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Abstract

Code generation has long been a challenging
task in natural language processing, with ex-
isting models often struggling to produce cor-
rect and functional code solutions. This paper
explores integrating Behavior-Driven Develop-
ment (BDD)—a user-centric agile methodol-
ogy—into the code generation process. We
propose BDDCoder, a novel multi-agent frame-
work comprising four roles: Programmer,
Tester, Requirements Analyst, and User, de-
signed to simulate real-world BDD workflows.
BDDCoder consists of two variants: BDD-NL,
which uses natural language scenarios for code
generation and LLLM-based self-validation and
BDD-Test, which converts scenarios into exe-
cutable test cases for code validation. Through
empirical evaluation on benchmark datasets
(HumanEval, MBPP, and their EvalPlus vari-
ants), we demonstrate that BDD-NL with LLM
self-validation could hinder code generation
performance, while BDD-Test significantly out-
performs BDD-NL, achieving up to a 15.1%
improvement in pass@ ] scores. Our findings
highlight the potential of BDD to enhance re-
quirement clarity and code alignment with user
needs, offering a robust framework for future
research on integrating software engineering
methodologies into automated code generation.

1 Introduction

Large Language Models (LLMs) have revolution-
ized code generation task by enabling the auto-
matic translating natural language descriptions into
executable code (Jiang et al., 2024; Gu et al.,
2024; Tong and Zhang, 2024; Lyu et al., 2024).
LLMs like Codex (Chen et al., 2021a), Code Llama
(Roziere et al., 2023), and GPT-4 (Achiam et al.,
2023) have demonstrated remarkable capabilities
in understanding and generating code across vari-
ous programming languages and tasks. By leverag-
ing vast amounts of code-related data from public
repositories like GitHub, these models have be-

come indispensable tools for developers, signifi-
cantly reducing the time and effort required for
coding tasks (Jin et al., 2024a; Zhang et al., 2024).
However, despite their advancements, challenges
remain in ensuring the functional correctness and
alignment with user requirements of generated
code. Studies have shown that LLMs often pro-
duce syntactically valid but logically flawed code,
especially when handling edge cases or complex
dependencies (Pan et al., 2025; Liu et al., 2024).
For instance, while LLMs achieve high pass rates
on benchmarks like HumanEval, their performance
drops significantly on rigorous evaluations such as
HumanEval+.

To address these limitations, recent research has
explored multi-agent frameworks that incorporat-
ing software engineering methodologies like TDD,
Agile development, and the Waterfall model into
the code generation process (Hong et al., 2023;
Mathews and Nagappan, 2024; Lin et al., 2024;
Jin et al., 2024b). These frameworks decompose
the code generation task into collaborative subtasks
(e.g., requirement analysis, coding, testing), and
distribute tasks among specialized agents, such as
programmers, testers, and requirement analysts, to
simulate a collaborative software development en-
vironment.

Test-Driven Development (TDD) (Beck, 2022),
where test cases are provided alongside problem
statements to ensure that the generated code must
be functionally correct and can pass all provided
test cases, , has been adapted to guide the code gen-
eration process (Mathews and Nagappan, 2024).
This approach has been shown to improve LLMs’s
code generation performance, as providing test
cases can improve understanding of the require-
ments in the problem description and ensure the
logical correctness of the generated code. While
TDD focuses on technical correctness, Behavior-
Driven Development (BDD) (Stevens, 2014; Fox,
2015; North, 2006) extends TDD by emphasizing



user-centric requirements, translating natural lan-
guage scenarios (e.g., "Given-When-Then") into
executable specifications. This approach fosters
collaboration among developers, testers and non-
technical stakeholders, ensuring code aligns with
business goals. It extends TDD by focusing on
user behavior and writing test cases in natural lan-
guage, making it accessible to non-programmers.
By centering the development process around user
needs, BDD ensures that the generated code not
only functions correctly but also aligns with busi-
ness requirements. Despite its widespread adop-
tion in real-world software development, the poten-
tial of BDD in automated code generation remains
largely unexplored. An example of BDD scenario
generated by LLM on a code generation task is
shown in fig 1.

[User Requirement]:
from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:

""" Check if in given list of numbers, are any two numbers closer to each other than given threshold.""

