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Abstract

Geological Fault Detection is a crucial aspect of earthquake prediction and oil
exploration. With the advancements in deep learning, the challenging task of ac-
curate fault detection has gained popularity. While the traditional deep learning
methods struggle due to the labeling process, training a model solely on synthetic
data may not yield satisfactory results due to the disparities between synthetic and
real seismic data. To mitigate the impact of these differences, we propose employ-
ing an instance weighting-based transfer learning. This allows the model to adapt
to only the unique characteristics of the geological data. The proposed method
yields satisfying results on the Indian Krishna Godavari Basin dataset.

1 Introduction

Accurate delineation of faults in seismic images serve as a fundamental step in interpretation of sub-
surface structures, reservoir characterization, and earthquake detection. Traditional methods include
discontinuity-based methods like [2, 32, 20, 23, 24, 8, 33]. Over the years, application of machine
learning (ML) [5, 4, 29, 35, 1] has significantly revolutionized seismic interpretation.
Subsequently, the task of fault detection transitioned into a segmentation problem, leading to the
proposal of encoder-decoder architecture in studies. The study presented in [34] builds upon pre-
vious research [12, 35, 17], and others that employed neural network architectures for pixel-level
classification. Additionally, other variations such as nested residual U-nets [9], U-net++ [36], and
wavelet transform-based CNN [26] architectures, were also introduced. Inspired by the success of
attention-based or Transformer networks, a few reports [10, 31] have also been found. Although
deep learning techniques have shown promising results, they heavily rely on a huge amount of la-
beled training data. Transfer learning (TL) is a potential solution to address the above challenge. TL
methods in [3] utilize the acquired knowledge to adapt to a similar task [21].
In this study, we aim to overcome the limitations of traditional deep learning methods and the dis-
parities between synthetic and real seismic data, by leveraging transfer learning. Using a base CNN
model trained on synthetic seismic data [6], we adopt an appropriate transfer learning strategy to
the offshore Indian Krishna Godavari (KG) Basin dataset. Due to the unavailability of data, only
a limited amount of literature [25, 27] exists for the Indian KG Basin dataset. To the best of our
knowledge, an instance-based domain knowledge transfer has not yet been explored on this dataset.
The major contributions of the paper as follows:

1. A quantitative analysis of data distribution differences using suitable measurement parameters,
i.e Kullback–Leibler divergence (KLD) and Jensen–Shannon divergences (JSD).

2. Application of an instance weighting-based method for knowledge transfer between source and
target domains.
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3. In the context of geological fault detection, some well-established segmentation metrics may not
be suitable for quantitative analysis of the network performance. Hence, a detailed metric-based
similarity assessment of ground truth and predicted labels is presented.

2 Methodology

While traditional methods rely on geological attribute calculations, this research adopts a well es-
tablished computer vision approach of semantic segmentation, where the objective is to assign a
class label to each pixel in the image. Let us assume, that the source domain or synthetic data is
denoted by DS = (xs1, ys1), (xs2, ys2) · · · (xsn, ysn), where xsi and ysi, denotes the ith instance
and the label, respectively. Ds is employed for training the pre-trained model. Similarly, the target
domain data is represented as DT = (xt1, yt1), (xt2, yt2) · · · (xtm, ytm). Table 1 shows quantitative
evidences confirming that the data from both domains follow different marginal distributions i.e.

PS(x) ̸= PT (x) (1)

where, PS(x) and PT (x) are marginal probability distributions of source and target domain, respec-
tively. Hence, this research adopts a strategy to fine-tune the network based on the dissimilarity
between source and target domains. In order to accomplish the fault detection task, the proposed

Figure 1: The Encoder-Decoder CNN architecture for 2-D geological fault detection. Note that the
black values denote non-fault pixels while the white ones indicate faulty ones.

framework employs a U-net architecture (as depicted in Figure 1) as the encoder-decoder model.
In the context of geological fault detection, there is a significant class imbalance between positive
labels (faults) and negative labels (no-faults). To tackle this task, we employ three different loss
fuctions, namely, the Binary Cross Entropy (BCE) [19], Weighted BCE [22] and the Binary Focal
(BFL) [18] loss functions. It has been observed that different components of a CNN learn distinct
features [3]. A combination of pre-training and fine-tuning is a prominent trend [30] in deep learn-
ing. However, the performance of TL methods depend on the dissimilarity of source and domain
datasets. Inspired from [16], we quantify the distribution difference between the target and source
domain instances and use it for instance weighting (IW) during model training. We introduce the
KL and JS divergences to measure the similarity quantitatively [15, 11, 7].

JS(P1, P2) =
1

2
KL (P1||P ) +

1

2
KL (P2||P ) and KL(P1, P2) =

∑
P1(x) log

P1(x)

P2(x)
(2)

Also note that P in Equation 2 can be expressed as,

P =
P1 + P2

2
(3)
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The JS divergence between the ith target domain instance and entire source domain instance is:

JS(xti, XS) =
1

n

n∑
j=1

JS(xti, xsj) (4)

In this research, we fine tuned the network with initial weights equal to the pre-trained model weights
instead of random weight initialization. The instances used for final model training are weighted
using the normalized value JS divergence values.

wi = JSnormalized(xti, XS) (5)

where, wi is the weight associated with the ith target domain instance. Thus, the target instances that
are similar to the source domain are asigned low training weights, so as their influence is reduced.
Therefore, the model focuses on adapting to only the unique characteristics of the real data.

