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Abstract

Reconstructing clean, distractor-free 3D scenes from real-
world captures remains a significant challenge, particularly
in highly dynamic and cluttered settings such as egocentric
videos. To tackle this problem, we introduce DeGauss, a
simple and robust self-supervised framework for dynamic
scene reconstruction based on a decoupled dynamic-static
Gaussian Splatting design. DeGauss models dynamic ele-
ments with foreground Gaussians and static content with
background Gaussians, using a probabilistic mask to coordi-
nate their composition and enable independent yet comple-
mentary optimization. DeGauss generalizes robustly across
a wide range of real-world scenarios, from casual image
collections to long, dynamic egocentric videos, without rely-
ing on complex heuristics or extensive supervision. Experi-
ments on benchmarks including NeRF-on-the-go, ADT, AEA,
Hot3D, and EPIC-Fields demonstrate that DeGauss consis-
tently outperforms existing methods, establishing a strong
baseline for generalizable, distractor-free 3D reconstruction
in highly dynamic, interaction-rich environments.

1. Introduction

Recent advances in Neural Radiance Fields (NeRF) [18]
and 3D Gaussian Splatting [10] have enabled scalable 3D
scene reconstruction and high-quality novel view synthesis
from image collections. However, these methods perform
well primarily on datasets captured under controlled con-
ditions, where scenes remain mostly static and consistent
across views. They struggle to generalize to casual captures
containing dynamic elements, such as moving objects and
humans. In such cases, dynamic content is often modeled as
view-dependent artifacts, resulting in numerous ”floaters” in
the reconstructed scene.

This limitation is further amplified in egocentric videos, a
rapidly growing data source that introduces unique chal-
lenges for 3D scene reconstruction[7, 16, 29, 32, 41].
Egocentric videos, typically recorded with head-mounted,
forward-facing cameras, are characterized by rapid, embod-
ied motion. Besides substantial camera movement and mo-
tion blur, these videos frequently capture dynamic objects
that the camera wearer interacts with, as well as the wearer’s
own body. These factors introduce significant challenges for
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standard scene reconstruction methods.
The key question we aim to address in this work is how to

reconstruct clean, distractor-free 3D scenes from real-world,
in-the-wild videos. We focus on developing a robust and
generalizable framework capable of handling a wide range
of everyday capture scenarios, from casual, uncontrolled im-
age collections to long-duration, highly dynamic egocentric
recordings. By explicitly tackling the presence of dynamic
elements, we aim to push 3D scene reconstruction beyond
static environments toward realistic, interaction-rich settings.

To model dynamics in 3D reconstruction, recent methods
such as NeRF-on-the-go, WildGaussians, and SpotlessS-
plats [12, 22, 24] propose to suppress transient regions
during training, achieving state-of-the-art distractor-free
scene reconstruction on casual image collections. These
approaches leverage reconstruction loss residuals and seman-
tic features [19, 30] to identify and mask dynamic content, as
transient regions often exhibit higher reconstruction errors.
However, these methods typically rely on careful initializa-
tion and stable optimization, which limits their ability to
handle the complex dynamics of egocentric videos, where
continuous human-scene interactions, severe motion blur,
and rapid illumination changes make static-dynamic separa-
tion particularly challenging.

Meanwhile, several self-supervised NeRF-based methods
aim to jointly model dynamic and static elements through ex-
plicit dynamic branches and masking strategies [17, 31, 38].
While these methods improve generalization across diverse
inputs, they suffer from long training times and struggle to
balance dynamic and static representations. For 3D scenes
captured with temporally sparse image inputs, the dynamic
branch may fail to fully segment dynamic elements, leav-
ing floaters in the static reconstruction [23]. In contrast, for
highly dynamic egocentric videos, the dynamic branch often
over-segments dynamic regions, dominating the reconstruc-
tion and leaving the static scene under-represented [20].