[BDD Scenarios]
Feature: Check for Close Elements in a List

Scenario: List contains two numbers closer than the threshold
Given a list of numbers [1.0, 2.8, 3.0, 4.0, 5.0, 2.0]
And a threshold of 0.3
When the function checks for close elements
Then the result should be True

Scenario: No two numbers in the list are closer than the threshold
Given a list of numbers [1.0, 2.0, 3.0]
And a threshold of 0.5
When the function checks for close elements
Then the result should be False

Scenario: List contains only one number
Given a list of numbers [1.0]
And a threshold of 0.5
When the function checks for close elements
Then the result should be False

Scenario: Threshold is zero
Given a list of numbers [1.0, 2.0, 3.0]
And a threshold of 0.0
When the function checks for close elements
Then the result should be False

Scenario: List is empty
Given an empty list []
And a threshold of 0.5
When the function checks for close elements
Then the result should be False

Figure 1: An Example of BDD Scenario Generated by
LLM.

In this paper, we hope to explore the integra-
tion of Behavior-Driven Development (BDD) into
the code generation process. We simulate the real-
world Behavior-Driven Development (BDD) pro-
cess in a simple multi-agent system BDDCoder,
consisting of four roles: the Programmer, responsi-
ble for generating code; the Tester, who validates
the code against BDD scenarios; the Requirements
Analyst, who formalizes user requirements into
structured BDD scenarios; and the User, who pro-
vides requirements and feedback. This framework
ensures that the generated code is not only func-
tionally correct but also aligned with business goals

and user expectations. For fully evaluating the ef-
fectiveness of BDD in code generation, we propose
two variants of BDDCoder: - **BDD-NL**: Di-
rectly using natural language scenarios for code
generation and LLM-based validation, simulating a
"pure" BDD process. - **BDD-Test**: Converting
scenarios into executable test cases for execution
feedback, simulating the real-world BDD process.

We conduct experiments to answer the following
research questions.

* RQ1: Can natural language BDD scenar-
ios (BDD-NL) effectively guide LLMs in
code generation compared to direct code
generation? While Test-Driven Development
(TDD) has proven effective for LLM code gen-
eration by aligning code with predefined test
cases, its user-centric counterpart—Behavior-
Driven Development (BDD)—remains under-
explored. BDD’s emphasis on natural lan-
guage scenarios (e.g., "Given-When-Then"
templates) could theoretically enhance re-
quirement clarity, but LLMs’ reliance on struc-
tural patterns (e.g., unit tests in pre-training
data) poses a potential mismatch. We first
ask: Can raw BDD scenarios (BDD-NL) ef-
fectively guide LLMs, or do they introduce
noise due to semantic misalignment?

* RQ2: Does converting BDD scenarios into
executable test cases (BDD-Test) improve
code generation performance over BDD-
NL? If BDD-NL’s natural language scenar-
ios would hinder performance, an alternative
approach may bridge the gap. Inspired by
real-world BDD process, we propose BDD-
Test, which automatically converts BDD sce-
narios into executable test cases (e.g., Python
assert statements). This raises a critical ques-
tion: Does BDD-Test resolve the limitations
of BDD-NL, and if so, to what extent?

* RQ3: Can LLM act as reliable validators in
BDD-NL (natural language self-checking)?
BDD-NL assumes LLMs can self-validate
code against natural language scenarios—a ca-
pability crucial for simulating human-centric
workflows. However, LLLMs’ inherent limi-
tations in understanding natural language nu-
ances may hinder this process. We thus in-
vestigate: Can LLMs reliably act as testers
in BDD-NL, or does self-validation introduce
false positives/negatives?



* RQ4: How is the BDD Scenario Quality
and Test Cases Correctness? As we use
BDD scenarios(BDD-NL) and corrsponding
test cases(BDD-Test) to guide the code genera-
tion process, the quality of the BDD scenarios
and test cases is crucial.

* RQ5: How does BDD compare to TDD in
guiding LLM code generation? Finally, we
compare the performance of BDD(BDD-Test)
with TDD in guiding LLM code generation, as
BDD is a user-centric extension of TDD. We
aim to investigate whether BDD can provide
additional benefits over TDD in guiding LLM
code generation.

