
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EXPLAIN LIKE I’M FIVE: USING LLMS TO IMPROVE
PDE SURROGATE MODELS WITH TEXT

Anonymous authors
Paper under double-blind review

ABSTRACT

Solving Partial Differential Equations (PDEs) is ubiquitous in science and engi-
neering. Computational complexity and difficulty in writing numerical solvers has
motivated the development of machine learning techniques to generate solutions
quickly. Many existing methods are purely data driven, relying solely on numer-
ical solution fields, rather than known system information such as boundary con-
ditions and governing equations. However, the recent rise in popularity of Large
Language Models (LLMs) has enabled easy integration of text in multimodal ma-
chine learning models. In this work, we use pretrained LLMs to integrate various
amounts known system information into PDE learning. Our multimodal approach
significantly outperforms our baseline model, FactFormer, in both next-step pre-
diction and autoregressive rollout performance on the 2D Heat, Burgers, Navier-
Stokes, and Shallow Water equations. Further analyis shows that pretrained LLMs
provide highly structured latent space that is consistent with the amound of system
information provided through text.

1 INTRODUCTION

Solving Partial Differential Equations (PDEs) is the cornerstone of many areas of science and engi-
neering, from quantum mechanics to fluid dynamics. While traditional numerical solvers often have
rigorous error bounds, they are limited in scope, where different methods are required for differ-
ent governing equations, and different regimes even for a single governing equation. In the area of
fluid dynamics, especially, solvers that are designed for Navier Stokes equations generally will not
perform optimally in both the laminar and turbulent flow regimes.

Recently, machine learning methods have exploded in popularity to address these downsides in
traditional numerical solvers. The primary aim is to reduce time-to-solution and bypass expensive
calculations. Physics Informed Neural Networks (PINNs)Raissi et al. (2019) have been widely
successful in small-scale systems. More recently, neural operators(Li et al., 2021; Lu et al., 2021;
Li et al., 2023a) have improved upon PINNs, showing promise for larger scale, general purpose
surrogate models. However, these models generally are purely data-driven, and do not use any
additional, known, system information.

Additionally, owing to the success of large language models (LLMs) in many other domains, such
as robotics(Kapoor et al., 2024; Bartsch & Farimani, 2024), design(Kumar et al., 2023; Badagabettu
et al., 2024; Jadhav & Farimani, 2024; Jadhav et al., 2024), some works have begun incorporating
LLMs into the PDE surrogate model training pipeline. Universal Physics Solver (UPS)(Shen et al.,
2024) incorporates pretrained LLMs, but uses limited text descriptions that do not fully utilize LLM
capabilities. Unisolver(Zhou et al., 2024) takes in a LaTeX description of the system as a prompt, but
uses MLP encoders for additional system information such as boundary conditions, which does not
fully explore the capabilities of the LLM. ICON-LM(Yang et al., 2024) uses longer text descriptions,
but trains the LLM to make numerical predictions from input data and captions, adding additional
complexity to the model architecture. Additionally, by using softmax-based attention for numerical
predictions, benchmarks are limited to 1D.

Contributions: In this work, we aim to more fully utilize LLM understanding in PDE surrogate
modeling and incorporate text information into neural operators. To that end, we introduce a novel
multimodal PDE framework given in figure 1. This framework is built on top of a FactFormer(Li

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Multimodal FactFormer adds system information through a multimodal block.

et al., 2023b) and successfully incorporates system information through text descriptions. The cross-
attention based multimodal block is given in figure 2. We benchmark this framework on the Heat,
Burgers, Navier-Stokes, and Shallow Water equations to provide a wide variety of physical behavior.
Various boundary conditions, initial conditions, and operator coefficients are used, making these
benchmarks more challenging than existing data sets. We test various levels of system information,
and incorporate this as conditioning information into FactFormer.

2 RELATED WORK

Neural Solvers: Neural solvers have been developed largely to counter the drawbacks of traditional
numerical methods. Physics Informed Neural Networks (PINNs)(Raissi et al., 2019) incorporate
governing equations through a soft constraint on the loss function. PINNs have been shown to be
effective in small-scale problems, but tend to be difficult to train(Wang et al., 2022; Rathore et al.,
2024). Neural operators(Kovachki et al., 2023) were developed and show improvement over PINNs
on a large variety of PDE learning tasks. Based on the universal operator approximation theorem,
neural operators learn a functional that maps input functions to solution functions. Neural operators
such as Fourier Neural Operator (FNO)(Li et al., 2021), based on kernel integral blocks in Fourier
space, DeepONetLu et al. (2021), based on parameterizing the input functions and an embedding of
the points at which the functions are evaluated, and OFormer(Li et al., 2023a), based on softmax-
free attention. Despite very promising results, neural operators are usually purely data-driven and
do not use any system information outside of solution fields.

Utilizing System Information While these neural operators perform well, they are often purely
data driven. More recent works have incorporated various different aspects of the governing sys-
tems. Takamoto et al. (2023a) incorporates operator coefficients(Takamoto et al., 2023a) through
the CAPE module. While coefficients are important in determining system behavior, system pa-
rameters such as boundary conditions, forcing terms, and geometry can play an equally important
role, and cannot be incorporated through CAPE. Further work incorporates governing equations
into models. Lorsung et al. (2024) developed the PITT framework that uses a transformer-based
architecture to process system information as text. Additionally, PROSE(Liu et al., 2023) poses a
multi-objective task to both make a prediction and complete partially correct governing equation.
However, these frameworks rely on notational consistency between samples, and do not offer an
easy integration of different geometries. Lastly, Hao et al. (2023) introduced novel Heterogeneous
Normalized Attention and Geometric Gating mechanisms for flexible GNOT model. GNOT is able
to incorporate different system information, such as coefficients and geometry. This flexible archi-
tecture can incorporate many different system parameters, but requires additional implementation
details for each additional modality, and may not be able to capture qualitative aspects of systems,
such as flow regime.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: Cross-Attention is used to integrate sentence embeddings with data embeddings.

