSA(z) to generate new GIDs. In this case, the set V is the set of all the public RSA
keys. The main property of NIDs is that a priori each ID v ∈ V is equally likely to be generated and
published because it only depends on the source of randomness and not on the context. Note that the
generation function W might and will likely depend on the context. The second important property
of NIDs is that they allow easy sampling from the set V . In the suspect datasets Dsus, which we are
auditing, there are usually m NIDs, with the corresponding sets V1, . . . , Vm. Furthermore, for each
set Vi where i ∈ [m], we denote the NID as v̂i ∈ Vi, and specifically, the NID that belongs to the
suspect dataset as v̂i ∈ Dsus. Finally, we define Σi as the set of all the permutations over Vi.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 NIDS FOR BENCHMARKING MIAS

In this section, we analyze NIDs’ potential to serve as a MIA-benchmark. As examples for models of
various sizes and families, we experiment with Pythia-2.8b, Pythia-6.9b, Pythia-12b, and OLMo-7B.
The Pythia models are pre-trained on the Pile dataset, which consists of various subsets. OLMo-7B is
trained on the Dolma dataset.

We analyze the subsets for the occurrence of NIDs (see Table 2 in Appendix B) and identify that the
subsets with code, such as Stack Exchange and GitHub, and large non-topic-specific corpus, such as
Refined Web and Pile Common Crawl, have a high number of NIDs. SHA1 and MD5 are overall the
most frequent types of NIDs For some large subsets, such as Refined Web, we have as many as 16989
NIDs, however, for smaller subsets, the number is smaller. For instance, the whole validation and test
set of the Pile is around 2 GiB, and we detected 293 NIDs, 197 of which are in the GitHub subset.

In our NID benchmark, for each NID, we generate 127 new GIDs. We choose 127 new samples to
strike a good balance between the computational cost of evaluation of too many samples and a good
estimate of the generated sample distribution. By construction, these newly GIDs are non-members
(from the same distribution as the member NIDs), and can, thereby, be used to evaluate the success of
MIAs. Strong MIAs should have a high performance, e.g., measured in AUC score, when presented
with NIDs from the LLM’s training set and their generated counterparts. In contrast, for NIDs not
present in the LLM’s training set and their generated counterparts, the success should be similar to
random guessing, i.e., an AUC score of around 0.5.

Using our identified NID member set and the respectively generated non-member set, we evaluate
existing MIAs for LLMs, namely Loss (Yeom et al., 2018), Min-K% (Shi et al., 2024), Min-
K%++ (Zhang et al., 2024b), ReCall (Xie et al., 2024), and Hinge (Carlini et al., 2022). We present
the results on Pythia-12b in Table 1. While, in Appendix D, we show the results for OLMo-7B2,
Pythia-6.9b and Pythia-2.8b in Table 3, Table 4 and Table 5, respectively. Additionally, in Appendix D,
we report the performance of each model using TPR@1% FPR.

We verify the performance on the train and test sets. For most MIAs, we observe that the performance
is extremely close to random guessing on the test set, following the expected behavior and indicating
that there is, indeed, no distribution shift between the NID members and our generated non-members.
Additionally, the results are well-behaved in the sense that the average AUC on the train set is noticably
higher than on the test set. Contrary to what was suggested by the Xie et al. (2024), the ReCALL
attack does not provide the best performance, while the improvement shown by Min-K%++ (Zhang
et al., 2024b) translates to our settings.

The evaluation on our benchmark also validates the findings by prior work (Maini et al., 2024; Das
et al., 2024), in particular the ones made based on the MIMIR (Duan et al., 2024) dataset—a dataset,
derived from the Pile train and validation sets proposed as an evaluation dataset for MIAs: Namely,
without a distribution shift between the member and non-member data, most existing MIAs for
LLMs do not perform much better than random guessing for most of the datasets. Yet, conceptually,
compared to the MIMIR dataset, using NIDs allows us to evaluate MIAs and LLMs without requiring
a validation set by leveraging generated IDs to create new samples that closely resemble the original
ones. This key difference enables us to evaluate a worst-case privacy scenario, which is more rigorous
than relying on a random train-validation splits, which is an essential factor when auditing privacy
leakage (Aerni et al., 2024).

Notably, we are the first to assess MI performance on OLMo-7B. We observe that OLMo-7B, which
has been trained on 2.05T tokens, is much more robust to MIAs compared to the Pythia models (e.g.,
6.9B), which have been trained on 300B tokens. This result validates the trend that models trained on
larger corpus memorize less (Maini et al., 2021).

Overall, our results highlight that NIDs enable benchmarking MIAs and evaluate the privacy leakage
of LLMs without the problems of distribution shift, even without any additional calibration techniques
required by prior work (Carlini et al., 2022; Watson et al.), and without the computational costs
of retraining. Thereby, our NID-benchmark enables to practically evaluate MIAs on various large
state-of-the-art LLMs without the need of a validation set.

2https://huggingface.co/allenai/OLMo-7B-0424-hf

6

https://huggingface.co/allenai/OLMo-7B-0424-hf

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 DATASET INFERENCE WITH NIDS

Next, we turn to exploring the use of our generated same-distribution data for performing DI (Maini
et al., 2021). As discussed in Section 2, the strongest limitation of DI is its reliance on a private
validation set from the same distribution as the suspect dataset, i.e., the dataset for which we want
to assess whether it was included in the training of the given model. Such datasets are often not
available in practical applications (Zhang et al., 2024a). We present how our NIDs can overcome this
limitation and enable successful DI for suspect datasets that contain NIDs.

When given a suspect set Dsus, we first need to identify and extract which NIDs are included. Please
refer to Appendix A for more details on this process. The extracted NIDs form the suspect subset D′sus
which we use to perform the DI. Then, for every real NID in D′sus, we generate 127 new GIDs with
the same NID type and with the same structure to form the validation set from the same distribution
as D′sus.

In terms of executing DI, we closely follow Maini et al. (2024). To extract features from the
suspect set D′sus and our validation set, we run the state-of-the-art MIAs. We extract features based
on Loss (Yeom et al., 2018), Min-K% (Shi et al., 2024), Min-K%++ (Zhang et al., 2024b), and
ReCall (Xie et al., 2024). Next, following the DI protocol, we need to learn the correlation between
the features (the MIA scores), and their membership status. To learn this correlation, we train a
gradient boosting trees classifier to distinguish between the two distributions. To use all the samples
available, we train and score the samples using K-Fold, and we ensure that the generated samples
derived from a real sample end up in the same fold. Finally, following Maini et al. (2024), we perform
statistical testing and compute the p-values. Under the null hypothesis, which assumes that NIDs are
not part of the training data, the ranks of each NID relative to its corresponding GIDs should follow a
uniform distribution. This means that if we order the NIDs based on their association with GIDs, their
positions should be evenly distributed across the ranking scale. To test this assumption, we apply
the Kolmogorov–Smirnov (KS) test. If the KS test detects a significant deviation from uniformity,
we reject the null hypothesis, suggesting that the NIDs may, in fact, be present in the training data.
Small p-values indicate that we can reject the null hypothesis, i.e., we are confident that the model
was trained on the suspect set. Large p-values suggest that the test was inconclusive and we are not
confident whether the model was trained on the suspect set or not.

