
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LLM-COT ENHANCED GRAPH NEURAL RECOMMEN-
DATION WITH HARMONIZED GROUP POLICY OPTIMIZA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNNs) have advanced recommender systems by model-
ing interaction relationships. However, existing graph-based recommenders rely
on sparse ID features and do not fully exploit textual information, resulting in
low information density within representations. Furthermore, graph contrastive
learning faces challenges. Random negative sampling can introduce false negative
samples, while fixed temperature coefficients cannot adapt to the heterogeneity
of different nodes. In addition, current efforts to enhance recommendations with
large language models (LLMs) have not fully utilized their Chain-of-Thought
(CoT) reasoning capabilities to guide representation learning. To address these
limitations, we introduces LGHRec (LLM-CoT Enhanced Graph Neural Rec-
ommendation with Harmonized Group Policy Optimization). This framework
leverages the CoT reasoning ability of LLMs to generate semantic IDs, enrich-
ing reasoning processes and improving information density and semantic qual-
ity of representations. Moreover, we design a reinforcement learning algorithm,
Harmonized Group Policy Optimization (HGPO), to optimize negative sampling
strategies and temperature coefficients in contrastive learning. This approach
enhances long-tail recommendation performance and ensures optimization con-
sistency across different groups. Experimental results on three datasets demon-
strate that LGHRec improves representation quality through semantic IDs gen-
erated by LLM’s CoT reasoning and effectively boosts contrastive learning with
HGPO. Our method outperforms several baseline models. The code is available at:
https://anonymous.4open.science/r/LLM-Rec.

1 INTRODUCTION

Recently, LLMs Guo et al. (2025); Wei et al. (2022) have advanced the recommendation commu-
nity Lin et al. (2024); Kaur et al. (2025); Zhang et al. (2025a). Their generative capabilities enable
the provision of rich semantic information, forming a one-stage recommendation paradigm. This
paradigm shows promise in addressing the information loss issue that arises in traditional multi
stage recommender systems.Current research on LLMs for recommendation can be divided into
two categories. The first approach treats LLMs as recommender systems (LLMs as RSs) Chen et al.
(2024); Yin et al. (2023); Zheng et al. (2024); Wang et al. (2019). However, it faces challenges such
as low online inference efficiency, insufficient use of collaborative filtering signals, and hallucination
issues Ji et al. (2023); Yao et al. (2023). The second approach utilizes knowledge generated by LLMs
to enhance existing models (LLM-enhanced RSs) Hu et al. (2025); Wang et al. (2024); Yang et al.
(2024); Liu et al. (2024a); Ren et al. (2024). This approach is more flexible but has not fully explored
the deep potential of LLMs, particularly their CoT reasoning abilities.Most methods mainly rely on
information extracted from general domain knowledge, neglecting the possibility of guiding LLMs to
perform deeper semantic reasoning for recommendation tasks. How to guide LLMs to leverage CoT
reasoning capabilities and enhance collaborative filtering signals remains an unresolved challenge.

GNNs Wang et al. (2019); He et al. (2020); Wu et al. (2022; 2024a) can capture higher-order collab-
orative signals but have drawbacks. They rely on ID features and struggle to leverage rich textual
information for semantic modeling, resulting in insufficient information density in representations,
particularly for long-tail items, where the representation quality is poor. GNNs are also sensitive to

1

https://anonymous.4open.science/r/LLM-Rec

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Behavior History

Rec Results

User

Item

User-item

Interaction

Graph

GNN

User Item

Information

Prompt

Text

Encoder

Item Emb

User Emb

Recommend Model Rec Results

LLM

Feature

Rec

Feature

Prompt

Item1

Emb

Item3

Emb

Item2

Emb

1ŷ
2ŷ 3ŷ

Online Service

Top KTop K

Item Emb

Database

LLM Fine-tuning

LLM Fine-tuning

Context Learning

L
L

M
-a

s-
R

S
s

G
N

N
L

L
M

-e
n

h
a
n

ce
d

 R
S

s

Figure 1: The differences between the three recommendation paradigms.

data sparsity Cao et al. (2023) and introduce noise when aggregating high-order neighbor informa-
tion Jiang et al. (2023). Therefore, researchers introduce graph contrastive learning Lin et al. (2022),
which enhance representation learning through structural and semantic contrastive losses. However,
existing graph contrastive learning have limitations as well. In large scale scenarios, their random
negative sampling introduces false negatives, which can mislead model’s optimization. Additionally,
the fixed temperature coefficient in the contrastive loss is not adaptable to the varying embedding
characteristics of groups with different degrees. This leads to poor contrastive learning results,
particularly for long-tail items. The differences of three paradigms are illustrated in Figure 1.

To address these issues, we propose LGHRec, it integrates CoT reasoning ability of LLM with
reinforcement learning for collaborative optimization. The goal is to combine semantic reasoning
capabilities of LLMs with the collaborative filter strengths of GNNs. Reinforcement learning is used
to optimize graph contrastive learning and enhance representation quality. LGHRec is LLM-enhanced
RSs paradigm. Offline, CoT reasoning of LLM generates item descriptions and extracts embeddings
as semantic IDs with higher information density. These semantic IDs are fused with IDs during
training to serve as initial item representations for the GNN. This allows the GNN to learn higher
quality representations by utilizing deep semantic information. Since semantic IDs are stored offline,
the delay from online LLM calls is avoided, making LGHRec suitable for industrial applications.
To address challenges in contrastive learning, including optimal negative sampling and temperature
coefficient selection across groups with varying degrees, as well as performance imbalance in Group
Relative Policy Optimization (GRPO) Shao et al. (2024), we introduce HGPO algorithm. HGPO
incorporates cross-group coordination mechanism that constrains strategy differences between groups,
ensure global strategy consistency while adapt to the characteristics of each group. It improves long-
tail item recommendation performance.The contributions are as follows:

• We propose LGHRec, which leverages the CoT reasoning capabilities of LLMs to generate
high quality semantic IDs for GNNs. This approach enhances the information density of ID
features in GNNs while avoiding the high computational cost of online LLM inference.

• We introduce the HGPO algorithm to optimize graph contrastive learning. By employing
adaptive negative sampling, temperature coefficient adjustments, and a cross-group coordi-
nation mechanism, HGPO improves contrastive learning performance, enhances the model’s
adaptability to heterogeneous data, and boosts long-tail recommendation performance.

• We conduct extensive experiments on three datasets, demonstrating that LGHRec outper-
forms several baseline models and validating the effectiveness of the proposed method.

2 METHODS

We introduce the Deep Semantic Embedding Generator (DSEG) and HGPO. The implementation
details of the GNN are provided in the Appendix. The architecture of LGHRec is shown in Figure 2.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Embedding Layer

Sft Dataset

Prompt

CoT Reasoning Text

Bert

Semantic ID Embedding

Qwen

User Item

u5

u1

u6

u2

u7

u3

u8

u4

i5

i1

i6

i2

i7

i3

i8

i4

Item Side

Information

Qwen Domain model

OfflineOffline

DSEG

Policy Network

Negative Samples

Temperature

Final Policy

State

Group Division

Degree

HN FN ENHN
PunishReward PunishReward

HN FN ENHN
PunishReward PunishReward

Policy Update

Cross-group Coordination

Mechanisms

Rewards Update

Advantages

HGPO

),(ˆ
iu zzsimy =

++

LOSS

L=1
L=2

L=3

L=1
L=2

L=3

L=1
L=2

L=3

L=1
L=2

L=3

TrainTrain

Figure 2: The architecture diagram of the proposed LGHRec.

0 . 0 6 5 5 0 . 0 6 5 9 0 . 0 6 6 4 0 . 0 6 6 8 0 . 0 6 7 2

6 8

7 2

7 6

8 0

8 4

0 . 1 8 1 7 0 . 1 8 2 2 0 . 1 8 2 6 0 . 1 8 3 0 0 . 1 8 3 5
7 0

7 3

7 5

7 8

8 1

 B a s i c D o m a i n M i x e d - d a t a C o T T a s k

MM
LU

N D C G @ 2 0(a) (b)

 B a s i c D o m a i n M i x e d - d a t a C o T T a s k

MM
LU

N D C G @ 2 0

Figure 3: After using various fine-tuning methods, the
general capabilities and recommendation performance
of LGHRec: (a)Yelp dataset, (b)MIND dataset.

<|im_start|>system

You are a professional text analysis expert. Your task is to generate a detailed

chain of thought analysis based on the item's textual description according to the

five requirements listed below, and then summarize keywords that describe the

item's characteristics. Each keyword must be should focus on the item's attributes.

Please analyze objectively and rationally.

1. The characteristic 1 of the item and the original text source of characteristic 1

2. The characteristic 2 of the item and the original text source of characteristic 2

3. The characteristic 3 of the item and the original text source of characteristic 3

4. The characteristic 4 of the item and the original text source of characteristic 4

5. The characteristic 5 of the item and the original text source of characteristic 5

Provide response in strict JSON format:{'CoT':"Step-by-step analysis with source

text references",'keywords':"Summarized keywords"}<|im_end|>

<|im_start|>user

The text description of an item is as follows:{item's textual description}<|im_end|>

Figure 4: The prompt template for guiding
LLM to perform CoT reasoning.

2.1 DEEP SEMANTIC EMBEDDING GENERATOR

Fine-tuning LLM can improve performance Bao et al. (2023). We explore some fine-tuning methods
to generate item CoT reasoning text. We evaluate the NDCG@20 and MMLU, using Qwen2.5-32B-
Instruct model under various fine-tuning methods, including base, domain-adaptive, CoT task and
mixed fine-tuning. Mixed fine-tuning, which combines recommendation CoT dataset with general
dataset, helps retain the model’s foundational knowledge and prevents catastrophic forgetting. As
shown in Figure 3, this methods achieves the best balance between recommendation performance
and general capabilities, making it the preferred method for LGHRec. We designed prompts, as
shown in Figure 4, to guide LLM CoT reasoning, denoted as T

(i)
CoT , which is then encoded into

semantic IDs e(i)CoT ∈ Rdc using BERT model. This offline process ensures that item is processed
once and periodically updated, storing semantic IDs for direct use during GNN training. It leverages
the LLM’s reasoning capabilities while avoiding the latency of online services. To fuse semantic IDs
with collaborative filtering signals, we concatenate them with the ID embeddings e(i)ID ∈ Rdid and
apply linear layer, as initial item representations e(0)i . The initial user representation e

(0)
u is based on

ID embeddings, because user behavior changes more frequently, require real-time updates.

