
Exploring Behavior-Driven Development for Code Generation

Anonymous ACL submission

Abstract

Code generation has long been a challenging001
task in natural language processing, with ex-002
isting models often struggling to produce cor-003
rect and functional code solutions. This paper004
explores integrating Behavior-Driven Develop-005
ment (BDD)—a user-centric agile methodol-006
ogy—into the code generation process. We007
propose BDDCoder, a novel multi-agent frame-008
work comprising four roles: Programmer,009
Tester, Requirements Analyst, and User, de-010
signed to simulate real-world BDD workflows.011
BDDCoder consists of two variants: BDD-NL,012
which uses natural language scenarios for code013
generation and LLM-based self-validation and014
BDD-Test, which converts scenarios into exe-015
cutable test cases for code validation. Through016
empirical evaluation on benchmark datasets017
(HumanEval, MBPP, and their EvalPlus vari-018
ants), we demonstrate that BDD-NL with LLM019
self-validation could hinder code generation020
performance, while BDD-Test significantly out-021
performs BDD-NL, achieving up to a 15.1%022
improvement in pass@1 scores. Our findings023
highlight the potential of BDD to enhance re-024
quirement clarity and code alignment with user025
needs, offering a robust framework for future026
research on integrating software engineering027
methodologies into automated code generation.028

1 Introduction029

Large Language Models (LLMs) have revolution-030

ized code generation task by enabling the auto-031

matic translating natural language descriptions into032

executable code (Jiang et al., 2024; Gu et al.,033

2024; Tong and Zhang, 2024; Lyu et al., 2024).034

LLMs like Codex (Chen et al., 2021a), Code Llama035

(Roziere et al., 2023), and GPT-4 (Achiam et al.,036

2023) have demonstrated remarkable capabilities037

in understanding and generating code across vari-038

ous programming languages and tasks. By leverag-039

ing vast amounts of code-related data from public040

repositories like GitHub, these models have be-041

come indispensable tools for developers, signifi- 042

cantly reducing the time and effort required for 043

coding tasks (Jin et al., 2024a; Zhang et al., 2024). 044

However, despite their advancements, challenges 045

remain in ensuring the functional correctness and 046

alignment with user requirements of generated 047

code. Studies have shown that LLMs often pro- 048

duce syntactically valid but logically flawed code, 049

especially when handling edge cases or complex 050

dependencies (Pan et al., 2025; Liu et al., 2024). 051

For instance, while LLMs achieve high pass rates 052

on benchmarks like HumanEval, their performance 053

drops significantly on rigorous evaluations such as 054

HumanEval+. 055

To address these limitations, recent research has 056

explored multi-agent frameworks that incorporat- 057

ing software engineering methodologies like TDD, 058

Agile development, and the Waterfall model into 059

the code generation process (Hong et al., 2023; 060

Mathews and Nagappan, 2024; Lin et al., 2024; 061

Jin et al., 2024b). These frameworks decompose 062

the code generation task into collaborative subtasks 063

(e.g., requirement analysis, coding, testing), and 064

distribute tasks among specialized agents, such as 065

programmers, testers, and requirement analysts, to 066

simulate a collaborative software development en- 067

vironment. 068

Test-Driven Development (TDD) (Beck, 2022), 069

where test cases are provided alongside problem 070

statements to ensure that the generated code must 071

be functionally correct and can pass all provided 072

test cases, , has been adapted to guide the code gen- 073

eration process (Mathews and Nagappan, 2024). 074

This approach has been shown to improve LLMs’s 075

code generation performance, as providing test 076

cases can improve understanding of the require- 077

ments in the problem description and ensure the 078

logical correctness of the generated code. While 079

TDD focuses on technical correctness, Behavior- 080

Driven Development (BDD) (Stevens, 2014; Fox, 081

2015; North, 2006) extends TDD by emphasizing 082

1

user-centric requirements, translating natural lan-083

guage scenarios (e.g., "Given-When-Then") into084

executable specifications. This approach fosters085

collaboration among developers, testers and non-086

technical stakeholders, ensuring code aligns with087

business goals. It extends TDD by focusing on088

user behavior and writing test cases in natural lan-089

guage, making it accessible to non-programmers.090

By centering the development process around user091

needs, BDD ensures that the generated code not092

only functions correctly but also aligns with busi-093

ness requirements. Despite its widespread adop-094

tion in real-world software development, the poten-095

tial of BDD in automated code generation remains096

largely unexplored. An example of BDD scenario097

generated by LLM on a code generation task is098

shown in fig 1.099

[User Requirement]:
from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
""" Check if in given list of numbers, are any two numbers closer to each other than given threshold."""

[BDD Scenarios]:
Feature: Check for Close Elements in a List

Scenario: List contains two numbers closer than the threshold
Given a list of numbers [1.0, 2.8, 3.0, 4.0, 5.0, 2.0]
And a threshold of 0.3
When the function checks for close elements
Then the result should be True

Scenario: No two numbers in the list are closer than the threshold
Given a list of numbers [1.0, 2.0, 3.0]
And a threshold of 0.5
When the function checks for close elements
Then the result should be False

Scenario: List contains only one number
Given a list of numbers [1.0]
And a threshold of 0.5
When the function checks for close elements
Then the result should be False

Scenario: Threshold is zero
Given a list of numbers [1.0, 2.0, 3.0]
And a threshold of 0.0
When the function checks for close elements
Then the result should be False

Scenario: List is empty
Given an empty list []
And a threshold of 0.5
When the function checks for close elements
Then the result should be False

BDD Scenarios

Figure 1: An Example of BDD Scenario Generated by
LLM.