Using our generated validation set with GIDs and the suspect set D′sus with NIDs, we perform DI
on various models and data subsets. We take relatively small suspect sets D′sus with 100 real NIDs
to simulate a realistic setup, and we only consider subsets with at least 100 NIDs, with the only
exception of Proof Pile 2 Test, which has only 85 samples, however, it is the only test set available for
Dolma. For each subset, we generate a validation set using the NIDs, and perform DI. We consider
28 training and 7 test subsets across 4 models (Pythia-2.8b, Pythia-12b, Pythia-6.9b, and OLMo-7B).
Our method shows that for the suspect sets that were included in the training data, DI obtains low
p-values (< 0.01) that allow to reject the null hypothesis. This highlights that the suspects are
correctly identified as training data. At the same time, for test data, i.e., datasets that were not used to
train the given LLM, we observe high p-values that do not allow us to reject the null hypothesis. The
sets are, hence, correctly not marked as training data (p-values >> 0.01).Table 10 in Appendix E
shows the p-values for each dataset and model.

We present further results on models of various sizes and with varying numbers of NIDs in the
suspect set in Figure 3 of Appendix C. The results highlight that the more NIDs are available in D′sus,
the more reliable the DI. Overall, using NIDs and the generated validation set, we observe no false
positives, while correctly identifying training subsets (true positives). This highlights NIDs’ ability to
enable DI on suspect datasets that contain NIDs.

6 DP AUDITING WITH NATURAL IDENTIFIERS

Using our NIDs, we adapt the method proposed by Steinke et al. (2023) to create a novel post-hoc
DP auditing. Their technique considers m canary samples and uses coin flips to randomly determine
which samples should be included in the training set. Therefore, it is a binary case of adding or
removing a single sample (and selecting between two options). In our framework for extending their
method to post hoc audits using NIDs, we first identify the NIDs that were present in the training
data and denote their total number as m. For each NID i ∈ [m], we generate the corresponding GIDs,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Train data

LLM

Suspect set

LLM

…

….
….

….
…

Audit

…

…

…

…
…

…

…

…

…
…

Natural Identifiers (NIDs)

Generated identifiers  
(GIDs)

Permutation of 
GIDs + NIDs

Ranked  
top-K

Figure 1: Post-hoc DP auditing with Natural Identifiers. (1) A third party trains the model using
the training data. (2) Given a suspect dataset, we filter the NIDs from the real training dataset. (3)
We generate the new GIDs using the NIDs. (4) We join NIDs with corresponding GIDs and permute
each set. (5) We rank the samples based on the model’s outputs choosing top-k.

and the corresponding set of IDs Vi. One of the main properties of NIDs is that, a priori, any element
in Vi could have been part of the training data in place of the NID. This enables us to model privacy
auditing analogously to the fixed-length dataset variant proposed by Steinke et al. (2023). The key
distinction in our approach is that, rather than selecting between two alternatives prior to training, we
consider the NIDs as inserted canaries with the GIDs as multiple left-out canary possibilities for each
set Vi. Figure 1 summarizes how to leverage the NIDs to audit DP post hoc. We consider the NIDs
as the input to a training procedure M (also referred to as the mechanism), which may satisfy ε-DP.
Given the resulting trained model, an auditor seeks to infer, for each set Vi, which sample was the
NID and was included in the training data. To do so, the auditor ranks the samples in Vi from the
most to the least likely candidate to be the NID. A prediction is considered correct if the true NID
appears among the top-ri ranked samples, where ri is a predefined threshold.

Following the analysis of Theorem 5.2 by Steinke et al. (2023), we can adapt their privacy auditing
procedure to our setting. Similarly to the standard exposure setting, we compare the rank of the real
samples and alternative samples.
Theorem 1. Let M : V1 × ...× Vm −→ Σ1 × ...× Σm be an ε-DP mechanism under replacement.
Let S ∈ V1 × ...× Vm be uniformly random, and define T = M(S) ∈ Σ1 × ...× Σm. Then, for all
v ∈ R, all t ∈ Σ1 × ...× Σm in the support of T , and all r1, ..., rm with ri ≤ |Vi|,

PS←V1×...×Vm,

T=M(S)
[

m∑
i=1

1[rank(ti, Si) ≤ ri] ≥ v|T = t]

≤ P
Ŝ←Bernoulli(

rie
ε

|Vi|−1+eε
)
m

i=1

[Ŝ ≥ v] := β(k, ε, v, t, r)

rank(a, b) returns the 1-based position of b in the permutation a, where a is permutation and b is an
element.

In our setting, Theorem 1 states that if the LLM is trained with ε-DP, any attacker attempting to
detect the NID is constrained. Concretely, the attacker ranks the LLM’s output on both the NID and
its corresponding GIDs from most to least likely. Then, they count how many NIDs appear in the
top-r where r s a predefined threshold. The theorem states that this count is bounded by a Bernoulli
distribution, whose probability depends on ε, r, and the number of GIDs. This theorem enables
DP auditing through its hypothesis-testing interpretation: under the null hypothesis that the LLM
is ε-DP, we can derive a confidence interval for the lower bound on ε. We present the full proof
of Theorem 1 in Appendix F. To demonstrate the effectiveness of our auditing, we apply it to the
randomized response mechanism (see Appendix G).

While Theorem 1 is specific to ε-DP, most of the existing private deep learning algorithms, such as
DP-SGD (Abadi et al., 2016), focus mostly on (ε, δ)-DP. Therefore, following the analysis by Steinke
et al. (2023), we also adapt the (ε, δ)-DP auditing to our setting (see Theorem 2 in Appendix F).

Evaluating our Privacy Auditing. We verify that our proposed framework applies to privacy
auditing in LLMs by adapting the black-box procedures from Steinke et al. (2023) in the fixed-size

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

101 102 103 104 105 106 107 108 109

real

100

es
tim

at
ed

2 (Steinke et. al) 8 32 64

Figure 2: Impact of cardinality (c = {2, 8, 32, 64}) on ε estimation. Experiments were conducted
using ε values of {5, 10, 100,∞}.

dataset variant. The auditing process follows the algorithm described in Appendix H.2. To fully
control the auditing process, we create canaries using PersonaChat (Jandaghi et al., 2023), an AI-
generated dataset containing dialogues of people describing themselves. Specifically, we crafted m
NIDs by adding either SHA512 or SHA256-like sequences at the beginning of real text sequences
to construct the training set. By crafting our NIDs this way, we want to control their insertion,
frequency, and uniqueness precisely, thus ensuring the complete coverage of our assumption while
still emulating a realistic setting. Then, for each NID, we generate c GIDs. In this way, we have
sets of IDs V1, . . . , Vm. We train Pythia 70M (Biderman et al., 2023) with full fine-tuning using
DP-SGD (Abadi et al., 2016) with δ = 10−5 for 20 epochs using the maximum sequence length of
64 tokens. As a SCORE function (see Algorithm 1), we use Min-K% (Shi et al., 2024) and Loss to
determine the best estimated ε value. For all of the experiments, we use ri = 1 for ranking, meaning
that the guess is correct only if the most likely prediction given by the attacker is the real NID.