2.2 DEFINITION OF REINFORCEMENT LEARNING

In large scale recommender systems, contrastive learning face two challenges. First, calculate
similarity of all samples is expensive, and random sampling may introduce false negatives. So,
selecting high quality negative samples is essential. Second, the fixed temperature coefficient τ
cannot adapt to the heterogeneity of users and items. Active users or popular items with higher node
degrees require smaller τ to enhance the distinction of hard negative samples, while low activity users

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

or long-tail items with sparse information need larger τ to stabilize learn. To address these problems,
we model the optimization of contrastive learning as reinforcement learning problem. The state for
user u includes the user’s embedding zu, the positive sample embedding zk, the candidate negative
sample pool Nu, and the user’s degree du. The action consists of selecting M negative samples from
Nu and choosing τ for the anchor. The policy network πθ (at|st) outputs probability of selecting
negative samples and τ . The reward reflects the quality of the selected negative samples and τ .

2.3 RULE-BASED REWARDS

Reward Hard Negatives. Hard negatives are similar to the anchor but should not be mistaken for
positive samples. They provide gradient signals, helping the model learn finer features. Therefore,
we assign a reward to negative samples that are similar to the anchor user embedding z

(0)
u but differ

in similarity from the positive sample embedding z
(k)
u . The expression is as follows:

Rhard(z
∗
n) =

{
+w1 if θeasy < sim(z

(0)
u , z∗n) < θFN and sim(z

(k)
u , z∗n) < θFP

0 otherwise
(1)

where θFN, θeasy, θFP are similarity thresholds, and w1 > 0.

Punish False Negatives. False negatives are actually similar to the anchor but are incorrectly
selected as negative samples. If the model treats them as negatives, it will mislead the learning
process. Therefore, we assign a negative reward to samples that are highly similar to either the anchor
user embedding z

(0)
u or the positive sample embedding z

(k)
u . The reward is as follows:

Rfalse(z
∗
n) =


−w2 if sim(z

(0)
u , z∗n) ≥ θFN

−w3 if sim(z
(k)
u , z∗n) ≥ θFP

0 otherwise
(2)

Punish Easy Negatives. Easy negatives are very dissimilar to the anchor, making them easy for
the model to distinguish. The gradient information they provide is limited, and their contribution
to the model’s learning is minimal. If the model frequently selects easy negatives, it may become
less effective during training, failing to fully utilize hard negatives that enhance its discriminative
ability. Therefore, we assign a negative reward to samples that are very dissimilar to the anchor user
embedding z

(0)
u . The reward is defined as follows:

Reasy (z
∗
n) =

{
−w4 if sim

(
z
(0)
u , z∗n

)
≤ θeasy_low

0 otherwise
(3)

Where, θeasy_low is a similarity threshold. The total reward for negative samples is as follows:

Rt = Rhard +Rfalse +Reasy (4)

where w1 = w2 = w3 = 1, w4 = 0.5.

Self-Adaptive Temperature Reward Rτ . In GNNs, nodes with high degrees have rich neighborhood
information, making it easier to encounter hard negative samples during contrastive learning. For
these nodes, smaller temperature coefficient τ can amplify similarity differences and help model learn
more refined features. Conversely, nodes with low degrees have sparse interactions. The positive
samples generated through data augmentation contain noise, result in low similarity with anchor. In
this case, smaller τ would excessively penalize these nodes, hinder the model’s ability to learn from
sparse positive signals. A larger τ helps tolerate noise and stabilizes learn for such nodes. So, fixed τ
is insufficient for optimal learning across different node types, and an adaptive mechanism is needed
to adjust the strength of contrastive learning based on node degree. We design reward to guide policy
network adjust τ to match the target temperature Tideal(du) according to the degree of the node:

Rτ

(
u, τ (t)u

)
= −w5

∣∣∣τ (t)u − Tideal (du)
∣∣∣ (5)

where w5 is the hyperparameter and Tideal(du) is as follows:

Tideal (du) =
1

1 + log (1 + du)
(6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2.4 HGPO MECHANISM

Existing contrastive learning methods struggle to adapt to all user and item groups, result in insufficient
representation learning for low activity users and long-tail items. The GRPO only improves relative
performance within a group, which can cause conflicts between strategies across different groups
and negative affect long-tail items. So, we propose HGPO, a reinforcement learning algorithm that
uses group average rewards to guide policy learning. HGPO introduces a cross-group coordination
mechanism to optimize contrastive learning, ensuring global policy consistency while adapting to the
unique characteristics of different groups. The mechanism of HGPO is as follows:

Group Division G. Nodes are divided into K groups G = {g1, . . . , gK} based degree of the nodes.

Group Average Reward R̄g(st). For state st belonging to group g, its group average reward is the
expected reward of all possible actions in that state. We estimate it in the train batch B as follows:

R̄g ≈ 1

|Bg|
∑

(s′t,a
′
t,r

′
t)∈Bg

r′t (7)

where Bg is the set of all samples (s′t, a
′
t, r

′
t) in batch B that belong to group g. R̄g represents the

average reward level of group g under the current policy.

Relative Advantage Arel
t . For a sample (st, at, rt), its relative advantage is defined as the difference

between the actual reward rt of the action and the group’s average reward R̄g: Arel
t = rt − R̄g. If

Arel
t > 0, the action outperforms the group average and should be encouraged.

2.5 HGPO OBJECTIVE FUNCTION

To maximize relative advantage, add entropy regularization to encourage exploration and introduce a
coordination loss to ensure cross-group consistency. The objective function of HGPO is as follows:

LHGPO(θ) = −LPOLICY (θ) + c1S[πθ] + LHARM (θ) (8)

Policy Loss. This is a policy gradient term based on the relative advantage Arel
t , and stability is

maintained through clipping. The expression is as follows:

LPOLICY(θ) = Êt

[
min

(
rt(θ)A

rel
t , clip(rt(θ), 1− ϵ, 1 + ϵ)Arel

t

)]
(9)

Where, rt(θ) =
πθ(at|st)
πθold (at|st) is the probability ratio between the new and old policies. Maximizing

LPOLICY(θ) increases the probability of selecting positive relative advantage actions.

Entropy Regularization S[πθ]. Without sufficient exploration, the algorithm tends to converge
quickly on groups with more samples or stronger reward signals, such as high activity users and
popular items. As a result, long-tail items and low-activity users receive insufficient exploration,
leading to poor performance on these groups. Entropy regularization encourages the policy network to
maintain randomness, discover customized strategies for different groups, and improve performance
on long-tail recommendations. The expression is as follows:

S[πθ] = Êt[H(πθ(· | st))] (10)

Since HGPO involves two types of action spaces—negative sample selection and temperature
coefficient selection. Therefore, the overall expression is the sum of both:

H(πθ(· | st)) = Hneg(πθ(aneg | st)) +Htemp(πθ(atemp | st)) (11)

Where, Hneg is the entropy of the negative sample selection action. The policy πθ(aneg|st) outputs a
discrete probability distribution P = {p1, p2, . . . , pM} over the M possible negative samples, where
pj is the probability of selecting the j-th action, and

∑M
j=1 pj = 1. The expression is as follows:

Hneg = −
M∑
j=1

pj log pj (12)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 HGPO Optimization Process
1: Initialize policy network parameters θ
2: for each training iteration do
3: Collect data (st, at, rt) using policy πθ

4: Divide nodes into groups G = {g1, . . . , gK} based on degrees
5: for each group g ∈ G do
6: Calculate group average reward R̄g from current batch
7: end for
8: for each sample (st, at, rt) do
9: Determine group g of state st

10: Calculate relative advantage Arel
t = rt − R̄g

11: end for
12: Compute policy loss LPOLICY (θ) using relative advantages with clipping
13: Compute entropy regularization S[πθ] for negative sampling and temperature selection
14: Compute harmonizing loss LHARM (θ) by minimizing variance of group rewards
15: Update policy network parameters θ by minimizing total loss:
16: LHGPO(θ) = −LPOLICY (θ) + c1S[πθ] + LHARM (θ)
17: end for

Htemp is the entropy of the temperature selection action. The policy πθ(atemp|st) outputs the
parameters of a Gaussian distribution for the temperature coefficient in the current state st, specifically
the mean µ and variance σ2, from which the temperature T is sampled. The expression is as follows:

Htemp =
1

2
log(2πeσ2) =

1

2

(
1 + log(2πσ2)

)
(13)

Therefore, a larger variance results in greater entropy and stronger exploration.

Coordination Loss LHARM(θ). We minimize the variance of the group average rewards R̄g

using the objective function LHARM(θ) = λharm · Varg∈G [R̄g], where λharm controls the strength of
coordination. Minimizing LHARM encourages the policy network to optimize globally while adapting
to the characteristics of each group through the relative advantage Arel

t , ensuring similar average
reward levels across groups. This approach prevents the algorithm from over optimizing one group at
the expense of others. The optimization process of the HGPO algorithm is shown in Algorithm 1.

3 EXPERIMENT

3.1 OVERALL PERFORMANCE

We applied LGHRec to some baselines across three datasets, with the results shown in Table 1.
LGHRec improved the performance of all models. On the sparse Yelp2018 and Amazon-Book
datasets, LGHRec mitigated data sparsity challenges through deep semantic augmentation and
optimization for long-tail items. This resulted in significant performance improvements of 3% to
7%. Notably, on the denser MIND dataset, where baselines already captured strong collaborative
signals, LGHRec still achieved a performance gain of up to 7.49% through its advanced optimization
strategies. It demonstrate the robustness of the LGHRec across diverse data environments.

3.2 HGPO IN-DEPTH ANALYSIS

Performance Comparison of Interactive Sparsity Levels. We divided users and items into five
levels based on interaction frequency across the three datasets. We then compared the NDCG@20
performance of LGHRec and the baseline across different activity groups. As shown in Figure 5,
LGHRec improved performance for low activity users and reduced the performance gap between
groups with varying activity levels. On the Yelp and Book datasets, where long-tail items are more
prevalent, LGHRec achieved more substantial improvements, demonstrating its effectiveness in
enhancing long-tail recommendations. This improvement is attributed to the HGPO mechanism,
which stabilizes the learning of low degree nodes through adaptive temperature adjustment and
ensures that long-tail groups are not overshadowed by high activity groups via coordination loss.

Embedding Distribution Analysis. We used kernel density estimation to visualize the learned item
embeddings on the Yelp dataset, as shown in Figure 6. The results show that embeddings learned

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Overall performance comparisons.

