Under review as a conference paper at ICLR 2026

LLM-CoOT ENHANCED GRAPH NEURAL RECOMMEN-
DATION WITH HARMONIZED GROUP PoLICY OPTIMIZA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNNSs) have advanced recommender systems by model-
ing interaction relationships. However, existing graph-based recommenders rely
on sparse ID features and do not fully exploit textual information, resulting in
low information density within representations. Furthermore, graph contrastive
learning faces challenges. Random negative sampling can introduce false negative
samples, while fixed temperature coefficients cannot adapt to the heterogeneity
of different nodes. In addition, current efforts to enhance recommendations with
large language models (LLMs) have not fully utilized their Chain-of-Thought
(CoT) reasoning capabilities to guide representation learning. To address these
limitations, we introduces LGHRec (LLM-CoT Enhanced Graph Neural Rec-
ommendation with Harmonized Group Policy Optimization). This framework
leverages the CoT reasoning ability of LLMs to generate semantic IDs, enrich-
ing reasoning processes and improving information density and semantic qual-
ity of representations. Moreover, we design a reinforcement learning algorithm,
Harmonized Group Policy Optimization (HGPO), to optimize negative sampling
strategies and temperature coefficients in contrastive learning. This approach
enhances long-tail recommendation performance and ensures optimization con-
sistency across different groups. Experimental results on three datasets demon-
strate that LGHRec improves representation quality through semantic IDs gen-
erated by LLM’s CoT reasoning and effectively boosts contrastive learning with
HGPO. Our method outperforms several baseline models. The code is available at:
https://anonymous.4open.science/r/LLM-Recl

1 INTRODUCTION

Recently, LLMs |Guo et al.| (2025)); |Wei et al.| (2022) have advanced the recommendation commu-
nity |Lin et al.[(2024)); Kaur et al.|(2025);/Zhang et al.|(2025a). Their generative capabilities enable
the provision of rich semantic information, forming a one-stage recommendation paradigm. This
paradigm shows promise in addressing the information loss issue that arises in traditional multi
stage recommender systems.Current research on LLMs for recommendation can be divided into
two categories. The first approach treats LLMs as recommender systems (LLMs as RSs)|Chen et al.
(2024); Yin et al.[(2023)); Zheng et al.| (2024);|Wang et al.[|(2019). However, it faces challenges such
as low online inference efficiency, insufficient use of collaborative filtering signals, and hallucination
issues Ji et al.| (2023); Yao et al.|(2023). The second approach utilizes knowledge generated by LLMs
to enhance existing models (LLM-enhanced RSs) Hu et al.|(2025); [Wang et al.|(2024)); Yang et al.
(2024); |L1u et al.[(2024a); Ren et al.| (2024). This approach is more flexible but has not fully explored
the deep potential of LLMs, particularly their CoT reasoning abilities.Most methods mainly rely on
information extracted from general domain knowledge, neglecting the possibility of guiding LLMs to
perform deeper semantic reasoning for recommendation tasks. How to guide LLMs to leverage CoT
reasoning capabilities and enhance collaborative filtering signals remains an unresolved challenge.

GNNs Wang et al.| (2019); |He et al.| (2020); Wu et al.| (2022 [2024a)) can capture higher-order collab-
orative signals but have drawbacks. They rely on ID features and struggle to leverage rich textual
information for semantic modeling, resulting in insufficient information density in representations,
particularly for long-tail items, where the representation quality is poor. GNNs are also sensitive to

https://anonymous.4open.science/r/LLM-Rec

Under review as a conference paper at ICLR 2026

Behavior History

4 Rec Results

Prompt LLM Fine-tuning
Context Learning

LLM-as-RSs

User

GNN

User-item
Interaction GNN
Graph
Item * ltem Emb — i -1

| Database |

User Item LLM

Information Feature
[S5) — o Recommend Model [) Rec Results
Encoder

Rec
Feature

LLM-enhanced RSs

Prompt LLM Fine-tuning

Figure 1: The differences between the three recommendation paradigms.

data sparsity |Cao et al.|(2023) and introduce noise when aggregating high-order neighbor informa-
tion Jiang et al. (2023). Therefore, researchers introduce graph contrastive learning |Lin et al.| (2022),
which enhance representation learning through structural and semantic contrastive losses. However,
existing graph contrastive learning have limitations as well. In large scale scenarios, their random
negative sampling introduces false negatives, which can mislead model’s optimization. Additionally,
the fixed temperature coefficient in the contrastive loss is not adaptable to the varying embedding
characteristics of groups with different degrees. This leads to poor contrastive learning results,
particularly for long-tail items. The differences of three paradigms are illustrated in Figure/I]

To address these issues, we propose LGHRec, it integrates CoT reasoning ability of LLM with
reinforcement learning for collaborative optimization. The goal is to combine semantic reasoning
capabilities of LLMs with the collaborative filter strengths of GNNs. Reinforcement learning is used
to optimize graph contrastive learning and enhance representation quality. LGHRec is LLM-enhanced
RSs paradigm. Offline, CoT reasoning of LLM generates item descriptions and extracts embeddings
as semantic IDs with higher information density. These semantic IDs are fused with IDs during
training to serve as initial item representations for the GNN. This allows the GNN to learn higher
quality representations by utilizing deep semantic information. Since semantic IDs are stored offline,
the delay from online LLM calls is avoided, making LGHRec suitable for industrial applications.
To address challenges in contrastive learning, including optimal negative sampling and temperature
coefficient selection across groups with varying degrees, as well as performance imbalance in Group
Relative Policy Optimization (GRPO) |Shao et al.| (2024)), we introduce HGPO algorithm. HGPO
incorporates cross-group coordination mechanism that constrains strategy differences between groups,
ensure global strategy consistency while adapt to the characteristics of each group. It improves long-
tail item recommendation performance.The contributions are as follows:

* We propose LGHRec, which leverages the CoT reasoning capabilities of LLMs to generate
high quality semantic IDs for GNNs. This approach enhances the information density of ID
features in GNNs while avoiding the high computational cost of online LLM inference.

* We introduce the HGPO algorithm to optimize graph contrastive learning. By employing
adaptive negative sampling, temperature coefficient adjustments, and a cross-group coordi-
nation mechanism, HGPO improves contrastive learning performance, enhances the model’s
adaptability to heterogeneous data, and boosts long-tail recommendation performance.

* We conduct extensive experiments on three datasets, demonstrating that LGHRec outper-
forms several baseline models and validating the effectiveness of the proposed method.

2 METHODS

We introduce the Deep Semantic Embedding Generator (DSEG) and HGPO. The implementation
details of the GNN are provided in the Appendix. The architecture of LGHRec is shown in Figure

Under review as a conference paper at ICLR 2026

("Policy Network

(Final Policy)

Negative Samples
LOSS NS Semantic ID Embedding
® €= §=sim(z,2) |

Temper‘_liture
Reward Reward Punish Punish ;
© CT) O A % A)

[GORGY)

Policy Update = =
(EEEED) ll o o ll
Be 56
Cross-group Coordination
Mechanisms o Sid
em Side
~\UInformation

@00 AAN

—

|I= WERD =I| f Qwen Isomain moda
(Embedding Layer)
u; ué u? u;l !1 !2 !3 !4 Qwen
L us ué U7 u I i5 i6 i7 8 Offline “
Train g T T T T T T T T -
,,,,Q,,,,,,,,,,,,,,,,,,,,,,Qsﬁf ,,,,,,,,,,, ftem |
Figure 2: The architecture diagram of the proposed LGHRec.
sl \eg) Basc @ Domain % Mixed-data W CoTl Task] @[@ Basc @ Domain J Mixed-data W CoT Task] \/*_IE_‘%ZH_U_'S}SIE;T\ “““““““““““““““““““““ “
* gl * I'You are a professional text analysis expert. Your task is to generate a detailed |
8ol | chain of thought analysis based on the item's textual description according to the }
o }five requirements listed below, and then summarize keywords that describe the |
B nr, | item'’s characteristics. Each keyword must be should focus on the item's attributes. }
rs s | Please analyze objectively and rationally.
= L=

} 1. The characteristic 1 of the item and the original text source of characteristic 1
72k v 1 2. The characteristic 2 of the item and the original text source of characteristic 2
} 3. The characteristic 3 of the item and the original text source of characteristic 3

73
v 1 4. The characteristic 4 of the item and the original text source of characteristic 4
. T T r T 70 T T T T T | Provide response in strict JSON format:{"CoT":"Step-by-step analysis with source
00655 00659 ooze; @%’558 00672 01817 0.1322ND ‘03'1@5)’225 01830 0.1835 ! text references", keywords':"Summarized keywords"}<[im_end|>
?% %b) | <|im_start|>user

|
|

|

|

|

|

681 et] e et !
[] ° } 5. The characteristic 5 of the item and the original text source of characteristic 5 }

|

|

|

I

l

et descriptioniofanie izeiroliows:(e siiextial descipon i Fendi)
Figure 3: After using various fine-tuning methods, the
general capabilities and recommendation performance Figure 4: The prompt template for guiding

of LGHRec: (a)Yelp dataset, (b)MIND dataset. LLM to perform CoT reasoning.

2.1 DEEP SEMANTIC EMBEDDING GENERATOR

Fine-tuning LLM can improve performance |Bao et al.| (2023)). We explore some fine-tuning methods
to generate item CoT reasoning text. We evaluate the NDCG @20 and MMLU, using Qwen2.5-32B-
Instruct model under various fine-tuning methods, including base, domain-adaptive, CoT task and
mixed fine-tuning. Mixed fine-tuning, which combines recommendation CoT dataset with general
dataset, helps retain the model’s foundational knowledge and prevents catastrophic forgetting. As
shown in Figure 3] this methods achieves the best balance between recommendation performance
and general capabilities, making it the preferred method for LGHRec. We designed prompts, as

shown in Figure |4} to guide LLM CoT reasoning, denoted as ngT, which is then encoded into
semantic IDs e(CfZ)T € R? using BERT model. This offline process ensures that item is processed
once and periodically updated, storing semantic IDs for direct use during GNN training. It leverages

the LLM’s reasoning capabilities while avoiding the latency of online services. To fuse semantic IDs

with collaborative filtering signals, we concatenate them with the ID embeddings eyl)) € R%4 and

apply linear layer, as initial item representations ego). The initial user representation eLO) is based on

ID embeddings, because user behavior changes more frequently, require real-time updates.