In this paper, we hope to explore the integra-100

tion of Behavior-Driven Development (BDD) into101

the code generation process. We simulate the real-102

world Behavior-Driven Development (BDD) pro-103

cess in a simple multi-agent system BDDCoder,104

consisting of four roles: the Programmer, responsi-105

ble for generating code; the Tester, who validates106

the code against BDD scenarios; the Requirements107

Analyst, who formalizes user requirements into108

structured BDD scenarios; and the User, who pro-109

vides requirements and feedback. This framework110

ensures that the generated code is not only func-111

tionally correct but also aligned with business goals112

and user expectations. For fully evaluating the ef- 113

fectiveness of BDD in code generation, we propose 114

two variants of BDDCoder: - **BDD-NL**: Di- 115

rectly using natural language scenarios for code 116

generation and LLM-based validation, simulating a 117

"pure" BDD process. - **BDD-Test**: Converting 118

scenarios into executable test cases for execution 119

feedback, simulating the real-world BDD process. 120

We conduct experiments to answer the following 121

research questions. 122

• RQ1: Can natural language BDD scenar- 123

ios (BDD-NL) effectively guide LLMs in 124

code generation compared to direct code 125

generation? While Test-Driven Development 126

(TDD) has proven effective for LLM code gen- 127

eration by aligning code with predefined test 128

cases, its user-centric counterpart—Behavior- 129

Driven Development (BDD)—remains under- 130

explored. BDD’s emphasis on natural lan- 131

guage scenarios (e.g., "Given-When-Then" 132

templates) could theoretically enhance re- 133

quirement clarity, but LLMs’ reliance on struc- 134

tural patterns (e.g., unit tests in pre-training 135

data) poses a potential mismatch. We first 136

ask: Can raw BDD scenarios (BDD-NL) ef- 137

fectively guide LLMs, or do they introduce 138

noise due to semantic misalignment? 139

• RQ2: Does converting BDD scenarios into 140

executable test cases (BDD-Test) improve 141

code generation performance over BDD- 142

NL? If BDD-NL’s natural language scenar- 143

ios would hinder performance, an alternative 144

approach may bridge the gap. Inspired by 145

real-world BDD process, we propose BDD- 146

Test, which automatically converts BDD sce- 147

narios into executable test cases (e.g., Python 148

assert statements). This raises a critical ques- 149

tion: Does BDD-Test resolve the limitations 150

of BDD-NL, and if so, to what extent? 151

• RQ3: Can LLM act as reliable validators in 152

BDD-NL (natural language self-checking)? 153

BDD-NL assumes LLMs can self-validate 154

code against natural language scenarios—a ca- 155

pability crucial for simulating human-centric 156

workflows. However, LLMs’ inherent limi- 157

tations in understanding natural language nu- 158

ances may hinder this process. We thus in- 159

vestigate: Can LLMs reliably act as testers 160

in BDD-NL, or does self-validation introduce 161

false positives/negatives? 162

2

• RQ4: How is the BDD Scenario Quality163

and Test Cases Correctness? As we use164

BDD scenarios(BDD-NL) and corrsponding165

test cases(BDD-Test) to guide the code genera-166

tion process, the quality of the BDD scenarios167

and test cases is crucial.168

• RQ5: How does BDD compare to TDD in169

guiding LLM code generation? Finally, we170

compare the performance of BDD(BDD-Test)171

with TDD in guiding LLM code generation, as172

BDD is a user-centric extension of TDD. We173

aim to investigate whether BDD can provide174

additional benefits over TDD in guiding LLM175

code generation.176

2 Methodology177

2.1 Multi-Agent System Design (BDDCoder)178

As shown in fig 2, we simulate the BDD process179

by integrating four key roles: the Requirements180

Analyst, User, Programmer, and Tester.181

2.1.1 Requirements Analyst182

In our framework the Requirements Analyst acts183

as the central communication bridge between the184

user and the development team. The Analyst is185

responsible for generating BDD scenarios based186

on user requirements and iteratively refining these187

scenarios through feedback from the user. The188

BDD scenarios, written in natural language, cap-189

ture the desired behavior of the system and serve190

as a high-level specification for the development191

process. The iterative refinement process ensures192

that the scenarios accurately reflect user needs and193

provide clear guidance for the subsequent coding194

phase.195

2.1.2 User196

The User is the ultimate stakeholder in our frame-197

work, providing requirements and feedback, used198

to simulate a human user in the BDD process. Dur-199

ing the scenario refinement phase, the User reviews200

the BDD scenarios drafted by the development201

team, ensuring they accurately meet user needs.202

The active involvement of the User ensures that203

the final solution is user-centric and meets business204

goals.205

2.1.3 Programmer206

The Programmer takes the refined BDD scenarios207

as input and generates the corresponding code. The208

scenarios guide the programmer in implementing209

the functionality required to meet user expectations. 210

The generated code is then passed to the Tester for 211

validation. In BDD-Test mode, the Programmer 212

takes the converted test cases and user requirements 213

as input for generating code. 214

2.1.4 Tester 215

The Tester evaluates the generated code against the 216

BDD scenarios to determine whether the code satis- 217

fies all specified requirements. This involves: Val- 218

idation: Evaluating whether the code can pass all 219

scenarios. Test Report Generation: Documenting 220

any discrepancies or issues and providing detailed 221

feedback to the Programmer for further refinement. 222

The iterative feedback loop between the Tester and 223

the Programmer continues until the code success- 224

fully passes all scenarios, ensuring that the final 225

output meets user requirements. 226

Scenario-to-Test Conversion In the BDD-Test 227

mode, the Tester automatically converts natural 228

language scenarios into Python assert statements 229

using prompt-based parsing (prompt template in 230

Appendix A). For example, a scenario "Given input 231

X, when processed, then output Y" is mapped to 232

assert func(X) == Y. These executable tests 233

are validated via pytest to provide deterministic 234

feedback. 235

2.2 Framework Overview 236

The BDDCoder framework operates in two modes 237

to evaluate different BDD integration strategies: 238

BDD-NL Mode (Pure BDD Simulation) In this 239

mode, all artifacts—scenarios, code, and test re- 240

ports—are expressed in natural language. The 241

Tester Agent validates code by prompting the LLM 242

to check scenario compliance, mimicking human- 243

centric BDD workflows. 244

BDD-Test Mode Here, natural language scenar- 245

ios are automatically converted to executable test 246

cases (Python assert statements) after user valida- 247

tion. The Tester agent runs these tests via pytest 248

against the generated code, , providing a test report 249

as feedback. 250

2.3 Experiment Setup 251

2.3.1 Benchmark Datasets 252

In this work, we utilize the following widely- 253

used code generation benchmarks for experimental 254

investigation: HumanEval (Chen et al., 2021b), 255

MBPP (Austin et al., 2021) and their EvalPlus 256

3

Requirement

Feedback

User

Code Generation

Refine
Code

Programmer

Aanalyst

Test
Report

Feedback

Tester

BDD Scenarios
Code
Test

Figure 2: The BDDCoder framework.