As a reference, we use the fixed-length dataset auditing introduced by Steinke et al. (2023), a special
case of our method, where |Vi| = 2 and ri = 1. The empirical analysis in Figure 2 demonstrates
that our method outperforms the baseline across multiple cardinality parameters (c ∈ {8, 32, 64})
in fixed-length dataset settings. While higher cardinality can enhance the statistical power of the
auditing procedure in the best-case scenario—meaning fewer samples are required—the ranking task
becomes increasingly complex. Instead of merely comparing two candidates, one must select from c
options. For smaller privacy budgets (i.e., a more challenging prediction task), smaller cardinality is
beneficial, whereas for larger ε, higher cardinality tends to be advantageous, thus significantly over-
performed the baseline as ε increases. This trend follows our considerations for randomized response
(see Appendix G), where increasing cardinality improves utility, particularly in less restrictive privacy
settings. For a deeper discussion on the impact of the number of inserted canaries and the choice of
SCORE function on auditing tightness, see Appendix H.1.

Finally, we note that our auditing approach provides a lower bound on privacy leakage, focusing
on NIDs. While it may not capture the worst-case memorization, it offers a tighter bound than the
original method in realistic scenarios.

7 DISCUSSION AND CONCLUSIONS

We introduce the concept of natural identifiers (NIDs) and demonstrate how they address three
pressing challenges in LLM privacy research: (1) the difficulty of evaluating LLM MIAs without
introducing distribution shifts between members and non-members, (2) the inapplicability of DI
when no validation dataset from the same distribution as the suspect set is available, and (3) the
limitation in privacy audits due to existing methods’ reliance on retraining. Although we focus
on leveraging NIDs within the language domain for models trained on datasets containing NIDs,
our analysis highlights that most standard LLM pretraining datasets naturally include a diverse and
extensive set of NIDs. This broad presence makes NIDs widely applicable. Our thorough empirical
evaluations with multiple state-of-the-art LLMs underline this insight and show the practical benefits
of leveraging NIDs to benchmark MIAs, enable DI in real-world scenarios, and perform truly post
hoc privacy audits without retraining. We believe these contributions will significantly advance LLM
privacy research by enabling computationally efficient and effective privacy evaluations.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Michael Aerni, Jie Zhang, and Florian Tramèr. Evaluations of machine learning privacy defenses
are misleading. In Proceedings of the 2024 on ACM SIGSAC Conference on Computer and
Communications Security, pp. 1271–1284, 2024.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer:
Evaluating and testing unintended memorization in neural networks. In 28th USENIX Security
Symposium (USENIX Security 19), pp. 267–284, Santa Clara, CA, August 2019. USENIX Associa-
tion. ISBN 978-1-939133-06-9. URL https://www.usenix.org/conference/usen
ixsecurity19/presentation/carlini.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer.
Membership inference attacks from first principles. In 2022 IEEE Symposium on Security and
Privacy (SP), pp. 1897–1914. IEEE, 2022.

Debeshee Das, Jie Zhang, and Florian Tramèr. Blind baselines beat membership inference attacks for
foundation models. arXiv preprint arXiv:2406.16201, 2024.

Michael Duan, Anshuman Suri, Niloofar Mireshghallah, Sewon Min, Weijia Shi, Luke Zettlemoyer,
Yulia Tsvetkov, Yejin Choi, David Evans, and Hannaneh Hajishirzi. Do membership inference
attacks work on large language models? In Conference on Language Modeling (COLM), 2024.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in
private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference, TCC
2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265–284. Springer, 2006.

Adam Dziedzic, Haonan Duan, Muhammad Ahmad Kaleem, Nikita Dhawan, Jonas Guan, Yannis
Cattan, Franziska Boenisch, and Nicolas Papernot. Dataset inference for self-supervised models.
In NeurIPS (Neural Information Processing Systems), 2022.

Cédric Eichler, Nathan Champeil, Nicolas Anciaux, Alexandra Bensamoun, Héber Hwang Arcolezi,
and José Maria De Fuentes. Nob-mias: Non-biased membership inference attacks assessment on
large language models with ex-post dataset construction. arXiv preprint arXiv:2408.05968, 2024.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027, 2020.

Matthew Jagielski. A note on interpreting canary exposure. arXiv preprint arXiv:2306.00133, 2023.

Matthew Jagielski, Jonathan Ullman, and Alina Oprea. Auditing differentially private machine
learning: How private is private sgd? Advances in Neural Information Processing Systems, 33:
22205–22216, 2020.

Pegah Jandaghi, XiangHai Sheng, Xinyi Bai, Jay Pujara, and Hakim Sidahmed. Faithful persona-
based conversational dataset generation with large language models. 2023.

Pratyush Maini, Mohammad Yaghini, and Nicolas Papernot. Dataset inference: Ownership resolution
in machine learning. arXiv preprint arXiv:2104.10706, 2021.

Pratyush Maini, Hengrui Jia, Nicolas Papernot, and Adam Dziedzic. LLM dataset inference: Did you
train on my dataset? In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=Fr9d1UMc37.

10

https://www.usenix.org/conference/usenixsecurity19/presentation/carlini
https://www.usenix.org/conference/usenixsecurity19/presentation/carlini
https://openreview.net/forum?id=Fr9d1UMc37

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Justus Mattern, Fatemehsadat Mireshghallah, Zhijing Jin, Bernhard Schoelkopf, Mrinmaya Sachan,
and Taylor Berg-Kirkpatrick. Membership inference attacks against language models via neigh-
bourhood comparison. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings
of the Association for Computational Linguistics: ACL 2023, pp. 11330–11343, Toronto, Canada,
July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.719.
URL https://aclanthology.org/2023.findings-acl.719.

Matthieu Meeus, Igor Shilov, Shubham Jain, Manuel Faysse, Marek Rei, and Yves-Alexandre
de Montjoye. Sok: Membership inference attacks on llms are rushing nowhere (and how to fix it).
arXiv preprint arXiv:2406.17975, 2024.

Milad Nasr, Jamie Hayes, Thomas Steinke, Borja Balle, Florian Tramèr, Matthew Jagielski, Nicholas
Carlini, and Andreas Terzis. Tight auditing of differentially private machine learning. In 32nd
USENIX Security Symposium (USENIX Security 23), pp. 1631–1648, 2023.

Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi Chen,
and Luke Zettlemoyer. Detecting pretraining data from large language models. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.n
et/forum?id=zWqr3MQuNs.

R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks against machine
learning models. In 2017 IEEE Symposium on Security and Privacy (SP), pp. 3–18, Los Alamitos,
CA, USA, may 2017. IEEE Computer Society. doi: 10.1109/SP.2017.41. URL https:
//doi.ieeecomputersociety.org/10.1109/SP.2017.41.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur,
Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Harsh
Jha, Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas
Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Abhilasha Ravichander, Kyle
Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Pete Walsh, Luke
Zettlemoyer, Noah A. Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge,
and Kyle Lo. Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining
Research. arXiv preprint, 2024.

Thomas Steinke, Milad Nasr, and Matthew Jagielski. Privacy auditing with one (1) training run.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=f38EY21lBw.

Florian Tramer, Andreas Terzis, Thomas Steinke, Shuang Song, Matthew Jagielski, and Nicholas
Carlini. Debugging differential privacy: A case study for privacy auditing. arXiv preprint
arXiv:2202.12219, 2022.

Stanley L Warner. Randomized response: A survey technique for eliminating evasive answer bias.
Journal of the American statistical association, 60(309):63–69, 1965.