3 DATA GENERATION

We generate data from the Heat, Burgers, and Incompressible Navier Stokes equations, which are
popular benchmarks for fluid dynamics surrogate models. Additionally, we benchmark on the Shal-
low Water equations from PDEBench(Takamoto et al., 2023b). Data for the Heat and Burgers equa-
tions are generated using Py-PDE(Zwicker, 2020) due to ease of simulating different boundary con-
ditions, and data is generated for Navier Stokes using code from Fourier Neural Operator(Li et al.,
2021). A diverse data set is generated in order to create a more challenging setup than existing
benchmarks, that often have the same operator coefficients and boundary conditions for all samples,
only varying the initial conditions. In our case, we use different initial conditions, operator coeffi-
cients, and boundary conditions. While existing data sets offer distinct challenges with regards to
governing equations, they do not offer a lot of data diversity with regard to system parameters, which
LLMs are well-suited to handle. PDEBenchTakamoto et al. (2023b), for example, has multiple 2D
data sets that represent a variety of physical processes. However, only eight different operator coef-
ficient combinations are used for the 2D Compressible Navier Stokes equations, all with the same
boundary conditions. In order to fully utilize the capabilities of pretrained LLMs, as well as present
a more challenging benchmark, we vary boundary conditions and operator coefficients for the Heat
and Burgers equations in 2D, and vary viscosity and forcing term amplitude for the Incompressible
Navier-Stokes equations in 2D.

3.1 HEAT EQUATION

The heat equation models a diffusive process and is given below in equation 1, where we are pre-
dicting the temperature distribution at each time step.

ut = β∇2u (1)

We generate data on a simulation cell given by: Ω = [−0.5, 0.5]
2 on a 64x64 grid with boundary

conditions sampled from ∂Ω ∈ {Neumann,Dirichlet, Periodic}. The values v for the Neumann
and Dirichlet boundary conditions are sampled uniformly: v ∈ U(−0.1, 0.1). All four walls have
the same boundary condition type and value for a given simulation. Initial conditions are chosen
from three different distributions: exponential field given by f(x, y) = exp

(
100(x+ y)2

)
, sum

of sine and cosine given by f(x, y) = sin (c1πx) + cos (c2πx), and product of sines given by
f(x, y) = sin (c1πx) sin (c2πy) for c1, c2 ∈ {2, 4, 6, 8}. Lastly, our diffusion coefficient was sam-
pled randomly according to β ∈ U (0.005/π, 0.02/π). We simulated each trajectory for 2 seconds
on a 64x64 grid. These distribution of diffusion coefficients was chosen so the diffusive dynam-
ics behaved on approximately the same scale as the advection dynamics of Burgers Equation given
below.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 BURGERS’ EQUATION

Burgers equation models shock formation in fluid waves, given below in equation 2, where we are
predicting the [height], u at each time step.

ut = β∇u− αu · ∇2u (2)

System specifications for the Heat equation are identical to Heat equation, given above, with the
exception of the advection term. Our advection coefficient is sampled according to αx, αy ∈
U (−0.5, 0.5).

3.3 INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

Third, we generate data from the Incompressible Navier-Stokes equations in vorticity form, given
below in equation 3.

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x)

∇ · u(x, t) = 0

w(x, 0) = w0(x)

(3)

The Navier-Stokes data generated here follows the setup from Lorsung et al. (2024). Our simulation
cell is given by: Ω = [0, 1]

2 with periodic boundary conditions. Our viscosity is sampled according
to ν ∈

{
10−9, 2 · 10−9, 3 · 10−9, . . . , 10−8, 2 · 10−8, . . . , 10−5

}
, and our forcing term amplitude

is sampled according to A ∈ {0.001, 0.002, 0.003, . . . , 0.01}. The initial condition is given by a
Gaussian random field. Data generation is done on a 256x256 grid that is evenly downsampled to a
64x64 grid for this work.

3.4 SHALLOW-WATER EQUATIONS

Lastly, we take the Shallow-Water data set from PDEBench(Takamoto et al., 2023b). In this case,
we are predicting the water height h at each time.

∂th+ ∂xhu+ ∂yhv = 0

∂thu+ ∂x

(
u2h+

1

2
grh

2

)
= −grh∂xb

∂thv + ∂y

(
v2h+

1

2
grh

2

)
= −grh∂yb

(4)

Our simulation cell is: Ω = [−2.5, 2.5]2 on a 64x64 grid, with Neumann boundary conditions, with
0 gradient on the boundary.

For each combination of initial conditions and boundary conditions, 900 samples were generated
with randomly generated coefficients. For Navier Stokes, we did the vorticity formulation, from
FNO, and varied viscosity and forcing term amplitude, with random gaussian field initial condition.
30 second simulation. Also used PDEBench’s shallow water data set. These are all single-channel.
In our experiments, B refers to incorporating boundary condition information through text, C refers
to incorporating coefficient information through text, and Q refers to incorporating qualitative infor-
mation through text.

4 METHODS

The multimodal appraoch developed here uses full sentence descriptions of systems from our data
sets, given in section 4.1. The cross-attention based multimodal block is uses both FactFormer
embeddings as well as LLM embeddings and is described in section 4.2.

4.1 SYSTEM DESCRIPTIONS

To explore how well our LLMs are able to incorporate different amounts of text information, we
describe each of the Heat, Burgers, and Navier-Stokes equations with varying levels of detail. We

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

will build a complete sentence description here, with all possible sentence combinations given in
appendix A. At a base level, we can describe the basic properties of each governing equation, as
well as identifying the equation. For Burgers equation, we generally have stronger advection forces,
so we describe it as:

Burgers equation models a conservative system that can develop shock wave
discontinuities. Burgers equation is a first order quasilinear

hyperbolic partial differential equation.