(Liu et al., 2024) variants(i.e. HumanEval+ and257

MBPP+). HumanEval consists of 164 human-258

written programming problems, each with a func-259

tion signature, natural language description, canon-260

ical solution, and test cases. MBPP(EvalPlus ver-261

sion) contains 378 manually verified programming262

problems, each with a natural language description,263

a code solution, and 3 test cases. To enhance evalu-264

ation rigor, we employed EvalPlus, which extends265

HumanEval and MBPP with 80x and 35x more266

test cases, respectively. These extended datasets,267

HumanEval+ and MBPP+, provide broader cover-268

age of edge cases and complex scenarios, enabling269

more accurate detection of errors in generated code.270

2.3.2 Evaluation Metrics271

We use pass@1 as the evaluation metrics for the272

code generation task, a widdly used metric which273

evaluates whether a single generated code solution274

can pass all the tests (Chen et al., 2021b; Austin275

et al., 2021; Dong et al., 2024; Huang et al., 2023).276

2.3.3 BDD Variant Configuration277

For each dataset, we evaluate two configurations: -278

BDD-NL: Use raw scenarios for code generation279

and LLM self-validation. - BDD-Test: Convert280

scenarios to tests for code generation and pytest281

execution. The iterations limit rounds are set to 5282

for both scenarios refining and code fixing.283

3 Results and Analysis 284

3.1 RQ1: Can natural language BDD 285

scenarios (BDD-NL) effectively guide 286

LLMs in code generation compared to 287

direct code generation? 288

We evaluate the performance of BDD-NL with fl- 289

lowing LLMs: GPT-3.5-turbo(0125 version) and 290

GPT-4o-mini to answer this research question. The 291

results is reported in Table 1, the "Direct" method 292

refers to directly prompt LLM to generate code, 293

and this serves as the baseline, representing the 294

basic code generation perfomance of LLMs. We 295

process HumanEval and MBPP by extracting nec- 296

essary imports, function signature and the natural 297

language description of the problem to construct 298

the prompt input in same format, illustrated with 299

the examples in the appendix. And the "BDD-NL" 300

method refers to using BDD scenarios to guide the 301

code generation process. From the results we can 302

find that directly guiding LLMs with natural lan- 303

guage BDD scenarios (BDD-NL) resulted in perfor- 304

mance degradation across all LLMs, with pass@1 305

scores dropping by up to 15.1% on MBPP+ and at 306

least 0.6% on HumanEval for GPT-4o-mini. 307

It suggests that the BDD scenarios, while pro- 308

viding a structured and user-centric approach to 309

code generation, may introduce additional com- 310

4

plexity or constraints that hinder the LLMs’ ability311

to generate correct and functional code. One possi-312

ble explanation is that the BDD scenarios written313

in natural language may not align perfectly with314

the LLMs’ internal representations of the problem,315

leading to a suboptimal code generation.316

3.2 RQ2: Can converting BDD scenarios into317

executable test cases (BDD-Test) mitigate318

the limitations of BDD-NL?319

As reported in Table 1, the results show that con-320

verting BDD scenarios into executable test cases321

(BDD-Test) significantly improves code genera-322

tion performance compared to BDD-NL. For in-323

stance, on the HumanEval dataset, the pass@1324

score for GPT-3.5-turbo improved from 76.8%325

(BDD-NL) to 87.7% (BDD-Test), and for GPT-326

4o-mini, it increased from 74.4% to 85.4%. We at-327

tribute this phenomenon to the model has learned a328

large amount of code data containing test cases dur-329

ing pre-training and instruction fine-tuning, while330

much more limited code data containing BDD sce-331

narios. This indicates that the structural alignment332

with LLMs’ pre-training patterns (via BDD-Test)333

resolves the limitations of BDD-NL, leading to334

better code generation performance. The findings335

suggest that while natural language scenarios may336

introduce noise, converting them into executable337

test cases can bridge the gap between BDD’s user-338