Model Yelp2018 Amazon-Book MIND

Baseline Variants Recall@10 Recall@20 NDCG@10 NDCG@20 Recall@10 Recall@20 NDCG@10 NDCG@20 Recall@10 Recall@20 NDCG@10 NDCG@20

SGL
Base 0.0363 0.0675 0.0412 0.0555 0.0232 0.0478 0.0306 0.0379 0.0794 0.1366 0.0946 0.1252
+ LGHRec 0.0387 0.0710 0.0428 0.0582 0.0241 0.0508 0.0326 0.0392 0.0826 0.1435 0.0996 0.1301
RelaImpr ↑ 6.70% 5.13% 3.95% 4.78% 3.75% 6.26% 6.41% 3.32% 3.98% 5.07% 5.27% 3.92%

SimGCL
Base 0.0412 0.0721 0.0467 0.0601 0.0248 0.0515 0.0324 0.0410 0.0957 0.1642 0.1012 0.1279
+ LGHRec 0.0430 0.0764 0.0493 0.0620 0.0262 0.0551 0.0345 0.0434 0.1002 0.1680 0.1086 0.1308
RelaImpr ↑ 4.39% 6.01% 5.59% 3.13% 5.67% 6.96% 6.61% 5.93% 4.70% 2.34% 7.27% 2.27%

LightGCL
Base 0.0464 0.0793 0.0521 0.0668 0.0312 0.0585 0.0329 0.0436 0.1069 0.1757 0.1134 0.1384
+ LGHRec 0.0480 0.0852 0.0558 0.0692 0.0322 0.0626 0.0346 0.0456 0.1110 0.1829 0.1188 0.1427
RelaImpr ↑ 3.48% 7.43% 7.06% 3.53% 3.28% 6.94% 5.19% 4.65% 3.80% 4.10% 4.78% 3.14%

VGCL
Base 0.0431 0.0757 0.0482 0.0642 0.0278 0.0611 0.0374 0.0476 0.1125 0.1813 0.1187 0.1439
+ LGHRec 0.0453 0.0796 0.0513 0.0689 0.0296 0.0637 0.0392 0.0509 0.1205 0.1851 0.1222 0.1518
RelaImpr ↑ 5.01% 5.10% 6.47% 7.37% 6.63% 4.21% 4.91% 6.99% 7.14% 2.08% 2.95% 5.47%

NESCL
Base 0.0375 0.0743 0.0475 0.0611 0.0298 0.0624 0.0428 0.0513 0.1248 0.1975 0.1366 0.1615
+ LGHRec 0.0390 0.0781 0.0508 0.0633 0.0309 0.0669 0.0456 0.0543 0.1341 0.2101 0.1463 0.1665
RelaImpr ↑ 3.95% 5.07% 6.90% 3.53% 3.71% 7.14% 6.44% 5.91% 7.49% 6.35% 7.12% 3.12%

SCCF
Base 0.0481 0.0799 0.0474 0.0638 0.0337 0.0639 0.0438 0.0522 0.1203 0.1879 0.1295 0.1742
+ LGHRec 0.0498 0.0850 0.0500 0.0671 0.0350 0.0680 0.0461 0.0556 0.1240 0.2004 0.1324 0.1813
RelaImpr ↑ 3.51% 6.39% 5.38% 5.24% 3.92% 6.44% 5.24% 6.51% 3.09% 6.64% 2.23% 4.05%

CIKG
Base 0.0469 0.0761 0.0465 0.0613 0.0659 0.1077 0.0747 0.0921 0.1256 0.1889 0.1312 0.1631
+ LGHRec 0.0495 0.0808 0.0487 0.0650 0.0675 0.1152 0.0794 0.0972 0.1314 0.1958 0.1349 0.1725
RelaImpr ↑ 5.53% 6.13% 4.83% 6.01% 2.47% 6.93% 6.24% 5.53% 4.60% 3.66% 2.81% 5.75%

AutoGraph
Base 0.0473 0.0772 0.0479 0.0628 0.0764 0.1146 0.0959 0.1163 0.1301 0.1962 0.1359 0.1687
+ LGHRec 0.0495 0.0800 0.0499 0.0646 0.0797 0.1192 0.1030 0.1206 0.1350 0.2048 0.1427 0.1746
RelaImpr ↑ 4.69% 3.66% 4.23% 2.81% 4.28% 4.02% 7.36% 3.68% 3.79% 4.38% 5.01% 3.49%

LightCCF
Base 0.0485 0.0802 0.0484 0.0644 0.0347 0.0577 0.0375 0.0462 0.1314 0.1996 0.1402 0.1748
+ LGHRec 0.0521 0.0826 0.0504 0.0674 0.0370 0.0599 0.0389 0.0490 0.1412 0.2052 0.1488 0.1835
RelaImpr ↑ 7.33% 3.03% 4.12% 4.70% 6.71% 3.78% 3.63% 6.13% 7.46% 2.81% 6.11% 4.97%

TALLRec
Base 0.0461 0.0761 0.0449 0.0625 0.0331 0.0548 0.0369 0.0452 0.1334 0.1934 0.1410 0.1734
LGHRec(LightCCF) 0.0521 0.0826 0.0504 0.0674 0.0370 0.0599 0.0389 0.0490 0.1412 0.2052 0.1488 0.1835
RelaImpr ↑ 13.02% 8.54% 12.25% 7.84% 11.78% 9.31% 5.42% 8.41% 5.84% 6.10% 5.53% 5.82%

SPRec
Base 0.0464 0.0778 0.0465 0.0631 0.0338 0.0556 0.0362 0.0439 0.1322 0.1921 0.1379 0.1720
LGHRec(LightCCF) 0.0521 0.0826 0.0504 0.0674 0.0370 0.0599 0.0389 0.0490 0.1412 0.2052 0.1488 0.1835
RelaImpr ↑ 12.28% 6.17% 8.39% 6.81% 9.47% 7.73% 7.46% 11.62% 6.80% 6.81% 7.90% 6.68%

[5,10) [10,30) [30,70) [70,100) [100,)
Number of Interactions

0

15

30

45

60

Pr
op

or
tio

n(
%

)

0.05

0.07

0.10

0.13

0.15

N
D

C
G

@
20

(%
)

Yelp

Users
Items

LightGCL
SCCF

LightCCF
LightGCL+LGH

SCCF+LGH
LightCCF+LGH

[5,10) [10,30) [30,70) [70,100) [100,)
Number of Interactions

0

15

31

46

62

Pr
op

or
tio

n(
%

)

0.03

0.05

0.07

0.08

0.10

N
D

C
G

@
20

(%
)

Book

Users
Items

LightGCL
SCCF

LightCCF
LightGCL+LGH

SCCF+LGH
LightCCF+LGH

[5,10) [10,30) [30,70) [70,100) [100,)
Number of Interactions

5

13

20

27

34

Pr
op

or
tio

n(
%

)

0.11

0.14

0.18

0.22

0.25

N
D

C
G

@
20

(%
)

MIND

Users
Items

LightGCL
SCCF

LightCCF
LightGCL+LGH

SCCF+LGH
LightCCF+LGH

Figure 5: A comparison of NDCG@20 between LGHRec and baseline models across three datasets,
grouped by different user and item interaction levels based on interaction count.

using only ID embeddings (a) form dispersed and unevenly dense clusters, making it difficult to
distinguish semantically similar items. After introducing CoT semantic information from LLMs (b),
the embedding distribution becomes more coherent, improving the discriminability of the embeddings.
Embeddings learned by the full LGHRec model (c) exhibit a more uniform and dispersed distribution,
indicating that the model is able to learn finer features to better distinguish different items.

Adaptive Temperature Coefficient. To verify HGPO can select the optimal temperature coefficient
τ for different degrees nodes, we visualized the average τ selected by HGPO on the Yelp dataset. As
shown in Figure 7(a), HGPO assigns larger τ values to low degree nodes, with τ gradually decreasing
as node degree increases. This adaptive behavior demonstrates the effectiveness of HGPO: smaller
τ values enhance the feature discriminability of high activity nodes, while larger τ values stabilize
the learning process for low activity nodes in sparse data scenarios. In this way, HGPO dynamically
adjusts the strength of contrastive learning based on node characteristics.

Negative Sampling Analysis. We compared similarity distribution for negative samples selected
by HGPO and random sample on Yelp. As shown in Figure 7(b), 39.83% of the negative samples
selected by HGPO fall within the hard negative range [0.5, 0.8), which is much higher than the 20.39%
through random sample. This increase is due to Rhard incentivize the selection of rich information
samples. In contrast, only 15.37% of easy negative samples (similarity < 0.2) were selected by HGPO,
compared to 45.67% from random sample, as Rfalse penalizes easy negatives. Although HGPO
selected more false negative samples (9.51% versus 4.32% with random sampling), this reflects
HGPO’s exploration of the boundaries of hard samples. With Reasy controlling the selection of false
negatives, HGPO balances exploration and risk, focusing on rich information hard negatives.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 6: The KDE visualizes the distribution of item embeddings.

4 6 %

1 5 %

3 0 % 3 5 %

2 0 %

4 0 %

4 % 1 0 %
[5 , 1 0) [1 0 , 3 0) [3 0 , 7 0) [7 0 , 1 0 0) � � � � � � �

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1 0

0 . 1 2

ave
rag

e

D e g r e e i n t e r v a l

 U s e r
 I t e m

(a)
R a n d o m s a m p l i n g H G P O

 [0 . 8 , 1 . 0) P o t e n t i a l F a l s e N e g a t i v e s [0 . 5 , 0 . 8) H a r d N e g a t i v e s
 [0 . 2 , 0 . 5) M e d i u m N e g a t i v e s [0 . 0 , 0 . 2) E a s y N e g a t i v e s

S a m p l i n g m e t h o d(b)
A B C A B C A B C

Y e l p A m a z o n - B o o k M I N D
0 . 0 0 0 0

0 . 0 0 0 5

0 . 0 0 1 0

0 . 0 0 1 5

0 . 0 0 2 0

Va
ria

nce

 L G H R e c - G R P O
 L G H R e c - N o H A R M
 L G H R e c - F u l l

(c)
Figure 7: The results of various mechanisms of HGPO on the Yelp dataset.

Effect of Coordination Mechanism. The coordination loss LHARM addresses strategy inconsistency
that arises when GRPO is applied to different activity groups, which can result in over optimization
of certain groups at the expense of others. We compared NDCG@20 variance across user activity
groups for the full LGHRec, LGHRec-NoHARM (without coordination loss), and LGHRec-GRPO
(with HGPO replaced by GRPO). As shown in Figure 7(c), the full LGHRec exhibited the lowest
performance variance across activity groups. When coordination loss was removed, the performance
variance of LGHRec-NoHARM increased and became similar to LGHRec-GRPO. This result in-
dicates that the coordination loss helps align strategies across groups by penalizing differences in
average rewards. It prevents the over optimization of high activity groups.