In this work, we propose DeGauss: Dynamic-Static De-
composition with Gaussian Splatting for Distractor-free 3D
Reconstruction. It is a simple and robust self-supervised
framework that leverages dynamic-static Gaussian Splatting
to effectively model and separate dynamic elements from
input scenes. DeGauss generalizes across a wide range of
scenarios, from casual image collections such as the NeRF-
on-the-go dataset [22] to highly dynamic egocentric video
sequences like ADT [20], AEA [16], Hot3D [20], and EPIC-
Fields [32], consistently delivering superior performance
without complex heuristics or elaborate designs.

Our key insight is to leverage the complementary
strengths of dynamic and static Gaussians for coordinated
optimization for dynamic scene reconstruction. Specifically,
dynamic Gaussian methods [36, 39] learn deformation fields
for temporal modeling but tend to overfit to training views
and generalize poorly to novel viewpoints [6, 28]. In contrast,

static Gaussians, while limited in handling motion, offer
more stable representations across views, modeling dynamic
elements as view-dependent artifacts (e.g., floaters). To com-
bine their advantages, we propose a decoupled foreground-
background Gaussian representation, where dynamic ele-
ments are modeled with foreground Gaussians and static
content with background Gaussians. A probabilistic mask,
rasterized from the foreground Gaussians, controls the com-
position of the two branches and enables coordinated yet
independent optimization. During training, ambiguous re-
gions are updated jointly, while floaters in the static branch
are progressively suppressed through partial opacity resets
and pruning. To further improve robustness under varying
illumination, we introduce a brightness control mask to en-
hance non-Lambertian effects modeling capability of the
background branch during training and mitigate dynamic-
static ambiguities in those regions. Beyond producing clean,
distractor-free 3D reconstructions, our formulation offers an
efficient, hybrid representation of dynamic scenes through
this decoupled dynamic-static design. We show that our
method achieves superior results compared to baseline dy-
namic scene modeling approaches, with notable advantages
across diverse datasets [13, 21]. In summary, our contribu-
tions are:
• We propose DeGauss, a decoupled foreground-

background design which leverages dynamic-static
Gaussian splatting for robust and generalizable dynamic-
static decomposition.

• Our proposed method achieves state of the art distractor-
free reconstruction results for both highly challenging ego-
centric videos and image collections.

• We demonstrate that DeGauss enables high-quality and
efficient dynamic scene modeling through the decoupled
dynamic-static representation.

2. Related Work
Distractor-Free Neural Reconstruction based on loss resid-
ual of input images and renders during reconstruction was
investigated in [4, 23]. In [7], it is additionally combined
with open-world 3D segmentation task with Segment Any-
thing masks [11]. NeRF-on-the-Go [22] leverages DINOV2
features [19], color residuals, and an MLP predictor for dy-
namic elements mask. This approach was later extended to
gaussian splatting [10] in WildGaussians [12]. SpotlessS-
plats [24] utilizes clustered diffusion-based features [30] and
SOTA distractor-free scene modeling for image collections.
However, these methods are sensitive to initialization and fail
to leverage semantic information when within-class dynamic-
static ambiguities or scene deformations arise, which limits
their generalizability in more challenging settings.
Self-Supervised Scene Decomposition for neural fields was
first introduced in Nerf-W [17], which decomposes and mod-
els the whole scene with dynamic and static neural fields.



This approach is further generalized to egocentric videos
in NeuralDiff [31], decomposing the entire scene into dy-
namic, static, and actor branches. D2NeRF [38] enhances
decomposition results for small scenes and short clips by
incorporating assignment regularization and a shadow field.
However, in general, these methods face balancing issues
between static-dynamic reconstruction and do not generalize
well to long video inputs.
Dynamic Gaussian Splatting modeling via explicit trajec-
tory modeling to track gaussian dynamic was investigated
in [8, 15]. Deformable-GS [39] employs a deformation
network to encode Gaussian deformations. 4DGS [36] lever-
ages a Hex-plane[3] encoder and MLP-based decoders to
model time-dependent Gaussian attribute parameters. How-
ever, these methods struggle to predict different deforma-
tions for gaussians with proximity, leading to over-smoothed
dynamic motion. A Recent method [37] tackles this with
dynamic-static separation by pre-computing static-dynamic
decomposition masks based on video pixel intensity varia-
tion. However, this method only works for fixed-view cam-
era inputs with simple motion.
Concurrent work: Recent methods [14, 34] fit separate per-
camera-space gaussians for every training view to model and
segment out dynamic elements with self-supervised mod-
eling for image collections. However, the lack of shared
distractors modeling across images makes it sensitive to
initialization and hard to generalize. With foreground dy-
namic gaussians, our method achieves SOTA distractor-free
scene reconstruction results for both challenging egocentric
videos [2, 16, 20, 32] and casual image collections [22].