2.2 DEFINITION OF REINFORCEMENT LEARNING

In large scale recommender systems, contrastive learning face two challenges. First, calculate
similarity of all samples is expensive, and random sampling may introduce false negatives. So,
selecting high quality negative samples is essential. Second, the fixed temperature coefficient 7
cannot adapt to the heterogeneity of users and items. Active users or popular items with higher node
degrees require smaller 7 to enhance the distinction of hard negative samples, while low activity users

Under review as a conference paper at ICLR 2026

or long-tail items with sparse information need larger 7 to stabilize learn. To address these problems,
we model the optimization of contrastive learning as reinforcement learning problem. The state for
user v includes the user’s embedding z,,, the positive sample embedding z, the candidate negative
sample pool N, and the user’s degree d,,. The action consists of selecting M negative samples from
N,, and choosing 7 for the anchor. The policy network 7y (at|s:) outputs probability of selecting
negative samples and 7. The reward reflects the quality of the selected negative samples and 7.

2.3 RULE-BASED REWARDS

Reward Hard Negatives. Hard negatives are similar to the anchor but should not be mistaken for
positive samples. They provide gradient signals, helping the model learn finer features. Therefore,

we assign a reward to negative samples that are similar to the anchor user embedding sz)) but differ

in similarity from the positive sample embedding zq(f). The expression is as follows:

() = 4 F01 1 Oy < sim(2{”, z%) < Opy and sim(2{7, 22) < Opp
hard=n 0 otherwise

ey

where 0gN, Ocasy, Orp are similarity thresholds, and w; > 0.

Punish False Negatives. False negatives are actually similar to the anchor but are incorrectly
selected as negative samples. If the model treats them as negatives, it will mislead the learning
process. Therefore, we assign a negative reward to samples that are highly similar to either the anchor
user embedding z&o) or the positive sample embedding zq(f). The reward is as follows:
—wy if sim(z&o),z;;) > Opn
Rpase(2;) = § —ws if sim(207, %) > Opp (2)
0 otherwise

Punish Easy Negatives. Easy negatives are very dissimilar to the anchor, making them easy for
the model to distinguish. The gradient information they provide is limited, and their contribution
to the model’s learning is minimal. If the model frequently selects easy negatives, it may become
less effective during training, failing to fully utilize hard negatives that enhance its discriminative
ability. Therefore, we assign a negative reward to samples that are very dissimilar to the anchor user

embedding zﬁo). The reward is defined as follows:

—wy if sim (z&o), z;) < BOcasy_tow

0 otherwise

Reasy (Z:) = { 3)

Where, 0casy_1ow 18 a similarity threshold. The total reward for negative samples is as follows:
Ry = Rhard + Rfatse + Reasy 4
where w1 = wy = w3y = 1, wq = 0.5.

Self-Adaptive Temperature Reward R,. In GNNs, nodes with high degrees have rich neighborhood
information, making it easier to encounter hard negative samples during contrastive learning. For
these nodes, smaller temperature coefficient 7 can amplify similarity differences and help model learn
more refined features. Conversely, nodes with low degrees have sparse interactions. The positive
samples generated through data augmentation contain noise, result in low similarity with anchor. In
this case, smaller 7 would excessively penalize these nodes, hinder the model’s ability to learn from
sparse positive signals. A larger 7 helps tolerate noise and stabilizes learn for such nodes. So, fixed 7
is insufficient for optimal learning across different node types, and an adaptive mechanism is needed
to adjust the strength of contrastive learning based on node degree. We design reward to guide policy
network adjust 7 to match the target temperature T}gey (d,,) according to the degree of the node:

R, (U,Tgt)) ="Ws ‘T’tst) — Tigear (du) ®)

where wj is the hyperparameter and Tigea (d,,) is as follows:
1

T dt =
deal () 1+1log(1+4d,)

(6)

4

Under review as a conference paper at ICLR 2026

2.4 HGPO MECHANISM

Existing contrastive learning methods struggle to adapt to all user and item groups, result in insufficient
representation learning for low activity users and long-tail items. The GRPO only improves relative
performance within a group, which can cause conflicts between strategies across different groups
and negative affect long-tail items. So, we propose HGPO, a reinforcement learning algorithm that
uses group average rewards to guide policy learning. HGPO introduces a cross-group coordination
mechanism to optimize contrastive learning, ensuring global policy consistency while adapting to the
unique characteristics of different groups. The mechanism of HGPO is as follows:

Group Division G. Nodes are divided into K groups G = {¢1, . .., gk } based degree of the nodes.

Group Average Reward Rg(st). For state s; belonging to group g, its group average reward is the
expected reward of all possible actions in that state. We estimate it in the train batch B as follows:

_ 1
Rym o Y 7 @)
| g| (S;,a;,r;)EBg

where B, is the set of all samples (s}, aj;, ;) in batch B that belong to group g. R, represents the
average reward level of group g under the current policy.

Relative Advantage A7, For a sample (s, at, 1), its relative advantage is defined as the difference
between the actual reward r; of the action and the group’s average reward R,: Arel = py — Ry If
Arel > 0, the action outperforms the group average and should be encouraged.

2.5 HGPO OBJECTIVE FUNCTION

To maximize relative advantage, add entropy regularization to encourage exploration and introduce a
coordination loss to ensure cross-group consistency. The objective function of HGPO is as follows:

Lugpo(0) = —LPOLICY () + ¢, S[mg] + LEARM (g) ®)

Policy Loss. This is a policy gradient term based on the relative advantage A™!, and stability is
maintained through clipping. The expression is as follows:

LPOUCY(9) = B, [min (ry(0) A, clip(r¢(6), 1 — €,1 + €) A)] ©9)
Where, r:(0) = % is the probability ratio between the new and old policies. Maximizing
9o t|St
LPOMCY () increases the probability of selecting positive relative advantage actions.

Entropy Regularization S[my|. Without sufficient exploration, the algorithm tends to converge
quickly on groups with more samples or stronger reward signals, such as high activity users and
popular items. As a result, long-tail items and low-activity users receive insufficient exploration,
leading to poor performance on these groups. Entropy regularization encourages the policy network to
maintain randomness, discover customized strategies for different groups, and improve performance
on long-tail recommendations. The expression is as follows:

Slme) = Ee[H (o (- | 5¢))] (10)

Since HGPO involves two types of action spaces—negative sample selection and temperature
coefficient selection. Therefore, the overall expression is the sum of both:

H(Wa(' | St)) = Hneg(ﬂ-e(aneg | St)) + Htemp(ﬂ'é(atemp ‘ St)) (11)

Where, H,,.,4 is the entropy of the negative sample selection action. The policy 7y (areq|S¢) outputs a
discrete probability distribution P = {p1, pa, ..., pas} over the M possible negative samples, where

p; is the probability of selecting the j-th action, and Zjvil p; = 1. The expression is as follows:

M
Hyeq = — > pjlogp; (12)

j=1

Under review as a conference paper at ICLR 2026

Algorithm 1 HGPO Optimization Process

1: Inmitialize policy network parameters
2: for each training iteration do

3: Collect data (s¢, at, r+) using policy mg

4: Divide nodes into groups G = {g1, ..., gk } based on degrees
5: for each group g € G do B

6: Calculate group average reward 1?4 from current batch

7: end for

8: for each sample (s¢, a:,7¢) do

9: Determine group g of state s¢

10: Calculate relative advantage A7 = r; — R,
11: end for

12: Compute policy loss L¥OLICY (0) using relative advantages with clipping
13: Compute entropy regularization S[mg] for negative sampling and temperature selection
14: Compute harmonizing loss L7 4% (6) by minimizing variance of group rewards

15: Update policy network parameters € by minimizing total loss:
16: Lucpo(8) = —LFOLICY(0) + ¢1S[mg] + LEARM ()
17: end for

Hiemp is the entropy of the temperature selection action. The policy 7 (atemp|s:) outputs the
parameters of a Gaussian distribution for the temperature coefficient in the current state s;, specifically
the mean £ and variance o2, from which the temperature 7 is sampled. The expression is as follows:

1 1
Hiemp = 5 log(2mec?) = 5 (1 + log(2mc?)) (13)
Therefore, a larger variance results in greater entropy and stronger exploration.

Coordination Loss LHARM(), We minimize the variance of the group average rewards R,
using the objective function LFARM(9) = Ay - Vargeg[R,], where Apam controls the strength of
coordination. Minimizing LHARM encourages the policy network to optimize globally while adapting
to the characteristics of each group through the relative advantage A, ensuring similar average
reward levels across groups. This approach prevents the algorithm from over optimizing one group at
the expense of others. The optimization process of the HGPO algorithm is shown in Algorithm T}

3 EXPERIMENT

3.1 OVERALL PERFORMANCE

We applied LGHRec to some baselines across three datasets, with the results shown in Table [I]
LGHRec improved the performance of all models. On the sparse Yelp2018 and Amazon-Book
datasets, LGHRec mitigated data sparsity challenges through deep semantic augmentation and
optimization for long-tail items. This resulted in significant performance improvements of 3% to
7%. Notably, on the denser MIND dataset, where baselines already captured strong collaborative
signals, LGHRec still achieved a performance gain of up to 7.49% through its advanced optimization
strategies. It demonstrate the robustness of the LGHRec across diverse data environments.

3.2 HGPO IN-DEPTH ANALYSIS

Performance Comparison of Interactive Sparsity Levels. We divided users and items into five
levels based on interaction frequency across the three datasets. We then compared the NDCG @20
performance of LGHRec and the baseline across different activity groups. As shown in Figure[3]
LGHRec improved performance for low activity users and reduced the performance gap between
groups with varying activity levels. On the Yelp and Book datasets, where long-tail items are more
prevalent, LGHRec achieved more substantial improvements, demonstrating its effectiveness in
enhancing long-tail recommendations. This improvement is attributed to the HGPO mechanism,
which stabilizes the learning of low degree nodes through adaptive temperature adjustment and
ensures that long-tail groups are not overshadowed by high activity groups via coordination loss.

Embedding Distribution Analysis. We used kernel density estimation to visualize the learned item
embeddings on the Yelp dataset, as shown in Figure[6] The results show that embeddings learned

Under review as a conference paper at ICLR 2026

Table 1: Overall performance comparisons.