Next, boundary condition information is added, in this case Neumann boundary conditions:

This system has Neumann boundary conditions. Neumann boundary conditions
have a constant gradient. In this case we have a gradient of ∂uneumann on

the boundary.

Third, we can add operator coefficient information:

In this case, the advection term has a coefficient of αx in the x
direction, αy in the y direction, and the diffusion term has a

coefficient of β.

Lastly, we can add qualitative information. The aim of this is to capture details about the system
that are intuitive to practitioners, but difficult to encode mathematically. In this case, we have an
advection dominated system:

This system is advection dominated and does not behave similarly to heat
equation. The predicted state should develop shocks.

Our complete sentence description is passed into a pretrained LLM that is used to generate embed-
dings. These embeddings are then used as conditioning information for our model output.

4.2 MULTIMODAL PDE LEARNING

The backbone of our multimodal surrogate model is the FactFormer(Li et al., 2023b) and our frame-
work is given in figure 1. FactFormer was chosen because it provides a fast and accurate benchmark
model. We add our system description as conditioning information both before and after factorized
attention blocks. FactFormer is a neural operator that learns a functional Gθ that maps from input
function space A to solution function space U as Gθ : A → U, with parameters θ. In our case, we
are specifically learning the functional conditioned on our system information s. For a given input
function a evaluated at points x, we are leaning the the operator given in equation 5. That is, our
network learns to make predictions for our solution function u also evaluated at points x.

G(u)(x) = Gθ(a)(x, s) (5)

Sentences are first passed through an LLM to generate an embedding. The embedding is combined
with the data through cross-attention, seen in figure 2, where our sentence embedding is the queries
and the data embedding is the keys and values. The conditioned embedding is then added back
to our data embedding, given below in equation 6. Our data embedding is embedding with con-
volutional patch embedding, mapping our data to a lower dimension as fdata : Rb×h×w×hFF →
Rb×p×hFF , where b is our batch size, hFF is our FactFormer embedding dimension, and p is
the number of patches, which is defined by kernel size and convolutional stride. Our sentence
embeddings are projected to higher dimensional space to match our data embedding dimension,
fsentence : Rb×hLLM → Rb×p×1 → Rb×p×hFF through two successive MLPs, where hLLM is
the LLM output dimension. Once we have the data embedding zdata = fdata(a) and our sentence
embedding zsentence = fsentence(s), for data sample a and sentence description s, we calculate the
multimodal embedding zmultimodal using multihead attention(Vaswani et al., 2017) given below in
equation 6.

zmultimodal = Concat (head1, . . . , headh)WO

and headi = softmax

(
zsentenceW

Q
i

(
zdataW

K
i

)T
√
dk

)
zdataW

V
i

(6)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

zmultimodal is then returned from our multimodal block and used in the FactFormer architecture.
We use cross-attention here instead of self-attention so that our sentence embeddings can be used to
learn useful context for our data embeddings. After cross-attention, our multimodal embedding is
upsampled back to the data embedding dimension using deconvolution(Zeiler et al., 2010) fdeconv :
Rb×p×hFF → Rb×h×w×hFF given in equation 7:

zdata = zdata + fdeconv (zmultimodal) (7)

This multimodal block is agnostic to both the data-driven backbone as well as the LLM. We compare
Llama 3.1 8B(AI@Meta, 2024) and all-mpnet-base-v2 from the Sentence-Transformer
package(Reimers & Gurevych, 2019) as our pretrained LLMs. Llama 3.1 8B was used because
of its good performance across a wide variety of benchmarks, as well as its small size allowing
us to use only a single GPU to generate sentence embeddings. The word embeddings are aver-
aged for each sentence to provide a single embedding that can be used in our projection layer.
all-mpnet-base-v2 was used because it is designed to generate embeddings from sentences
that are useful for tasks like sentence similarity. In all of our experiments, the LLM is frozen and a
projection head is trained. This significantly improves training time by allowing us to generate the
sentence embeddings before training, and avoiding expensive gradient computations for our LLMs.

5 RESULTS

We benchmark our multimodal model against its baseline variant on a number of challenging tasks.
Our data vary the distribution of initial conditions, operator coefficients, and boundary conditions,
which provides a much more challenging setting than many existing benchmarks. In each experi-
ment, the combined data set is the Heat, Burgers, and Navier-Stokes data sets, where Shallow Water
is used solely for fine-tuning, with a 90-10-10 train-validation-test split. 4,000 samples per equation
are used for Heat, Burgers, and Navier-Stokes data unless otherwise noted, and we use the entire
1,000 sample Shallow-Water data set when using more samples for our other data sets. We use one
frame of data to predict the next frame, which allows us to asses how well our multimodal approach
captures known system information, which is the operator Gθ (a) (x, s)t=n → u(x)t=n+1. That is
the input function at points x and time t = n conditioned on sentence information s is used to predict
our solution function at time t = n+1. Using only a single step of input here presents the additional
challenge that it is difficult to infer boundary conditions and impossible to infer operator coefficients
from only a single frame of data. Our temporal horizon is limited to 21 steps for each equation
during training (initial condition and 20 steps), and 40 steps during autoregressive rollout evalua-
tion. Relative L2 Error(Li et al., 2021) is used for both training and next-step evaluation in all of
our experiments. Autoregressive rollout error is reported as Mean Squared Error. In our results, we
used SentenceTransformer (ST)(Reimers & Gurevych, 2019) and Llama 3.1 8B (Llama)(AI@Meta,
2024), using various combinations of boundary condition (B), coefficient (C) and qualitative (Q)
information. Each reported result is the mean and standard deviation across three random seeds.