3. Method

3.1. 3D Gaussian Splatting
3D Gaussian Splatting [10] provides an explicit representa-
tion of a 3D scene using Gaussian primitives. Each primitive
is defined by a mean vector x ∈ R3 and a covariance matrix
Σ ∈ R3×3, where

G(x) = exp
(
−1

2
(x− x)

T
Σ−1 (x− x)

)
, (1)

s.t. Σ = Rdiag(s)diag(s)TRT

with R being the are rotation matrix that could be repre-
sented by quaternion r and s being the scale vector.

To render these Gaussians onto the image plane, we use
differentiable splatting [40], which applies a projection trans-
formation P(G). The final color C at each pixel is then com-
puted by blending the contribution of all Gaussians, sorted
by their depth:

C =

N∑
i=1

ci σi Pi(Gi)

i−1∏
j=1

(1− σj Pj(Gj)). (2)

Here, ci ∈ Rk are spherical harmonic (SH) coefficients (for
an SH basis of degree k), and σi ∈ R denotes the opacity of
the ith Gaussian.

3.2. Foreground deformable gaussian
We extend the set of foreground Gaussians Gf to em-
bed customized mask elements for dynamic scene decom-
position, and the complete features could be defined as
Gf = {x, s, r, σ, c,mf ,mb, b}. Here, the standard attributes
{mf ,mb, b} are the foreground probabilistic attributes, back-
ground probabilistic attributes, and brightness control at-
tributes, respectively.

The deformed foreground Gaussians are obtained as:
G′
f = ∆Gf + Gf . The spatial-temporal module comprises

an encoder H and a decoder D. The encoder, based on
Hexplane [3], extracts spatio-temporal features based on
reference time t with fd = H(Gf , t), and the multi-head de-
coder D predicts the deformation of each gaussian features
with ∆Gf = D(fd). Separate MLPs are employed to predict
the deformation of each gaussian attribute. The decoder D
comprises: D = {ϕx, ϕr, ϕs ϕσ, ϕc, ϕmf

, ϕmb
, ϕb}. With

this, the deformed feature could be addressed as:

(x′, r′,s′, σ′, c′,m′
f ,m

′
b, b

′) =
(
x+ ϕx(fd),

r+ ϕr(fd), s+ ϕs(fd), σ + ϕσ(fd), c+ ϕc(fd),

mf + ϕmf
(fd),mb + ϕmb

(fd), b+ ϕb(fd)
)
. (3)

3.3. Probabilistic Composition Mask Rasterization
Given the predicted mask elements {m′

f ,m
′
b} and the de-

formed attributes {x′, r′, s′, σ′}, we can directly use differ-
entiable rendering to compute the raw foreground probability
Mf and Mb via based on Eq. (2):

Mf =

N∑
i=1

m′
f i
σ′
iPi(G′

fi)

i−1∏
j=1

(1− σ′
jPj(G′

fj )), (4)

Mb =

N∑
i=1

m′
biσ

′
iPi(G′

fi)

i−1∏
j=1

(1− σ′
jPj(G′

fj )); (5)

With P = Mf +Mb+ϵ, where ϵ is a small constant to avoid
division by zero, the foreground and background probabilis-
tic masks could be given by:

Pf = (1/P) ∗Mf , Pb = (1/P) ∗Mb. (6)

This probabilistic formulation naturally discourages mid-
range values (near 0.5), pushing the prediction toward 0 or 1
and yielding a clean dynamic-static decomposition.