Model Yelp2018 Amazon-Book MIND
Baseline Variants Recall@10 Recall@20 NDCG@10 NDCG@20 Recall@10 Recall@20 NDCG@10 NDCG@20 Recall@10 Recall@20 NDCG@10 NDCG@20
Base 0.0363 0.0675 0.0412 0.0555 0.0232 0.0478 0.0306 0.0379 0.0794 0.1366 0.0946 0.1252
SGL + LGHRec 0.0387 0.0710 0.0428 0.0582 0.0241 0.0508 0.0326 0.0392 0.0826 0.1435 0.0996 0.1301
Relalmpr 1 6.70% 5.13% 3.95% 4.78% 3.75% 6.26% 6.41% 3.32% 3.98% 5.07% 5.27% 3.92%
Base 0.0412 0.0721 0.0467 0.0601 0.0248 0.0515 0.0324 0.0410 0.0957 0.1642 0.1012 0.1279
SimGCL + LGHRec 0.0430 0.0764 0.0493 0.0620 0.0262 0.0551 0.0345 0.0434 0.1002 0.1680 0.1086 0.1308
Relalmpr 4.39% 6.01% 5.59% 3.13% 5.67% 6.96% 6.61% 5.93% 4.70% 2.34% 7.27% 227%
Base 0.0464 0.0793 0.0521 0.0668 0.0312 0.0585 0.0329 0.0436 0.1069 0.1757 0.1134 0.1384
LightGCL + LGHRec 0.0480 0.0852 0.0558 0.0692 0.0322 0.0626 0.0346 0.0456 0.1110 0.1829 0.1188 0.1427
Relalmpr 1 3.48% 7.43% 7.06% 3.53% 3.28% 6.94% 5.19% 4.65% 3.80% 4.10% 4.78% 3.14%
Base 0.0431 0.0757 0.0482 0.0642 0.0278 0.0611 0.0374 0.0476 0.1125 0.1813 0.1187 0.1439
VGCL + LGHRec 0.0453 0.0796 0.0513 0.0689 0.0296 0.0637 0.0392 0.0509 0.1205 0.1851 0.1222 0.1518
Relalmpr 1 5.01% 5.10% 6.47% 7.37% 6.63% 4.21% 491% 6.99% 7.14% 2.08% 2.95% 5.47%
Base 0.0375 0.0743 0.0475 0.0611 0.0298 0.0624 0.0428 0.0513 0.1248 0.1975 0.1366 0.1615
NESCL + LGHRec 0.0390 0.0781 0.0508 0.0633 0.0309 0.0669 0.0456 0.0543 0.1341 0.2101 0.1463 0.1665
Relalmpr 1 3.95% 5.07% 6.90% 3.53% 3.71% 7.14% 6.44% 5.91% 7.49% 6.35% 7.12% 3.12%
Base 0.0481 0.0799 0.0474 0.0638 0.0337 0.0639 0.0438 0.0522 0.1203 0.1879 0.1295 0.1742
SCCF + LGHRec 0.0498 0.0850 0.0500 0.0671 0.0350 0.0680 0.0461 0.0556 0.1240 0.2004 0.1324 0.1813
Relalmpr 351% 6.39% 5.38% 5.24% 3.92% 6.44% 5.24% 6.51% 3.09% 6.64% 2.23% 4.05%
Base 0.0469 0.0761 0.0465 0.0613 0.0659 0.1077 0.0747 0.0921 0.1256 0.1889 0.1312 0.1631
CIKG + LGHRec 0.0495 0.0808 0.0487 0.0650 0.0675 0.1152 0.0794 0.0972 0.1314 0.1958 0.1349 0.1725
Relalmpr 1 5.53% 6.13% 4.83% 6.01% 2.47% 6.93% 6.24% 5.53% 4.60% 3.66% 2.81% 5.75%
Base 0.0473 0.0772 0.0479 0.0628 0.0764 0.1146 0.0959 0.1163 0.1301 0.1962 0.1359 0.1687
AutoGraph + LGHRec 0.0495 0.0800 0.0499 0.0646 0.0797 0.1192 0.1030 0.1206 0.1350 0.2048 0.1427 0.1746
Relalmpr 1 4.69% 3.66% 4.23% 2.81% 4.28% 4.02% 7.36% 3.68% 3.79% 4.38% 5.01% 3.49%
Base 0.0485 0.0802 0.0484 0.0644 0.0347 0.0577 0.0375 0.0462 0.1314 0.1996 0.1402 0.1748
LightCCF + LGHRec 0.0521 0.0826 0.0504 0.0674 0.0370 0.0599 0.0389 0.0490 0.1412 0.2052 0.1488 0.1835
Relalmpr 1 7.33% 3.03% 4.12% 4.70% 6.71% 3.78% 3.63% 6.13% 7.46% 2.81% 6.11% 4.97%
Base 0.0461 0.0761 0.0449 0.0625 0.0331 0.0548 0.0369 0.0452 0.1334 0.1934 0.1410 0.1734
TALLRec LGHRec(LightCCF) 0.0521 0.0826 0.0504 0.0674 0.0370 0.0599 0.0389 0.0490 0.1412 0.2052 0.1488 0.1835
Relalmpr 13.02% 8.54% 12.25% 7.84% 11.78% 9.31% 5.42% 8.41% 5.84% 6.10% 5.53% 5.82%
Base 0.0464 0.0778 0.0465 0.0631 0.0338 0.0556 0.0362 0.0439 0.1322 0.1921 0.1379 0.1720
SPRec LGHRec(LightCCF) 0.0521 0.0826 0.0504 0.0674 0.0370 0.0599 0.0389 0.0490 0.1412 0.2052 0.1488 0.1835
Relalmpr 1 12.28% 6.17% 8.39% 6.81% 9.47% 7.73% 7.46% 11.62% 6.80% 6.81% 7.90% 6.68%
Users o LightGCL —— LightcCF — SCCFsLGH Users o LightGCL —— LightcCF —— ScCR+LGH Users e LightGCL > LightcCF < SCCR+LGH
ttoms. sc = LightGCLYLGH 7 LightCCF+LGH ttoms. sccr 5~ LightGCLYLGH —+— LightCCF+LGH ttoms sccr & LightGCL+LGH —— LightCCF+LGH
60 Yelp V] 0.15 62 Book P 0.10 34 MIND 0.25
/4
45 0.13 46 0.08 27 0.22
s S] Yo i
301% $10.10 31E SH0.07 204E Sto.as
: 2 & g
H g H g 3 2
15 // Z 0.07 15 0.05 13 0.14
L — /
- 0.05 0 0.03 .11
[5,10) [10,30) [30,70) [70,100) [100,c) [5,10) [10,30) [30,70) [70,100) [100,0) [5,10) [10,30) [30,70) [70,100) [100,0)
Number of Interactions Number of Interactions Number of Interactions

Figure 5: A comparison of NDCG @20 between LGHRec and baseline models across three datasets,
grouped by different user and item interaction levels based on interaction count.

using only ID embeddings (a) form dispersed and unevenly dense clusters, making it difficult to
distinguish semantically similar items. After introducing CoT semantic information from LLMs (b),
the embedding distribution becomes more coherent, improving the discriminability of the embeddings.
Embeddings learned by the full LGHRec model (c) exhibit a more uniform and dispersed distribution,
indicating that the model is able to learn finer features to better distinguish different items.

Adaptive Temperature Coefficient. To verify HGPO can select the optimal temperature coefficient
7 for different degrees nodes, we visualized the average 7 selected by HGPO on the Yelp dataset. As
shown in Figure[7(a), HGPO assigns larger 7 values to low degree nodes, with 7 gradually decreasing
as node degree increases. This adaptive behavior demonstrates the effectiveness of HGPO: smaller
7 values enhance the feature discriminability of high activity nodes, while larger 7 values stabilize
the learning process for low activity nodes in sparse data scenarios. In this way, HGPO dynamically
adjusts the strength of contrastive learning based on node characteristics.

Negative Sampling Analysis. We compared similarity distribution for negative samples selected
by HGPO and random sample on Yelp. As shown in Figure [7(b), 39.83% of the negative samples
selected by HGPO fall within the hard negative range [0.5, 0.8), which is much higher than the 20.39%
through random sample. This increase is due to Ry, incentivize the selection of rich information
samples. In contrast, only 15.37% of easy negative samples (similarity < 0.2) were selected by HGPO,
compared to 45.67% from random sample, as Ry, penalizes easy negatives. Although HGPO
selected more false negative samples (9.51% versus 4.32% with random sampling), this reflects
HGPO'’s exploration of the boundaries of hard samples. With R,y controlling the selection of false
negatives, HGPO balances exploration and risk, focusing on rich information hard negatives.

Under review as a conference paper at ICLR 2026

Features.

10 05 00 05 10 10 05 00 05 10 10 05 00 05 10
Features Features Features

(a) (b) (©

Figure 6: The KDE visualizes the distribution of item embeddings.

[0.8,1.0)Potential False Negatives [0.5,0.8)Hard Negatives

I [0.2,05)Medium Negatives [0.0,0.2)Easy Negatives
012 00020
User LGHRec-GRPO
—— LGHRec-NoHARM
Item L GHRec-Full
0.10 - 40%
a3 0.0015
.
ool g
g 5
[So0010 |-
i 8
0.06 - >
0,0005 |-
004
o 15%
10%
002 b— . : T T - 0.0000
(510 [(1020) (070 [70100) [100:0) Random sampling HGPO afe[c[afelc[afslc
Degreeinterval pling method Yep | Amazon-Book | MIND

(@ (b) (c)

Figure 7: The results of various mechanisms of HGPO on the Yelp dataset.

Effect of Coordination Mechanism. The coordination loss LHARM addresses strategy inconsistency
that arises when GRPO is applied to different activity groups, which can result in over optimization
of certain groups at the expense of others. We compared NDCG @20 variance across user activity
groups for the full LGHRec, LGHRec-NoHARM (without coordination loss), and LGHRec-GRPO
(with HGPO replaced by GRPO). As shown in Figure[7{c), the full LGHRec exhibited the lowest
performance variance across activity groups. When coordination loss was removed, the performance
variance of LGHRec-NoHARM increased and became similar to LGHRec-GRPO. This result in-
dicates that the coordination loss helps align strategies across groups by penalizing differences in
average rewards. It prevents the over optimization of high activity groups.