2 Methodology
2.1 Multi-Agent System Design (BDDCoder)

As shown in fig 2, we simulate the BDD process
by integrating four key roles: the Requirements
Analyst, User, Programmer, and Tester.

2.1.1 Requirements Analyst

In our framework the Requirements Analyst acts
as the central communication bridge between the
user and the development team. The Analyst is
responsible for generating BDD scenarios based
on user requirements and iteratively refining these
scenarios through feedback from the user. The
BDD scenarios, written in natural language, cap-
ture the desired behavior of the system and serve
as a high-level specification for the development
process. The iterative refinement process ensures
that the scenarios accurately reflect user needs and
provide clear guidance for the subsequent coding
phase.

2.1.2 User

The User is the ultimate stakeholder in our frame-
work, providing requirements and feedback, used
to simulate a human user in the BDD process. Dur-
ing the scenario refinement phase, the User reviews
the BDD scenarios drafted by the development
team, ensuring they accurately meet user needs.
The active involvement of the User ensures that
the final solution is user-centric and meets business
goals.

2.1.3 Programmer

The Programmer takes the refined BDD scenarios
as input and generates the corresponding code. The
scenarios guide the programmer in implementing

the functionality required to meet user expectations.
The generated code is then passed to the Tester for
validation. In BDD-Test mode, the Programmer
takes the converted test cases and user requirements
as input for generating code.

2.1.4 Tester

The Tester evaluates the generated code against the
BDD scenarios to determine whether the code satis-
fies all specified requirements. This involves: Val-
idation: Evaluating whether the code can pass all
scenarios. Test Report Generation: Documenting
any discrepancies or issues and providing detailed
feedback to the Programmer for further refinement.
The iterative feedback loop between the Tester and
the Programmer continues until the code success-
fully passes all scenarios, ensuring that the final
output meets user requirements.

Scenario-to-Test Conversion In the BDD-Test
mode, the Tester automatically converts natural
language scenarios into Python assert statements
using prompt-based parsing (prompt template in
Appendix A). For example, a scenario "Given input
X, when processed, then output Y" is mapped to
assert func(X) == Y. These executable tests
are validated via pytest to provide deterministic
feedback.

2.2 Framework Overview

The BDDCoder framework operates in two modes
to evaluate different BDD integration strategies:

BDD-NL Mode (Pure BDD Simulation) In this
mode, all artifacts—scenarios, code, and test re-
ports—are expressed in natural language. The
Tester Agent validates code by prompting the LLM
to check scenario compliance, mimicking human-
centric BDD workflows.

BDD-Test Mode Here, natural language scenar-
ios are automatically converted to executable test
cases (Python assert statements) after user valida-
tion. The Tester agent runs these tests via pytest
against the generated code, , providing a test report
as feedback.

2.3 Experiment Setup
2.3.1 Benchmark Datasets

In this work, we utilize the following widely-
used code generation benchmarks for experimental
investigation: HumanEval (Chen et al., 2021b),
MBPP (Austin et al., 2021) and their EvalPlus
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Figure 2: The BDDCoder framework.

(Liu et al., 2024) variants(i.e. HumanEval+ and
MBPP+). HumanEval consists of 164 human-
written programming problems, each with a func-
tion signature, natural language description, canon-
ical solution, and test cases. MBPP(EvalPlus ver-
sion) contains 378 manually verified programming
problems, each with a natural language description,
a code solution, and 3 test cases. To enhance evalu-
ation rigor, we employed EvalPlus, which extends
HumanEval and MBPP with 80x and 35x more
test cases, respectively. These extended datasets,
HumanEval+ and MBPP+, provide broader cover-
age of edge cases and complex scenarios, enabling
more accurate detection of errors in generated code.

2.3.2 Evaluation Metrics

We use pass@ [ as the evaluation metrics for the
code generation task, a widdly used metric which
evaluates whether a single generated code solution
can pass all the tests (Chen et al., 2021b; Austin
et al., 2021; Dong et al., 2024; Huang et al., 2023).

2.3.3 BDD Variant Configuration

For each dataset, we evaluate two configurations: -
BDD-NL: Use raw scenarios for code generation
and LLM self-validation. - BDD-Test: Convert
scenarios to tests for code generation and pytest
execution. The iterations limit rounds are set to 5
for both scenarios refining and code fixing.