3.3 HYPERPARAMETER SENSITIVITY

We use LightCCF as backbone and adjust the coordination weight (λharm), entropy coefficient (c1),
and temperature reward coefficient (w5) on three datasets. We observe the NDCG@20, as shown
in Figure 8. When the coordination weight λharm = 0, the model degenerates into GRPO, result in
low performance and confirm the effectiveness of the coordination mechanism. As λharm increases
to around 0.5, performance improves due to better alignment of strategies across different groups.
However, if λharm becomes too high, performance slightly decreases because of excessive emphasis
on consistency. For the entropy coefficient c1, setting it to 0 leads to insufficient exploration and
suboptimal performance. A small value promotes exploration and improves performance, while a
large value causes the strategy to become too random, result in performance degradation. Regard
the temperature reward coefficient w5, when set it to 0 causes a performance drop. Increasing
w5 encourages the model to learn temperature adjustment strategies for heterogeneous data, with
performance peaking at w5 = 1.2. However, if w5 is too high, the model focuses excessively on the
temperature reward and neglects negative sample selection, thereby reducing performance.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 0 . 3 0 . 5 0 . 8 1
0 . 0 5

0 . 0 7

0 . 0 9

0 . 1 2

0 . 1 4

0 . 1 6

0 . 1 8

ND
CG

@2
0

 Y e l p A m a z o n - B o o k M I N D

(a)
0 0 . 2 0 . 6 0 . 8 1

0 . 0 5

0 . 0 7

0 . 0 9

0 . 1 2

0 . 1 4

0 . 1 6

0 . 1 8

ND
CG

@2
0

 Y e l p A m a z o n - B o o k M I N D

(b)
0 0 . 1 0 . 3 0 . 5 0 . 8 1 1 . 2 1 . 5 1 . 8 2

0 . 0 5

0 . 0 7

0 . 0 9

0 . 1 2

0 . 1 4

0 . 1 6

0 . 1 8

ND
CG

@2
0

 Y e l p A m a z o n - B o o k M I N D

(c)
Figure 8: The results of three representative hyperparameter experiments.

Table 2: Results of ablation experiments performed on three datasets

Variants Yelp2018 Amazon-Book MIND Explanation
LGHRec (Full) 0.00% 0.00% 0.00% Full model with all components.

Impact of DSEG:
LGHRec-NoDSEG -6.12% -7.96% -5.26% Without semantic enhancement, using LightCCF+HGPO.
LGHRec-RawText -3.53% -4.82% -3.31% Using raw text embeddings without CoT.
LGHRec (Basic LLM CoT) -2.58% -3.14% -2.10% Using LLM-generated CoT embeddings without fine-tuning.
LGHRec (Domain-tuned CoT) -1.83% -2.32% -1.32% Using LLM-generated CoT embeddings with domain fine-tuning.
LGHRec (CoT Task Fine-tuned) -0.91% -1.21% -0.61% Using LLM-generated CoT embeddings with CoT task fine-tuning.
LGHRec (Weighted Sum Fusion) -1.10% -1.52% -0.88% Using weighted summation for feature fusion.

Impact of HGPO:
LGHRec-NoHGPO -4.27% -5.23% -3.98% Use standard contrastive loss (fixed τ , random negative sampling)
LGHRec-NoAdaptiveTau -2.12% -2.72% -2.13% HGPO optimizes only negative sampling with τ fixed
LGHRec-RandomNeg -2.83% -3.41% -2.79% HGPO only optimizes τ , using random negative sampling
LGHRec-GRPO -1.34% -1.71% -1.14% Using GRPO optimization without the coordination mechanism

3.4 ABLATION EXPERIMENT

We evaluated NDCG@20 on three datasets, the results in Table 2. The full LGHRec outperformed
LGHRec-NoDSEG, demonstrate that LLM-generated semantic IDs enhance the information density
and quality of the graph model’s representations. The CoT reasoning capability of LLMs proved cru-
cial, because LGHRec provide higher quality representations compare to LGHRec-RawText, which
uses only raw text embeddings. The mixed fine-tuning method achieve the best results, effectively
generate high quality semantic IDs, balance recommendation performance and general capabilities.
In feature fusion, concatenation and linear layer outperformed weighted summation. Regard the
impact of HGPO, the full LGHRec outperformed LGHRec-NoHGPO, confirm the effectiveness
of HGPO. LGHRec also performed better than LGHRec-GRPO, highlight the importance of the
coordination loss in HGPO for ensuring consistency across groups. Remove the adaptive temperature
adjustment mechanism in LGHRec-NoAdaptiveTau led to performance drop, indicate that adaptive
temperature adjustment is essential. Finally, LGHRec-RandomNeg, which uses random negative
sampling, performed worse than the full LGHRec, demonstrate the superiority of guiding the agent
to select rich information negative samples through reinforcement learning.

4 CONCLUSION

We propose LGHRec, which leverages the CoT reasoning ability of LLMs to generate semantic IDs for
items offline, thereby guiding the collaborative filtering process of GNNs. LGHRec employs HGPO
to optimize graph contrastive learning through strategic negative sampling, cross-group coordination,
and adaptive temperature adjustment. The main contribution of LGHRec is its ability to enhance
representation quality and information density via CoT reasoning, while optimizing contrastive
learning with HGPO. This approach balances semantic richness, efficiency, and data heterogeneity.
Experimental results show that LGHRec outperforms several graph contrastive learning models,
demonstrating the effectiveness of combining LLM CoT reasoning with reinforcement learning in
graph recommender systems. Future research will explore integrating multimodal information, such
as images, into LLM CoT reasoning to generate item representations that incorporate both visual and
textual semantic understanding.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He. Tallrec: An
effective and efficient tuning framework to align large language model with recommendation. In
Proceedings of the 17th ACM Conference on Recommender Systems, pp. 1007–1014, 2023.

Xuheng Cai, Chao Huang, Lianghao Xia, and Xubin Ren. Lightgcl: Simple yet effective graph
contrastive learning for recommendation. arXiv preprint arXiv:2302.08191, 2023.

Tianruo Cao, Honghui Chen, Zepeng Hao, and Tao Hu. Lora-ncl: Neighborhood-enriched contrastive
learning with low-rank dimensionality reduction for graph collaborative filtering. Mathematics, 11
(16):3577, 2023.

Junyi Chen and Toyotaro Suzumura. A prompting-based representation learning method for recom-
mendation with large language models. arXiv preprint arXiv:2409.16674, 2024.

Runjin Chen, Mingxuan Ju, Ngoc Bui, Dimosthenis Antypas, Stanley Cai, Xiaopeng Wu, Leonardo
Neves, Zhangyang Wang, Neil Shah, and Tong Zhao. Enhancing item tokenization for generative
recommendation through self-improvement. arXiv preprint arXiv:2412.17171, 2024.

Jiaxin Deng, Shiyao Wang, Kuo Cai, Lejian Ren, Qigen Hu, Weifeng Ding, Qiang Luo, and Guorui
Zhou. Onerec: Unifying retrieve and rank with generative recommender and iterative preference
alignment. arXiv preprint arXiv:2502.18965, 2025.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Yingpeng Du, Di Luo, Rui Yan, Xiaopei Wang, Hongzhi Liu, Hengshu Zhu, Yang Song, and Jie
Zhang. Enhancing job recommendation through llm-based generative adversarial networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 8363–8371, 2024.

Chongming Gao, Ruijun Chen, Shuai Yuan, Kexin Huang, Yuanqing Yu, and Xiangnan He. Sprec:
Self-play to debias llm-based recommendation. In Proceedings of the ACM on Web Conference
2025, pp. 5075–5084, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of the
43rd International ACM SIGIR conference on research and development in Information Retrieval,
pp. 639–648, 2020.

Zheng Hu, Zhe Li, Ziyun Jiao, Satoshi Nakagawa, Jiawen Deng, Shimin Cai, Tao Zhou, and Fuji
Ren. Bridging the user-side knowledge gap in knowledge-aware recommendations with large
language models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp.
11799–11807, 2025.

Minhye Jeon, Seokho Ahn, and Young-Duk Seo. Topic-aware knowledge graph with large language
models for interoperability in recommender systems. arXiv preprint arXiv:2412.20163, 2024.

Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko Ishii, and Pascale Fung. Towards mitigating
hallucination in large language models via self-reflection. arXiv preprint arXiv:2310.06271, 2023.

Yangqin Jiang, Chao Huang, and Lianghao Huang. Adaptive graph contrastive learning for recom-
mendation. In Proceedings of the 29th ACM SIGKDD conference on knowledge discovery and
data mining, pp. 4252–4261, 2023.

Kirandeep Kaur, Manya Chadha, Vinayak Gupta, and Chirag Shah. Efficient and responsible
adaptation of large language models for robust and equitable top-k recommendations, 2025. URL
https://arxiv.org/abs/2501.04762.

10

https://arxiv.org/abs/2501.04762

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yuxuan Lei, Jianxun Lian, Jing Yao, Xu Huang, Defu Lian, and Xing Xie. Recexplainer: Aligning
large language models for explaining recommendation models. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1530–1541, 2024.

Qingyao Li, Wei Xia, Kounianhua Du, Qiji Zhang, Weinan Zhang, Ruiming Tang, and Yong Yu.
Learning structure and knowledge aware representation with large language models for concept
recommendation. arXiv preprint arXiv:2405.12442, 2024.

Xinyu Lin, Wenjie Wang, Yongqi Li, Shuo Yang, Fuli Feng, Yinwei Wei, and Tat-Seng Chua. Data-
efficient fine-tuning for llm-based recommendation. In Proceedings of the 47th international ACM
SIGIR conference on research and development in information retrieval, pp. 365–374, 2024.

Zihan Lin, Changxin Tian, Yupeng Hou, and Wayne Xin Zhao. Improving graph collaborative filtering
with neighborhood-enriched contrastive learning. In Proceedings of the ACM web conference 2022,
pp. 2320–2329, 2022.

Fan Liu, Yaqi Liu, Huilin Chen, Zhiyong Cheng, Liqiang Nie, and Mohan Kankanhalli. Understanding
before recommendation: Semantic aspect-aware review exploitation via large language models.
ACM Transactions on Information Systems, 43(2):1–26, 2025.

Qidong Liu, Xian Wu, Xiangyu Zhao, Yejing Wang, Zijian Zhang, Feng Tian, and Yefeng Zheng.
Large language models enhanced sequential recommendation for long-tail user and item. arXiv
e-prints, pp. arXiv–2405, 2024a.

Qidong Liu, Xiangyu Zhao, Yuhao Wang, Yejing Wang, Zijian Zhang, Yuqi Sun, Xiang Li, Maolin
Wang, Pengyue Jia, Chong Chen, et al. Large language model enhanced recommender systems:
Taxonomy, trend, application and future. arXiv preprint arXiv:2412.13432, 2024b.

Sichun Luo, Bowei He, Haohan Zhao, Wei Shao, Yanlin Qi, Yinya Huang, Aojun Zhou, Yuxuan Yao,
Zongpeng Li, Yuanzhang Xiao, et al. Recranker: Instruction tuning large language model as ranker
for top-k recommendation. ACM Transactions on Information Systems, 2024.

Haohao Qu, Wenqi Fan, Zihuai Zhao, and Qing Li. Tokenrec: learning to tokenize id for llm-based
generative recommendation. arXiv preprint arXiv:2406.10450, 2024.

Xubin Ren, Wei Wei, Lianghao Xia, Lixin Su, Suqi Cheng, Junfeng Wang, Dawei Yin, and Chao
Huang. Representation learning with large language models for recommendation. In Proceedings
of the ACM Web Conference 2024, pp. 3464–3475, 2024.