3.3 HYPERPARAMETER SENSITIVITY

We use LightCCF as backbone and adjust the coordination weight (Ap,m), entropy coefficient (c1),
and temperature reward coefficient (ws) on three datasets. We observe the NDCG @20, as shown
in Figure[8] When the coordination weight Apym = 0, the model degenerates into GRPO, result in
low performance and confirm the effectiveness of the coordination mechanism. As Apymy increases
to around 0.5, performance improves due to better alignment of strategies across different groups.
However, if Ap,m becomes too high, performance slightly decreases because of excessive emphasis
on consistency. For the entropy coefficient ¢y, setting it to 0 leads to insufficient exploration and
suboptimal performance. A small value promotes exploration and improves performance, while a
large value causes the strategy to become too random, result in performance degradation. Regard
the temperature reward coefficient ws, when set it to 0 causes a performance drop. Increasing
ws encourages the model to learn temperature adjustment strategies for heterogeneous data, with
performance peaking at ws = 1.2. However, if w5 is too high, the model focuses excessively on the
temperature reward and neglects negative sample selection, thereby reducing performance.

Under review as a conference paper at ICLR 2026

—=— Yelp—®— Amazon-Book—&— MIND —#— Yelp—®— Amazon-Book—4— MIND —#— Yelp—®— Amazon-Book—4&— MIND
0Bl LA, 018F 4 A A, 018 o 4 4 A A A A A A,
0.16 0.16 0.16
014 - 0.14 014 -
8 8 8
© © ®
Q Q Q
0128 0128 0128
E g E
009 |- 009 |- 009 |-
007 - — 5 . R N 007F L e a4 o wm—w -
05 e——— " ——» o 005 O & ¢ e 4 005 e—o—e o o o0 o
T T T T T T T T T T T
0 03 05 08 1 0 02 06 08 1 0 01 03 05 08 1 12 15 18 2
Aharm c1 W
@ (b) (c)

Figure 8: The results of three representative hyperparameter experiments.

Table 2: Results of ablation experiments performed on three datasets

Variants Yelp2018 Amazon-Book MIND Explanation
LGHRec (Full) 0.00% 0.00% 0.00% Full model with all components.

Impact of DSEG:
LGHRec-NoDSEG -6.12% -7.96% -5.26% Without semantic enhancement, using Light CCF+HGPO.
LGHRec-RawText -3.53% -4.82% -3.31% Using raw text embeddings without CoT.
LGHRec (Basic LLM CoT) -2.58% -3.14% -2.10% Using LLM-generated CoT embeddings without fine-tuning.
LGHRec (Domain-tuned CoT) -1.83% -2.32% -1.32% Using LLM-generated CoT embeddings with domain fine-tuning.
LGHRec (CoT Task Fine-tuned) -0.91% -1.21% -0.61% Using LLM-generated CoT embeddings with CoT task fine-tuning.
LGHRec (Weighted Sum Fusion) -1.10% -1.52% -0.88% Using weighted summation for feature fusion.

Impact of HGPO:
LGHRec-NoHGPO -4.27% -5.23% -3.98% Use standard contrastive loss (fixed 7, random negative sampling)
LGHRec-NoAdaptiveTau -2.12% -2.72% -2.13% HGPO optimizes only negative sampling with 7 fixed
LGHRec-RandomNeg -2.83% -3.41% -2.79% HGPO only optimizes 7, using random negative sampling
LGHRec-GRPO -1.34% -1.71% -1.14% Using GRPO optimization without the coordination mechanism

3.4 ABLATION EXPERIMENT

We evaluated NDCG @20 on three datasets, the results in Table E} The full LGHRec outperformed
LGHRec-NoDSEG, demonstrate that LLM-generated semantic IDs enhance the information density
and quality of the graph model’s representations. The CoT reasoning capability of LLMs proved cru-
cial, because LGHRec provide higher quality representations compare to LGHRec-RawText, which
uses only raw text embeddings. The mixed fine-tuning method achieve the best results, effectively
generate high quality semantic IDs, balance recommendation performance and general capabilities.
In feature fusion, concatenation and linear layer outperformed weighted summation. Regard the
impact of HGPO, the full LGHRec outperformed LGHRec-NoHGPO, confirm the effectiveness
of HGPO. LGHRec also performed better than LGHRec-GRPO, highlight the importance of the
coordination loss in HGPO for ensuring consistency across groups. Remove the adaptive temperature
adjustment mechanism in LGHRec-NoAdaptiveTau led to performance drop, indicate that adaptive
temperature adjustment is essential. Finally, LGHRec-RandomNeg, which uses random negative
sampling, performed worse than the full LGHRec, demonstrate the superiority of guiding the agent
to select rich information negative samples through reinforcement learning.

4 CONCLUSION

We propose LGHRec, which leverages the CoT reasoning ability of LLMs to generate semantic IDs for
items offline, thereby guiding the collaborative filtering process of GNNs. LGHRec employs HGPO
to optimize graph contrastive learning through strategic negative sampling, cross-group coordination,
and adaptive temperature adjustment. The main contribution of LGHRec is its ability to enhance
representation quality and information density via CoT reasoning, while optimizing contrastive
learning with HGPO. This approach balances semantic richness, efficiency, and data heterogeneity.
Experimental results show that LGHRec outperforms several graph contrastive learning models,
demonstrating the effectiveness of combining LLM CoT reasoning with reinforcement learning in
graph recommender systems. Future research will explore integrating multimodal information, such
as images, into LLM CoT reasoning to generate item representations that incorporate both visual and
textual semantic understanding.

Under review as a conference paper at ICLR 2026

REFERENCES

Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He. Tallrec: An
effective and efficient tuning framework to align large language model with recommendation. In
Proceedings of the 17th ACM Conference on Recommender Systems, pp. 1007-1014, 2023.

Xuheng Cai, Chao Huang, Lianghao Xia, and Xubin Ren. Lightgcl: Simple yet effective graph
contrastive learning for recommendation. arXiv preprint arXiv:2302.08191, 2023.

Tianruo Cao, Honghui Chen, Zepeng Hao, and Tao Hu. Lora-ncl: Neighborhood-enriched contrastive
learning with low-rank dimensionality reduction for graph collaborative filtering. Mathematics, 11
(16):3577, 2023.

Junyi Chen and Toyotaro Suzumura. A prompting-based representation learning method for recom-
mendation with large language models. arXiv preprint arXiv:2409.16674, 2024.

Runjin Chen, Mingxuan Ju, Ngoc Bui, Dimosthenis Antypas, Stanley Cai, Xiaopeng Wu, Leonardo
Neves, Zhangyang Wang, Neil Shah, and Tong Zhao. Enhancing item tokenization for generative
recommendation through self-improvement. arXiv preprint arXiv:2412.17171, 2024.

Jiaxin Deng, Shiyao Wang, Kuo Cai, Lejian Ren, Qigen Hu, Weifeng Ding, Qiang Luo, and Guorui
Zhou. Onerec: Unifying retrieve and rank with generative recommender and iterative preference
alignment. arXiv preprint arXiv:2502.18965, 2025.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171-4186, 2019.

Yingpeng Du, Di Luo, Rui Yan, Xiaopei Wang, Hongzhi Liu, Hengshu Zhu, Yang Song, and Jie
Zhang. Enhancing job recommendation through llm-based generative adversarial networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 8363-8371, 2024.

Chongming Gao, Ruijun Chen, Shuai Yuan, Kexin Huang, Yuanqing Yu, and Xiangnan He. Sprec:
Self-play to debias llm-based recommendation. In Proceedings of the ACM on Web Conference
2025, pp. 5075-5084, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of the
43rd International ACM SIGIR conference on research and development in Information Retrieval,
pp. 639-648, 2020.

Zheng Hu, Zhe Li, Ziyun Jiao, Satoshi Nakagawa, Jiawen Deng, Shimin Cai, Tao Zhou, and Fuji
Ren. Bridging the user-side knowledge gap in knowledge-aware recommendations with large
language models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp.
11799-11807, 2025.

Minhye Jeon, Seokho Ahn, and Young-Duk Seo. Topic-aware knowledge graph with large language
models for interoperability in recommender systems. arXiv preprint arXiv:2412.20163, 2024.

Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko Ishii, and Pascale Fung. Towards mitigating
hallucination in large language models via self-reflection. arXiv preprint arXiv:2310.06271, 2023.

Yanggqin Jiang, Chao Huang, and Lianghao Huang. Adaptive graph contrastive learning for recom-
mendation. In Proceedings of the 29th ACM SIGKDD conference on knowledge discovery and
data mining, pp. 4252-4261, 2023.

Kirandeep Kaur, Manya Chadha, Vinayak Gupta, and Chirag Shah. Efficient and responsible
adaptation of large language models for robust and equitable top-k recommendations, 2025. URL
https://arxiv.org/abs/2501.04762.

10

https://arxiv.org/abs/2501.04762

Under review as a conference paper at ICLR 2026

Yuxuan Lei, Jianxun Lian, Jing Yao, Xu Huang, Defu Lian, and Xing Xie. Recexplainer: Aligning
large language models for explaining recommendation models. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1530-1541, 2024.

Qingyao Li, Wei Xia, Kounianhua Du, Qiji Zhang, Weinan Zhang, Ruiming Tang, and Yong Yu.
Learning structure and knowledge aware representation with large language models for concept
recommendation. arXiv preprint arXiv:2405.12442, 2024.

Xinyu Lin, Wenjie Wang, Yongqi Li, Shuo Yang, Fuli Feng, Yinwei Wei, and Tat-Seng Chua. Data-
efficient fine-tuning for llm-based recommendation. In Proceedings of the 47th international ACM
SIGIR conference on research and development in information retrieval, pp. 365-374, 2024.

Zihan Lin, Changxin Tian, Yupeng Hou, and Wayne Xin Zhao. Improving graph collaborative filtering
with neighborhood-enriched contrastive learning. In Proceedings of the ACM web conference 2022,
pp. 2320-2329, 2022.

Fan Liu, Yaqi Liu, Huilin Chen, Zhiyong Cheng, Ligiang Nie, and Mohan Kankanhalli. Understanding
before recommendation: Semantic aspect-aware review exploitation via large language models.
ACM Transactions on Information Systems, 43(2):1-26, 2025.