3 Results and Analysis

3.1 RQ1: Can natural language BDD
scenarios (BDD-NL) effectively guide
LLMs in code generation compared to
direct code generation?

We evaluate the performance of BDD-NL with fi-
lowing LLMs: GPT-3.5-turbo(0125 version) and
GPT-40-mini to answer this research question. The
results is reported in Table 1, the "Direct" method
refers to directly prompt LLM to generate code,
and this serves as the baseline, representing the
basic code generation perfomance of LLMs. We
process HumanEval and MBPP by extracting nec-
essary imports, function signature and the natural
language description of the problem to construct
the prompt input in same format, illustrated with
the examples in the appendix. And the "BDD-NL"
method refers to using BDD scenarios to guide the
code generation process. From the results we can
find that directly guiding LL.Ms with natural lan-
guage BDD scenarios (BDD-NL) resulted in perfor-
mance degradation across all LLMs, with pass@ /
scores dropping by up to 15.1% on MBPP+ and at
least 0.6% on HumanEval for GPT-40-mini.

It suggests that the BDD scenarios, while pro-
viding a structured and user-centric approach to
code generation, may introduce additional com-



plexity or constraints that hinder the LLMs’ ability
to generate correct and functional code. One possi-
ble explanation is that the BDD scenarios written
in natural language may not align perfectly with
the LLMs’ internal representations of the problem,
leading to a suboptimal code generation.

3.2 RQ2: Can converting BDD scenarios into
executable test cases (BDD-Test) mitigate
the limitations of BDD-NL?

As reported in Table 1, the results show that con-
verting BDD scenarios into executable test cases
(BDD-Test) significantly improves code genera-
tion performance compared to BDD-NL. For in-
stance, on the HumanEval dataset, the pass@ /
score for GPT-3.5-turbo improved from 76.8%
(BDD-NL) to 87.7% (BDD-Test), and for GPT-
40-mini, it increased from 74.4% to 85.4%. We at-
tribute this phenomenon to the model has learned a
large amount of code data containing test cases dur-
ing pre-training and instruction fine-tuning, while
much more limited code data containing BDD sce-
narios. This indicates that the structural alignment
with LLMs’ pre-training patterns (via BDD-Test)
resolves the limitations of BDD-NL, leading to
better code generation performance. The findings
suggest that while natural language scenarios may
introduce noise, converting them into executable
test cases can bridge the gap between BDD’s user-
centric scenarios and LLMs’ reliance on structural
inputs.

3.3 RQ3: Can LLM act as reliable validators
in BDD-NL (natural language
self-checking)?

In BDD-NL, we directly use LLM itself as a code
tester to evaluate the code correctness by prompt-
ing LLM to act as a tester to detemine whether
the generated code can pass all the BDD scenar-
ios to similate the real-world real testing process
of validating input-output matches. However, we
overlooked whether this approach is truly effective,
i.e. whether LLM can genuinely serve as a BDD
test validator. To address this issue, we conducted
ablation experiment to evaluate the effectiveness
of LLM as a code tester in BDD-NL by removing
the Tester Agent from the BDDCoder framework
and directly using the code generated by the Pro-
grammer Agent as the final output. As shown in
2, we find that the LLM model is not a reliable
code tester. Specifically, using LLMs to validate
whether generated code passes all scenarios did not

enhance correctness and even led to a slight perfor-
mance degradation. Across all models and datasets,
the pass@ 1 scores decreased when LLMs were
used as validators in BDD-NL. For example, on the
HumanEval dataset, the pass@ I score for GPT-3.5-
turbo dropped from 77.4% (BDD-NL without LLM
self-validation) to 76.8% (BDD-NL with LLM self-
validation). The findings highlight the limitations
of LLMs in self-validation via natural language
scenarios and suggest that alternative validation
methods, such as automated testing frameworks,
may be more effective.