Keigo Sakurai, Ren Togo, Takahiro Ogawa, and Miki Haseyama. Llm is knowledge graph reasoner:
Llm’s intuition-aware knowledge graph reasoning for cold-start sequential recommendation. In
European Conference on Information Retrieval, pp. 263–278. Springer, 2025.

Rong Shan, Jianghao Lin, Chenxu Zhu, Bo Chen, Menghui Zhu, Kangning Zhang, Jieming Zhu,
Ruiming Tang, Yong Yu, and Weinan Zhang. An automatic graph construction framework based
on large language models for recommendation. arXiv preprint arXiv:2412.18241, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Chao Sun, Yaobo Liang, Yaming Yang, Shilin Xu, Tianmeng Yang, and Yunhai Tong. Rlrf4rec:
Reinforcement learning from recsys feedback for enhanced recommendation reranking. arXiv
preprint arXiv:2410.05939, 2024.

Peijie Sun, Le Wu, Kun Zhang, Xiangzhi Chen, and Meng Wang. Neighborhood-enhanced supervised
contrastive learning for collaborative filtering. IEEE Transactions on Knowledge and Data
Engineering, 36(5):2069–2081, 2023.

Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural graph collaborative
filtering. In Proceedings of the 42nd international ACM SIGIR conference on Research and
development in Information Retrieval, pp. 165–174, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yan Wang, Zhixuan Chu, Xin Ouyang, Simeng Wang, Hongyan Hao, Yue Shen, Jinjie Gu, Siqiao Xue,
James Zhang, Qing Cui, et al. Llmrg: Improving recommendations through large language model
reasoning graphs. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
19189–19196, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Bin Wu, Xiangnan He, Qi Zhang, Meng Wang, and Yangdong Ye. Gcrec: Graph-augmented capsule
network for next-item recommendation. IEEE Transactions on Neural Networks and Learning
Systems, 34(12):10164–10177, 2022.

Bin Wu, Xun Su, Jing Liang, Zhongchuan Sun, Lihong Zhong, and Yangdong Ye. Graph gating-mixer
for sequential recommendation. Expert Systems with Applications, 238:122060, 2024a.

Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and Xing Xie. Self-
supervised graph learning for recommendation. In Proceedings of the 44th international ACM
SIGIR conference on research and development in information retrieval, pp. 726–735, 2021.

Yihong Wu, Le Zhang, Fengran Mo, Tianyu Zhu, Weizhi Ma, and Jian-Yun Nie. Unifying graph
convolution and contrastive learning in collaborative filtering. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 3425–3436, 2024b.

Yunjia Xi, Weiwen Liu, Jianghao Lin, Xiaoling Cai, Hong Zhu, Jieming Zhu, Bo Chen, Ruiming Tang,
Weinan Zhang, and Yong Yu. Towards open-world recommendation with knowledge augmentation
from large language models. In Proceedings of the 18th ACM Conference on Recommender
Systems, pp. 12–22, 2024.

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-pack:
Packed resources for general chinese embeddings. In Proceedings of the 47th international ACM
SIGIR conference on research and development in information retrieval, pp. 641–649, 2024.

Shenghao Yang, Weizhi Ma, Peijie Sun, Qingyao Ai, Yiqun Liu, Mingchen Cai, and Min Zhang.
Sequential recommendation with latent relations based on large language model. In Proceedings
of the 47th International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 335–344, 2024.

Yonghui Yang, Zhengwei Wu, Le Wu, Kun Zhang, Richang Hong, Zhiqiang Zhang, Jun Zhou, and
Meng Wang. Generative-contrastive graph learning for recommendation. In Proceedings of the
46th international ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 1117–1126, 2023.

Jia-Yu Yao, Kun-Peng Ning, Zhen-Hui Liu, Mu-Nan Ning, Yu-Yang Liu, and Li Yuan. Llm lies:
Hallucinations are not bugs, but features as adversarial examples. arXiv preprint arXiv:2310.01469,
2023.

Bin Yin, Junjie Xie, Yu Qin, Zixiang Ding, Zhichao Feng, Xiang Li, and Wei Lin. Heterogeneous
knowledge fusion: A novel approach for personalized recommendation via llm. In Proceedings of
the 17th ACM Conference on Recommender Systems, pp. 599–601, 2023.

Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung Nguyen. Are graph
augmentations necessary? simple graph contrastive learning for recommendation. In Proceedings
of the 45th international ACM SIGIR conference on research and development in information
retrieval, pp. 1294–1303, 2022.

Chiyu Zhang, Yifei Sun, Minghao Wu, Jun Chen, Jie Lei, Muhammad Abdul-Mageed, Rong Jin,
Angli Liu, Ji Zhu, Sem Park, et al. Embsum: Leveraging the summarization capabilities of large
language models for content-based recommendations. In Proceedings of the 18th ACM Conference
on Recommender Systems, pp. 1010–1015, 2024a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Weizhi Zhang, Yuanchen Bei, Liangwei Yang, Henry Peng Zou, Peilin Zhou, Aiwei Liu, Yinghui
Li, Hao Chen, Jianling Wang, Yu Wang, Feiran Huang, Sheng Zhou, Jiajun Bu, Allen Lin, James
Caverlee, Fakhri Karray, Irwin King, and Philip S. Yu. Cold-start recommendation towards
the era of large language models (llms): A comprehensive survey and roadmap, 2025a. URL
https://arxiv.org/abs/2501.01945.

Xiaokun Zhang, Bo Xu, Youlin Wu, Yuan Zhong, Hongfei Lin, and Fenglong Ma. Finerec: Exploring
fine-grained sequential recommendation. In Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 1599–1608, 2024b.

Xiaoyu Zhang, Yishan Li, Jiayin Wang, Bowen Sun, Weizhi Ma, Peijie Sun, and Min Zhang. Large
language models as evaluators for recommendation explanations. In Proceedings of the 18th ACM
Conference on Recommender Systems, pp. 33–42, 2024c.

Yabin Zhang, Wenhui Yu, Erhan Zhang, Xu Chen, Lantao Hu, Peng Jiang, and Kun Gai. Recgpt:
Generative personalized prompts for sequential recommendation via chatgpt training paradigm.
arXiv preprint arXiv:2404.08675, 2024d.

Yu Zhang, Yiwen Zhang, Yi Zhang, Lei Sang, and Yun Yang. Unveiling contrastive learning’s
capability of neighborhood aggregation for collaborative filtering. arXiv preprint arXiv:2504.10113,
2025b.

Qian Zhao, Hao Qian, Ziqi Liu, Gong-Duo Zhang, and Lihong Gu. Breaking the barrier: utilizing
large language models for industrial recommendation systems through an inferential knowledge
graph. In Proceedings of the 33rd ACM International Conference on Information and Knowledge
Management, pp. 5086–5093, 2024.

Wayne Xin Zhao, Junhua Chen, Pengfei Wang, Qi Gu, and Ji-Rong Wen. Revisiting alternative
experimental settings for evaluating top-n item recommendation algorithms. In Proceedings of the
29th ACM International Conference on Information & Knowledge Management, pp. 2329–2332,
2020.

Bowen Zheng, Yupeng Hou, Hongyu Lu, Yu Chen, Wayne Xin Zhao, Ming Chen, and Ji-Rong Wen.
Adapting large language models by integrating collaborative semantics for recommendation. In
2024 IEEE 40th International Conference on Data Engineering (ICDE), pp. 1435–1448. IEEE,
2024.

13

https://arxiv.org/abs/2501.01945

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix

A RELATED WORK

A.1 LLM RECOMMENDATION

Research on using LLMs for recommendations can be categorized into two types. The first category
is LLM-as-RSs, where LLMs are directly employed as recommender systems Bao et al. (2023);
Zhang et al. (2024d); Luo et al. (2024); Lei et al. (2024); Zhang et al. (2024c). These systems are
fine-tuned to generate recommendation lists. For instance, RecGPT Zhang et al. (2024d) fine-tunes
a Transformer model for sequential recommendation; EITGR Chen et al. (2024) uses LLMs to
generate item labels and adapt tokenization strategies dynamically; SPRec Gao et al. (2025) generates
positive and negative samples iteratively to optimize preference alignment; TALLRec Bao et al.
(2023) optimizes through instruction fine-tuned and recommendation task refinement; and RLRF4Rec
Sun et al. (2024) generates user preferences with LLMs and refines them through feedback training.
Although this approach offers end-to-end generative capabilities, it faces challenges such as low
efficiency, underuse of collaborative signals, and hallucination problems. The second category is
LLM-enhanced RSs, which improve existing recommendation models using the output text from
LLMs. Pretrained language models Devlin et al. (2019) or specialized embedding methods Xiao
et al. (2024) extract embeddings from LLM-generated text, which are then used as item features in
recommendation models Xi et al. (2024); Zhang et al. (2024a); Liu et al. (2024b); Qu et al. (2024);
Deng et al. (2025). For example, KAR Xi et al. (2024) integrates knowledge extracted from LLMs
into the model; Du et al. (2024) optimizes representations by extracting explicit and implicit user
information; and EmbSum Zhang et al. (2024a) uses LLMs to generate user interests as model
features. This approach is more flexible and friendly, but current methods have not fully leveraged
the chain-of-thought (CoT) reasoning capabilities of LLMs to produce higher quality, more rich
information semantic representations.

A.2 GNN-BASED REC

Some methods He et al. (2020) rely on ID features and make insufficient use of textual semantic
information. To address this, some studies attempt to combine large language models (LLMs) with
graph neural networks (GNNs) to enhance graph structures or node features. For instance, LLMs
are used to infer potential relationships between nodes and add edges Zhao et al. (2024); Liu et al.
(2025); Zhang et al. (2024b). One approach, LLM-KERec Zhao et al. (2024), extracts entities and
infers relationships using LLMs to construct supplementary graphs. Another method introduces
latent factors inferred by LLMs as new nodes to build richer semantic graphs Shan et al. (2024);
Jeon et al. (2024); Hu et al. (2025), such as AutoGraph Shan et al. (2024), which uses LLMs to
infer user preferences and item knowledge, encoding them into semantic vectors and extracting latent
factors as graph nodes. Other studies have enhanced GNN node feature representations directly with
LLMs Sakurai et al. (2025), for example, by extracting preference features to drive reinforcement
learning Sakurai et al. (2025). Some works Li et al. (2024); Chen & Suzumura (2024) design specific
prompts to input node text into LLMs for enhancement, then encode the output as embeddings. Our
LGHRec also follows the node feature enhancement paradigm but distinguishes itself by utilizing the
chain-of-thought (CoT) reasoning capability of LLMs. Instead of generating simple text descriptions,
LGHRec produces text with deeper logic and analysis, aiming to obtain semantic IDs with higher
information density.