Qidong Liu, Xian Wu, Xiangyu Zhao, Yejing Wang, Zijian Zhang, Feng Tian, and Yefeng Zheng.
Large language models enhanced sequential recommendation for long-tail user and item. arXiv
e-prints, pp. arXiv—2405, 2024a.

Qidong Liu, Xiangyu Zhao, Yuhao Wang, Yejing Wang, Zijian Zhang, Yuqi Sun, Xiang Li, Maolin
Wang, Pengyue Jia, Chong Chen, et al. Large language model enhanced recommender systems:
Taxonomy, trend, application and future. arXiv preprint arXiv:2412.13432, 2024b.

Sichun Luo, Bowei He, Haohan Zhao, Wei Shao, Yanlin Qi, Yinya Huang, Aojun Zhou, Yuxuan Yao,
Zongpeng Li, Yuanzhang Xiao, et al. Recranker: Instruction tuning large language model as ranker
for top-k recommendation. ACM Transactions on Information Systems, 2024.

Haohao Qu, Wengqi Fan, Zihuai Zhao, and Qing Li. Tokenrec: learning to tokenize id for llm-based
generative recommendation. arXiv preprint arXiv:2406.10450, 2024.

Xubin Ren, Wei Wei, Lianghao Xia, Lixin Su, Suqi Cheng, Junfeng Wang, Dawei Yin, and Chao
Huang. Representation learning with large language models for recommendation. In Proceedings
of the ACM Web Conference 2024, pp. 3464-3475, 2024.

Keigo Sakurai, Ren Togo, Takahiro Ogawa, and Miki Haseyama. LIm is knowledge graph reasoner:
Llm’s intuition-aware knowledge graph reasoning for cold-start sequential recommendation. In
European Conference on Information Retrieval, pp. 263-278. Springer, 2025.

Rong Shan, Jianghao Lin, Chenxu Zhu, Bo Chen, Menghui Zhu, Kangning Zhang, Jieming Zhu,
Ruiming Tang, Yong Yu, and Weinan Zhang. An automatic graph construction framework based
on large language models for recommendation. arXiv preprint arXiv:2412.18241, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Chao Sun, Yaobo Liang, Yaming Yang, Shilin Xu, Tianmeng Yang, and Yunhai Tong. Rlrf4rec:
Reinforcement learning from recsys feedback for enhanced recommendation reranking. arXiv
preprint arXiv:2410.05939, 2024.

Peijie Sun, Le Wu, Kun Zhang, Xiangzhi Chen, and Meng Wang. Neighborhood-enhanced supervised
contrastive learning for collaborative filtering. IEEE Transactions on Knowledge and Data
Engineering, 36(5):2069-2081, 2023.

Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural graph collaborative

filtering. In Proceedings of the 42nd international ACM SIGIR conference on Research and
development in Information Retrieval, pp. 165-174, 2019.

11

Under review as a conference paper at ICLR 2026

Yan Wang, Zhixuan Chu, Xin Ouyang, Simeng Wang, Hongyan Hao, Yue Shen, Jinjie Gu, Sigiao Xue,
James Zhang, Qing Cui, et al. LImrg: Improving recommendations through large language model
reasoning graphs. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
19189-19196, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Bin Wu, Xiangnan He, Qi Zhang, Meng Wang, and Yangdong Ye. Gcrec: Graph-augmented capsule
network for next-item recommendation. /[EEE Transactions on Neural Networks and Learning
Systems, 34(12):10164-10177, 2022.

Bin Wu, Xun Su, Jing Liang, Zhongchuan Sun, Lihong Zhong, and Yangdong Ye. Graph gating-mixer
for sequential recommendation. Expert Systems with Applications, 238:122060, 2024a.

Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and Xing Xie. Self-
supervised graph learning for recommendation. In Proceedings of the 44th international ACM
SIGIR conference on research and development in information retrieval, pp. 726735, 2021.

Yihong Wu, Le Zhang, Fengran Mo, Tianyu Zhu, Weizhi Ma, and Jian-Yun Nie. Unifying graph
convolution and contrastive learning in collaborative filtering. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 3425-3436, 2024b.

Yunjia Xi, Weiwen Liu, Jianghao Lin, Xiaoling Cai, Hong Zhu, Jieming Zhu, Bo Chen, Ruiming Tang,
Weinan Zhang, and Yong Yu. Towards open-world recommendation with knowledge augmentation
from large language models. In Proceedings of the 18th ACM Conference on Recommender
Systems, pp. 12-22, 2024.

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-pack:
Packed resources for general chinese embeddings. In Proceedings of the 47th international ACM
SIGIR conference on research and development in information retrieval, pp. 641-649, 2024.

Shenghao Yang, Weizhi Ma, Peijie Sun, Qingyao Ai, Yiqun Liu, Mingchen Cai, and Min Zhang.
Sequential recommendation with latent relations based on large language model. In Proceedings
of the 47th International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 335-344, 2024.

Yonghui Yang, Zhengwei Wu, Le Wu, Kun Zhang, Richang Hong, Zhiqiang Zhang, Jun Zhou, and
Meng Wang. Generative-contrastive graph learning for recommendation. In Proceedings of the
46th international ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 1117-1126, 2023.

Jia-Yu Yao, Kun-Peng Ning, Zhen-Hui Liu, Mu-Nan Ning, Yu-Yang Liu, and Li Yuan. Llm lies:
Hallucinations are not bugs, but features as adversarial examples. arXiv preprint arXiv:2310.01469,
2023.

Bin Yin, Junjie Xie, Yu Qin, Zixiang Ding, Zhichao Feng, Xiang Li, and Wei Lin. Heterogeneous
knowledge fusion: A novel approach for personalized recommendation via llm. In Proceedings of
the 17th ACM Conference on Recommender Systems, pp. 599-601, 2023.

Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung Nguyen. Are graph
augmentations necessary? simple graph contrastive learning for recommendation. In Proceedings
of the 45th international ACM SIGIR conference on research and development in information

retrieval, pp. 1294-1303, 2022.

Chiyu Zhang, Yifei Sun, Minghao Wu, Jun Chen, Jie Lei, Muhammad Abdul-Mageed, Rong Jin,
Angli Liu, Ji Zhu, Sem Park, et al. Embsum: Leveraging the summarization capabilities of large
language models for content-based recommendations. In Proceedings of the 18th ACM Conference
on Recommender Systems, pp. 1010-1015, 2024a.

12

Under review as a conference paper at ICLR 2026

Weizhi Zhang, Yuanchen Bei, Liangwei Yang, Henry Peng Zou, Peilin Zhou, Aiwei Liu, Yinghui
Li, Hao Chen, Jianling Wang, Yu Wang, Feiran Huang, Sheng Zhou, Jiajun Bu, Allen Lin, James
Caverlee, Fakhri Karray, Irwin King, and Philip S. Yu. Cold-start recommendation towards
the era of large language models (llms): A comprehensive survey and roadmap, 2025a. URL
https://arxiv.org/abs/2501.01945.

Xiaokun Zhang, Bo Xu, Youlin Wu, Yuan Zhong, Hongfei Lin, and Fenglong Ma. Finerec: Exploring
fine-grained sequential recommendation. In Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 1599-1608, 2024b.

Xiaoyu Zhang, Yishan Li, Jiayin Wang, Bowen Sun, Weizhi Ma, Peijie Sun, and Min Zhang. Large
language models as evaluators for recommendation explanations. In Proceedings of the 18th ACM
Conference on Recommender Systems, pp. 33—42, 2024c.

Yabin Zhang, Wenhui Yu, Erhan Zhang, Xu Chen, Lantao Hu, Peng Jiang, and Kun Gai. Recgpt:
Generative personalized prompts for sequential recommendation via chatgpt training paradigm.
arXiv preprint arXiv:2404.08675, 2024d.

Yu Zhang, Yiwen Zhang, Yi Zhang, Lei Sang, and Yun Yang. Unveiling contrastive learning’s
capability of neighborhood aggregation for collaborative filtering. arXiv preprint arXiv:2504.10113,
2025b.

Qian Zhao, Hao Qian, Ziqi Liu, Gong-Duo Zhang, and Lihong Gu. Breaking the barrier: utilizing
large language models for industrial recommendation systems through an inferential knowledge
graph. In Proceedings of the 33rd ACM International Conference on Information and Knowledge
Management, pp. 5086-5093, 2024.

Wayne Xin Zhao, Junhua Chen, Pengfei Wang, Qi Gu, and Ji-Rong Wen. Revisiting alternative
experimental settings for evaluating top-n item recommendation algorithms. In Proceedings of the
29th ACM International Conference on Information & Knowledge Management, pp. 2329-2332,
2020.

Bowen Zheng, Yupeng Hou, Hongyu Lu, Yu Chen, Wayne Xin Zhao, Ming Chen, and Ji-Rong Wen.
Adapting large language models by integrating collaborative semantics for recommendation. In
2024 IEEE 40th International Conference on Data Engineering (ICDE), pp. 1435-1448. IEEE,
2024.

13

https://arxiv.org/abs/2501.01945

Under review as a conference paper at ICLR 2026

Appendix

A RELATED WORK

A.1 LLM RECOMMENDATION

Research on using LLMs for recommendations can be categorized into two types. The first category
is LLM-as-RSs, where LLMs are directly employed as recommender systems (Bao et al.| (2023);
Zhang et al.| (2024d); Luo et al.| (2024); Lei et al.| (2024); Zhang et al.|(2024c). These systems are
fine-tuned to generate recommendation lists. For instance, RecGPT [Zhang et al.|(2024d)) fine-tunes
a Transformer model for sequential recommendation; EITGR |Chen et al.| (2024) uses LLMs to
generate item labels and adapt tokenization strategies dynamically; SPRec |Gao et al.|(2025) generates
positive and negative samples iteratively to optimize preference alignment; TALLRec [Bao et al.
(2023) optimizes through instruction fine-tuned and recommendation task refinement; and RLRF4Rec
Sun et al.[(2024)) generates user preferences with LLMs and refines them through feedback training.
Although this approach offers end-to-end generative capabilities, it faces challenges such as low
efficiency, underuse of collaborative signals, and hallucination problems. The second category is
LLM-enhanced RSs, which improve existing recommendation models using the output text from
LLMs. Pretrained language models [Devlin et al.|(2019)) or specialized embedding methods [Xiao
et al.| (2024) extract embeddings from LLM-generated text, which are then used as item features in
recommendation models |Xi et al.|(2024)); Zhang et al.| (2024a); |Liu et al.[(2024b)); Qu et al.| (2024);
Deng et al.| (2025). For example, KAR [Xi et al.|(2024) integrates knowledge extracted from LLMs
into the model; Du et al.|(2024) optimizes representations by extracting explicit and implicit user
information; and EmbSum |Zhang et al.| (2024a) uses LLMs to generate user interests as model
features. This approach is more flexible and friendly, but current methods have not fully leveraged
the chain-of-thought (CoT) reasoning capabilities of LLMs to produce higher quality, more rich
information semantic representations.