3.4. Background Brightness Control
Casual captures often exhibit significant illumination varia-
tions, creating ambiguities in geometry and view-dependent



SH Attributes

ForegroundRender

ProbabilisticMask

Brightness
Control

BackgroundRender

Controlled
Background

ComposedRender

InputImage

Activation

Rasterize
Mask

Rasterize

Rasterize

Foreground
Gaussians

Background
Gaussians

Mask Attributes

{            , x′, r′, s′, σ′ }

{            , x′, r′, s′, σ′ }

Shared

HexPlane

t

Spatio-temporal Module

MLPs

SH
Attributes

{            , x, r, s, σ}

Figure 2. Our method simultaneously reconstructs the 3D scene and learns an unsupervised decomposition into decoupled static background
and dynamic foreground branches, where the update is loosely controlled by the mask rasterization process. This decoupled formulation
guarantee flexible yet accurate scene decomposition result.

appearance modeling. While non-Lambertian effects can be
progressively captured through the spherical harmonic (SH)
coefficients of Gaussian Splatting, the high expressiveness
of dynamic Gaussians in the foreground branch often leads
to over-segmentation of dynamic elements in regions with
large illumination variations. To address this, we introduce
a brightness control mask that enhances the background
branch’s capacity to model non-Lambertian effects. The raw
brightness control mask could be obtained via rasterizing
foreground gaussian with brightness control element b:

B =

N∑
i=1

b′iσ
′
iPi(G′

fi)

i−1∏
j=1

(1− σ′
jPj(G′

fj )) (7)

Moreover, to prevent modeling dark dynamic objects with
the brightness control mask and enable the modeling of
over-brightness, we further introduce a piece-wise linear
activation function for the brightness control mask, and the
transformed brightness control mask B̂ is given by:

B̂ =

{
B+ 0.5, 0 ≤ B ≤ 0.75,

k (B− 0.75) + 1.25, 0.75 < B ≤ 1,
(8)

, where k is an over-brightness modeling coefficient, we
choose k = 35 in practice. The raw background render Cb

is rasterized by background gaussian Gb with equation (2).
The controlled background is then given with Ĉb = B̂ ∗Cb.

3.5. Dynamic Foreground Representation
With deformed gaussian G′

f , the raw foreground render could
be given by:

Cf (u, v) =

N∑
i=1

c′f iσ
′
iPi(G′

fi)

i−1∏
j=1

(1− σ′
jPj(G′

fj )), (9)

And the final foreground render Ĉf is obtained by apply-
ing the foreground probabilistic mask to the raw foreground
render, Cf = PfCf . This formulation comes with several
advantages. On one hand, we could efficiently allow the pres-
ence of utility gaussians that are important for probabilistic
composition mask Pf , Pb and brightness control mask B̂
but do not contribute to foreground render. Moreover, such
a design could efficiently reduce the presence of unregu-
lated gaussian movement for dynamic scene modeling with
this added degree of freedom and avoid artifacts caused by
unconstrained gaussian movement.

3.6. Unsupervised scene decomposition

With the established composition mask Pf , Pb and bright-
ness control mask B̂, the composed render Ĉ is defined as:

Ĉ = Pf ∗Cf +Pb ∗ B̂ ∗Cb (10)

Compositional rendering with color mixing in NeRF-based
methods [13, 17, 31] sorts and integrates static and dynamic
density and radiance along each ray(compose during ren-
dering), leading to early ray termination during training
on local minima and reconstructs static scene without fine
details[23, 31]. In our decoupled design, the dynamic/static
gaussians rasterize the foreground/background renders Cf

and Cb independently and compose (after rending) with
the probabilistic mask Pf . This design enables full gradi-
ent flow and allow gradually formulated composition mask
during training, as shown in Fig. 3. The wrongly modeled el-
ements are gradually pruned during gaussian density control
process, yielding accurate, clean yet flexible dynamic-static
separation results that is much more robust to local minima.
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by initialization and overfit to floaters. Our method offers signifi-
cantly greater robustness in handling local minimas. The brightness
control mask effectively resolves the static-dynamic ambiguity due
to strong illumination variations and promote the decomposition
process during training.