centric scenarios and LLMs’ reliance on structural339

inputs.340

3.3 RQ3: Can LLM act as reliable validators341

in BDD-NL (natural language342

self-checking)?343

In BDD-NL, we directly use LLM itself as a code344

tester to evaluate the code correctness by prompt-345

ing LLM to act as a tester to detemine whether346

the generated code can pass all the BDD scenar-347

ios to similate the real-world real testing process348

of validating input-output matches. However, we349

overlooked whether this approach is truly effective,350

i.e. whether LLM can genuinely serve as a BDD351

test validator. To address this issue, we conducted352

ablation experiment to evaluate the effectiveness353

of LLM as a code tester in BDD-NL by removing354

the Tester Agent from the BDDCoder framework355

and directly using the code generated by the Pro-356

grammer Agent as the final output. As shown in357

2, we find that the LLM model is not a reliable358

code tester. Specifically, using LLMs to validate359

whether generated code passes all scenarios did not360

enhance correctness and even led to a slight perfor- 361

mance degradation. Across all models and datasets, 362

the pass@1 scores decreased when LLMs were 363

used as validators in BDD-NL. For example, on the 364

HumanEval dataset, the pass@1 score for GPT-3.5- 365

turbo dropped from 77.4% (BDD-NL without LLM 366

self-validation) to 76.8% (BDD-NL with LLM self- 367

validation). The findings highlight the limitations 368

of LLMs in self-validation via natural language 369

scenarios and suggest that alternative validation 370

methods, such as automated testing frameworks, 371

may be more effective. 372

3.4 RQ4: How is the BDD Scenario Quality 373

and Test Cases Correctness? 374

We evaluate the quality of the generated BDD sce- 375

narios and convertd test cases by excuting them 376

against ground truth code and measured the pass 377

rate and accuracy of the generated test cases. For 378

further investigating, we also prompt the LLMs to 379

directly generate the same number of Python assert 380

statements. Tables 3 and 4 summarize the results 381

obtained on the HumanEval and MBPP datasets 382

for two models: GPT-3.5-turbo and GPT-4o-mini. 383

Here, “Total Items” refers to the total number of 384

problems in the dataset, “Total Cases” is the num- 385

ber of test cases generated, “Passed Cases” indi- 386

cates the number of test cases that passed when 387

executed on the real code solution, and “Correct 388

Items” denotes the number of problems for which 389

the test cases were entirely correct. 390

The results indicate that for both models and 391

datasets, direct generation of test cases generally 392

yields higher accuracy metrics compared to the 393

BDD-based conversion approach. For instance, 394

in the case of GPT-3.5-turbo on the HumanEval 395

dataset, the direct generation method achieved an 396

Item-Accuracy of 0.5427 and a Cases-Accuracy 397

of 0.7129, which represent slight improvements 398

over the corresponding BDD-based results (0.5366 399

and 0.7092, respectively). On the MBPP dataset, 400

the improvement is more pronounced; the direct 401

method achieved an Item-Accuracy of 0.5319 (an 402

increase of nearly 13 percentage points) and a 403

Cases-Accuracy of 0.6706 (approximately 5 per- 404

centage points higher) compared to the BDD-based 405

approach. Similarly, for GPT-4o-mini, the Hu- 406

manEval results under the direct generation con- 407

dition show an improvement in Item-Accuracy 408

(0.4085 versus 0.3902) and a more substantial gain 409

in Cases-Accuracy (0.6942 versus 0.6451) relative 410

to the BDD-based conversion. On MBPP, the di- 411

5

LLM Method HumanEval HumanEval+ MBPP MBPP+
gpt-3.5-turbo Direct 78.7 75.0 77.0 66.4

BDD-NL 76.8(↓ 1.9) 69.5(↓ 5.5) 75.7(↓ 1.7) 64.6(↓ 1.8)
BDD-Test 87.8(↑ 10.1) 84.1(↑ 9.1) 85.6(↑ 8.6) 78.3(↑ 11.9)

gpt-4o-mini Direct 75.0 71.3 74.9 64.3
BDD-NL 74.4(↓ 0.6) 69.5(↓ 1.8) 66.1(↓ 8.8) 49.2(↓ 15.1)
BDD-Test 85.4(↑ 10.4) 82.9(↑ 11.3) 87.3(↑ 13.4) 79.1(↑ 14.8)

Table 1: Code generation performance with BDDCoder.