A.2 GNN-BASED REC

Some methods He et al.|(2020) rely on ID features and make insufficient use of textual semantic
information. To address this, some studies attempt to combine large language models (LLMs) with
graph neural networks (GNNs) to enhance graph structures or node features. For instance, LLMs
are used to infer potential relationships between nodes and add edges |Zhao et al.[(2024); |Liu et al.
(2025)); Zhang et al.| (2024b)). One approach, LLM-KERec |[Zhao et al.|(2024), extracts entities and
infers relationships using LLMs to construct supplementary graphs. Another method introduces
latent factors inferred by LLMs as new nodes to build richer semantic graphs |Shan et al.| (2024);
Jeon et al|(2024); [Hu et al.| (2025), such as AutoGraph [Shan et al.| (2024)), which uses LLMs to
infer user preferences and item knowledge, encoding them into semantic vectors and extracting latent
factors as graph nodes. Other studies have enhanced GNN node feature representations directly with
LLMs |Sakurai et al.|(2025), for example, by extracting preference features to drive reinforcement
learning |Sakurai et al.| (2025)). Some works |Li et al.|(2024));|Chen & Suzumural (2024)) design specific
prompts to input node text into LLMs for enhancement, then encode the output as embeddings. Our
LGHRec also follows the node feature enhancement paradigm but distinguishes itself by utilizing the
chain-of-thought (CoT) reasoning capability of LLMs. Instead of generating simple text descriptions,
LGHRec produces text with deeper logic and analysis, aiming to obtain semantic IDs with higher
information density.

A.3 GRAPH CONTRASTIVE LEARNING

Graph contrastive learning is used in recommender systems to address the issue of data sparsity
Lin et al.| (2022); Wu et al.| (2021); | Yang et al.|(2023)); [Zhang et al.| (2025b); |Sun et al.| (2023); |Yu
et al.| (2022); Wu et al.| (2024b)); |Cai et al.| (2023). Some methods include SGL [Wu et al.| (2021}
(data augmentation), SimGCL [Yu et al, (2022) (add noise), LightGCL |Cai et al.| (2023) (SVD
enhancement), and NCL |Lin et al.| (2022)) (structural and semantic prototype contrast). However,
these approaches face challenges such as false negative samples and fixed temperature coefficients.
Additionally, when using the GRPO reinforcement learning algorithm to handle groups with varying
node degrees, it fails to ensure coordination between the strategies of different groups. This leads to

14

Under review as a conference paper at ICLR 2026

Table 3: Basic statistics of datasets.

Datasets Users Items Interactions Density
Yelp2018 277631 112394 4250483 0.00013
Amazon-Book 1856344 704093 27164983 0.00002
MIND 47495 28420 5311336 0.00393

optimization biased toward active users and popular items, causing performance imbalances. The
HGPO algorithm we propose helps mitigate this issue.

B EXPERIMENTAL SETUP

B.1 DATASETS

We conducted experiments on three datasets: Ye1p2018[]_1 Amazon—Bookﬂ and MINIfl For each
dataset, we applied a 5-core setting, randomly selecting 80% of the data for training, 10% for
validation, and the remaining 10% for testing. Detailed statistics for the datasets are provided in Table
[3l The extremely low density of these datasets underscores the issue of data sparsity, which is the
primary challenge addressed by both graph contrastive learning and our proposed HGPO algorithm.

B.2 BASELINES

To evaluate the effectiveness of LGHRec, we selected the following models as backbones and
integrated the DSEG and HGPO components of LGHRec into them for comparison:

* SGL Wu et al.|(2021): Generates node views through node deletion, edge deletion, and
random walks.

* SimGCL |Yu et al.|(2022): Introduces graph contrastive learning by omitting explicit graph
augmentation.

* LightGCL [Cai et al.| (2023): Utilizes singular value decomposition for graph augmentation
in contrastive learning.

* YGCL |Yang et al.[|(2023): Proposes a variational graph generation contrastive learning
framework, generating contrastive views through sampling.

* NESCL [Sun et al|(2023): Introduces neighborhood-enhanced contrastive learning, treating
the anchor’s collaborative neighbors as positive samples.

* SCCF [Wu et al.| (2024b): Proposes contrastive collaborative filtering, capturing higher-
order connectivity based on an improved contrastive loss function, without requiring graph
convolution layers.

* CIKG |Hu et al.[(2025): It uses LLMs to infer user interests, structuring this knowledge
into a hybrid graph for enhanced recommendation.

* AutoGraph [Shan et al.| (2024)): It leverages LLMs to create semantic vectors and uses
vector quantization to extract latent factors for graph construction.

e LightCCF [Zhang et al.[(2025b)): Introduces lightweight contrastive learning by incorporat-
ing neighborhood aggregation objectives.

* TALLRec Bao et al.|(2023): It aligns LLM with recommendation tasks by formatting data
as instructions and utilizing an two-stage LoRA-based fine-tuning process.

* SPRec |Gao et al.| (2025): It addresses biases that emerge during LLM fine-tuning by
employing Direct Preference Optimization.

"nttps://business.yelp.com/data/resources/open-dataset/
http://jmcauley.ucsd.edu/data/amazon/
*https://msnews.github.io/

15

https://business.yelp.com/data/resources/open-dataset/
http://jmcauley.ucsd.edu/data/amazon/
https://msnews.github.io/

Under review as a conference paper at ICLR 2026

Table 4: Computational cost and efficiency of LGHRec.

Dataset Model Variant Pre-processing Pre-processing Pre-processing Train Train Train Train Inference
atase odel Varian LLM CoT Generate(minute) BERT Encoding(minute) ~ Complexity (Sec/Epoch) Complexity Memory Total Time (Ms/Batch)
Baseline(LightCCF) N/A N/A N/A 11.8+0.16 O(L-|E| - d) 326GB 10832m 253+07

Yelp2018 Baseline+DSEG 1493 23 o(|1)) 124+0.13 O(L - |E|-d) 331GB 8492m 28906
+ LGHRec(Full Model) 149.3 23 o(|1)) 1614084 O(L-|E|-d+|V]) 353GB 15028m 29.8+08
Baseline(LightCCF) N/A N/A N/A 46.8 £435 O(L-|E|-d) 338GB 40092m 256+09

Amazon-Book Baseline+DSEG 903.7 152 o(|1)) 48.6 +4.98 O(L-|E| - d) 349GB 31874m 293+0.6
+ LGHRec(Full Model) 903.7 152 o(l1)) 5994325 O(L-|E|-d+|V|) 385GB 563.28m 299 £0.8
Baseline(LightCCF) N/A N/A N/A 10.5+0.13 O(L-|E|-d) 323GB 8134m 23105

Steam Baseline+DSEG 37.9 0.6 o(|1)) 11.2+0.19 O(L-|E|-d) 327GB 69.45m 27.9+05
+ LGHRec(Full Model) 37.9 0.6 o(l1)) 156049 O(L-|E|-d+[V]) 339GB 124.68m 285+0.6

B.3 EVALUATION METRICS

We used two Top-K metrics He et al.[(2020); |Wu et al.|(2021): Recall@K and NDCG @K, and report
results for K = 10 and K = 20. The all-ranking evaluation strategy Zhao et al|(2020) was adopted,
where, for each user in the test set, the model is required to predict and rank the scores of all items
that the user has not interacted with. The hit rate of the top-K ranked items is then evaluated.

B.4 IMPLEMENTATION DETAILS

All methods use the Adam optimizer with a learning rate of 0.001, a batch size of 4096, and an
embedding dimension of 64. The GNN consists of three layers. We employ an early stopping strategy
with a patience value of 10 to prevent overfitting. The number of negative samples, K, is set to
10% of the total number of nodes. The reward function thresholds are: Opn = 0.8, 0eqsy = 0.5,
Orp = 0.8, and Oeqsy 10w = 0.2. The clipping range € for HGPO is 0.2. The learning rate for the
policy network is 0.0001. The entropy regularization coefficient is ¢; € {0,0.2,0.6,0.8,1.0}, the
coordination loss coefficient is Aparm € {0,0.3,0.5,0.8,1.0}, and the temperature reward coefficient
ws € {0,0.1,0.3,0.5,0.8,1.0,1.2,1.5,1.8,2.0}. Users and items are divided into five groups based
on their degree. We use the Qwen2.5-32B-Instruct model, fine-tuned with a mixed fine-tuning
strategy, to generate CoT text for the items. Pre-trained BERT is used to extract embeddings. All
experiments are implemented in PyTorch on a server equipped with eight NVIDIA A100 GPUs.

B.5 COMPUTATIONAL COST AND EFFICIENCY

Our approach maintains efficient online inference by shifting the costly LLM computations to a
one-time offline preprocessing stage. We analyzed the computational cost in detail. The results are
shown in Table] Here, N/A indicates that the baseline lacks an LLM inference stage, N is the
number of items, V is the total number of nodes, E is the total number of interactions, L is the number
of GNN layers, and d is the embedding dimension. All measurements were performed on a single
NVIDIA A100 GPU with a batch size of 4096. By front-loading the expensive CoT inference into
the offline phase, our method preserves high efficiency during online serving.

The computational cost of LGHRec is divided into two parts. First, there is the one-time offline
preprocessing cost. The DSEG module uses an LLM to generate CoT semantic ID vectors, with
a time complexity of O(I). On a large dataset like Amazon-Book, this step takes about 15 hours.
Although substantial, this one-time cost is acceptable for industrial applications. The resulting
high-quality semantic IDs can be stored and reused indefinitely. Additionally, inference time on large
datasets can be further reduced by leveraging distributed acceleration frameworks such as vLLM.
Second, the training-phase cost increases with the HGPO module. For example, on Yelp, each epoch’s
training time rises from 11.8 s to 16.1 s. We consider this a reasonable trade-off given the model’s
performance gains.