Lauren Watson, Chuan Guo, Graham Cormode, and Alexandre Sablayrolles. On the importance of
difficulty calibration in membership inference attacks. In International Conference on Learning
Representations.

Roy Xie, Junlin Wang, Ruomin Huang, Minxing Zhang, Rong Ge, Jian Pei, Neil Zhenqiang Gong,
and Bhuwan Dhingra. Recall: Membership inference via relative conditional log-likelihoods, 2024.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learning:
Analyzing the connection to overfitting. In 2018 IEEE 31st computer security foundations
symposium (CSF), pp. 268–282. IEEE, 2018.

Jie Zhang, Debeshee Das, Gautam Kamath, and Florian Tramèr. Membership inference attacks
cannot prove that a model was trained on your data. arXiv preprint arXiv:2409.19798, 2024a.

Jingyang Zhang, Jingwei Sun, Eric Yeats, Yang Ouyang, Martin Kuo, Jianyi Zhang, Hao Frank Yang,
and Hai Li. Min-k%++: Improved baseline for detecting pre-training data from large language
models. arXiv preprint arXiv:2404.02936, 2024b.

11

https://aclanthology.org/2023.findings-acl.719
https://openreview.net/forum?id=zWqr3MQuNs
https://openreview.net/forum?id=zWqr3MQuNs
https://doi.ieeecomputersociety.org/10.1109/SP.2017.41
https://doi.ieeecomputersociety.org/10.1109/SP.2017.41
https://openreview.net/forum?id=f38EY21lBw
https://openreview.net/forum?id=f38EY21lBw

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A EXTRACTING natural identifiers POST-HOC

In this section, we describe how to extract natural identifiers robustly. First, we select a series of
regular expressions to identify potential natural identifiers. Depending on the type of secret, there
might be a high number of false positives, therefore, we need to further remove invalid samples. We
achieve that by first removing duplicates and then running a blind baseline (Das et al., 2024; Zhang
et al., 2024a) using the n-grams as features and different types of tabular classifiers, such as Naive
Bayes classifier, Gradient Boosting Trees and Logistic Regression. Via K-Fold, we compute the MI
score of each sample, then, we compare the rank of the real sample with respect to the generated ones.
If the rank of the generated sample is too low or high, we discard that sample.

We follow this procedure to filter invalid natural identifiers robustly. For instance, strings with
”012456789” are unlikely to be random strings and are mostly likely false positives. Finally, we check
that the final blind baseline performance is close to random guessing, and the sample is particularly
predictive using a blind baseline.

For each type of NID, we have a specific way to generate them to closely resemble the original
sample. MD5. We generate the samples uniformly using this condition [a-fA-F0-9]{32}
following the sample casing.
SHA1. We generate the samples uniformly using this condition [a-fA-F0-9]{40} following the
same casing of the original sample.
SHA256. We generate the samples uniformly using this condition [a-fA-F0-9]{64} following
the same casing of the original sample.
SHA512. We generate the samples uniformly using this condition [a-fA-F0-9]{128} following
the same casing of the original sample.
Ethereum wallet. We generate the samples uniformly using this condition 0x[a-fA-F0-9]{40}.
We select and generate only samples using case sensitivity as a checksum (ERC-55: Mixed-case
checksum address encoding).
Java serialization. All serializable Java classes have the serialVersionUID attribute,
which is often equal to a random number, for instance, private static final long
serialVersionUID = 6146619729108124872L.

B DISTRIBUTION OF NATURAL IDENTIFIERS

Table 10 shows for each subset and type of NID the number of NIDs. We highlight that large subsets,
such as Dolma RefineWeb, has significant number of NIDs.

C FURTHER EXPERIMENTS ON DI

We evaluate DI on various models and data subsets. More concretely, we experiment with Pythia
models 12b, 6.9b, and 2.8b and OLMo-7B. Additionally, we investigate the impact of increasing the
number of samples in the suspect set. All results are summarized in Figure 3.

D MIAS PERFORMANCE

Table 1, Table 4 and Table 5 show the MI performance of the individual MIAs on the subsets of the
Pile using the NIDs, where the goal is to distinguish the real from the generated ones. Furthermore,
for completeness, we have Table 6, Table 7, Table 8, that show the MI performance using TPR @ 1%
FPR.

E DI P-VALUES

Table 10 shows the p-values of the DI task in the different models and datasets. Our method shows
no false positives and no fal

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Table 2: Natural Identifiers in Different Datasets. We present the number of various natural
identifiers (here: sha1, md5, sha256, java serialization, sha512, and ethereum wallet) in the analyzed
datasets. The sum denotes the total number of natural identifiers in a given dataset.

Dataset Total Number sha1 md5 sha256 java serialization sha512 ethereum wallet

dolma refineweb 16989 8098 6192 2130 42 110 417
pile train github 13182 5389 1938 4158 819 701 177
pile train stackexchange 9862 4850 3235 1200 348 121 108
pile train pile cc 3422 1078 2008 274 1 8 53
dolma algebraic stack train 2384 1264 464 612 1 28 15
pile train hackernews 2268 1340 821 93 0 7 7
dolma open web math train 2207 1212 727 221 1 20 26
pile train ubuntuirc 1056 618 340 88 0 9 1
dolma c4 791 408 301 63 0 4 15
dolma PeS2o 435 235 174 11 0 1 14
dolma MegaWika 383 115 200 62 0 2 4
dolma ArXiv 332 239 58 21 0 2 12
Pile test (all subsets) 293 130 69 62 13 14 5
pile train pubmedcentral 225 66 152 7 0 0 0
pile train ArXiv 207 75 122 7 0 0 3
pile test github 197 80 36 52 13 12 4
pile train wikipediaen 85 15 66 3 0 1 0
pile test stackexchange 58 34 16 6 0 2 0
open web math test 46 19 20 6 0 1 0
algebraic stack test 39 28 4 7 0 0 0
dolma wiki 38 11 22 3 0 2 0
pile test pile cc 18 6 8 3 0 0 1
pile train philpapers 16 1 15 0 0 0 0
pile train freelaw 15 1 14 0 0 0 0
pile test hackernews 13 7 6 0 0 0 0
dolma tulu flan 10 0 9 1 0 0 0
pile test ubuntuirc 5 3 2 0 0 0 0
pile train enronemails 4 0 4 0 0 0 0
pile test wikipediaen 2 0 1 1 0 0 0
dolma books 2 0 2 0 0 0 0
pile train gutenbergpg 19 1 0 1 0 0 0 0
pile train pubmedabstracts 1 0 1 0 0 0 0

Table 3: NID-benchmark for OLMo-7B. The AUC for MIAs between the NIDs and the correspond-
ing GIDs on various subsets of the Dolma dataset.

Dolma Average
MIA C4 PeS2o MegaWika ArXiv refineweb algebraic stack open web math Proof Pile 2 Test Train

Loss 50.1 50.2 50.2 51.2 50.1 50.0 50.9 50.6 50.4
Min-K% 50.1 50.2 50.5 51.3 50.1 50.5 51.7 51.3 50.6
Min-K%++ 50.4 50.2 50.0 50.7 50.1 50.2 50.8 51.0 50.3
ReCALL 50.2 50.9 51.0 50.7 50.1 50.4 51.0 51.0 50.6
ReCALL (Hinge) 50.3 51.4 50.2 51.9 50.2 50.7 50.2 51.0 50.7
Hinge 50.1 50.2 50.2 50.9 50.1 50.0 50.7 51.0 50.3

F FURTHER THEORY AND PROOFS

First, we state a useful definition and Lemma by Steinke et al. (2023), and then use them to prove
Theorem 1.