3 Description and Analysis of Datasets

In this study, the Equinor synthetic model [6] is utilized as the synthetic data source. The 3-D seis-
mic cube consists of 151 inline sections and 589 crosslines. The data acquisition process involved
recording for a duration of 3.6s with a sampling rate of 4ms. Further, the research focuses on a spe-
cific area in the offshore Krishna-Godavari (KG) Basin. The seismic data consists of inlines ranging
from 1982 to 4517, with a step size of 1, and crosslines ranging from 8800 to 14000, with a step size
of 2. During acquisition, the recorded data of 4s was sampled with a vertical sampling rate of 4ms.
We quantitatively evaluate the similiarity between the seismic data distributions in order to illustrate
the requirement of transfer learning. Table 1 provides a clear distinction between synthetic (S D)
and real data (R D), revealing that the datasets exhibit dissimilar data distributions. Note that, in
Table 1, we consider consecutive inline sections for calculation of KLD and JSD values.

Table 1: Data distribution of different seismic sections

Seismic data type
Similarity parameters

KLD JSD

S D 90 and S D 91 10.886 1.234

R D 2072 and R D 2073 243.852 113.4

R D 2073 and S D 91 1231.154 270.066

To further study the dissimilarity between the distributions, we present an Analysis of Variance
(ANOVA) test to establish the divergence in the data distributions. We intially assumes that DS and
DT come from the same distribution [7]. The sample size for all three populations in the ANOVA
test was chosen to be 60. Table 2 highlights a lower p value, indicating that the hypothesis of syn-
thetic and real data belonging to the same distribution is not true. The significant disparity between
these data distributions, serves as a strong motivation for the adoption of TL strategies.

Table 2: Statistical parameters obtained from ANOVA test
Test KL Divergence JS Divergence

F-statistic 12.606 105.209

p-value 7.614 × 10−6 7.794 × 10−31

4 Results and Discussions

In this section, we evaluate the performance of the proposed IW framework on the KG Basin dataset,
which reveal the superior performance of the method as compared to state-of-the-art (SOTA) al-
gorithm, namely, Faultseg3D [34]. The synthetic and real data patches exhibit differences in the
amplitude patterns between the two datasets. In order to attain maximum effectiveness, we extract
patches with maximum similarity between the real dataset and the base model training data. In [13],
the authors highlight that an optimal ratio for adopting transfer learning is 2 : 1. In our experiments
we adhere to these findings by initially train the model with 151 inline sections of the synthteic data
[6]. Further, we randomly select a few inline sections of the KG Basin dataset and extracted 85
patches of dimension 512× 512 for knowledge transfer. To train the network, we utilized the Adam
optimizer [14], using a learning rate of 2e− 4. The model was trained for 50 epochs.
Figure 2 presents the qualitative results of the proposed algorithm with the comparison method. Note
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that, the ground truth fault maps are generated through expert’s annotation. The visual comparison
confirms the effectiveness in accurately delineating faults as compared to the results obtained from
[34]. The comparison method exhibits a considerable number of spurious faults, which are clearly
not present in our segmentation results. It can be observed that BCE loss demonstrates notable per-
formance even in presence of high class imbalance. The Weighted BCE and BFL loss functions
exhibit enhanced continuity and thickness of fault lines.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 2: Illustration of the qualitative results using the proposed framework. The first column
showcases the seismic patches, while the subsequent column depicts the ground-truth labels. (c), and
(i) showcase the performance of [34] in inline sections 1983, and 2013, respectively. The prediction
results of the proposed method are illustrated in (d)-(f), and (j)-(l). The 4th, 5th, and 6th columns
depict the performance achieved using BCE, weighted BCE, BFL loss functions, respectively.

Table 3: Quantitative analysis of the fault detection methods on KG Basin Dataset

Method F1-score Precision Recall Mean FDA Mean ROC-AUC Mean SSIM Mean FSMI
FaultSeg3D [34] 0.031 0.016 0.352 0.352 0.522 0.381 0.200

Our Method w. BCE 0.149 0.082 0.811 0.811 0.856 0.816 0.453

Our Method w. Weighted BCE 0.169 0.096 0.714 0.714 0.807 0.714 0.423

Our Method w. BFL 0.185 0.105 0.756 0.756 0.830 0.718 0.448

Our Method w. IW strategy 0.119 0.064 0.842 0.644 0.780 0.731 0.500

In order to assess the performance of the proposed method, we incorporate relevant metrics from the
existing literature like Precision, Recall, F1-score, Fault similarity index (FSMI) [37], Fault detec-
tion accuracy (FDA) index [17], Structural similarity (SSIM) index [28], Area under the Receiver
Operating Characteristic curve (ROC-AUC) to comprehensively evaluate the performance. More-
over, the quantitative performance is illustrated in Table 3. Note that, the mean value of the metrics
over all inline sections are reported. The highest value for each metric is marked in bold face,
while the second best ones are marked in italics. Notably, we observe that our proposed algorithm
achieves higher values, indicating its superior performance. Furthermore, it is important to note that
in the context of geological fault detection, some well-established segmentation metrics may not
be applicable. In this research, we identify that Recall, FDA, ROC-AUC score, SSIM, and FSMI
serve as effective metrics for evaluating the fault detection performance. The optimal result achieved
from the variation of loss function is considered for investigating the efficiency of the proposed IW
strategy. The quantitative results, both with and without weighting, are documented in Table 3.

5 Conclusions

To overcome the limitations due to limited data availability, we propose the use of TL for geolog-
ical fault detection. By leveraging a TL framework, the model is allowed to capture general fault
patterns of seismic data. The model is fine-tuned using a smaller amount of labeled real seismic
data, to adapt to the actual geological conditions and improve fault detection performance in prac-
tical applications. Despite class imbalance challenge in the Indian KG Basin dataset, the method
demonstrates satisfying results, showcasing its potential for effective geological fault detection. Ap-
plication of TL proves to be a valuable strategy in mitigating data limitations and enhancing fault
detection accuracy.
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