3.4 RQ4: How is the BDD Scenario Quality
and Test Cases Correctness?

We evaluate the quality of the generated BDD sce-
narios and convertd test cases by excuting them
against ground truth code and measured the pass
rate and accuracy of the generated test cases. For
further investigating, we also prompt the LLMs to
directly generate the same number of Python assert
statements. Tables 3 and 4 summarize the results
obtained on the HumanEval and MBPP datasets
for two models: GPT-3.5-turbo and GPT-40-mini.
Here, “Total Items” refers to the total number of
problems in the dataset, “Total Cases” is the num-
ber of test cases generated, “Passed Cases” indi-
cates the number of test cases that passed when
executed on the real code solution, and “Correct
Items” denotes the number of problems for which
the test cases were entirely correct.

The results indicate that for both models and
datasets, direct generation of test cases generally
yields higher accuracy metrics compared to the
BDD-based conversion approach. For instance,
in the case of GPT-3.5-turbo on the HumanEval
dataset, the direct generation method achieved an
Item-Accuracy of 0.5427 and a Cases-Accuracy
of 0.7129, which represent slight improvements
over the corresponding BDD-based results (0.5366
and 0.7092, respectively). On the MBPP dataset,
the improvement is more pronounced; the direct
method achieved an Item-Accuracy of 0.5319 (an
increase of nearly 13 percentage points) and a
Cases-Accuracy of 0.6706 (approximately 5 per-
centage points higher) compared to the BDD-based
approach. Similarly, for GPT-40-mini, the Hu-
manEval results under the direct generation con-
dition show an improvement in Item-Accuracy
(0.4085 versus 0.3902) and a more substantial gain
in Cases-Accuracy (0.6942 versus 0.6451) relative
to the BDD-based conversion. On MBPP, the di-



LLM Method HumanEval HumanEval+ MBPP MBPP+
gpt-3.5-turbo  Direct 78.7 75.0 77.0 66.4
BDD-NL  76.8({ 1.9) 69.5() 5.5) 75.7(} 1.7)  64.6() 1.8)
BDD-Test 87.8(1 10.1) 84.1(19.1) 85.6(1 8.6)  78.3(T 11.9)
gpt-4o-mini  Direct 75.0 71.3 74.9 64.3
BDD-NL  74.4(] 0.6) 69.5( 1.8) 66.1(1 8.8)  49.2(} 15.1)
BDD-Test 85.4(110.4) 82.9(1 11.3) 87.3(1 13.4) 79.1(T 14.8)
Table 1: Code generation performance with BDDCoder.
LLM Method HumanEval HumanEval+ MBPP MBPP+
gpt-3.5-turbo  BDD-NL 76.8 69.5 75.7 64.6
BDD-NL,, /o test 77-4(T 0.6) 72.6(1 3.1) 74.9(, 0.8) 65.1(1 0.5)
gpt-4o-mini  BDD-NL 74.4 69.5 70.6 51.1
BDD-NL,, /o sest  76.2(1 1.8) 72.0(1 2.5) 71.4(1 0.8) 54.8(13.7)

Table 2: BDD-NL code generation performance with and w/o LLM self-verification.

rect generation method also outperforms the BDD-
based method in terms of Item-Accuracy (0.5132
compared to 0.3942), while the improvement in
Cases-Accuracy is modest (0.6461 vs. 0.6040).
These findings suggest that although converting
BDD scenarios into executable test cases provides
a structured and user-centric framework, the scenar-
ios themselves and conversion process may intro-
duce noise or result in information loss, thereby
slightly degrading the overall test case quality.
Conversely, when the language model is directly
prompted to generate test cases, it appears to lever-
age its pre-training on code and testing patterns
more effectively, yielding higher accuracy. Future
work should focus on refining the conversion pro-
cess from natural language scenarios to executable
tests, aiming to combine the strengths of BDD (i.e.,
clear specification of user requirements) with the
robust test generation capabilities of LLMs.

3.5 RQS: How does BDD compare to TDD in
guiding LLM code generation?

We compare the performance of BDD(BDD-Test)
with TDD (TGen) in guiding LLM code generation
on the HumanEval and MBPP datasets, and report
the results in Table 5. For the GPT-3.5-turbo model,
we observe that BDD consistently outperforms
TDD. Specifically, on the HumanEval dataset,
BDD-Test achieves a pass@1 of 87.7%, compared
to 76.2% for TGen. A similar trend is observed
across the other datasets: HumanEval+ (84.1% for
BDD-Test vs. 73.2% for TGen), MBPP (85.6%
vs. 76.2%), and MBPP+ (78.3% vs. 69.0%). For
the GPT-40-mini model, BDD also shows gener-

ally superior performance over TDD accrross all
datasets.