Definition 1 (Stochastic Dominance). [Definition 4.8, Steinke et al. (2023)] Let X,Y ∈ R be random
variables. We say X is stochastically dominated by Y if P[X > t] ≤ P[Y > t] for all t ∈ R.

Lemma 1. [Lemma 4.9, Steinke et al. (2023)] Suppose X1 is stochastically dominated by Y1. Suppose
that, for all x ∈ R, the conditional distribution X2|X1 = x is stochastically dominated by Y2. Assume
that Y1 and Y2 are independent. Then, X1 +X2 is stochastically dominated by Y1 + Y2.

Here, we have the proof of Theorem 1.

Proof. Our analysis is similar to Proposition 5.1 by Steinke et al. (2023).
Fix some t ∈ Σ1 × · · · × Σm, and i ∈ [m], a ∈ Vi, and s<i ∈ V1 × · · · × Vi. Using Bayes’ law and

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

10 25 50 75 100
Number of samples

10 10

10 8

10 6

10 4

10 2

100

P-
va

lu
e

Pile (All subsets)
Pile ArXiv
Pile Github
Pile HackerNews

Pile-CC
Pile PubMedCentral
Pile StackExchange
Pile UbuntuIRC

(a) Pythia 12b

10 25 50 75 100
Number of samples

10 10

10 8

10 6

10 4

10 2

100

P-
va

lu
e

Pile (All subsets)
Pile ArXiv
Pile Github
Pile HackerNews

Pile-CC
Pile PubMedCentral
Pile StackExchange
Pile UbuntuIRC

(b) Pythia 6.9b

10 25 50 75 100
Number of samples

10 10

10 8

10 6

10 4

10 2

100

P-
va

lu
e

Pile (All subsets)
Pile ArXiv
Pile Github
Pile HackerNews

Pile-CC
Pile PubMedCentral
Pile StackExchange
Pile UbuntuIRC

(c) Pythia 2.8b

10 25 50 75 100
Number of samples

10 10

10 8

10 6

10 4

10 2

100

P-
va

lu
e

Dolma algebraic stack
Dolma arxiv
Dolma c4
Dolma refineweb

Dolma megawika
Dolma open web math
Dolma pes2o
Proof Test

(d) OLMo-7B

Figure 3: The p-value for different Pythia models and OLMo on subsets of the Pile or Dolma datasets,
respectively. We show results for different numbers of samples in the suspect set. For the Pythia
models, the solid lines show the training subsets, while the dashed lines are for test subsets (not
included in training). The Proof Pile 2 Test subset has less than 100 NIDs. Hence, their lines are
plotted only until the highest number of samples is available. We observe that for training sets, the
p-value is overall decreasing with the number of samples, enabling the detection of the private data in
the model’s training set. The test set’s p-values are constant, suggesting that no false positives are
achieved.

Table 4: NID-benchmark for Pythia-6.9b. The AUC for MIAs between the NIDs and the corre-
sponding GIDs on various subsets of the Pile dataset.

Pile Github StackExchange Train Average
MIA Train Test Train Test Train Test UbuntuIRC Wikipediaen PubMedCentral HackerNews Pile-CC ArXiv Train Test

Loss 57.6 50.4 69.9 51.1 50.3 50.6 50.3 50.7 50.7 61.7 50.8 50.6 54.7 50.7
Min-K% 56.0 51.0 65.7 50.5 50.8 51.4 50.9 50.6 50.9 63.2 51.8 50.7 54.5 51.0
Min-K%++ 55.1 51.3 69.3 50.5 51.3 50.4 51.4 51.8 51.6 74.5 52.8 51.8 56.6 50.7
ReCALL 52.4 51.4 55.9 51.1 50.1 51.0 50.1 50.5 50.4 60.3 50.3 50.7 52.3 51.2
ReCALL (Hinge) 51.2 50.6 53.2 51.2 50.1 50.1 51.0 50.9 50.1 52.6 50.0 50.0 51.0 50.6
Hinge 57.7 50.7 69.9 51.6 50.4 50.1 50.2 50.0 50.7 61.7 50.7 50.3 54.6 50.8

ε-DP, we have
P[Si = a|M(S) = t, S<i = s<i]

=
P[M(S) = t|Si = a, S<i = s<i]P[Si = a]

P[M(S) = t|S<i = s<i]

=
P[M(S) = t|Si = a, S<i = s<i]

1
|Vi|∑|Vi|

j=1 P[M(S) = t|Si = Vi,j , S<i = s<i]P[Si = Vi,j]

=
P[M(S) = t|Si = a, S<i = s<i]

1
|Vi|∑|Vi|

j=1 P[M(S) = t|Si = Vi,j , S<i = s<i]
1
|Vi|

=
1

1 +
∑|Vi|

j=1,Vi,j ̸=a
P[M(S)=t|Si=Vi,j ,S<i=s<i]

P[M(S)=t|Si=a,S<i=s<i]

∈
[

1

1 + (|Vi| − 1)eε
,

eε

|Vi| − 1 + eε

]
14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 5: NID-benchmark for Pythia-2.8b. The AUC for MIAs between the NIDs and the corre-
sponding GIDs on various subsets of the Pile dataset.

Pile Github StackExchange Train Average
MIA Train Test Train Test Train Test UbuntuIRC Wikipediaen PubMedCentral HackerNews Pile-CC ArXiv Train Test

Loss 52.8 50.0 58.9 50.4 50.2 50.2 50.1 50.5 50.5 60.3 50.8 50.6 52.8 50.2
Min-K% 52.1 52.4 59.5 52.9 50.6 50.3 50.2 50.1 50.6 61.6 51.6 50.5 53.0 51.8
Min-K%++ 50.3 52.3 58.2 50.6 50.9 50.1 50.2 50.2 50.3 73.6 52.8 51.4 54.2 51.0
ReCALL 53.7 51.1 64.4 52.2 50.1 50.1 50.2 50.8 50.5 58.0 50.2 51.1 53.2 51.2
ReCALL (Hinge) 50.9 50.6 50.9 50.8 50.5 50.7 50.9 52.3 50.2 51.3 50.2 50.1 50.8 50.7
Hinge 53.0 50.4 58.9 51.1 50.3 50.3 50.2 50.2 50.5 59.9 50.7 50.4 52.7 50.6

Table 6: NID-benchmark for Pythia-12b. The TPR @ 1% FPR for MIAs between the NIDs and the
corresponding GIDs on various subsets of the Pile dataset.