LLM Method HumanEval HumanEval+ MBPP MBPP+
gpt-3.5-turbo BDD-NL 76.8 69.5 75.7 64.6

BDD-NLw/o test 77.4(↑ 0.6) 72.6(↑ 3.1) 74.9(↓ 0.8) 65.1(↑ 0.5)

gpt-4o-mini BDD-NL 74.4 69.5 70.6 51.1
BDD-NLw/o test 76.2(↑ 1.8) 72.0(↑ 2.5) 71.4(↑ 0.8) 54.8(↑ 3.7)

Table 2: BDD-NL code generation performance with and w/o LLM self-verification.

rect generation method also outperforms the BDD-412

based method in terms of Item-Accuracy (0.5132413

compared to 0.3942), while the improvement in414

Cases-Accuracy is modest (0.6461 vs. 0.6040).415

These findings suggest that although converting416

BDD scenarios into executable test cases provides417

a structured and user-centric framework, the scenar-418

ios themselves and conversion process may intro-419

duce noise or result in information loss, thereby420

slightly degrading the overall test case quality.421

Conversely, when the language model is directly422

prompted to generate test cases, it appears to lever-423

age its pre-training on code and testing patterns424

more effectively, yielding higher accuracy. Future425

work should focus on refining the conversion pro-426

cess from natural language scenarios to executable427

tests, aiming to combine the strengths of BDD (i.e.,428

clear specification of user requirements) with the429

robust test generation capabilities of LLMs.430

3.5 RQ5: How does BDD compare to TDD in431

guiding LLM code generation?432

We compare the performance of BDD(BDD-Test)433

with TDD (TGen) in guiding LLM code generation434

on the HumanEval and MBPP datasets, and report435

the results in Table 5. For the GPT-3.5-turbo model,436

we observe that BDD consistently outperforms437

TDD. Specifically, on the HumanEval dataset,438

BDD-Test achieves a pass@1 of 87.7%, compared439

to 76.2% for TGen. A similar trend is observed440

across the other datasets: HumanEval+ (84.1% for441

BDD-Test vs. 73.2% for TGen), MBPP (85.6%442

vs. 76.2%), and MBPP+ (78.3% vs. 69.0%). For443

the GPT-4o-mini model, BDD also shows gener-444

ally superior performance over TDD accrross all 445

datasets. 446

In summary, these results indicate that BDD gen- 447

erally provides superior guidance for LLM-based 448

code generation when compared to TDD. This per- 449

formance superiority can be attributed to the fact 450

that BDD emphasizes user-centric scenarios, which 451

can provide LLMs with clearer guidance on how 452

to align generated code with user needs. These 453

findings highlight the potential of BDD to improve 454

code quality and accuracy, making it a preferable 455

approach for tasks where user behavior and require- 456

ments play a central role in guiding the develop- 457

ment process. 458

4 Related Work 459

4.1 Large Language Models for Code 460

Generation 461

Large Language Models (LLMs) have significantly 462

advanced the field of automatic code generation. 463

Models like Codex, StarCoder, and Code Llama 464

leverage extensive training on large-scale code 465

repositories to generate code across multiple pro- 466

gramming languages, demonstrating capabilities 467

ranging from function-level completion to compet- 468

itive programming. Despite their success, the gen- 469

erated code often suffer form syntactic correctness 470

but semantic flaws, the code may pass basic tests 471

but fail to align with implicit user requirements or 472

handle edge cases. Recent studies highlight that 473

LLMs struggle with dynamic requirements and con- 474

textual nuances, particularly in real-world scenar- 475

ios where specifications evolve iteratively. These 476

6

Dataset Condition Total Cases Passed Cases Correct Items Item-Accuracy Cases-Accuracy

HumanEval
BDD 533 378 88 0.5366 0.7092
Direct 533 380 89 0.5427 0.7129

MBPP
BDD 1172 724 151 0.4016 0.6177
Direct 1172 786 200 0.5319 0.6706

Table 3: Results for GPT-3.5-turbo on HumanEval and MBPP

Dataset Condition Total Cases Passed Cases Correct Items Item-Accuracy Cases-Accuracy