The key advantage of our approach lies in the guarantee of online inference efficiency. As shown in
the Inference column of Table[d LGHRec’s per-batch latency remains nearly unchanged compared to
the baselines. For example, on Amazon-Book, latency increases only from 25.6ms to 29.9ms. In an
online recommendation service, the system only invokes the pre-trained GNN model to compute user
and item embeddings. It does not perform costly LLM inference or run the HGPO policy network.
This decoupled design delivers significant accuracy gains while meeting industry requirements for
low latency and high throughput. These results demonstrate LGHRec’s practicality for real-world
deployment.

16

Under review as a conference paper at ICLR 2026

Table 5: Impact of different LLM architectures on the performance of LGHRec.

Yelp2018 Amazon-Book MIND
Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10
Qwen-2.5-32B-Instruct(Base) — — — — — —

Variants

DeepSeek-R1-Distill-Qwen-14B -0.96% -0.77% -0.81% -0.77% -0.72% -0.77%
Llama-3.1-8B-Instruct -1.34% -1.59% -1.35% -1.03% -0.93% -0.99%
Qwen-2.5-7B-Instruct -1.15% -1.19% -1.08% -0.77% -0.80% -0.87%
Qwen3-8B -0.77% -0.99% -0.54% -0.51% -0.64% -0.78%
Qwen3-32B +0.96 % +1.19% +1.08% +1.03% +0.83% +0.98%

B.6 IMPACT OF DIFFERENT LLM ARCHITECTURES ON THE PERFORMANCE OF LGHREC.

We evaluated multiple LLM architectures, with results summarized in TableE} Qwen-2.5-32B-Instruct
served as our baseline. These findings support two key conclusions. First, Within a single model
family, performance increases with model size. For instance, Qwen3-32B outperforms its smaller
variants. Its superior context comprehension and reasoning capabilities generate higher-quality
Chain-of-Thought outputs. Second, When comparing across model families, we find that the
performance of LGHRec is correlated with the general ability of LLM, such as MMLU score,
and the models with stronger general ability improve the recommendation performance more, such
as the newer Qwen3 series models, which is consistent with the conclusions of related studies ??. We
demonstrate that our framework effectively leverages and benefits from more advanced LLMS.

B.7 SENSITIVITY ANALYSIS ON THE FALSE NEGATIVE THRESHOLD

We conducted experiments on two representative datasets, Yelp2018 and Amazon-Book. We per-
formed a hyperparameter sensitivity analysis on the four similarity thresholds in the reward function
OEN, Ocasy> Orp and Ocqsy 10w - We used LightCCEF, a strong performer in our paper, as the backbone
network. For each analysis, we varied one threshold within a reasonable range while keeping all
other parameters at their optimal settings as reported in the paper, and we observed the changes in the
NDCG @20 metric. The results summarized in Table

0r N defines the similarity lower bound for the false negatives, and indirectly sets the similarity upper
bound for the hard negatives [Heasy, Orn). An appropriate O is crucial for the model to distinguish
between false and true negatives. We tested its value within the range [0.7,0.9]. From the results, we
observe that the model achieves its best performance when 0 is set to 0.8. A too low 0py (e.g.,
0.7) narrows the valid range and may mistakenly penalize some informative hard negatives as false
negatives, thereby impairing learning. Conversely, a too high 0rn (e.g., 0.9) relaxes the judgment of
false negatives, potentially preventing the model from effectively identifying and excluding samples
that are truly similar to the anchor, which also degrades performance. Overall, the model maintains
high stability in the range [0.75,0.85].

Ocasy defines the similarity lower bound for the hard negatives, used to distinguish between hard
negatives and easy negatives. It determines the difficulty range of negative samples that the model
focuses on. We tested its value within the range [0.3,0.7]. When Ocasy 1s set to 0.5, the model can
effectively identify and reward the most informative hard negatives. If this value is too low (e.g.,
0.3), many low discrimination easy negatives are mistakenly treated as hard negatives, reducing
the value of the reward signal. Conversely, if it is too high (e.g., 0.7), the range of hard negatives
becomes overly narrow, causing the model to miss many valuable training signals and leading to
a more pronounced performance drop. Experimental results indicate that the model’s performance
remains relatively stable within the range [0.4, 0.6].

Orp is used to penalize negative samples that are overly similar to the positive sample rather than to
the anchor user, helping to avoid selecting negatives that are semantically very close to the positive.
We tested its value within the range [0.7,0.9]. The experiments show that 8 p performs best at
0.8. A too low O p (e.g., 0.7) makes the model overly conservative, mistakenly penalizing some
high quality hard negatives that only have moderate similarity to the positive sample. Conversely, a
too high 07 p (e.g., 0.9) fails to effectively exclude negatives that are highly similar to the positive
sample and may cause confusion. The sensitivity of this parameter is relatively low, with performance
fluctuations minor within the range [0.75, 0.85], demonstrating good robustness.

17

Under review as a conference paper at ICLR 2026

Bcasy_low Penalizes samples whose similarity falls below this threshold, preventing the model from
wasting learning opportunities on overly simple negatives. We tested its value within the range
[0.1,0.3]. When Bcasy_low 1s set to 0.2, the model achieves optimal performance. This indicates that
moderately penalizing the least informative negatives is beneficial. If the value is too low (e.g.,
0.1), the penalty on easy negatives is insufficient, and the model may still select ineffective samples.
Conversely, if it is too high (e.g., 0.3), it may mistakenly penalize samples that carry weak but useful
signals, slightly harming performance. The parameter remains stable within the range [0.15, 0.25].

From the above experiments, we observe that although the choice of these similarity thresholds does
affect final performance, LGHRec maintains strong stability within reasonable variations of these
values. This demonstrates the robustness of our method and confirms that the default values chosen
in our paper are empirically justified.

Table 6: Hyperparameter sensitivity analysis for reward function thresholds on Yelp2018 and Amazon-
Book datasets, evaluated using NDCG @20.

Parameter Value Yelp2018 (NDCG@20) Amazon-Book (NDCG @20)

0.3 0.0658(-2.30%) 0.0478(-2.45%)
0.4 0.0667(-0.96%) 0.0485(-1.02%)
Oeasy 0.5 (Best) 0.0674(0.00 %) 0.0490(0.00 %)
0.6 0.0664(-1.34%) 0.0483(-1.43%)
0.7 0.0653(-3.07%) 0.0475(-3.06%)
0.10 0.0663(-1.54%) 0.0483(-1.43%)
0.15 0.0670(-0.58%) 0.0487(-0.61%)
Ocasy low 0.20 (Best) 0.0674(0.00 %) 0.0490(0.00 %)
0.25 0.0668(-0.77%) 0.0486(-0.82%)
0.30 0.0661(-1.92%) 0.0481(-1.84%)
0.70 0.0661(-1.92%) 0.0481(-1.84%)
0.75 0.0668(-0.77%) 0.0486(-0.82%)
OpN 0.80 (Best) 0.0674(0.00 %) 0.0490(0.00 %)
0.85 0.0670(-0.58%) 0.0487(-0.61%)
0.90 0.0662(-1.73%) 0.0482(-1.63%)
0.70 0.0664(-1.34%) 0.0484(-1.22%)
0.75 0.0670(-0.58%) 0.0488(-0.41%)
Opp 0.80 (Best) 0.0674(0.00 %) 0.0490(0.00 %)
0.85 0.0671(-0.38%) 0.0489(-0.20%)
0.90 0.0666(-1.15%) 0.0486(-0.82%)

C CONVERGENCE ANALYSIS OF THE HGPO OBJECTIVE FUNCTION

C.1 REVIEW OF THE HGPO ALGORITHM

The HGPO algorithm’s objective function Ly po(0) is defined as:
Lucro(f) = —LPOYCY(9) + ¢y S[mg] + LMARM(9) (Eq. A) (14)
where:
1. LPOLICY(G) is the policy loss based on the relative advantage function with clipping:

LPOLICY (9) = E, [mm(rt(e))Agel, clip(r(0),1 —€,1+¢) Agel)} (Eq.B) (15)

Here, r;(0) = % is the importance-sampling weight, and the relative advantage is

as follow: _
APt =1y — Ry, (16)

where r, is the immediate reward for taking action a; in state s;, and Rg(st) is the average
reward of the group g containing state s;.

18

Under review as a conference paper at ICLR 2026

2. S[mp] is the entropy regularization term of the policy:

Slre] = E;[H (mo(- | 5))] (Eq.C) (17)
with
H(WG(' | St)) = Hneg (WG(aneg | St)) + Htemp (WG(atemp | St)) (18)
3. LHARM(G) is the harmonization loss, which penalizes variance in average rewards across
groups: B
LHARM(9) = Nparm Var geg[Ry] (Eq. D) (19)

We now proceed to prove that, when optimized via gradient descent, the HGPO algorithm converges
to a (local) minimum of Ly gpo(0).

C.2 PROOF OUTLINE
We follow the standard convergence proof approach for optimization algorithms:

1. Boundedness: Show that the objective function Lgacpo(6) is lower-bounded under appro-
priate conditions.

2. Sufficient Decrease: Prove that at each iteration, if the gradient is non-zero, the objective
value decreases sufficiently (or at least does not increase).

3. Convergence to a Stationary Point: By combining boundedness and sufficient decrease,
demonstrate that the gradient of the policy parameters 6 converges to zero, meaning the
algorithm converges to a stationary point.

C.3 DETAILED MATHEMATICAL PROOF

C.3.1 PRELIMINARIES

Boundedness of the Reward. The reward at time step ¢ consists of a rule-based component R;
(composed of Rharg, Lfalse, fleasy as defined in Egs. and an adaptive temperature component
R (Eq.[5). We show that both components are bounded.

First, each of Ryar, Ffaise, Feasy 15 defined using similarity thresholds. Since cosine similarity lies in
the range [—1, 1] and the weights wy, wa, w3, w4 are fixed constants, these terms are bounded.