Pile Github StackExchange Train Average
MIA Train Test Train Test Train Test UbuntuIRC Wikipediaen PubMedCentral HackerNews Pile-CC ArXiv Train Test

Loss 1.2 0.0 1.9 0.0 1.0 0.1 0.0 0.1 0.5 0.1 0.9 0.3 0.7 0.0
Min-K% 1.1 0.0 1.6 0.0 1.0 1.8 0.3 0.9 1.0 0.2 0.9 0.6 0.9 0.6
Min-K%++ 1.3 1.1 2.0 1.1 0.8 1.3 0.4 0.9 1.9 0.8 1.3 0.4 1.1 1.2
ReCALL 1.2 0.2 1.5 0.0 1.0 1.5 1.4 0.7 0.8 0.9 1.9 1.0 1.1 0.5
ReCALL (Hinge) 1.1 1.2 1.9 1.5 0.6 1.3 0.5 1.0 0.1 1.5 1.3 2.8 1.2 1.3
Hinge 0.0 0.4 0.0 0.5 0.9 1.5 0.5 0.5 2.1 1.1 0.9 1.3 0.8 0.8

Additionally, we can observe that for all i ∈ [m], we have that P[rank(ti, Si) ≤ ri] =
∑ri

j=1 P[Si =

ti,j]. Therefore, we can bound

P[rank(ti, Si) ≤ ri] =

ri∑
j=1

P[Si = ti,j |M(S) = t, S<i = s<i]

1

1 + (|Vi| − 1)eε
≤ P[Si = ti, j |M(S) = t, S<i = s<i] ≤ ·

eε

|Vi| − 1 + eε

ri
1 + (|Vi| − 1)eε

≤ P[rank(ti, Si) ≤ ri |M(S) = t, S<i = s<i] ≤
rie

ε

|Vi| − 1 + eε

P[rank(ti, Si) ≤ ri|M(S) = t, S<i = s<i] ∈
[

ri
1 + (|Vi| − 1)eε

,
rie

ε

|Vi| − 1 + eε

]
Thus, P[rank(ti, Si) ≤ ri|M(S) = t, S<i = s<i] ≤ rie

ε

|Vi|−1+eε = rie
ε

eε+|Vi|−1 . With that, we can

prove the result by induction. We inductively assume that Wm−1 :=
∑m−1

i=1 1[rank(ti, Si) ≤ ri] is
stochastically dominated by Ŵ which is Bernoulli(rie

ε

|Vi|−1+eε)
m−1. As above, 1[rank(ti, Si) ≤ ri]

is statistically dominated by Bernoulli(rmeε

eε+|Vm|−1). By Lemma 4.9 by Steinke et al. (2023), Wm =

Wm−1 + 1[rank(tm, Sm) ≤ rm] is statistically dominated by Bernoulli(rie
ε

|Vi|−1+eε)
m

i=1
.

To show the case (ε, δ)-DP, we will first state Lemma 5.6 by Steinke et al. (2023). Then following
the analysis of Proposition 5.7 and Theorem 5.2 by Steinke et al. (2023), we prove Theorem 2.
Lemma 2. [Lemma 5.6, Steinke et al. (2023)] Let P and Q be probability distributions over Y . Fix
ϵ, δ ≥ 0. Suppose that, for all measurable S ⊆ Y , we have

P (S) ≤ eϵ ·Q(S) + δ and Q(S) ≤ eϵ · P (S) + δ.

Then there exists a randomized function EP,Q : Y → {0, 1} with the following properties.

Fix p ∈ [0, 1] and suppose X ∼ Bernoulli(p). If X = 1, sample Y ∼ P ; and, if X = 0, sample
Y ∼ Q. Then, for all y ∈ Y , we have

PX∼Bernoulli(p), Y∼XP+(1−X)Q

[
X = 1 ∧ EP,Q(Y) = 1 | Y = y

]
≤ p

p+ (1− p)e−ϵ
.

Furthermore,
EY∼P [EP,Q(Y)] ≥ 1− δ and EY∼Q[EP,Q(Y)] ≤ δ.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 7: NID-benchmark for Pythia-6.9b. The TPR @ 1% FPR for MIAs between the NIDs and
the corresponding GIDs on various subsets of the Pile dataset.

Pile Github StackExchange Train Average
MIA Train Test Train Test Train Test UbuntuIRC Wikipediaen PubMedCentral HackerNews Pile-CC ArXiv Train Test

Loss 1.2 0.1 1.9 0.0 1.0 1.3 0.4 0.0 0.3 0.3 0.5 1.0 0.7 0.5
Min-K% 1.1 0.1 1.6 0.0 1.3 0.7 0.5 1.0 0.9 0.3 1.0 1.3 1.0 0.3
Min-K%++ 0.9 0.7 1.0 0.6 1.2 1.4 0.4 1.3 0.9 0.9 0.4 1.1 0.9 0.9
ReCALL 1.0 0.2 1.5 0.0 1.2 1.3 1.1 0.6 1.2 1.2 1.2 2.1 1.2 0.5
ReCALL (Hinge) 1.3 1.4 2.0 1.5 0.5 2.6 0.6 2.3 1.8 3.3 1.2 1.8 1.6 1.9
Hinge 0.0 0.3 0.0 0.5 0.8 1.2 0.7 0.3 1.2 1.0 0.7 0.9 0.6 0.7

Table 8: NID-benchmark for Pythia-2.8b. The TPR @ 1% FPR for MIAs between the NIDs and
the corresponding GIDs on various subsets of the Pile dataset.

Pile Github StackExchange Train Average
MIA Train Test Train Test Train Test UbuntuIRC Wikipediaen PubMedCentral HackerNews Pile-CC ArXiv Train Test

Loss 1.1 0.0 1.4 0.0 0.9 1.3 0.4 0.0 0.8 0.1 0.6 1.0 0.7 0.4
Min-K% 1.1 0.0 1.2 0.0 1.1 1.4 0.4 1.1 1.1 0.3 0.7 0.7 0.8 0.5
Min-K%++ 0.9 0.6 1.3 0.5 0.8 1.5 0.3 1.0 2.3 0.8 1.0 0.3 1.0 0.9
ReCALL 0.1 0.0 0.5 0.0 1.0 0.1 1.5 0.1 0.9 0.7 1.0 1.7 0.8 0.0
ReCALL (Hinge) 1.3 0.7 1.6 1.0 0.7 0.1 1.7 0.4 0.1 2.4 0.8 1.1 1.1 0.6
Hinge 0.1 0.4 0.1 0.4 0.8 1.5 0.4 0.2 1.5 1.2 0.9 0.9 0.7 0.8

Theorem 2. Let M : V1× ...×Vm −→ Σ1× ...×Σm be an (ε, δ)-DP mechanism under replacement.
Let S ∈ V1 × ...× Vm be uniformly random. Let T = M(S) ∈ Σ1 × ...× Σm. Then, for all v ∈ R,
all t ∈ Σ1 × ...× Σm in the support of T , and all r1, ..., rm with ri ≤ |Vi|,

PS←V1×...×Vm,T=M(S)[

m∑
i=1

1[rank(ti, Si) ≤ ri] ≥ v|T = t]

≤ β + αδ

m∑
i=1

|Vi|

where

β = PŜ [Ŝ ≥ v],

α = max (
1

i
PŜ [Ŝ ≥ v − i] : i ∈ {1, ...,m}),

Ŝ ← Bernoulli

(
rie

ε

|Vi| − 1 + eε

)m

i=1

.

Theorem 2 shows the analogous result of Theorem 1 using (ε, δ)-DP.

Now, we show the proof of Theorem 2.

Proof. Our analysis follows Proposition 5.7 and Theorem 5.2 by Steinke et al. (2023).