HumanEval
BDD 896 578 64 0.3902 0.6451
Direct 896 622 67 0.4085 0.6942

MBPP
BDD 1735 1048 149 0.3942 0.6040
Direct 1735 1121 194 0.5132 0.6461

Table 4: Results for GPT-4o-mini on HumanEval and MBPP

limitations underscore the need for methodologies477

that bridge high-level user intent and low-level code478

implementation.479

4.2 Agent-based Methods480

To enhance performance and robustness, recent481

studies have explored the integration of multi-agent482

systems in code generation that simulate collabo-483

rative software development workflows (Jin et al.,484

2024b). These frameworks decompose code gen-485

eration into specialized roles (e.g., analyst, pro-486

grammer, tester) and leverage iterative feedback:487

MetaGPT integrates standardized operating proce-488

dures (SOPs) to coordinate agents, reducing error489

propagation through role-specific prompts and val-490

idation. CodeAgent extends this paradigm by in-491

corporating DevOps tools (e.g., CI/CD pipelines)492

for repository-level code synthesis, outperforming493

commercial tools like GitHub Copilot in complex494

tasks. TGen adopts a Test-Driven Development495

(TDD) approach, where agents iteratively refine496

code based on test feedback, demonstrating higher497

pass rates than direct generation. By combining498

multi-agent collaboration with software engineer-499

ing methodologies, these frameworks address key500

challenges such as error propagation, context un-501

derstanding, and real-world applicability. They502

not only improve the functional correctness and503

robustness of generated code but also enhance the504

adaptability and scalability of AI-driven software505

development, offering a comprehensive solution to506

the challenges of modern software engineering.507

5 Conclusion and Future Work508

In this work, we perform the first empirical study509

to explore the integration of Behavior-Driven De-510

velopment (BDD) into the code generation process. 511

Through experimental exploration, we believe that 512

directly using natural language-described BDD sce- 513

narios to guide code generation and verification is 514

not very effective. However, this does not negate 515

the feasibility of introducing BDD into code gener- 516

ation. On the contrary, we consider this a promis- 517

ing research direction, though currently limited by 518

the fundamental capabilities of LLMs, requiring 519

models trained on more BDD scenario data. We 520

hope that in the future, BDD scenarios can be di- 521

rectly used as guidance and standards for the entire 522

development process, enabling end-to-end com- 523

plex software development. Moreover, since BDD 524

introduces user participation, further exploration 525

of human-in-the-loop applications is possible. In 526

practical applications, users can collaborate and 527

communicate with AI systems acting as software 528

teams to jointly develop scenarios that clarify re- 529

quirements and guide the development process. 530

Code generation has been a challenging task in 531

the field of natural language processing, and ex- 532

isting models often fail to generate correct code 533

solutions that pass all tests. Behavior-Driven De- 534

velopment (BDD) is an agile software develop- 535

ment methodology that enhances team collabora- 536

tion and software quality by focusing on user behav- 537

ior. In this work, we propose BDDCoder, a novel 538

multi-agent framework that incorporates Behavior- 539

Driven Development (BDD) into the code genera- 540

tion process to improve the performance of code 541

solutions. BDDCoder includes four roles: the Pro- 542

grammer, who generates code; the Tester, who gen- 543

erates and executes test cases; the Requirements 544

Analyst, who analyzes user requirements; and the 545

User, who writes behaviors. 546

7

LLM Method HumanEval HumanEval+ MBPP MBPP+
gpt-3.5-turbo BDD-Test 87.7 84.1 85.6 78.3

TGen 76.2 73.2 76.2 69.0
gpt-4o-mini BDD-Test 89.6 87.2 85.7 77.8

TGen 88.4 85.4 80.4 72.8

Table 5: Code generation preformance with BDD and TDD.

6 Limitations547

In this study, we evaluated the effectiveness of548

Behavior-Driven Development (BDD) in guiding549

Large Language Model (LLM) code generation.550

While our findings indicate that BDD can im-551

prove code generation performance, several lim-552

itations should be considered. First, due to the re-553

source constraints, our experiments focused on two554

LLMs—GPT-3.5-turbo and GPT-4o-mini—and555

four datasets: HumanEval, HumanEval+, MBPP,556

and MBPP+. The limited scope of models and557

datasets may not fully represent the broader appli-558

cability of BDD. Future studies should incorporate559

a wider range of models and datasets to assess560

the generalizability of these findings. Besides, we561

only evaluated the performance of BDD in guiding562

code generation tasks and did not explore the po-563

tential of BDD in real-world software development,564

future work should extend the BDDCoder frame-565

work to more complex software development tasks566

and evaluate its effectiveness in real-world scenar-567

ios. Finally, our study focused on exploring the568

effectiveness of BDD in guiding LLM code gener-569

ation and did not consider other code generation570

approaches or methodologies.571

References572

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama573
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,574
Diogo Almeida, Janko Altenschmidt, Sam Altman,575
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.576
arXiv preprint arXiv:2303.08774.577

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten578
Bosma, Henryk Michalewski, David Dohan, Ellen579
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.580
Program synthesis with large language models. arXiv581
preprint arXiv:2108.07732.582

Kent Beck. 2022. Test driven development: By example.583
Addison-Wesley Professional.584

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,585
Henrique Ponde De Oliveira Pinto, Jared Kaplan,586
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg587

Brockman, et al. 2021a. Evaluating large lan- 588
guage models trained on code. arXiv preprint 589
arXiv:2107.03374. 590

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, 591
Henrique Ponde De Oliveira Pinto, Jared Kaplan, 592
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg 593
Brockman, et al. 2021b. Evaluating large lan- 594
guage models trained on code. arXiv preprint 595
arXiv:2107.03374. 596

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. 2024. 597
Self-collaboration code generation via chatgpt. ACM 598
Transactions on Software Engineering and Method- 599
ology, 33(7):1–38. 600

S. Fox. 2015. All you need to know 601
about behaviour-driven software. https: 602
//web.archive.org/web/20150901151029/http: 603
//behaviourdriven.org/. 604

Xiaodong Gu, Meng Chen, Yalan Lin, Yuhan Hu, 605
Hongyu Zhang, Chengcheng Wan, Zhao Wei, Yong 606
Xu, and Juhong Wang. 2024. On the effectiveness 607
of large language models in domain-specific code 608
generation. ACM Trans. Softw. Eng. Methodol. Just 609
Accepted. 610

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng 611
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven 612
Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. 2023. 613
Metagpt: Meta programming for multi-agent collabo- 614
rative framework. arXiv preprint arXiv:2308.00352. 615

Dong Huang, Qingwen Bu, Jie M Zhang, Michael Luck, 616
and Heming Cui. 2023. Agentcoder: Multi-agent- 617
based code generation with iterative testing and opti- 618
misation. arXiv preprint arXiv:2312.13010. 619

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, 620
and Sunghun Kim. 2024. A survey on large lan- 621
guage models for code generation. arXiv preprint 622
arXiv:2406.00515. 623

Haolin Jin, Linghan Huang, Haipeng Cai, Jun Yan, 624
Bo Li, and Huaming Chen. 2024a. From llms to 625
llm-based agents for software engineering: A sur- 626
vey of current, challenges and future. arXiv preprint 627
arXiv:2408.02479. 628