5.1 NEXT-STEP PREDICTION

First, we evaluate next-step predictive accuracy, where we take one frame of data and use it to predict
the next across our entire temporal window. We see in figure 3 that our multimodal FactFormer sig-
nificantly outperforms baseline FactFormer when using SentenceTransformer for our Heat, Burgers,
and Shallow Water data sets, both with and without transfer learning, where we have small improve-
ment on our Navier-Stokes benchmark when doing standard training. Our SentenceTransformer
FactFormer had an average of 21.4% less error across all of our data sets for standard training and
average of 20.6% less error than baseline FactFormer when using transfer learning. Additionally, we
see smaller improvement over baseline results when using Llama as our LLM, with some notable
increases in error on the Shallow Water and Navier Stokes data sets.

5.2 AUTOREGRESSIVE ROLLOUT

Second, we perform autoregressive rollout starting from our initial condition for 40 steps. This
evaluates how well our model is able to temporally extrapolate beyond our training horizon. In
this case, we use the models trained in section 5.1 with no additional fine-tuning. Accumulated

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: Comparison of next-step prediction relative L2 error for baseline FactFormer, FactFormer
+ ST, and Factformer + Llama with and without transfer learning.

rollout error is presented in table 1. We see that our SentenceTransformer FactFormer has lowest
accumulated error for four of five data sets both for standard training and transfer learning, and
outperforms baseline across all data sets. Our Llama FactFormer also outperforms baseline across all
of our data sets except Shallow Water with standard training. For SentenceTransformer Factformer,
we have an average reduction in accumulated error of 64.2% and 84.7% across all of our data set
for standard training and transfer learning, respectively. For Llama FactFormer, we have an average
reduction in accumulated error of 6.2% and 81.2% for standard and transfer learning, respectively.
When removing Shallow Water for Llama Factformer with standard training, we have an average
reduction in error of 58.0%.

We note that accumulated autoregressive rollout error for our Shallow Water benchmark is much
higher for our transfer learning experiments than the standard training. This instability been noted
before in Lorsung et al. (2024) when training errors are very low. In our case, training error for the
Shallow Water data set is approximately an order of magnitude lower than other data sets. Error
plots are given in figure 8 in Appendix C.

Table 1: Comparison of accumulated mean squared error (×102) for baseline FactFormer, Fact-
Former + ST, and baseline + Llama with and without transfer learning.

Baseline ST Llama Transfer ST + Transfer Llama + Transfer
Combined 1.36 ± 0.03 0.78 ± 0.04 0.90 ± 0.02 3.89 ± 0.01 0.80 ± 0.09 0.86 ± 0.04

Burgers 3.49 ± 0.15 0.97 ± 0.10 1.41 ± 0.42 12.17 ± 0.13 0.85 ± 0.07 1.03 ± 0.10
Heat 1.08 ± 0.10 0.16 ± 0.01 0.47 ± 0.09 4.61 ± 0.03 0.30 ± 0.17 0.13 ± 0.07

Navier Stokes 1.52 ± 0.46 0.54 ± 0.25 0.26 ± 0.09 2.56 ± 0.03 0.25 ± 0.00 0.40 ± 0.08
Shallow Water 0.12 ± 0.09 0.05 ± 0.04 0.35 ± 0.36 156.60 ± 1.64 51.22 ± 60.16 65.70 ± 21.50

5.3 DATA SCALING

Using the same training setup as in section 5.1, we benchmark our multimodal models against base-
line as we increase the amount of data for the Heat and Burgers data sets, given in figure 4, with
scaling for the remaining datasets given in Appendix E. For the Heat and Burgers data sets, we
see that our multimodal approach consistently outperforms baseline for our both large and small
data settings, both with SentenceTransformer and Llama, and for both standard training and trans-
fer learning. We add more data the relative improvement increases due to the plateau in our base
models.

5.4 ABLATION STUDY

Lastly, we perform an ablation study based on text information, to determine which components of
our text description are most helpful during the learning process. We compare our baseline model
against our multimodal model with SentenceTransformer using 4,000 samples for each equation.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: Comparison of next-step prediction relative L2 error for baseline FactFormer, FactFormer
+ ST, and Factformer + Llama with and without transfer learning as the amount of data increases.

Both baseline and multimodal models were trained with transfer learning. Results for next-step
prediction are given in figure 5, and autoregressive accumulated rollout errors are given in 2. In both
experiments, we see a correlation between richness of sentence description and performance, but
that every level of text information improves upon baseline model with transfer learning. Additional
error plots and results are given in appendix C.

Figure 5: Comparison of next-step prediction relative L2 error for baseline FactFormer and Fact-
Former + ST with varying levels of sentence description, trained with transfer learning.

Table 2: Comparison of accumulated mean squared error (×102) for baseline FactFormer and Fact-
Former + ST with varying levels of sentence description, trained with transfer learning.