For i ∈ {0, . . . ,m} and s≤i ∈ V1 × · · · × Vi, let M(s≤i) denote the distribution on Σ1 × · · · × Σm

obtained by conditioning M(S) on S≤i = s≤i. We can express this as a convex combination:

M(s≤i) =
∑

s>i∈Vi×···×Vm

M(s≤i, s>i) · PS>i←Vi×···×Vm
[S>i = s>i].

Additionally, for all i ∈ [m], and a ∈ Vi, we define M̂(s≤i, a) as the distribution on Σ1 × · · · × Σm

obtained by conditioning on S≤i = s≤i and Si+1 ̸= a, as follows:

M̂(s≤i, a) =
∑

b∈Vi,a̸=b

1

|Vi| − 1
M(s≤i, b).

We define S ← V1 × · · · × Vm to represent uniform sampling over V1 × · · · × Vm. For all i ∈ [m],
we have that the distributions P and Q on Σ1, . . . ,Σm, and let EP,Q : Σ1, . . . ,Σm → {0, 1} be the

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 9: NID-benchmark for OLMo 7B. The TPR @ 1% FPR for MIAs between the NIDs and the
corresponding GIDs on various subsets of the Dolma dataset.

Dolma Average
MIA C4 PeS2o MegaWika ArXiv refineweb algebraic stack open web math Proof Pile 2 Test Train

Loss 0.4 0.9 0.4 1.2 0.8 0.9 0.3 0.0 0.7
Min-K% 0.7 0.5 1.5 0.3 0.9 0.5 0.4 0.0 0.7
Min-K%++ 1.1 0.8 0.2 0.8 2.0 0.3 0.9 0.0 0.9
ReCALL 0.7 0.6 0.6 0.7 0.7 0.9 0.6 0.0 0.7
ReCALL (Hinge) 0.7 0.3 1.1 0.2 0.2 1.1 2.2 0.0 0.8
Hinge 0.9 1.0 1.0 0.6 1.1 1.1 0.9 0.0 0.9

Table 10: p-values for DI at 100 samples in the suspect data. To reject the null hypothesis, we use
the threshold of 1% for the p-values. All the outcomes from our method are correct (✓).

Model Data Subset p-value DI outcome

Pythia 12b
Train

Pile (All subsets) ≤ 0.0001 ✓
Pile Github 0.0031 ✓

Pile StackExchange ≤ 0.0001 ✓
Pile HackerNews ≤ 0.0001 ✓

Pile-CC 0.0001 ✓
Pile ArXiv ≤ 0.0001 ✓

Pile PubMedCentral ≤ 0.0001 ✓
Pile UbuntuIRC ≤ 0.0001 ✓

Test Pile (All subsets) 0.2847 ✓
Pile Test Github 0.8182 ✓

Pythia 6.9b
Train

Pile (All subsets) ≤ 0.0001 ✓
Pile Github 0.0001 ✓

Pile StackExchange ≤ 0.0001 ✓
Pile HackerNews ≤ 0.0001 ✓

Pile-CC 0.0002 ✓
Pile ArXiv ≤ 0.0001 ✓

Pile PubMedCentral ≤ 0.0001 ✓
Pile UbuntuIRC ≤ 0.0001 ✓

Test Pile (All subsets) 0.0811 ✓
Pile Test Github 0.6139 ✓

Pythia 2.8b
Train

Pile (All subsets) ≤ 0.0001 ✓
Pile Github ≤ 0.0001 ✓

Pile StackExchange ≤ 0.0001 ✓
Pile HackerNews ≤ 0.0001 ✓

Pile-CC ≤ 0.0001 ✓
Pile ArXiv ≤ 0.0001 ✓

Pile PubMedCentral ≤ 0.0001 ✓
Pile UbuntuIRC ≤ 0.0001 ✓

Test Pile (All subsets) 0.0660 ✓
Pile Val Github 0.9632 ✓

OLMo 7B Train

Dolma open web math ≤ 0.0001 ✓
Dolma PeS2o ≤ 0.0001 ✓

Dolma refineweb 0.0003 ✓
Dolma algebraic stack ≤ 0.0001 ✓

Dolma MegaWika 0.0002 ✓
Dolma arxiv ≤ 0.0001 ✓

Dolma c4 ≤ 0.0001 ✓
Test Proof Pile 2 Test 0.8961 ✓

randomized function given by Lemma 2 (using p = 1
|Vi|). Specifically, all s≤i ∈ V1 × · · · × Vi, all

t ∈ Σ1 × · · · × Σm, and all a ∈ Vi, we have

PS←V1×···×Vm,T←M(S),E [Si = a ∧ EM(s<i,a),M̂(s<i,a)
(T) = 1|S≤i = s≤i, T = t] ≤ eε

|Vi| − 1 + eε
,

ES←V1×···×Vm,T←M(S),E [EM(s<i,a),M̂(s<i,a)
(T)|S≤i = (s<i, a)] ≥ 1− δ.

For simplicity, for all i ∈ [m], we define EM(s<i,Vi)(y) :=
∏

a∈Vi
EM(S<i,a),M̂(S<i,a)

(y)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

and, for b ∈ Vi, we have

ES←V1×···×Vm,T←M(S),E [EM(s<i,Vi)(T)|S≤i = (s<i, b)] ≥ 1− |Vi|δ.

For all a ∈ Vi, we define a j := rank(ti, a), so we can rewrite
PS←V1×···×Vm,T←M(S),E [Si = a ∧ EM(s<i,Vi)(T) = 1|S≤i = s≤i, T = t]

= PS←V1×···×Vm,T←M(S),E [rank(ti, Si) = j] ∧ EM(s<i,Vi)(T) = 1|S≤i = s≤i, T = t].

Note that there is a bijective relationship between a and j. Therefore, we have that

PS←V1×···×Vm,T←M(S),E [rank(ti, Si) ≤ ri ∧ EM(s<i,Vi)(T) = 1|S≤i = s≤i, T = t] ≤ rie
ε

|Vi| − 1 + eε
.

For j ∈ [m], s ∈ Vi × · · · × Vm, and t ∈ Σ1 × · · · × Σm, define

W̃j(s, t) :=
∑
i<j

1[rank(ti, Si) ≤ ri] · EM(s<i,Vi)(t) =
∑
i<j

1[rank(ti, Si) ≤ ri ∧ EM(s<i,Vi)(t) = 1]

Ŵj(t) =
∑
i∈[j]

Si(t),

where, for each i ∈ [m] independently, S(t)i ← Bernoulli
(

rie
ε

|Vi|−1+eε

)
By induction and Lemma 1, for any j ∈ [m] and t ∈ Σ1 × · · · × Σm, the conditional distribution
(W̃m(S, t)|M(S) = t) where S ← V1 × · · · × Vm is stochastically dominated by Ŵm(t).

For s ∈ V1 × · · · × Vm and t ∈ Σ1 × · · · × Σm, define

F (s, t) :=

m∑
i=1

1
[
EM(s<i,Vi)(t) = 0

]
,

so that

Wm(s, t) :=

m∑
i=1

1[rank(ti, Si) ≤ ri] ≤ Ŵm(s, t) + F (s, t).

Since the conditional distribution (Wm(S, t)|M(S) = t), where S ← V1×· · ·×Vm is stochastically
dominated by Wm(t), Wm is stochastically dominated by the convolution Ŵm(T)+F (S, T). Finally,
F (s, t) is supported on {0, 1, . . . ,m} and

E[F (s, t)] =

m∑
i=1

P[EM(s<i,a),M̂(s<i,a)
(T) = 0] ≤ δ

m∑
i=1

|Vi|.