Haolin Jin, Linghan Huang, Haipeng Cai, Jun Yan, 629
Bo Li, and Huaming Chen. 2024b. From llms to 630
llm-based agents for software engineering: A sur- 631
vey of current, challenges and future. arXiv preprint 632
arXiv:2408.02479. 633

8

https://web.archive.org/web/20150901151029/http://behaviourdriven.org/
https://web.archive.org/web/20150901151029/http://behaviourdriven.org/
https://web.archive.org/web/20150901151029/http://behaviourdriven.org/
https://web.archive.org/web/20150901151029/http://behaviourdriven.org/
https://web.archive.org/web/20150901151029/http://behaviourdriven.org/
https://doi.org/10.1145/3697012
https://doi.org/10.1145/3697012
https://doi.org/10.1145/3697012
https://doi.org/10.1145/3697012
https://doi.org/10.1145/3697012

Feng Lin, Dong Jae Kim, and TH Chen. 2024. Soen-634
101: Code generation by emulating software process635
models using large language model agents. arXiv636
preprint arXiv:2403.15852.637

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-638
ming Zhang. 2024. Is your code generated by chatgpt639
really correct? rigorous evaluation of large language640
models for code generation. Advances in Neural641
Information Processing Systems, 36.642

Michael R Lyu, Baishakhi Ray, Abhik Roychoudhury,643
Shin Hwei Tan, and Patanamon Thongtanunam. 2024.644
Automatic programming: Large language models and645
beyond. ACM Transactions on Software Engineering646
and Methodology.647

Noble Saji Mathews and Meiyappan Nagappan. 2024.648
Test-driven development for code generation. arXiv649
preprint arXiv:2402.13521.650

D. North. 2006. Introducing bdd. https://dannorth.651
net/introducing-bdd/.652

Ruwei Pan, Hongyu Zhang, and Chao Liu. 2025.653
Codecor: An llm-based self-reflective multi-agent654
framework for code generation. arXiv preprint655
arXiv:2501.07811.656

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten657
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,658
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.659
Code llama: Open foundation models for code. arXiv660
preprint arXiv:2308.12950.661

P. Stevens. 2014. Understanding the differences be-662
tween bdd tdd. https://cucumber.io/blog/bdd/663
bdd-vs-tdd/.664

Weixi Tong and Tianyi Zhang. 2024. CodeJudge: Eval-665
uating code generation with large language models.666
In Proceedings of the 2024 Conference on Empiri-667
cal Methods in Natural Language Processing, pages668
20032–20051, Miami, Florida, USA. Association for669
Computational Linguistics.670

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin.671
2024. CodeAgent: Enhancing code generation with672
tool-integrated agent systems for real-world repo-673
level coding challenges. In Proceedings of the 62nd674
Annual Meeting of the Association for Computational675
Linguistics (Volume 1: Long Papers), pages 13643–676
13658, Bangkok, Thailand. Association for Compu-677
tational Linguistics.678

9

https://dannorth.net/introducing-bdd/
https://dannorth.net/introducing-bdd/
https://dannorth.net/introducing-bdd/
https://cucumber.io/blog/bdd/bdd-vs-tdd/
https://cucumber.io/blog/bdd/bdd-vs-tdd/
https://cucumber.io/blog/bdd/bdd-vs-tdd/
https://doi.org/10.18653/v1/2024.emnlp-main.1118
https://doi.org/10.18653/v1/2024.emnlp-main.1118
https://doi.org/10.18653/v1/2024.emnlp-main.1118
https://doi.org/10.18653/v1/2024.acl-long.737
https://doi.org/10.18653/v1/2024.acl-long.737
https://doi.org/10.18653/v1/2024.acl-long.737
https://doi.org/10.18653/v1/2024.acl-long.737
https://doi.org/10.18653/v1/2024.acl-long.737

A Appendix679

A.1 Data Format and Basic Prompt680

We process HumanEval and MBPP by extracting necessary imports, function signature and the natural681

language description of the problem to construct the prompt input in same format, the data format and the682

direc code generation prompt(basic prompt) are illustrated as follows:

import math
from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
 """ Check if in given list of numbers, are any two numbers closer to each other than given threshold."""

Figure 3: Data Format

683

[system prompt]: You are a Python programmer.
[user prompt]:
Complete the following code
import math
from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
 """ Check if in given list of numbers, are any two numbers closer to each other than given threshold."""
Important:
1. Only generate a single complete Python code snippet, without any additional information or strings before or after
the code.
2. The code should start with ```python and end with ```

Figure 4: Basic Prompt

A.2 BDDCoder Prompt Templates684

Below are the prompt templates used in BDDCoder for the Programmer, Tester, Requirements Analyst,685

and User roles.

[System Prompt]:
Your are a requirements analyst, your job is to design BDD scenarios according to the user requirements.
INSTRUCTIONS:
1. The scenarios shuold be clear, concise, and easy to understand.
2. The I/O data should be clearly defined and fllows the function signature and the data type should be specified and align with Python's native data types.
3. Write at least 3 scenarios to cover the user requirements.
4. Do not include any exception handling in the scenarios.

[User Prompt]:
Below is the user requirement, your BDD scenarios should start with ```gherkin and end with ```
User Requirement:

Analyst Prompt for Gnerating Scenarios

Figure 5: Analyzer Prompt for Gnenrating BDD Scenarios

686

10

[System Prompt]:
Your are a requirements analyst, your job is to analyze the user feedback and update the BDD scenarios accordingly.
INSTRUCTIONS:
1. The scenarios shuold be clear, concise, and easy to understand.
2. The I/O data should be clearly defined and the data type should be specified and align with Python's native data types.
3. Ensure that the updated BDD scenarios meet the user requirements.