A.3 GRAPH CONTRASTIVE LEARNING

Graph contrastive learning is used in recommender systems to address the issue of data sparsity
Lin et al. (2022); Wu et al. (2021); Yang et al. (2023); Zhang et al. (2025b); Sun et al. (2023); Yu
et al. (2022); Wu et al. (2024b); Cai et al. (2023). Some methods include SGL Wu et al. (2021)
(data augmentation), SimGCL Yu et al. (2022) (add noise), LightGCL Cai et al. (2023) (SVD
enhancement), and NCL Lin et al. (2022) (structural and semantic prototype contrast). However,
these approaches face challenges such as false negative samples and fixed temperature coefficients.
Additionally, when using the GRPO reinforcement learning algorithm to handle groups with varying
node degrees, it fails to ensure coordination between the strategies of different groups. This leads to

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 3: Basic statistics of datasets.

Datasets Users Items Interactions Density

Yelp2018 277631 112394 4250483 0.00013
Amazon-Book 1856344 704093 27164983 0.00002
MIND 47495 28420 5311336 0.00393

optimization biased toward active users and popular items, causing performance imbalances. The
HGPO algorithm we propose helps mitigate this issue.

B EXPERIMENTAL SETUP

B.1 DATASETS

We conducted experiments on three datasets: Yelp20181, Amazon-Book2, and MIND3. For each
dataset, we applied a 5-core setting, randomly selecting 80% of the data for training, 10% for
validation, and the remaining 10% for testing. Detailed statistics for the datasets are provided in Table
3. The extremely low density of these datasets underscores the issue of data sparsity, which is the
primary challenge addressed by both graph contrastive learning and our proposed HGPO algorithm.

B.2 BASELINES

To evaluate the effectiveness of LGHRec, we selected the following models as backbones and
integrated the DSEG and HGPO components of LGHRec into them for comparison:

• SGL Wu et al. (2021): Generates node views through node deletion, edge deletion, and
random walks.

• SimGCL Yu et al. (2022): Introduces graph contrastive learning by omitting explicit graph
augmentation.

• LightGCL Cai et al. (2023): Utilizes singular value decomposition for graph augmentation
in contrastive learning.

• VGCL Yang et al. (2023): Proposes a variational graph generation contrastive learning
framework, generating contrastive views through sampling.

• NESCL Sun et al. (2023): Introduces neighborhood-enhanced contrastive learning, treating
the anchor’s collaborative neighbors as positive samples.

• SCCF Wu et al. (2024b): Proposes contrastive collaborative filtering, capturing higher-
order connectivity based on an improved contrastive loss function, without requiring graph
convolution layers.

• CIKG Hu et al. (2025): It uses LLMs to infer user interests, structuring this knowledge
into a hybrid graph for enhanced recommendation.

• AutoGraph Shan et al. (2024): It leverages LLMs to create semantic vectors and uses
vector quantization to extract latent factors for graph construction.

• LightCCF Zhang et al. (2025b): Introduces lightweight contrastive learning by incorporat-
ing neighborhood aggregation objectives.

• TALLRec Bao et al. (2023): It aligns LLM with recommendation tasks by formatting data
as instructions and utilizing an two-stage LoRA-based fine-tuning process.

• SPRec Gao et al. (2025): It addresses biases that emerge during LLM fine-tuning by
employing Direct Preference Optimization.

1https://business.yelp.com/data/resources/open-dataset/
2http://jmcauley.ucsd.edu/data/amazon/
3https://msnews.github.io/

15

https://business.yelp.com/data/resources/open-dataset/
http://jmcauley.ucsd.edu/data/amazon/
https://msnews.github.io/

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 4: Computational cost and efficiency of LGHRec.

Dataset Model Variant Pre-processing
LLM CoT Generate(minute)

Pre-processing
BERT Encoding(minute)

Pre-processing
Complexity

Train
(Sec/Epoch)

Train
Complexity

Train
Memory

Train
Total Time

Inference
(Ms/Batch)

Yelp2018
Baseline(LightCCF) N/A N/A N/A 11.8 ± 0.16 O(L · |E| · d) 3.26GB 108.32m 25.3 ± 0.7
Baseline+DSEG 149.3 2.3 O(|I|) 12.4 ± 0.13 O(L · |E| · d) 3.31GB 84.92m 28.9 ± 0.6
+ LGHRec(Full Model) 149.3 2.3 O(|I|) 16.1 ± 0.84 O(L · |E| · d+ |V |) 3.53GB 150.28m 29.8 ± 0.8

Amazon-Book
Baseline(LightCCF) N/A N/A N/A 46.8 ± 4.35 O(L · |E| · d) 3.38GB 400.92m 25.6 ± 0.9
Baseline+DSEG 903.7 15.2 O(|I|) 48.6 ± 4.98 O(L · |E| · d) 3.49GB 318.74m 29.3 ± 0.6
+ LGHRec(Full Model) 903.7 15.2 O(|I|) 59.9 ± 3.25 O(L · |E| · d+ |V |) 3.85GB 563.28m 29.9 ± 0.8

Steam
Baseline(LightCCF) N/A N/A N/A 10.5 ± 0.13 O(L · |E| · d) 3.23GB 81.34m 23.1 ± 0.5
Baseline+DSEG 37.9 0.6 O(|I|) 11.2 ± 0.19 O(L · |E| · d) 3.27GB 69.45m 27.9 ± 0.5
+ LGHRec(Full Model) 37.9 0.6 O(|I|) 15.6 ± 0.49 O(L · |E| · d+ |V |) 3.39GB 124.68m 28.5 ± 0.6

B.3 EVALUATION METRICS

We used two Top-K metrics He et al. (2020); Wu et al. (2021): Recall@K and NDCG@K, and report
results for K = 10 and K = 20. The all-ranking evaluation strategy Zhao et al. (2020) was adopted,
where, for each user in the test set, the model is required to predict and rank the scores of all items
that the user has not interacted with. The hit rate of the top-K ranked items is then evaluated.

B.4 IMPLEMENTATION DETAILS

All methods use the Adam optimizer with a learning rate of 0.001, a batch size of 4096, and an
embedding dimension of 64. The GNN consists of three layers. We employ an early stopping strategy
with a patience value of 10 to prevent overfitting. The number of negative samples, K, is set to
10% of the total number of nodes. The reward function thresholds are: θFN = 0.8, θeasy = 0.5,
θFP = 0.8, and θeasy_low = 0.2. The clipping range ε for HGPO is 0.2. The learning rate for the
policy network is 0.0001. The entropy regularization coefficient is c1 ∈ {0, 0.2, 0.6, 0.8, 1.0}, the
coordination loss coefficient is λharm ∈ {0, 0.3, 0.5, 0.8, 1.0}, and the temperature reward coefficient
w5 ∈ {0, 0.1, 0.3, 0.5, 0.8, 1.0, 1.2, 1.5, 1.8, 2.0}. Users and items are divided into five groups based
on their degree. We use the Qwen2.5-32B-Instruct model, fine-tuned with a mixed fine-tuning
strategy, to generate CoT text for the items. Pre-trained BERT is used to extract embeddings. All
experiments are implemented in PyTorch on a server equipped with eight NVIDIA A100 GPUs.

B.5 COMPUTATIONAL COST AND EFFICIENCY

Our approach maintains efficient online inference by shifting the costly LLM computations to a
one-time offline preprocessing stage. We analyzed the computational cost in detail. The results are
shown in Table 4. Here, N/A indicates that the baseline lacks an LLM inference stage, N is the
number of items, V is the total number of nodes, E is the total number of interactions, L is the number
of GNN layers, and d is the embedding dimension. All measurements were performed on a single
NVIDIA A100 GPU with a batch size of 4096. By front-loading the expensive CoT inference into
the offline phase, our method preserves high efficiency during online serving.

The computational cost of LGHRec is divided into two parts. First, there is the one-time offline
preprocessing cost. The DSEG module uses an LLM to generate CoT semantic ID vectors, with
a time complexity of O(I). On a large dataset like Amazon-Book, this step takes about 15 hours.
Although substantial, this one-time cost is acceptable for industrial applications. The resulting
high-quality semantic IDs can be stored and reused indefinitely. Additionally, inference time on large
datasets can be further reduced by leveraging distributed acceleration frameworks such as vLLM.
Second, the training-phase cost increases with the HGPO module. For example, on Yelp, each epoch’s
training time rises from 11.8 s to 16.1 s. We consider this a reasonable trade-off given the model’s
performance gains.

The key advantage of our approach lies in the guarantee of online inference efficiency. As shown in
the Inference column of Table 4, LGHRec’s per-batch latency remains nearly unchanged compared to
the baselines. For example, on Amazon-Book, latency increases only from 25.6ms to 29.9ms. In an
online recommendation service, the system only invokes the pre-trained GNN model to compute user
and item embeddings. It does not perform costly LLM inference or run the HGPO policy network.
This decoupled design delivers significant accuracy gains while meeting industry requirements for
low latency and high throughput. These results demonstrate LGHRec’s practicality for real-world
deployment.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 5: Impact of different LLM architectures on the performance of LGHRec.

Variants Yelp2018 Amazon-Book MIND
Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

Qwen-2.5-32B-Instruct(Base) — — — — — —
DeepSeek-R1-Distill-Qwen-14B -0.96% -0.77% -0.81% -0.77% -0.72% -0.77%
Llama-3.1-8B-Instruct -1.34% -1.59% -1.35% -1.03% -0.93% -0.99%
Qwen-2.5-7B-Instruct -1.15% -1.19% -1.08% -0.77% -0.80% -0.87%
Qwen3-8B -0.77% -0.99% -0.54% -0.51% -0.64% -0.78%
Qwen3-32B +0.96% +1.19% +1.08% +1.03% +0.83% +0.98%

B.6 IMPACT OF DIFFERENT LLM ARCHITECTURES ON THE PERFORMANCE OF LGHREC.

We evaluated multiple LLM architectures, with results summarized in Table 5. Qwen-2.5-32B-Instruct
served as our baseline. These findings support two key conclusions. First, Within a single model
family, performance increases with model size. For instance, Qwen3-32B outperforms its smaller
variants. Its superior context comprehension and reasoning capabilities generate higher-quality
Chain-of-Thought outputs. Second, When comparing across model families, we find that the
performance of LGHRec is correlated with the general ability of LLM, such as MMLU score,
and the models with stronger general ability improve the recommendation performance more, such
as the newer Qwen3 series models, which is consistent with the conclusions of related studies ??. We
demonstrate that our framework effectively leverages and benefits from more advanced LLMS.

B.7 SENSITIVITY ANALYSIS ON THE FALSE NEGATIVE THRESHOLD

We conducted experiments on two representative datasets, Yelp2018 and Amazon-Book. We per-
formed a hyperparameter sensitivity analysis on the four similarity thresholds in the reward function
θFN, θeasy, θFP and θeasy_low . We used LightCCF, a strong performer in our paper, as the backbone
network. For each analysis, we varied one threshold within a reasonable range while keeping all
other parameters at their optimal settings as reported in the paper, and we observed the changes in the
NDCG@20 metric. The results summarized in Table 6.