In summary, these results indicate that BDD gen-
erally provides superior guidance for LLM-based
code generation when compared to TDD. This per-
formance superiority can be attributed to the fact
that BDD emphasizes user-centric scenarios, which
can provide LLMs with clearer guidance on how
to align generated code with user needs. These
findings highlight the potential of BDD to improve
code quality and accuracy, making it a preferable
approach for tasks where user behavior and require-
ments play a central role in guiding the develop-
ment process.

4 Related Work

4.1 Large Language Models for Code
Generation

Large Language Models (LLMs) have significantly
advanced the field of automatic code generation.
Models like Codex, StarCoder, and Code Llama
leverage extensive training on large-scale code
repositories to generate code across multiple pro-
gramming languages, demonstrating capabilities
ranging from function-level completion to compet-
itive programming. Despite their success, the gen-
erated code often suffer form syntactic correctness
but semantic flaws, the code may pass basic tests
but fail to align with implicit user requirements or
handle edge cases. Recent studies highlight that
LLMs struggle with dynamic requirements and con-
textual nuances, particularly in real-world scenar-
ios where specifications evolve iteratively. These



Dataset Condition Total Cases Passed Cases Correct Items Item-Accuracy Cases-Accuracy

HumanEval BDD 533 378 88 0.5366 0.7092
Direct 533 380 89 0.5427 0.7129

MBPP BDD 1172 724 151 0.4016 0.6177
Direct 1172 786 200 0.5319 0.6706

Table 3: Results for GPT-3.5-turbo on HumanEval and MBPP

Dataset Condition Total Cases Passed Cases Correct Items Item-Accuracy Cases-Accuracy

HumanEval BDD 896 578 64 0.3902 0.6451
Direct 896 622 67 0.4085 0.6942

MBPP BDD 1735 1048 149 0.3942 0.6040
Direct 1735 1121 194 0.5132 0.6461

Table 4: Results for GPT-40-mini on HumanEval and MBPP

limitations underscore the need for methodologies
that bridge high-level user intent and low-level code
implementation.

4.2 Agent-based Methods

To enhance performance and robustness, recent
studies have explored the integration of multi-agent
systems in code generation that simulate collabo-
rative software development workflows (Jin et al.,
2024b). These frameworks decompose code gen-
eration into specialized roles (e.g., analyst, pro-
grammer, tester) and leverage iterative feedback:
MetaGPT integrates standardized operating proce-
dures (SOPs) to coordinate agents, reducing error
propagation through role-specific prompts and val-
idation. CodeAgent extends this paradigm by in-
corporating DevOps tools (e.g., CI/CD pipelines)
for repository-level code synthesis, outperforming
commercial tools like GitHub Copilot in complex
tasks. TGen adopts a Test-Driven Development
(TDD) approach, where agents iteratively refine
code based on test feedback, demonstrating higher
pass rates than direct generation. By combining
multi-agent collaboration with software engineer-
ing methodologies, these frameworks address key
challenges such as error propagation, context un-
derstanding, and real-world applicability. They
not only improve the functional correctness and
robustness of generated code but also enhance the
adaptability and scalability of Al-driven software
development, offering a comprehensive solution to
the challenges of modern software engineering.

5 Conclusion and Future Work

In this work, we perform the first empirical study
to explore the integration of Behavior-Driven De-

velopment (BDD) into the code generation process.
Through experimental exploration, we believe that
directly using natural language-described BDD sce-
narios to guide code generation and verification is
not very effective. However, this does not negate
the feasibility of introducing BDD into code gener-
ation. On the contrary, we consider this a promis-
ing research direction, though currently limited by
the fundamental capabilities of LLMs, requiring
models trained on more BDD scenario data. We
hope that in the future, BDD scenarios can be di-
rectly used as guidance and standards for the entire
development process, enabling end-to-end com-
plex software development. Moreover, since BDD
introduces user participation, further exploration
of human-in-the-loop applications is possible. In
practical applications, users can collaborate and
communicate with Al systems acting as software
teams to jointly develop scenarios that clarify re-
quirements and guide the development process.