Transfer None B C Q BC BQ CQ BCQ
Combined 3.89 ± 0.01 0.84 ± 0.02 0.85 ± 0.01 0.85 ± 0.08 0.87 ± 0.01 0.82 ± 0.07 0.80 ± 0.02 0.82 ± 0.07 0.80 ± 0.09

Burgers 12.17 ± 0.13 1.02 ± 0.04 0.86 ± 0.08 1.10 ± 0.05 1.04 ± 0.07 0.86 ± 0.04 0.86 ± 0.09 1.00 ± 0.07 0.85 ± 0.07
Heat 4.61 ± 0.03 0.37 ± 0.02 0.30 ± 0.19 0.38 ± 0.03 0.38 ± 0.05 0.20 ± 0.04 0.19 ± 0.03 0.38 ± 0.02 0.30 ± 0.17

Navier Stokes 2.56 ± 0.03 0.19 ± 0.15 0.29 ± 0.04 0.26 ± 0.02 0.33 ± 0.06 0.27 ± 0.02 0.27 ± 0.01 0.24 ± 0.03 0.25 ± 0.00
Shallow Water 156.60 ± 1.64 82.06 ± 33.18 10.02 ± 9.98 56.15 ± 50.17 51.89 ± 33.97 63.49 ± 50.75 43.81 ± 50.04 65.07 ± 75.05 51.22 ± 60.16

6 DISCUSSION

The aim of our multimodal approach is to incorporate known system information through sentence
descriptions, rather than complex data conditioning strategies. We see for our next-step prediction
and autoregressive rollout tasks that a multimodal approach is able to significantly improve perfor-
mance over baseline. SentenceTransformer tends to improve performance more than Llama, and
this is likely due to the nature of the embeddings generated by each LLM. SentenceTransformer

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

is trained to generate useful embeddings at the sentence level, whereas Llama is trained to gener-
ate word-level embeddings. In order to utilize Llama for out framework, we need to average over
all word-level embeddings, which can lose subtle information in our embeddings. The sentence-
level embeddings from SentenceTransformer, on the other hand, allows us to use these embeddings
directly from the LLM in our multimodal cross-attention block.

We can visualize the embeddings from SentenceTransformer for each level of text description as
well in our combined dataset. In figure 6, we have t-SNE embeddings for sentences that simply
identify the equation compared against t-SNE embeddings with our full text description, that is
with boundary condition, operator coefficient, and qualitative information. In our combined data
set we only have samples from the Heat, Burgers, and Navier-Stokes equations, which is reflected
in the three clusters seen. However, with our full text description, we have a significantly richer
embedding. We see large clusters with subregions with our Heat and Burgers samples, matching our
continuous distributions for operator coefficients and boundary condition values [analyze further?].
This shows how we are able to easily introduce significantly more structure into our data, making
the learning task easier. t-SNE plots were generated with Chan et al. (2019).

t-SNE Component 1

t-S
NE

 C
om

po
ne

nt
 2

Equation Information

t-SNE Component 1

Equation + BCQ
Comparison of t-SNE Embeddings

Heat Burgers Navier Stokes

Figure 6: t-SNE embeddings for sentence-level embeddings generated by SentenceTransformer for
basic equation description and equation description with boundary conditions, operator coefficients,
and qualitative information.

7 CONCLUSION

We introduced a multimodal approach to PDE surrogate modeling that utilizes LLMs and sentence
descriptions of our systems that significantly improves performance for a variety of tasks. Our mul-
timodal approach allows us to easily incorporate system information that both captures quantitative
and qualitative aspects of our governing equations. Analysis of our sentence embeddings shows
that we are able to capture increasing amounts of underlying structure in our data by simply adding
more information through text, rather than introducing additional mathematical approaches, such as
constrained loss functions that are popular with PINNs.

While this direction is promising, performance could be further improved with tuning out LLMs
directly, rather than just training an embedding layer that uses LLM output, and we leave this to
future work. Additionally, pretraining strategies have shown success in various LLM applications
from natural language processing to PDE surrogate modeling. While this does introduce significant
computational overhead, it may improve performance and is also a potential future direction to
take. Lastly, we only benchmarked the FactFormer, but this framework and multimodal block is
not specific to FactFormer, and may prove useful for improving other physics-based models such as
FNO and DeepONet.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md.

Akshay Badagabettu, Sai Sravan Yarlagadda, and Amir Barati Farimani. Query2cad: Generating
cad models using natural language queries, 2024. URL https://arxiv.org/abs/2406.
00144.

Alison Bartsch and Amir Barati Farimani. Llm-craft: Robotic crafting of elasto-plastic objects with
large language models, 2024. URL https://arxiv.org/abs/2406.08648.

David M Chan, Roshan Rao, Forrest Huang, and John F Canny. Gpu accelerated t-distributed
stochastic neighbor embedding. Journal of Parallel and Distributed Computing, 131:1–13, 2019.

Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu,
Ze Cheng, Jian Song, and Jun Zhu. Gnot: A general neural operator transformer for operator
learning, 2023. URL https://arxiv.org/abs/2302.14376.

Yayati Jadhav and Amir Barati Farimani. Large language model agent as a mechanical designer,
2024. URL https://arxiv.org/abs/2404.17525.

Yayati Jadhav, Peter Pak, and Amir Barati Farimani. Llm-3d print: Large language models to
monitor and control 3d printing, 2024. URL https://arxiv.org/abs/2408.14307.

Parv Kapoor, Sai Vemprala, and Ashish Kapoor. Logically constrained robotics transformers for en-
hanced perception-action planning, 2024. URL https://arxiv.org/abs/2408.05336.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces
with applications to pdes. Journal of Machine Learning Research, 24(89):1–97, 2023. URL
http://jmlr.org/papers/v24/21-1524.html.

Varun Kumar, Leonard Gleyzer, Adar Kahana, Khemraj Shukla, and George Em Karniadakis. My-
crunchgpt: A chatgpt assisted framework for scientific machine learning, 2023. URL https:
//arxiv.org/abs/2306.15551.

Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential equations’
operator learning, 2023a. URL https://arxiv.org/abs/2205.13671.

Zijie Li, Dule Shu, and Amir Barati Farimani. Scalable transformer for PDE surrogate modeling.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023b. URL https:
//openreview.net/forum?id=djyn8Q0anK.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations, 2021. URL https://arxiv.org/abs/2010.08895.