3.7. Loss function
Loss function design is crucial to balance the expressiveness
of foreground and background branches while reconstructing
the scene with high-quality details. As the loss gradient mag-
nitude controls the densification process of gaussians [10],
we design the loss function L, which comprises two parts
Lmain and Luti, separating loss gradients for adaptive den-
sification process, to effectively suppress the spawning of
floaters and controlling the number of utility gaussians in
foreground branch:

L =L1 + Ldiversity + Lreg + Ldepth + Lf + Lb︸ ︷︷ ︸
Lmain

+ LSSIM + Lentropy + Lbrightness + Lscale︸ ︷︷ ︸
Luti

. (11)

While both main loss Lmain and utility loss Luti are used for
optimizable parameters’ update, only the gradient magnitude
of Lmain are used to densify foreground and background
gaussians. We refer readers to Appendix A. for a detailed
definition of each loss term.

3.8. Partial Opacity Reset
In methods as [12, 24], directly employing periodic opac-
ity reset [10] is not feasible, as it induces instability during
training. Owing to the added stability with the foreground-
background formulation, we perform periodic partial opacity

reset for 50% for background-foreground gaussians. This
guarantees stable training, effectively controls gaussian den-
sity, and handles local minima.

4. Experiments
4.1. Implementation Details
Initialization The scene boundary and the background
gaussians are initialized from point clouds generated us-
ing COLMAP [25, 25] or sensor perception [9] for Aria
Sequences[2, 16, 20]. The foreground Gaussians are initial-
ized from randomly generated points distributed within this
scene boundary.
Coarse Training Stage: During the coarse training stage,
we disable the deformation module in the foreground branch
and train both the foreground and background models for
1,000 iterations with short video clips and image collections
or for iterations equal to sequence length for long captures.
Fine Training Stage: In the fine training stage, we jointly
optimize the foreground and background branches end-to-
end. For short video clips and image collections of less than
500 images, training iterations are set to 20k. For input long
video clips of a few thousand frames, the training iteration
is set to 120k.

4.2. Datasets
Egocentric video sequences are with intensive camera
wearer activities and varying illumination conditions, which
pose challenges to scene modeling methods. We take
one sequence from ADT [20], AEA [16], Hot3D [2], and
Epic-Field [32] dataset, respectively, ranging from 2800-
5000 frames, to evaluate our method against baseline meth-
ods [10, 24, 31] in diverse scenarios. For each sequence,
every 1 out of 5 frames is held out during training.
NerF On-the-Go Dataset [22] comprises several hundred in-
put images featuring moving distractors alongside a smaller
set of clean images reserved for testing. We train our meth-
ods on the noisy occluded images and assess the quality of
novel view synthesis on the clean hold-out set.
Neu3D Dataset [13] was captured using 15 to 20 static cam-
eras recording relatively simple activities over 300 frames.
Camera view 0 is the testing set, with the remaining views
used for training.
HyperNeRF Dataset [21] features real-world activities cap-
tured with smooth trajectories. However, as noted in [8], the
camera poses are considerably inaccurate. Therefore, we
focus primarily on qualitative visualizations for this dataset.

4.3. Results
To assess the performance of our method for the distractor-
free scene reconstruction task in the presence of noisy inputs,
we conduct evaluations on both egocentric videos and image
collections. For egocentric video data [2, 16, 20, 32]—which
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Figure 4. Qualitative comparison of baseline methods [10, 24, 31] for distractor-free scene reconstruction on the Aria and EPIC-Field
sequences. Left of the dashed line: composed render comparisons; right: static reconstruction comparison(without camera masks).

Table 1. Distractor free scene reconstruction on NeRF On-the-go Dataset[22].The best , second best , and third best are highlighted. ‡:
±0.005 SSIM and LPIPS due to rounding uncertainty of originally reported result. Our method shows generally superior performance over
state-of-the-art methods.