[User Prompt]:
Below is the user feedback, please analyze the feedback and update the BDD scenarios.
Your BDD scenarios should start with ```gherkin and end with ```
User Feedback:
{}
Your BDD Scenarios:
{}

Analyst Prompt for Refining Scenarios

Figure 6: Analyzer Prompt for Refining BDD Scenarios

[System Prompt]:
Your role are the user of the program. You will receive BDD scenarios from the development team. Your task is to evaluate whether these scenarios meet
your requirements.
INSTRUCTIONS:
1. If the BDD scenarios meet your requirements, only output "Yes", and do not output or print unnecessary information or strings.
2. If the BDD scenarios do not meet your requirements or are inaccurate, output "No" and explain the reson, as well as give suggestions for modifications.

[User Prompt]:
Below is the your requirement and BDD scenarios, please determine if they meet your requirements, and give feedback.
If the BDD scenarios meet your requirements, only output "Yes", and do not output or print unnecessary information or strings.
If the BDD scenarios do not meet your requirements or are inaccurate, output "No" and explain the reson, as well as give suggestions for modifications.
User Requirement:

BDD Scenarios:

User Prompt for Reviewing

Figure 7: User Prompt for Reviewing BDD Scenarios

[System Prompt]:
You are an expert Python programmer, your job is to write code to satisfy the user requirements and BDD scenarios.
INSTRUCTIONS:
1. Look at the "User Requirement" and "BDD Scenarios" provided to understand the users requirements.
2. The code must be concise, correct, and follow best practices.
3. Ensure the logic of your code is such that it would pass the corresponding BDD scenarios provided.
4. Ensure you do not return or print any additional information / characters that can cause the scenarios to fail.
5. Only generate the python code and do not output or print any irrelevant information.

[User Prompt]:
Below is the user requirement and BDD scenarios, please write python code.
 User Requirement:

BDD Scenarios:

Programmer Prompt for Programming

Figure 8: Programmer Prompt for Gnenrating Code

11

[System Prompt]:
You are an expert Python programmer, your job is to fix the code based on the test report.
Your previous code has some issues, please fix the code based on the test report.
INSTRUCTIONS:
1. Look at the Test Report provided to understand the issues with the code and generate the fixed or improved code.
2. Ensure that any changes made to the code do not introduce new bugs or negatively impact the performance of the code.
3. Ensure the logic of your code is such that it would pass the corresponding BDD scenarios provided.
4. Ensure you do not return or print any additional information / characters that can cause the scenarios to fail.
5. Only generate the python code and do not output or print any irrelevant information.

[User Prompt]:
Below is the user requirement and BDD scenarios, please write python code.
Below is the test report, please fix your code based on the test report.
User Requirement:

BDD Scenarios:

Your Previous Code:

Test Report:

Programmer Prompt for Debugging

Figure 9: Programmer Prompt for Refining Code

[System Prompt]:
You are a software quality assurance tester, your job is to test the code written by the developer and report any issues found.
INSTRUCTIONS:
1. Read the BDD scenarios and the python code.
2. Analyze whether the code can pass all BDD scenarios and then generate your test report.
3. If the code has passed the scenarios, write a conclusion "Code Test Passed".
4. If the code FAIL, write a conclusion "Code Test Failed" and provide the reason for the failure in your test report.

[User Prompt]:
Below are the scenarios and code, please verify the code based on the BDD scenarios and write a test report.
BDD scenarios:

Code:

Tester Prompt for Testing(BDD-NL)

Figure 10: Tester Prompt for Testing

12

[System Prompt]:
You are a software quality assurance tester, your job is to design Python test cases based on BDD scenarios.
IMPORTANT:
1. Generate only the test cases, do not output any other irrelevant information.
2. Each scenario should be converted into a test case and be just written in a separate line.
3. If a scenario involves exception handling and need to use of try-catch statements, then skip this scenario.
4. The I/O data should be align with Python's native data types.
- The format of test case should be:
```python
assert function_name(input) == expected_output
assert function_name(input) == expected_output
...
```

[User Prompt]:
Below are the BDD scenarios, please convert them into Python test cases.
The function signatures is provided.
BDD Scenarios:

Signature:

Tester Prompt for Writing Tests(BDD-Test)

Figure 11: Tester Prompt for Generating Test Cases

13

	Introduction
	Methodology
	Multi-Agent System Design (BDDCoder)
	Requirements Analyst
	User
	Programmer
	Tester

	Framework Overview
	Experiment Setup
	Benchmark Datasets
	Evaluation Metrics
	BDD Variant Configuration

	Results and Analysis
	RQ1: Can natural language BDD scenarios (BDD-NL) effectively guide LLMs in code generation compared to direct code generation?
	RQ2: Can converting BDD scenarios into executable test cases (BDD-Test) mitigate the limitations of BDD-NL?
	RQ3: Can LLM act as reliable validators in BDD-NL (natural language self-checking)?
	RQ4: How is the BDD Scenario Quality and Test Cases Correctness?
	RQ5: How does BDD compare to TDD in guiding LLM code generation?

	Related Work
	Large Language Models for Code Generation
	Agent-based Methods

	Conclusion and Future Work
	Limitations
	Appendix
	Data Format and Basic Prompt
	BDDCoder Prompt Templates