Yuxuan Liu, Zecheng Zhang, and Hayden Schaeffer. Prose: Predicting operators and symbolic
expressions using multimodal transformers, 2023. URL https://arxiv.org/abs/2309.
16816.

Cooper Lorsung, Zijie Li, and Amir Barati Farimani. Physics informed token transformer for solving
partial differential equations. Machine Learning: Science and Technology, 5(1):015032, feb 2024.
doi: 10.1088/2632-2153/ad27e3. URL https://dx.doi.org/10.1088/2632-2153/
ad27e3.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learn-
ing nonlinear operators via deeponet based on the universal approximation theorem of opera
tors. Nature Machine Intelligence, 3(3):218–229, Mar 2021. ISSN 2522-5839. doi: 10.1038/
s42256-021-00302-5. URL https://doi.org/10.1038/s42256-021-00302-5.

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2406.00144
https://arxiv.org/abs/2406.00144
https://arxiv.org/abs/2406.08648
https://arxiv.org/abs/2302.14376
https://arxiv.org/abs/2404.17525
https://arxiv.org/abs/2408.14307
https://arxiv.org/abs/2408.05336
http://jmlr.org/papers/v24/21-1524.html
https://arxiv.org/abs/2306.15551
https://arxiv.org/abs/2306.15551
https://arxiv.org/abs/2205.13671
https://openreview.net/forum?id=djyn8Q0anK
https://openreview.net/forum?id=djyn8Q0anK
https://arxiv.org/abs/2010.08895
https://arxiv.org/abs/2309.16816
https://arxiv.org/abs/2309.16816
https://dx.doi.org/10.1088/2632-2153/ad27e3
https://dx.doi.org/10.1088/2632-2153/ad27e3
https://doi.org/10.1038/s42256-021-00302-5


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equa-
tions. Journal of Computational Physics, 378:686–707, 2019. ISSN 0021-9991. doi: https://doi.
org/10.1016/j.jcp.2018.10.045. URL https://www.sciencedirect.com/science/
article/pii/S0021999118307125.

Pratik Rathore, Weimu Lei, Zachary Frangella, Lu Lu, and Madeleine Udell. Challenges in training
pinns: A loss landscape perspective, 2024. URL https://arxiv.org/abs/2402.01868.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019. URL https://arxiv.
org/abs/1908.10084.

Junhong Shen, Tanya Marwah, and Ameet Talwalkar. Ups: Efficiently building foundation models
for pde solving via cross-modal adaptation, 2024. URL https://arxiv.org/abs/2403.
07187.

Makoto Takamoto, Francesco Alesiani, and Mathias Niepert. CAPE: Channel-attention-based PDE
parameter embeddings for sciML, 2023a. URL https://openreview.net/forum?id=
22z1JIM6mwI.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Dan MacKinlay, Francesco Alesiani, Dirk
Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning,
2023b. URL https://arxiv.org/abs/2210.07182.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, 2022. ISSN 0021-9991.
doi: https://doi.org/10.1016/j.jcp.2021.110768. URL https://www.sciencedirect.
com/science/article/pii/S002199912100663X.

Liu Yang, Siting Liu, and Stanley J. Osher. Fine-tune language models as multi-modal differential
equation solvers, 2024. URL https://arxiv.org/abs/2308.05061.

Matthew D. Zeiler, Dilip Krishnan, Graham W. Taylor, and Rob Fergus. Deconvolutional networks.
In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.
2528–2535, 2010. doi: 10.1109/CVPR.2010.5539957.

Hang Zhou, Yuezhou Ma, Haixu Wu, Haowen Wang, and Mingsheng Long. Unisolver: Pde-
conditional transformers are universal pde solvers, 2024. URL https://arxiv.org/abs/
2405.17527.

David Zwicker. py-pde: A python package for solving partial differential equations. Journal of
Open Source Software, 5(48):2158, 2020. doi: 10.21105/joss.02158. URL https://doi.
org/10.21105/joss.02158.

11

https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://arxiv.org/abs/2402.01868
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2403.07187
https://arxiv.org/abs/2403.07187
https://openreview.net/forum?id=22z1JIM6mwI
https://openreview.net/forum?id=22z1JIM6mwI
https://arxiv.org/abs/2210.07182
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S002199912100663X
https://www.sciencedirect.com/science/article/pii/S002199912100663X
https://arxiv.org/abs/2308.05061
https://arxiv.org/abs/2405.17527
https://arxiv.org/abs/2405.17527
https://doi.org/10.21105/joss.02158
https://doi.org/10.21105/joss.02158


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A SENTENCE DESCRIPTIONS

Basic information:

Heat: The Heat equation models how a quantity such as heat
diffuses through a given region. The Heat equation is
a linear parabolic partial differential equation.

Burgers: Burgers equation models a conservative system that can
develop shock wave discontinuities. Burgers equation is
a first order quasilinear hyperbolic partial differential
equation.

Navier Stokes: The incompressible Navier Stokes equations describe the
motion of a viscous fluid with constant density. We are
predicting the vorticity field, which describes the local
spinning motion of the fluid.

Shallow Water: The Shallow-Water equations are a set of hyperbolic
partial differential equations that describe the flow
below a pressure surface in a fluid.

Coefficient Information:

Heat: In this case, the diffusion term has a coefficient of β.

Burgers: In this case, the advection term has a coefficient of
αx in the x direction, αy in the y direction, and the
diffusion term has a coefficient of β.

Navier-Stokes: In this case, the viscosity is ν. This system is driven
by a forcing term of the form f(x,y) = A*(sin(2*pi*(x+y))
+ cos(2*pi*(x+y))) with amplitude A=A.

Shallow-Water: N/A

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Boundary Condition Information:

Heat: Periodic This system has periodic boundary conditions.
The simulation space is a torus.