Mountain Fountain Corner Patio Spot Patio-High Mean

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

RobustNeRF [23] 17.54 0.496 0.383 15.65 0.318 0.576 23.04 0.764 0.244 20.39 0.718 0.251 20.65 0.625 0.391 20.54 0.578 0.366 19.64 0.583 0.369
NeRF On-the-go [22] 20.15 0.644 0.259 20.11 0.609 0.314 24.22 0.806 0.190 20.78 0.754 0.219 23.33 0.787 0.189 21.41 0.718 0.235 21.67 0.720 0.234

3DGS [10] 19.40 0.638 0.213 19.96 0.659 0.185 20.90 0.713 0.241 17.48 0.704 0.199 20.77 0.693 0.316 17.29 0.604 0.363 19.30 0.668 0.253
WildGaussian [12] 20.43 0.653 0.255 20.81 0.662 0.215 24.16 0.822 0.139 21.44 0.800 0.138 23.82 0.816 0.138 22.23 0.725 0.206 22.16 0.746 0.182

DeSplat‡ [34] 19.59 0.715 0.175 20.27 0.685 0.175 26.05 0.885 0.095 20.89 0.815 0.115 26.07 0.905 0.095 22.59 0.845 0.125 22.58 0.813 0.130
Spotlesssplats [24] 21.64 0.725 0.195 22.38 0.768 0.166 25.77 0.877 0.117 22.40 0.833 0.108 25.35 0.866 0.127 22.98 0.808 0.155 23.42 0.813 0.145

Ours 22.31 0.746 0.163 22.40 0.764 0.139 25.94 0.869 0.078 22.88 0.850 0.087 26.59 0.886 0.089 23.35 0.799 0.124 23.91 0.819 0.113

lack clean view references—we present qualitative compar-
isons with baseline methods [10, 24, 31] in Fig. 4. Com-
pared to baseline methods [10, 24, 31], our method models

high-quality distractor-free static background with accurate
foreground separation. We additionally report video compar-
isons in our supplementary materials. For image collections
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Figure 5. Occlusion handling on the NeRF-on-the-Go dataset [22]. Compared to SpotlessSplats [24], our method better preserves fine
details in the training views (please consider zooming in for a clearer view) and reduces misclassification of dynamic regions, leading to
consistently better LPIPS on testing images. Right of dashed line: more results.

Table 2. Comparison dynamic modeling on Neu3D Dataset [13]. The best , second best , and third best are highlighted. Noticeably, our
method shows a consistently better LPIPS score compared to baseline methods.

Cut Beef Cook Spinach Sear Steak Flame Steak Flame Salmon Coffee Martini Mean

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRFPlayer[27] 31.83 0.928 0.119 32.06 0.930 0.116 32.31 0.940 0.111 27.36 0.867 0.215 26.14 0.849 0.233 32.05 0.938 0.111 30.29 0.909 0.151
HyperReel [1] 32.25 0.936 0.086 31.77 0.932 0.090 31.88 0.942 0.080 31.48 0.939 0.083 28.26 0.941 0.136 28.65 0.897 0.129 30.72 0.931 0.101
HexPlane [3] 30.83 0.927 0.115 31.05 0.928 0.114 30.00 0.939 0.105 30.42 0.939 0.104 29.23 0.905 0.088 28.45 0.891 0.149 30.00 0.922 0.113
KPlanes [5] 31.82 0.966 0.114 32.60 0.966 0.114 32.52 0.974 0.104 32.39 0.970 0.102 30.44 0.953 0.132 29.99 0.953 0.134 31.63 0.964 0.117
MixVoxels [33] 31.30 0.965 0.111 31.65 0.965 0.113 31.43 0.971 0.103 31.21 0.970 0.108 29.92 0.945 0.163 29.36 0.946 0.147 30.81 0.960 0.124
SWinGS [26] 31.84 0.945 0.099 31.96 0.946 0.094 32.21 0.950 0.092 32.18 0.953 0.087 29.25 0.925 0.100 29.25 0.925 0.100 31.12 0.941 0.095
4DGS [36] 32.66 0.946 0.053 32.46 0.949 0.052 32.49 0.957 0.041 32.75 0.954 0.040 29.00 0.912 0.081 27.34 0.905 0.083 31.12 0.937 0.058
Ours 32.56 0.957 0.042 32.61 0.950 0.041 33.20 0.956 0.035 32.75 0.955 0.034 29.23 0.916 0.068 28.80 0.916 0.062 31.52 0.942 0.047
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Figure 6. Our method robustly handles various challenges, preserv-
ing clean and high quality static background.