Since Ŵm(T) does not depend on S, the input S does not contribute to the dependence between
F (S, T) and Wm(T), so we can elide this input in the statement, that is, F (T) = F (S, T) for S
drawn from an appropriate distribution.

Given these constraints, we can formulate finding the optimal distribution F (t) for a given t ∈
Σ1 × · · · × Σm and v ∈ R as a linear program:

maximize PW̌ ,F [W̌ (t) + F (t) ≥ v]−
m∑
i=0

P[F (t) = i] · P[W̌ (t) ≥ v − i]

subject to EF [F (t)] =

m∑
i=0

PF [F (t) = i] · i ≤ δ

m∑
i=1

|Vi|,

m∑
i=0

PF [F (t) = i] = 1, and

PF [F (t) = i] ≥ 0 ∀i ∈ {0, 1, . . . ,m},

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

where W̌ (t) :=
∑m

i=1 1[rank(ti, Si) ≤ ri] for Si ← Bernoulli
(

rie
ε

|Vi|−1+eε

)m

.

By strong duality, the linear program above has the same value as its dual:

minimize α · δ
m∑
i=1

|Vi|+ β

subject to α · i+ β ≥ PW̌ [W̌ (t) ≥ v − i] ∀i ∈ {0, 1, . . . ,m},
α ≥ 0.

Any feasible solution to the dual gives an upper bound on the primal. So, in particular, we can use the
solution provided by

β = PW̌∗ [W̌
∗ ≥ v],

α = max

(
{0} ∪

{
1

i

(
PW̌∗ [W̌

∗ ≥ v − i]− β
)
: i ∈ {1, 2, . . . ,m}

})
,

where W̌ ∗ is a distribution on R that satisfies PW̌∗ [W̌
∗ ≥ v − i] ≥ PW̌ [W̌ (t) ≥ v − i] for all

i ∈ {0, 1, . . . ,m} and all t in the support of T .

G OUR PRIVACY AUDITING AT THE EXAMPLE OF RANDOMIZED RESPONSE

To demonstrate the effectiveness of our adapted procedures, we consider the randomized response
mechanism (Warner, 1965). Formally, we are given m samples, and each of them corresponds to a
private integer value si between 1 and c, which means Vi = [c], and we use the randomized response
mechanism to release these private integers, as

yi =

{
si with probability 1

c + γ,

a with probability 1
c −

γ
c−1 ∀a ∈ [c], a ̸= si.

By choosing γ = eε−1
c(1+ eε

c−1)
, we have a ε-DP mechanism. The auditor ranks the possible c values

from the most to the least likely. In this case, the only information that the auditor has to predict si is
the corresponding output yi. We can observe that yi is the most likely input si, therefore the best that
the auditor can do is to rank yi as the most likely value for si, and the others in random orders, as it
does not have any information regarding the other possibilities. We can also observe that it gives the
correct answers with probability eε

c−1+eε , which is equivalent to the bound obtained from Theorem 1.
Figure 4 shows how our method performs for different choices of top-r ranks, and cardinality of the
sets c = |Vi|. A high cardinality is particularly useful when auditing higher privacy budgets, while for
smaller privacy budgets, it increases the required number of samples to obtain a tight privacy result.
Therefore, the best cardinality for a given setting depends on the privacy budget, and on the hardness
of the task. Furthermore, we highlight that our result is tight for ri = 1 with enough samples.

H DP-SGD AUDITING

In the following subsection, we show additional experiments for DP-SGD auditing, and the pseu-
docode of the auditing procedure.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

101 102 103 104 105

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Steinke et al. (2,1)
(4, 1)

(4, 2)
(128, 1)

(128, 8)
(128, 64)

101 102 103 104 105

Number of samples

0

1

2

3

4

5

Steinke et al. (2,1)
(4, 1)

(4, 2)
(128, 1)

(128, 8)
(128, 64)

Figure 4: Randomized response mechanism with ε = {1, 5}. The red dashed line indicates the real
ε of the mechanism, while other ones indicate the estimated lower bound of ε with 99% confidence
for different choices of cardinality c, and rank threshold r. The (2,1) case corresponds to the method
proposed by Steinke et al. (2023). Each label is written as (cardinality c, rank threshold r).

H.1 FURTHER EXPERIMENTS ON DP-SGD AUDITING

101 102

real

100

3 × 10 1

4 × 10 1

6 × 10 1

es
tim

at
ed

Loss Min-K%

(a) Under different attack scenarios

101 102

real

10 1

100

es
tim

at
ed

100 200 250 500 750

(b) Under a different number of inserted canaries.

Figure 5: Comparison of impact on ε estimation versus actual ε

Figure 5a reveals compares various scoring functions used for auditing. The gap between different
attacks remains substantial. As shown in Figure 5a, we can observe that ε estimation improves with
increasing number of inserted canaries until 250. With 500 and 750 canaries, the audit becomes
looser. These observations align with those of Steinke et al. (2023), who also observed a similar trend
for black-box audits. We can agree that one possible explanation may be a black-box analysis gives a
weaker theoretical privacy analysis. The other explanation may be utilizing a small model.

H.2 PSEUDOCODE FOR DP-SGD AUDITING

Algorithm 1 summarizes our approach for auditing DP-SGD using the results given by Theorem 2.
We highlight that when for all i ∈ [m], we have |Vi| = 2 and ri = 1, the algorithm is equivalent to
the fixed-length dataset case proposed by Steinke et al. (2023).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Algorithm 1 Adapted version of the black-box DP-SGD Auditor algorithm proposed by Steinke et al.
(2023) for fixed-length dataset with NIDs.

Require: Dataset D0, sets of canaries V = {V1, . . . , Vm}, the target ranks r1, ..., rm, and the
DP-SGD settings

1: for i ∈ [m] do
2: Si ← Unif{Vi}
3: end for
4: D1 := {Vi,Si : i ∈ [m]}
5: D = D0 ∪D1

6: Run DP-SGD on D with given parameters, yielding {w0, w1, . . . , wℓ}
7: for i ∈ [m] do
8: Yi,j ← SCORE(Vi,j ;w

ℓ) ∀j ∈ [|Vi|]
9: Ti ← argsort(Yi,j∀j ∈ [|Vi|])

10: end for
11: c← 0
12: for i ∈ [m] do
13: if Ti,Si

≤ ri then
14: c← c+ 1
15: end if
16: end for
17: return Compute εlower using the formula given by Theorem 2

21

	Introduction
	Background
	Natural Identifiers (NIDs)
	NIDs in the Wild
	Leveraging NIDs
	Formalizing NIDs

	NIDs for Benchmarking MIAs
	Dataset Inference with NIDs
	DP Auditing with Natural Identifiers
	Discussion and Conclusions
	Extracting natural identifiers post-hoc
	Distribution of Natural Identifiers
	Further Experiments on DI
	MIAs Performance
	DI p-values
	Further Theory and Proofs
	Our Privacy Auditing at the Example of Randomized Response
	DP-SGD Auditing
	Further Experiments on DP-SGD Auditing
	Pseudocode for DP-SGD auditing