Neumann: This system has Neumann boundary
conditions. Neumann boundary conditions
have a constant gradient. In this case we
have a gradient of on the boundary.

Dirichlet: This system has Dirichlet boundary
conditions. Dirichlet boundary conditions
have a constant value. In this case we
have a value of on the boundary.

Burgers: Periodic This system has periodic boundary conditions.
The simulation space is a torus.

Neumann: This system has Neumann boundary
conditions. Neumann boundary conditions
have a constant gradient. In this case we
have a gradient of on the boundary.

Dirichlet: This system has Dirichlet boundary
conditions. Dirichlet boundary conditions
have a constant value. In this case we
have a value of on the boundary.

Navier-Stokes: Periodic: This system has periodic boundary conditions.
The simulation cell is a torus.

Shallow-Water: Neumann This system has homogeneous Neumann boundary
conditions with a derivative of 0 at the
boundary.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Qualitative Information:

Heat: β > 0.01 This system is strongly diffusive.
The predicted state should look
smoother than the inputs.

β ≤ 0.01 This system is weakly diffusive. The
predicted state should looke smoother
than the inputs.

Burgers: ∥α∥2

β > 100 This system is advection dominated
and does not behave similarly to heat
equation. The predicted state should
develop shocks.

∥α∥2

β ≤ 100 This system is diffusion dominated
and does behave similarly to heat
equation. The predicted state should
look smoother than the inputs.

Navier-Stokes: ν ≥ 1E − 6 This system has high viscosity
and will not develop small scale
structure.

1E − 6 > ν ≥ 1E − 8 This sytem has moderate viscosity and
will have some small scale structure.

1E − 8 > ν This system has low viscosity and
will have chaotic evolution with
small scale structure.

A ≥ 7E − 4 This system has a strong forcing
term and evolution will be heavily
influenced by it.

7E − 4 > A ≥ 3E − 4 This system has a moderate forcing
term and evolution will be moderately
influenced by it.

3E − 4 > A This system has a weak forcing
term and evolvution will be weakly
influenced by it.

Shallow-Water: This system simulates a radial dam
break. Waves propagate outward in a
circular pattern.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B HYPERPARAMETERS

B.1 ARCHITECTURE

We use identical architecture across all of our experiments, given in table 3. We note that the hidden
dimension controls both the FactFormer embedding dimension as well as the LLM projection head
embedding dimension. This is done so we can use our multimodal cross-attention block without
any additional data projections. Our convolutional patch embedding used a kernel size of 8, and our

Table 3: FactFormer architecture hyperparameters.
Model Depth Hidden Dim Head Dim Heads Kernel Multiplier Latent Multiplier

FactFormer 1 128 64 4 2 2

convolutional upsampling layer used a ConvTranspose layer with kernel size of 8 with a stride size
of 4, followed by two fully connected layers with widths of 128, and GELU activation. Additionally,
our sentence embedding projection layer used four fully-connected layers with size [384/4096, 256,
256, 128, no. patches] to match the number of patches from our patch embedding, with ReLU
activation, then upsamples our channel dimension of 1 to match our hidden dimension of 128 using
two fully connected layers with width 128 and GELU activation.

B.2 TRAINING

Training hyperparameters were generally kept as similar as possible, although instability in training
was noted for our Multimodal FactFormer at times during finetuning. Generally, lower learning rate
and higher weight decay led to more stable training. Table 4 has training hyperparameters for our
4000 samples/equation case. We trained each model for 1000 epochs for each experiment. In each
epoch, each trajectory is used, where the specific input/output frame for each trajectory is randomly
sampled. Additional tuning was necessary for training stability for FactFormer + Llama with small

Table 4: Training hyperparameters for FactFormer, FactFormer + ST and FactFormer + Llama
Model Batch Size Learning Rate Weight Decay Finetune Learning Rate Finetune Weight Decay

FactFormer 64 1e-4 1e-8 1e-4 1e-8
FactFormer (Transfer) 64 1e-4 1e-8 1e-4 1e-8

FactFormer + ST 64 1e-4 1e-8 1e-4 1e-8
FactFormer + ST (Transfer) 64 1e-4 1e-8 1e-4 1e-8

FactFormer + Llama 64 5e-4 1e-8 5e-5 1e-8
FactFormer + Llama (Transfer) 64 5e-4 1e-8 5e-5 1e-8

amounts of data. Hyperparameters are given in table 5. No additional tuning was necessary for
baseline FactFormer of FactFormer + ST.

Table 5: Data scaling hyperparameters for FactFormer + Llama
Samples/Equation Batch Size Learning Rate Weight Decay Finetune Learning Rate Finetune Weight Decay

50 128 5e-4 1e-7 1e-4 1e-7
100 128 5e-4 1e-7 1e-4 1e-7
500 128 5e-4 1e-7 1e-4 1e-7

1000 128 5e-4 1e-7 1e-4 1e-7
2000 256 5e-4 1e-8 5e-5 1e-8
4000 64 5e-4 1e-8 5e-5 1e-8

50 (Transfer) 128 5e-4 1e-7 1e-4 1e-7
100 (Transfer) 128 5e-4 1e-7 1e-4 1e-7
500 (Transfer) 128 5e-4 1e-7 1e-4 1e-7

1000 (Transfer) 128 5e-4 1e-7 1e-4 1e-7
2000 (Transfer) 256 5e-4 1e-8 5e-5 1e-8
4000 (Transfer) 64 5e-4 1e-8 5e-5 1e-8

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C ADDITIONAL NEXT-STEP AND ROLLOUT RESULTS

Table 6 below gives numerical values for figure 3. Figure 7 plots the values of table 1.