dataset Nerf-on-the-go[22] with clean reference test views,
we report detailed per-scene metrics including peak signal-
to-noise ratio (PSNR), perceptual quality (LPIPS) [42], and
structural similarity index (SSIM) [35] against baseline
methods[10, 12, 22–24, 34] on the hold-out test set in Tab. 1.
Our methods generalize to image collections and achieve

state-of-the-art results. Notably, our method consistently
achieves significantly better LPIPS scores over the previous
SOTA method SpotlessSplats [24]. We show our method
robustly handles occlusion and reconstructs fine static de-
tails compared to SpotlessSplats [24]in Fig. 5. Additionally,
our methods could naturally handle various input challenges,
such as camera motion blur and lens flare, as shown in Fig. 6.

Moreover, we compare our method’s composed render
quality with various baseline methods [1, 3, 5, 26, 27, 33, 36]
in Tab. 2, where our methods achieve consistently better
LPIPS scores. We qualitatively show the dynamic recon-
struction comparison and the rendering FPS of [36] and our
method in Fig. 7(on RTX4090), where our methods show
better reconstructed fine details and better test-time render-
ing efficiency. Moreover, we compare our method with
4DGS [38] on HyperNeRF [21] dataset in Fig. 8, showing
that our method effectively regularizes gaussian movements
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Figure 7. Qualitative comparison with 4DGS [36] on the
Neu3D [13] dataset. FPS is tested with fix-view rendering as [36].
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Figure 8. Qualitative comparison of our method with 4DGS [36]
on HyperNerf Vrig dataset [21]. Please consider zooming in for a
clearer view.

with probabilistic controlled dynamic foreground representa-
tion and reduces unregularized moving artifacts.

5. Ablation study

Brightness Control(BC) is introduced to enhance the back-
ground branch’s capacity to model non-Lambertian effects
and mitigate dynamic-static ambiguities caused by varying
illuminations, as shown in Fig. 9. w/o BC leads to down-
graded performance in Tab. 3.
Partial Opacity Reset(POR) controls the gaussian density,
facilitates floaters pruning, and mitigates local minima as-
signment. We show in Fig. 9 and Tab. 3 that this design leads
to cleaner separation.
Background Mask Element(m′

b) is introduced to promote
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Figure 9. Ablation Study on AEA [16] dataset.

w/o Ldepth Ours

Figure 10. Ablation Study on Neu3D dataet [13] cut beef scene.

Table 3. Ablation study on Nerf-on-the-go dataset[22]

Sequence from PSNR↑ SSIM↑ LPIPS↓

w.o BC 23.54 0.814 0.118
w.o POR 23.56 0.814 0.117
w.o Ldepth 23.68 0.816 0.113
w.o. m′

b 23.83 0.817 0.115
Ours 23.91 0.819 0.113

cleaner separation and discourage mid-range probabilities.
Though the improvements are not significant for image col-
lections with good initializations, it leads to better dynamic-
static modeling and separation results as shown in Fig. 9.
Loss Ldepth is introduced to promote reconstruction with
smooth background geometry and loosely regularize fore-
ground and background depth prediction. As shown
in Fig. 10, this component efficiently prevents unconstrained
gaussians from occluding test-time render for sparse, fixed
camera input. Ldepth also leads to better rendering quality as
shown in Tab. 3.

6. Conclusion
This paper proposes DeGauss to robust decompose dynamic-
static elements in the scene with gaussian splatting. With
decoupled dynamic-static gaussian branches controlled by
mask attributes rasterized by foreground gaussians, our
method achieves flexible yet accurate dynamic-static de-
composition that widely generalizes to various scenarios,
leading to clean distractor-free static scene modeling and
high-quality and efficient dynamic scene modeling.
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