Code generation has been a challenging task in
the field of natural language processing, and ex-
isting models often fail to generate correct code
solutions that pass all tests. Behavior-Driven De-
velopment (BDD) is an agile software develop-
ment methodology that enhances team collabora-
tion and software quality by focusing on user behav-
ior. In this work, we propose BDDCoder, a novel
multi-agent framework that incorporates Behavior-
Driven Development (BDD) into the code genera-
tion process to improve the performance of code
solutions. BDDCoder includes four roles: the Pro-
grammer, who generates code; the Tester, who gen-
erates and executes test cases; the Requirements
Analyst, who analyzes user requirements; and the
User, who writes behaviors.



LLM Method HumanEval HumanEval+ MBPP MBPP+

gpt-3.5-turbo  BDD-Test 87.7 84.1 85.6 78.3
TGen 76.2 73.2 76.2 69.0

gpt-4o-mini  BDD-Test 89.6 87.2 85.7 77.8
TGen 88.4 85.4 80.4 72.8

Table 5: Code generation preformance with BDD and TDD.

6 Limitations

In this study, we evaluated the effectiveness of
Behavior-Driven Development (BDD) in guiding
Large Language Model (LLM) code generation.
While our findings indicate that BDD can im-
prove code generation performance, several lim-
itations should be considered. First, due to the re-
source constraints, our experiments focused on two
LLMs—GPT-3.5-turbo and GPT-40-mini—and
four datasets: HumanEval, HumanEval+, MBPP,
and MBPP+. The limited scope of models and
datasets may not fully represent the broader appli-
cability of BDD. Future studies should incorporate
a wider range of models and datasets to assess
the generalizability of these findings. Besides, we
only evaluated the performance of BDD in guiding
code generation tasks and did not explore the po-
tential of BDD in real-world software development,
future work should extend the BDDCoder frame-
work to more complex software development tasks
and evaluate its effectiveness in real-world scenar-
10s. Finally, our study focused on exploring the
effectiveness of BDD in guiding LLM code gener-
ation and did not consider other code generation
approaches or methodologies.
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A Appendix
A.1 Data Format and Basic Prompt

We process HumanEval and MBPP by extracting necessary imports, function signature and the natural
language description of the problem to construct the prompt input in same format, the data format and the
direc code generation prompt(basic prompt) are illustrated as follows:

import math
from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
""" Check if in given list of numbers, are any two numbers closer to each other than given threshold."""

Figure 3: Data Format

[system prompt]: You are a Python programmer.
[user prompt]:
Complete the following code
import math
from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
""" Check if in given list of numbers, are any two numbers closer to each other than given threshold."""
**Important**:
1. Only generate a single complete Python code snippet, without any additional information or strings before or after
the code.
2. The code should start with * ™ *python and end with ™ *°

Figure 4: Basic Prompt

A.2 BDDCoder Prompt Templates

Below are the prompt templates used in BDDCoder for the Programmer, Tester, Requirements Analyst,
and User roles.

Analyst Prompt for Gnerating Scenarios

[System Prompt]:

'Your are a requirements analyst, your job is to design BDD scenarios according to the user requirements.

**INSTRUCTIONS**:

1. The scenarios shuold be clear, concise, and easy to understand.

2. The I/0 data should be clearly defined and fllows the function signature and the data type should be specified and align with Python's native data types.
3. Write at least 3 scenarios to cover the user requirements.

4. Do not include any exception handling in the scenarios.

[User Prompt]:
Below is the user requirement, your BDD scenarios should start with * * *gherkin and end with " **
**User Requirement**:

Figure 5: Analyzer Prompt for Gnenrating BDD Scenarios
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Analyst Prompt for Refining Scenarios

[System Prompt]:

Your are a requirements analyst, your job is to analyze the user feedback and update the BDD scenarios accordingly.
**INSTRUCTIONS**:

1. The scenarios shuold be clear, concise, and easy to understand.

2. The I/0O data should be clearly defined and the data type should be specified and align with Python's native data types.
3. Ensure that the updated BDD scenarios meet the user requirements.