θFN defines the similarity lower bound for the false negatives, and indirectly sets the similarity upper
bound for the hard negatives [θeasy, θFN). An appropriate θFN is crucial for the model to distinguish
between false and true negatives. We tested its value within the range [0.7, 0.9]. From the results, we
observe that the model achieves its best performance when θFN is set to 0.8. A too low θFN (e.g.,
0.7) narrows the valid range and may mistakenly penalize some informative hard negatives as false
negatives, thereby impairing learning. Conversely, a too high θFN (e.g., 0.9) relaxes the judgment of
false negatives, potentially preventing the model from effectively identifying and excluding samples
that are truly similar to the anchor, which also degrades performance. Overall, the model maintains
high stability in the range [0.75, 0.85].

θeasy defines the similarity lower bound for the hard negatives, used to distinguish between hard
negatives and easy negatives. It determines the difficulty range of negative samples that the model
focuses on. We tested its value within the range [0.3, 0.7]. When θeasy is set to 0.5, the model can
effectively identify and reward the most informative hard negatives. If this value is too low (e.g.,
0.3), many low discrimination easy negatives are mistakenly treated as hard negatives, reducing
the value of the reward signal. Conversely, if it is too high (e.g., 0.7), the range of hard negatives
becomes overly narrow, causing the model to miss many valuable training signals and leading to
a more pronounced performance drop. Experimental results indicate that the model’s performance
remains relatively stable within the range [0.4, 0.6].

θFP is used to penalize negative samples that are overly similar to the positive sample rather than to
the anchor user, helping to avoid selecting negatives that are semantically very close to the positive.
We tested its value within the range [0.7, 0.9]. The experiments show that θFP performs best at
0.8. A too low θFP (e.g., 0.7) makes the model overly conservative, mistakenly penalizing some
high quality hard negatives that only have moderate similarity to the positive sample. Conversely, a
too high θFP (e.g., 0.9) fails to effectively exclude negatives that are highly similar to the positive
sample and may cause confusion. The sensitivity of this parameter is relatively low, with performance
fluctuations minor within the range [0.75, 0.85], demonstrating good robustness.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

θeasy_low penalizes samples whose similarity falls below this threshold, preventing the model from
wasting learning opportunities on overly simple negatives. We tested its value within the range
[0.1, 0.3]. When θeasy_low is set to 0.2, the model achieves optimal performance. This indicates that
moderately penalizing the least informative negatives is beneficial. If the value is too low (e.g.,
0.1), the penalty on easy negatives is insufficient, and the model may still select ineffective samples.
Conversely, if it is too high (e.g., 0.3), it may mistakenly penalize samples that carry weak but useful
signals, slightly harming performance. The parameter remains stable within the range [0.15, 0.25].

From the above experiments, we observe that although the choice of these similarity thresholds does
affect final performance, LGHRec maintains strong stability within reasonable variations of these
values. This demonstrates the robustness of our method and confirms that the default values chosen
in our paper are empirically justified.

Table 6: Hyperparameter sensitivity analysis for reward function thresholds on Yelp2018 and Amazon-
Book datasets, evaluated using NDCG@20.

Parameter Value Yelp2018 (NDCG@20) Amazon-Book (NDCG@20)

θeasy

0.3 0.0658(-2.30%) 0.0478(-2.45%)
0.4 0.0667(-0.96%) 0.0485(-1.02%)
0.5 (Best) 0.0674(0.00%) 0.0490(0.00%)
0.6 0.0664(-1.34%) 0.0483(-1.43%)
0.7 0.0653(-3.07%) 0.0475(-3.06%)

θeasy_low

0.10 0.0663(-1.54%) 0.0483(-1.43%)
0.15 0.0670(-0.58%) 0.0487(-0.61%)
0.20 (Best) 0.0674(0.00%) 0.0490(0.00%)
0.25 0.0668(-0.77%) 0.0486(-0.82%)
0.30 0.0661(-1.92%) 0.0481(-1.84%)

θFN

0.70 0.0661(-1.92%) 0.0481(-1.84%)
0.75 0.0668(-0.77%) 0.0486(-0.82%)
0.80 (Best) 0.0674(0.00%) 0.0490(0.00%)
0.85 0.0670(-0.58%) 0.0487(-0.61%)
0.90 0.0662(-1.73%) 0.0482(-1.63%)

θFP

0.70 0.0664(-1.34%) 0.0484(-1.22%)
0.75 0.0670(-0.58%) 0.0488(-0.41%)
0.80 (Best) 0.0674(0.00%) 0.0490(0.00%)
0.85 0.0671(-0.38%) 0.0489(-0.20%)
0.90 0.0666(-1.15%) 0.0486(-0.82%)

C CONVERGENCE ANALYSIS OF THE HGPO OBJECTIVE FUNCTION

C.1 REVIEW OF THE HGPO ALGORITHM

The HGPO algorithm’s objective function LHGPO(θ) is defined as:

LHGPO(θ) = −LPOLICY(θ) + c1 S
[
πθ

]
+ LHARM(θ) (Eq. A) (14)

where:

1. LPOLICY(θ) is the policy loss based on the relative advantage function with clipping:

LPOLICY(θ) = Êt

[
min

(
rt(θ)A

rel
t , clip(rt(θ), 1− ϵ, 1 + ϵ)Arel

t

)]
(Eq. B) (15)

Here, rt(θ) =
πθ(at|st)

πθold
(at|st) is the importance-sampling weight, and the relative advantage is

as follow:
Arel

t = rt − R̄g(st) (16)

where rt is the immediate reward for taking action at in state st, and R̄g(st) is the average
reward of the group g containing state st.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

2. S[πθ] is the entropy regularization term of the policy:

S[πθ] = Êt

[
H
(
πθ(· | st)

)]
(Eq. C) (17)

with
H
(
πθ(· | st)

)
= Hneg

(
πθ(aneg | st)

)
+Htemp

(
πθ(atemp | st)

)
(18)

3. LHARM(θ) is the harmonization loss, which penalizes variance in average rewards across
groups:

LHARM(θ) = λharm Var g∈G
[
R̄g

]
(Eq. D) (19)

We now proceed to prove that, when optimized via gradient descent, the HGPO algorithm converges
to a (local) minimum of LHGPO(θ).

C.2 PROOF OUTLINE

We follow the standard convergence proof approach for optimization algorithms:

1. Boundedness: Show that the objective function LHGPO(θ) is lower-bounded under appro-
priate conditions.

2. Sufficient Decrease: Prove that at each iteration, if the gradient is non-zero, the objective
value decreases sufficiently (or at least does not increase).

3. Convergence to a Stationary Point: By combining boundedness and sufficient decrease,
demonstrate that the gradient of the policy parameters θ converges to zero, meaning the
algorithm converges to a stationary point.

C.3 DETAILED MATHEMATICAL PROOF

C.3.1 PRELIMINARIES

Boundedness of the Reward. The reward at time step t consists of a rule-based component Rt

(composed of Rhard, Rfalse, Reasy as defined in Eqs. 1, 2, 3) and an adaptive temperature component
Rτ (Eq. 5). We show that both components are bounded.

First, each of Rhard, Rfalse, Reasy is defined using similarity thresholds. Since cosine similarity lies in
the range [−1, 1] and the weights w1, w2, w3, w4 are fixed constants, these terms are bounded.

Second, the adaptive temperature reward is defined as follows:

Rτ = −w5

∣∣τ (t)u − Tideal(du)
∣∣, Tideal(du) =

1

1 + log(1 + du)
(20)

For a finite node degree du, Tideal(du) is bounded. The action space τ
(t)
u also lies within a bounded

interval [τmin, τmax], where τmin > 0. Therefore, Rτ is bounded.

As a result, the total reward rt = Rt + Rτ is bounded. In other words, there exist constants Rmin

and Rmax such that Rmin ≤ rt ≤ Rmax.

Smoothness of the Policy Function. The policy network πθ(a | s) is continuously differentiable
with respect to its parameters θ, and its gradient ∇θπθ(a | s) is Lipschitz continuous. Additionally,
both the action probability outputs and the network’s parameter values are bounded.

Boundedness of Importance Sampling Ratios. The importance sampling ratio rt(θ) =
πθ(at|st)

πθold
(at|st)

is bounded in practice by applying clipping during updates, which prevents excessively large variance.

Boundedness of Entropy. For the discrete negative-sampling action aneg, the entropy is given by:

Hneg = −
Mneg∑
j=1

pj log pj , 0 ≤ Hneg ≤ logMneg (21)

where Mneg is the size of the negative sample candidate pool.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

For the continuous temperature selection action atemp, under a Gaussian policy N (µθ(st), σ
2
θ(st)),

the entropy is:

Htemp =
1

2
log

(
2πeσ2

θ(st)
)

(22)

To ensure a lower bound and avoid degeneration as σ → 0, we enforce σ2
θ(st) ≥ σ2

min > 0, which
yields a positive lower bound for Htemp.

Therefore, the total entropy:
H
(
πθ(· | st)

)
= Hneg +Htemp (23)

is lower-bounded. Consequently, the entropy regularization term:

S[πθ] = Êt

[
H
(
πθ(· | st)

)]
(24)

is also bounded below.

C.3.2 PROVING THE BOUNDEDNESS OF HGPO

We need to show that the objective function LHGPO(θ) admits a finite lower bound. Recall that:

LHGPO(θ) = −LPOLICY(θ) + c1S
[
πθ

]
+ LHARM(θ) (25)

Analysis of the Policy Loss LPOLICY(θ). The relative advantage is given by:

Arel
t = rt − R̄ g(st) (26)

Since the immediate reward rt is bounded, and the group-mean reward R̄g = E
[
rt | st ∈ g

]
is also

bounded, it follows that Arel
t is bounded. Let |Arel

t | ≤ Amax_abs.

The importance-sampling weight rt(θ) is strictly positive, i.e., rt(θ) > 0.

Next, we consider the clipped loss term LCLIP
t (θ):

LCLIP
t (θ) = min

(
rt(θ)A

rel
t , clip

(
rt(θ), 1− ϵ, 1 + ϵ

)
Arel

t

)
(27)

• If Arel
t ≥ 0, the clipped loss term becomes:

LCLIP
t (θ) = min

(
rt(θ)A

rel
t , (1 + ϵ)Arel

t

)
(28)

since rt(θ) typically hovers around 1 and the upper clipping bound (1+ϵ) is active. Because
rt(θ) ≥ 0, it follows that LCLIP

t (θ) ≥ 0. Moreover, since rt(θ) is restricted to the interval
[0, Cratio], we have: LCLIP

t (θ) ≤ CratioA
rel
t .