Table 6: Next-Step prediction results
Baseline ST Llama Transfer ST + Transfer Llama + Transfer

Combined 2.95 ± 0.04 2.27 ± 0.02 2.52 ± 0.01 2.94 ± 0.09 2.36 ± 0.09 2.52 ± 0.02
Burgers 2.93 ± 0.02 1.95 ± 0.08 2.53 ± 0.13 2.63 ± 0.13 1.81 ± 0.03 1.96 ± 0.05

Heat 1.23 ± 0.04 0.73 ± 0.04 0.95 ± 0.03 1.12 ± 0.03 0.81 ± 0.05 0.55 ± 0.11
Navier Stokes 1.57 ± 0.04 1.75 ± 0.16 2.45 ± 0.01 1.80 ± 0.21 1.97 ± 0.02 2.08 ± 0.02
Shallow Water 0.18 ± 0.03 0.14 ± 0.02 0.33 ± 0.06 0.23 ± 0.02 0.15 ± 0.01 0.39 ± 0.08

Figure 7: Comparison of accumulated mean squared error (×102) for baseline FactFormer, Fact-
Former + ST, and baseline + Llama with and without transfer learning.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 8 plots the autoregressive rollout error against timestep. Table 1 presents the sum over
timesteps of these plots. Errors are first averaged over each sample for a given random seed, then
the mean and standard deviation across seeds is plotted.

Figure 8: Autoregressive rollout MSE for each dataset.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D ABLATION STUDY ADDITIONAL RESULTS

Table 7 below gives numerical values for figure 5. Figure 9 plots the values of table 2.

Table 7: Ablation study next-step prediction error
Baseline None B C Q BC BQ CQ BCQ

Combined 3.22 ± 0.05 2.86 ± 0.02 2.93 ± 0.13 2.81 ± 0.07 2.89 ± 0.09 2.86 ± 0.06 2.88 ± 0.06 2.85 ± 0.01 2.86 ± 0.04
Burgers 3.13 ± 0.17 2.35 ± 0.11 2.32 ± 0.20 2.32 ± 0.12 2.44 ± 0.16 2.31 ± 0.21 2.35 ± 0.10 2.33 ± 0.12 2.34 ± 0.12

Heat 1.30 ± 0.07 1.00 ± 0.06 0.97 ± 0.06 1.00 ± 0.07 1.02 ± 0.08 0.95 ± 0.06 0.96 ± 0.05 1.00 ± 0.06 0.96 ± 0.06
Navier Stokes 2.01 ± 0.07 2.20 ± 0.02 2.20 ± 0.01 2.19 ± 0.03 2.23 ± 0.14 2.20 ± 0.02 2.12 ± 0.02 2.11 ± 0.03 2.12 ± 0.03
Shallow Water 0.23 ± 0.01 0.16 ± 0.00 0.16 ± 0.00 0.17 ± 0.01 0.17 ± 0.02 0.15 ± 0.01 0.16 ± 0.01 0.16 ± 0.01 0.16 ± 0.01

Figure 9: Comparison of next-step prediction relative L2 error for baseline FactFormer and Fact-
Former + ST with varying levels of sentence description, trained with transfer learning. The y-axis
is truncated to show results from our multimodal FactFormer more clearly.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 10 plots the autoregressive rollout error against timestep. Table 2 presents the sum over
timesteps of these plots. Errors are first averaged over each sample for a given random seed, then
the mean and standard deviation across seeds is plotted.

Figure 10: Autoregressive rollout MSE for each dataset.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

E DATA SCALING ADDITIONAL RESULTS

Data scaling results for the combined data sets are given in figure 11, for the Navier-Stokes data set
is given in 12, and for the Shallow Water equations is given in 13.

Figure 11: Comparison of next-step prediction relative L2 error for baseline FactFormer, FactFormer
+ ST, and Factformer + Llama with and without transfer learning as the amount of data increases.

Figure 12: Comparison of next-step prediction relative L2 error for baseline FactFormer, FactFormer
+ ST, and Factformer + Llama with and without transfer learning as the amount of data increases.

Figure 13: Comparison of next-step prediction relative L2 error for baseline FactFormer, FactFormer
+ ST, and Factformer + Llama with and without transfer learning as the amount of data increases.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

F T-SNE ADDITIONAL RESULTS

We see as we increase sentence complexity, we get additional structure in our t-SNE embeddings.
Adding coefficient information captures the distribution of coefficients well, seen in both figure 14
and figure 15.

t-SNE Component 1

t-S
NE

 C
om

po
ne

nt
 2

Equation + B

t-SNE Component 1

Equation + C

t-SNE Component 1

Equation + Q
Comparison of t-SNE Embeddings

Heat Burgers Navier Stokes

Figure 14: t-SNE embeddings for sentence-level embeddings generated by SentenceTransformer for
basic equation description with each of boundary conditions, operator coefficients, and qualitative
information separately.

t-SNE Component 1

t-S
NE

 C
om

po
ne

nt
 2

Equation + BC

t-SNE Component 1

Equation + BQ

t-SNE Component 1

Equation + CQ
Comparison of t-SNE Embeddings

Heat Burgers Navier Stokes

Figure 15: t-SNE embeddings for sentence-level embeddings generated by SentenceTransformer for
each combination of two of boundary conditions, operator coefficients, and qualitative information.

21


	Introduction
	Related Work
	Data Generation
	Heat Equation
	Burgers' Equation
	Incompressible Navier-Stokes Equations
	Shallow-Water Equations

	Methods
	System Descriptions
	Multimodal PDE Learning

	Results
	Next-Step Prediction
	Autoregressive Rollout
	Data Scaling
	Ablation Study

	Discussion
	Conclusion
	Sentence Descriptions
	Hyperparameters
	Architecture
	Training

	Additional Next-Step and Rollout Results
	Ablation Study Additional Results
	Data Scaling Additional Results
	t-SNE Additional Results