[User Prompt]:

Below is the user feedback, please analyze the feedback and update the BDD scenarios.
'Your BDD scenarios should start with * * “gherkin and end with ***

**User Feedback**:

{r
**Your BDD Scenarios**:

O

Figure 6: Analyzer Prompt for Refining BDD Scenarios

User Prompt for Reviewing

[System Prompt]:

'Your role are the user of the program. You will receive BDD scenarios from the development team. Your task is to evaluate whether these scenarios meet
your requirements.

**INSTRUCTIONS**:

1. If the BDD scenarios meet your requirements, only output "Yes", and do not output or print unnecessary information or strings.

2. If the BDD scenarios do not meet your requirements or are inaccurate, output "No" and explain the reson, as well as give suggestions for modifications.

[User Prompt]:

Below is the your requirement and BDD scenarios, please determine if they meet your requirements, and give feedback.

If the BDD scenarios meet your requirements, only output "Yes", and do not output or print unnecessary information or strings.

If the BDD scenarios do not meet your requirements or are inaccurate, output "No" and explain the reson, as well as give suggestions for modifications.
**User Requirement**:

**BDD Scenarios**:

Figure 7: User Prompt for Reviewing BDD Scenarios

Programmer Prompt for Programming

[System Prompt]:

You are an expert Python programmer, your job is to write code to satisfy the user requirements and BDD scenarios.
**INSTRUCTIONS**:

. Look at the "User Requirement" and "BDD Scenarios" provided to understand the users requirements.

The code must be concise, correct, and follow best practices.

. Ensure the logic of your code is such that it would pass the corresponding BDD scenarios provided.

. Ensure you do not return or print any additional information / characters that can cause the scenarios to fail.

. Only generate the python code and do not output or print any irrelevant information.

GOEWNF

[User Prompt]:
Below is the user requirement and BDD scenarios, please write python code.
**User Requirement**:

**BDD Scenarios**:

Figure 8: Programmer Prompt for Gnenrating Code
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Programmer Prompt for Debugging

[System Prompt]:

'You are an expert Python programmer, your job is to fix the code based on the test report.

'Your previous code has some issues, please fix the code based on the test report.

**INSTRUCTIONS**:

1. Look at the Test Report provided to understand the issues with the code and generate the fixed or improved code.

2. Ensure that any changes made to the code do not introduce new bugs or negatively impact the performance of the code.
3. Ensure the logic of your code is such that it would pass the corresponding BDD scenarios provided.

4. Ensure you do not return or print any additional information / characters that can cause the scenarios to fail.

5. Only generate the python code and do not output or print any irrelevant information.

[User Prompt]:

Below is the user requirement and BDD scenarios, please write python code.
Below is the test report, please fix your code based on the test report.
**User Requirement**:

**BDD Scenarios**:

**Your Previous Code**:

**Test Report**:

Figure 9: Programmer Prompt for Refining Code

Tester Prompt for Testing(BDD-NL)

[System Prompt]:

'You are a software quality assurance tester, your job is to test the code written by the developer and report any issues found.
**INSTRUCTIONS**:

1. Read the BDD scenarios and the python code.

2. Analyze whether the code can pass all BDD scenarios and then generate your test report.

3. If the code has passed the scenarios, write a conclusion "Code Test Passed".

4. If the code FAIL, write a conclusion "Code Test Failed" and provide the reason for the failure in your test report.

[User Prompt]:
Below are the scenarios and code, please verify the code based on the BDD scenarios and write a test report.
**BDD scenarios**:

F*Code**:

Figure 10: Tester Prompt for Testing
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Tester Prompt for Writing Tests(BDD-Test)

[System rrompt]:
'You are a software quality assurance tester, your job is to design Python test cases based on BDD scenarios.
**IMPORTANT**:
1. Generate only the test cases, do not output any other irrelevant information.
2. Each scenario should be converted into a test case and be just written in a separate line.
3. If a scenario involves exception handling and need to use of try-catch statements, then skip this scenario.
4. The I/0O data should be align with Python's native data types.
- The format of test case should be:
" *python
assert function_name(input) == expected_output
assert function_name(input) == expected_output

[User Prompt]:

Below are the BDD scenarios, please convert them into Python test cases.
'The function signatures is provided.

**BDD Scenarios**:

**Signature**:

Figure 11: Tester Prompt for Generating Test Cases
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