• If Arel
t < 0, the clipped loss term becomes:

LCLIP
t (θ) = max

(
rt(θ)A

rel
t , (1− ϵ)Arel

t

)
(29)

since Arel
t is negative, the minimum operation flips to a maximum, and the lower clipping

bound (1− ϵ) is active. Hence, LCLIP
t (θ) is bounded. For example, if rt(θ) ∈ [1− δ, 1+ δ]

(with rt(θ) typically near 1), then:

LCLIP
t (θ) ∈

[
(1− ϵ)Amin_neg, (1 + ϵ)Amax_pos

]
(30)

where Amin_neg is the lower bound of the negative advantages and Amax_pos is the upper
bound of the positive advantages.

Therefore, the overall policy loss LPOLICY(θ) = Êt

[
LCLIP
t (θ)

]
is bounded. Let

LPOLICY
min ≤ LPOLICY(θ) ≤ LPOLICY

max .
Hence, −LPOLICY(θ) is also bounded:

−LPOLICY
max ≤ −LPOLICY(θ) ≤ −LPOLICY

min (31)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Analysis of the Entropy Regularization Term c1S[πθ]. From the boundedness of entropy, the
entropy regularization term S[πθ] has a lower bound, denoted Smin. If c1 > 0 (as is typically chosen
to encourage exploration), then: c1S[πθ] ≥ c1Smin.

Analysis of the Harmonization Loss LHARM(θ). The harmonization loss is defined as:

LHARM(θ) = λharm Var g∈G
[
R̄g

]
(32)

Since R̄g is the mean reward of group g, and the immediate reward rt is bounded (Rmin ≤ rt ≤
Rmax), we have: Rmin ≤ R̄g ≤ Rmax.

The variance Var g∈G
[
R̄g

]
= Eg

[(
R̄g − Eg[R̄g]

)2]
of a bounded random variable is also bounded.

In particular:

0 ≤ Var g∈G
[
R̄g

]
≤ (Rmax −Rmin)

2

4
(33)

Since λharm ≥ 0, it follows that:

0 ≤ LHARM(θ) = λharm Varg[R̄g] ≤ λharm
(Rmax −Rmin)

2

4
(34)

Thus, LHARM(θ) is both lower- and upper-bounded.

Summary of the Lower Bound of LHGPO(θ). We now summarize the lower bound of LHGPO(θ):

LHGPO(θ) ≥ −LPOLICY
max + c1Smin + λharm · 0 = −LPOLICY

max + c1Smin (35)

Therefore, LHGPO(θ) is lower-bounded. We denote this bound by:

LHGPO,min = −LPOLICY
max + c1Smin (36)

C.3.3 PROVING THE RELEVANCE OF THE GRADIENT

The HGPO algorithm updates the parameters θ via gradient descent:

θk+1 = θk − αk∇θLHGPO(θk) (37)

where αk is the learning rate.

Using the Taylor expansion for a differentiable function f(x),

f(x′) ≈ f(x) +∇f(x)T (x′ − x) +
1

2
(x′ − x)TH(x)(x′ − x) (38)

where H(x) is the Hessian matrix.

Applying this to LHGPO(θ) at θk, we get:

LHGPO(θk+1) ≈ LHGPO(θk) +∇θLHGPO(θk)
T (θk+1 − θk) +

1

2
(θk+1 − θk)

THk(θk+1 − θk)

(39)
Substituting θk+1 − θk = −αk∇θLHGPO(θk), we get:

LHGPO(θk+1)−LHGPO(θk) ≈ −αk∥∇θLHGPO(θk)∥2+
1

2
α2
k∇θLHGPO(θk)

THk∇θLHGPO(θk)

(40)

Assuming LHGPO(θ) is L-smooth, i.e., its gradient is Lipschitz continuous with constant L, the
maximum eigenvalue of Hk satisfies λmax(Hk) ≤ L. Hence,

∇θLHGPO(θk)
THk∇θLHGPO(θk) ≤ L∥∇θLHGPO(θk)∥2 (41)

Thus, we have:

LHGPO(θk+1)− LHGPO(θk) ≤ −αk∥∇θLHGPO(θk)∥2 +
L

2
α2
k∥∇θLHGPO(θk)∥2 (42)

Simplifying, we get:

LHGPO(θk+1)− LHGPO(θk) ≤ −αk

(
1− Lαk

2

)
∥∇θLHGPO(θk)∥2 (Eq. E) (43)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

To guarantee a decrease in the objective, we require:

1− Lαk

2
> 0 ⇐⇒ αk <

2

L
(44)

If we choose a sufficiently small learning rate, e.g., αk = α < 1
L , then:

1− Lα

2
≥ 1

2
(45)

Therefore:
LHGPO(θk+1)− LHGPO(θk) ≤ −α

2
∥∇θLHGPO(θk)∥2 (46)

This implies that whenever ∇θLHGPO(θk) ̸= 0, the objective strictly decreases. If the gradient is
zero, the objective no longer changes, indicating that the algorithm has reached a stationary point.

L-Smoothness Discussion: The components of LHGPO(θ) are:

• −LPOLICY(θ): LPOLICY(θ) involves min and clipping operations, making it non-smooth
at certain points. However, it is piecewise smooth in most regions, and gradient-based
optimization remains effective in practice despite these non-smooth points.

• c1S[πθ]: The entropy term is smooth with respect to the policy parameters θ.
• LHARM(θ): Since R̄g is the expectation of rt, and rt depends on θ (through state/action

selection and the temperature coefficient τ (t)u), the variance Var[R̄g] is a smooth quadratic
function of R̄g . Therefore, LHARM(θ) is also smooth.

C.3.4 CONVERGENCE TO A STATIONARY POINT

We have already shown that LHGPO(θ) is lower-bounded by LHGPO,min, and that if the learning
rate αk is chosen suitably (e.g., αk = α < 1/L), then:

LHGPO(θk+1) ≤ LHGPO(θk)−
α

2
∥∇θLHGPO(θk)∥2 (Eq. F) (47)

This implies that the sequence {LHGPO(θk)}k≥0 is non-increasing.

Summing Eq. F from k = 0 to N − 1:
N−1∑
k=0

(LHGPO(θk+1)− LHGPO(θk)) ≤ −α

2

N−1∑
k=0

∥∇θLHGPO(θk)∥2 (48)

This gives:

LHGPO(θN)− LHGPO(θ0) ≤ −α

2

N−1∑
k=0

∥∇θLHGPO(θk)∥2 (49)

Rearranging:
α

2

N−1∑
k=0

∥∇θLHGPO(θk)∥2 ≤ LHGPO(θ0)− LHGPO(θN) (50)

Since LHGPO(θN) ≥ LHGPO,min, it follows that:

α

2

N−1∑
k=0

∥∇θLHGPO(θk)∥2 ≤ LHGPO(θ0)− LHGPO,min (51)

The right-hand side is a finite constant. As N → ∞, for the series
∑∞

k=0 ∥∇θLHGPO(θk)∥2 to
converge, it must be that:

lim
k→∞

∥∇θLHGPO(θk)∥2 = 0 (52)

and hence:
lim
k→∞

∥∇θLHGPO(θk)∥ = 0 (53)

This proves that the gradient norm converges to zero, i.e., the algorithm converges to a stationary
point θ∗ where ∇θLHGPO(θ

∗) = 0.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D MULTI-PROTOTYPE ENHANCED GRAPH LEARNER

Given the user set U , the item set I , and the user-item interaction matrix R ∈ {0, 1}|U |×|I|, a
user-item bipartite graph G = (V,E) can be constructed, where V = U ∪ I represents the nodes and
E = {(u, i) | Rui = 1} represents the edges.

D.1 GRAPH CONVOLUTIONAL LAYER

The graph convolution method of LightGCN He et al. (2020) is used for information propagation.
The embedding calculation for the l-th layer of users u and items i is as follows:

z(l+1)
u =

∑
i∈N(u)

1√
|N(u)||N(i)|

z
(l)
i , z

(l+1)
i =

∑
u∈N(i)

1√
|N(i)||N(u)|

z(l)u (54)

where z
(0)
i = ei represents the initial embedding after the previous method fuses the CoT feature,

and z
(0)
u = eu. N(u) and N(i) denote the neighbor sets of user u and item i, respectively.

D.2 FINAL EMBEDDING REPRESENTATION

After passing through L layers of graph convolution, the final user and item embeddings are obtained
by averaging the weighted embeddings from all layers:

zu =

L∑
l=0

αlz
(l)
u , zi =

L∑
l=0

αlz
(l)
i (55)

where αl is the layer weight, typically set to 1
L+1 , and zu, zi ∈ Rd′

are the final representations used
for downstream tasks.

D.3 INFONCE LOSS

The enhanced representation is obtained by aggregating the directly connected nodes. The contrastive
loss for user u and item i is as follows:

Lst−user = −
∑
u∈U

ln
exp

(
sim(z

(0)
u , z

(k)
u)/τ

)
exp

(
sim(z

(0)
u , z

(k)
u)/τ

)
+

∑
v∈U,v ̸=u exp

(
sim(z

(0)
u , z

(k)
v)/τ

) (56)

Lst−item = −
∑
i∈I

ln
exp

(
sim(z

(0)
i , z

(k)
i)/τ

)
exp

(
sim(z

(0)
i , z

(k)
i)/τ

)
+

∑
j∈I,j ̸=i exp

(
sim(z

(0)
i , z

(k)
j)/τ

) (57)

Where sim(z
(0)
u , z

(k)
u) =

z(0)⊤
u z(k)

u

∥z(0)
u ∥∥z(k)

u ∥
is the cosine similarity, and τ is the temperature coefficient.

z
(k)
v is the embedding from other users (negative samples). The total contrastive loss is as follows:

Lstruct = Lst−user + Lst−item (58)

23

	Introduction
	Methods
	Deep Semantic Embedding Generator
	Definition of Reinforcement Learning
	Rule-Based Rewards
	HGPO Mechanism
	HGPO Objective Function

	Experiment
	Overall Performance
	HGPO In-depth Analysis
	Hyperparameter Sensitivity
	Ablation Experiment

	Conclusion
	Related work
	LLM Recommendation
	GNN-based Rec
	Graph Contrastive Learning

	Experimental Setup
	Datasets
	Baselines
	Evaluation Metrics
	Implementation Details
	Computational Cost and Efficiency
	Impact of different LLM architectures on the performance of LGHRec.
	Sensitivity Analysis on the False Negative Threshold

	Convergence Analysis of the HGPO Objective Function
	Review of the HGPO Algorithm
	Proof Outline
	Detailed Mathematical Proof
	Preliminaries
	Proving the Boundedness of HGPO
	Proving the Relevance of the Gradient
	Convergence to a Stationary Point

	Multi-Prototype Enhanced Graph Learner
	Graph Convolutional Layer
	Final Embedding Representation
	InfoNCE Loss