Second, the adaptive temperature reward is defined as follows:

1
1+ log(14dy)
For a finite node degree d,,, Tidea1(dy,) is bounded. The action space qut) also lies within a bounded
interval [Timin, Tmax), Where Tmin > 0. Therefore, R, is bounded.

RT = —Ws ’7-1(}) - T‘ideal(du>

5 T'ideal (du) (20)

As a result, the total reward r; = R; + R, is bounded. In other words, there exist constants R i,
and R,,.x such that Rin < 7 < Rnax-

Smoothness of the Policy Function. The policy network 7y (a | s) is continuously differentiable
with respect to its parameters 6, and its gradient Vymy(a | s) is Lipschitz continuous. Additionally,
both the action probability outputs and the network’s parameter values are bounded.

Boundedness of Importance Sampling Ratios. The importance sampling ratio () = %
o1a (Ot |5t

is bounded in practice by applying clipping during updates, which prevents excessively large variance.

Boundedness of Entropy. For the discrete negative-sampling action a,g, the entropy is given by:

]\/jneg

Hneg = Z pPj 1ngja 0< Hneg < 10g Mneg (21)
j=1

where M, is the size of the negative sample candidate pool.

19

Under review as a conference paper at ICLR 2026

For the continuous temperature selection action Gemp, under a Gaussian policy N (ug(st), o2 (st)),
the entropy is:

1
Hiomp = 5 log (2mecy(st)) (22)
To ensure a lower bound and avoid degeneration as o — 0, we enforce 03(s;) > 02, > 0, which
yields a positive lower bound for Hcpmp.

Therefore, the total entropy:
H(7T9(~ ‘ st)) = Hneg + Htemp (23)

is lower-bounded. Consequently, the entropy regularization term:
Slmg) = Ey [H (7o (- | 51))] (24)

is also bounded below.

C.3.2 PROVING THE BOUNDEDNESS OF HGPO
We need to show that the objective function Ly po(6) admits a finite lower bound. Recall that:

Lucpo(8) = —LPOUCY (g) 4+ ¢, §[rg] + LHARM () (25)

LPOLICY(Q)

Analysis of the Policy Loss . The relative advantage is given by:

Al =r — R (26)

g(st)

Since the immediate reward r; is bounded, and the group-mean reward R, = E[r, | s, € g] is also
bounded, it follows that A*! is bounded. Let |A!| < A ax abs-

The importance-sampling weight r,(6) is strictly positive, i.e., r;(6) > 0.

Next, we consider the clipped loss term LY (9):

LOMP () = min (rt(e) Al clip(ry(6),1—€,1+€) A;a) 27)

o If Ar°! > 0, the clipped loss term becomes:
LEYMP(9) = min(r,(0) A, (1 + €) A}) (28)

since 7¢(0) typically hovers around 1 and the upper clipping bound (1+ ¢) is active. Because
7¢(6) > 0, it follows that LE™P (6) > 0. Moreover, since 7;(8) is restricted to the interval
[0, Cratio), we have: LEVP(0) < Capio AL

o If Ar°! < 0, the clipped loss term becomes:
LEMP(9) = max(ry(0) A5, (1 —) AS) (29)

since Al is negative, the minimum operation flips to a maximum, and the lower clipping
bound (1 — €) is active. Hence, LEF (6) is bounded. For example, if r,(#) € [1 — 6,1+ 6]
(with () typically near 1), then:

LEMP(6) € [(1 = €) Amin_negs (1 + €) Amax._pos] 30)

where Anin neg is the lower bound of the negative advantages and Ayyax pos is the upper
bound of the positive advantages.

Therefore, the overall policy loss LPOMCY(9) = E,[LEVP(6)] is bounded. Let
[POLICY < [POLICY (g) < [POLICY
min — — max *

— [POLICY (p)

Hence, is also bounded:

_LPOLICY S —LPOLICY(H) S _LPOLICY (31)

max min

20

Under review as a conference paper at ICLR 2026

Analysis of the Entropy Regularization Term c¢; S[my]. From the boundedness of entropy, the
entropy regularization term S[mg] has a lower bound, denoted Syin. If ¢; > 0 (as is typically chosen
to encourage exploration), then: ¢1.S[ms] > ¢1Smin-

Analysis of the Harmonization Loss LTARM (6), The harmonization loss is defined as:
LHARM(0) = N v Var geg [Ry] (32)

Since Rg is the mean reward of group g, and the immediate reward r; is bounded (Rpin < 7¢ <
Rmax), we have: Riin < Ry < Rinax-

The variance Var 4¢g [Rg} =E, [(Rg —E, [Rg})Q] of a bounded random variable is also bounded.

In particular:
- Rmin) 2

0 S Val"geg [Rg] S (Rmax 4

(33)

Since A\parm > 0, it follows that:

(Rmax - Rmim)2

0 S LHARM (9) =)\harm Varg [Rg] S)\harm 4

(34)

Thus, LHARM(9) is both lower- and upper-bounded.

Summary of the Lower Bound of Ly ¢ po(6). We now summarize the lower bound of Ly po(6):

LHGPO<9) Z _Lig)%ICY + CISmin +)\harm 0= _Lig)%ICY + CISmin (35)
Therefore, L i po(0) is lower-bounded. We denote this bound by:
LHGPO,min = *Li(g)l:ICY + CISmin (36)

C.3.3 PROVING THE RELEVANCE OF THE GRADIENT

The HGPO algorithm updates the parameters € via gradient descent:
Ok+1 = Ok — axVoLucro(Ok) (37
where oy, is the learning rate.

Using the Taylor expansion for a differentiable function f(z),
Fla') & F@) + V@) (@ —) + 5~) H) @~) 38)
where H(z) is the Hessian matrix.
Applying this to Lyapo(0) at 0y, we get:
Lucpro(Oks1) = Lucro(0k) + VoLuaro(0k)” (Oks1 — 01) + %(9“1 — 0) " Hy(0)41 — Ok)

(39)
Substituting 0;11 — 0 = —axVeLuapro(0x), we get:

1
Lucpo(Ok+1)—Luaro(Or) = —arl|VeLucro(Or) ||2+§aiV9LHGPO (01) " Hy Vo Lucro(Or)
(40)

Assuming Lygpo(f) is L-smooth, i.e., its gradient is Lipschitz continuous with constant L, the
maximum eigenvalue of Hy, satisfies A\jax (Hg) < L. Hence,

VoLucro(0r) ' HiVeLucro(Ox) < L|VeLucro (x| (41)
Thus, we have:
L
Lucro(Ok+1) — Lucro(0k) < —ar||VeLucro (k)| + §az||v0LHGPO(0k)”2 (42)
Simplifying, we get:

Lak

Lucro(Or+1) — Lucro(0r) < —ay, (1 - 2> IVeLucro(@x)|*> (Eq.E) (43)

21

Under review as a conference paper at ICLR 2026

To guarantee a decrease in the objective, we require:

Lozk 2
1-—>0 «— — 44
5 > ay < i (44)
If we choose a sufficiently small learning rate, e.g., o = a < %, then:
La 1
1—- 22> 45
7 23 (45)
Therefore: o
Lucpo(Ok+1) — Lucro(0k) < —§||VGLHGPO(97€)H2 (46)

This implies that whenever Vg Lyapo(0x) # 0, the objective strictly decreases. If the gradient is
zero, the objective no longer changes, indicating that the algorithm has reached a stationary point.

L-Smoothness Discussion: The components of Lycpo(6) are:

+ —LPOLICY (). [POLICY () inyolves min and clipping operations, making it non-smooth

at certain points. However, it is piecewise smooth in most regions, and gradient-based
optimization remains effective in practice despite these non-smooth points.

* ¢1.5[mg]: The entropy term is smooth with respect to the policy parameters 6.
o LHARM(0): Since R, is the expectation of r;, and r, depends on ¢ (through state/action

selection and the temperature coefficient 7{9), the variance Var [R,] is a smooth quadratic
function of R,. Therefore, LHARM () is also smooth.

C.3.4 CONVERGENCE TO A STATIONARY POINT

We have already shown that Ly po(6) is lower-bounded by LG po min. and that if the learning
rate oy, is chosen suitably (e.g., o = @ < 1/L), then:

«
Lucpro(Or+1) < Luaro(Ok) — §||VOLHGPO(9k)”2 (Eq. F) 47)

This implies that the sequence {L ¢ po(0k)} x>0 is non-increasing.

Summing Eq. Ffromk =0to N — 1:

N1 N—
(6%
> (Lucro(Bki1) — Luaro(6r)) —3 Z IVoLucro(0x)|? (48)
k=0 k=0
This gives:
o N
Lugro(On) — Lucpro(bo) < —3 IVeLucro(Ok)|? (49)
k=0
Rearranging:
o N1
= IVoLucro(O)|* < Lucro(0o) — Lucro(On) (50)
2
k=0
Since Lyapro(On) > LuGro min, it follows that:
o N1
5 IVoLraro(0:)l? < Luacro(80) — LEGPO.min (61
k=0

The right-hand side is a finite constant. As N — oo, for the series >, IVoLacro(6x)||? to
converge, it must be that:

lim HV«QLHGPO(QIC)HQ = O (52)
k— oo

and hence:
Jim IVoLucro(fk)| =0 (53)

This proves that the gradient norm converges to zero, i.e., the algorithm converges to a stationary
point 8* where VoL gapo(0*) = 0.

22

Under review as a conference paper at ICLR 2026

D MULTI-PROTOTYPE ENHANCED GRAPH LEARNER

Given the user set U, the item set I, and the user-item interaction matrix R € {0, 1}‘U|X|I ‘, a
user-item bipartite graph G = (V, E) can be constructed, where V' = U U I represents the nodes and
E = {(u,i) | Ry; = 1} represents the edges.

D.1 GRAPH CONVOLUTIONAL LAYER

The graph convolution method of LightGCN [He et al.| (2020) is used for information propagation.
The embedding calculation for the [-th layer of users u and items ¢ is as follows:

1 1
(I+1) _ (l) (+1) _ (1) (54)
Zu - % 2 - - Zu
%(:) NIV)] %:() NN)]
where z(o) = e; represents the initial embedding after the previous method fuses the CoT feature,
and z(o) = ey. N(u) and N (%) denote the neighbor sets of user u and item 4, respectively.

D.2 FINAL EMBEDDING REPRESENTATION

After passing through L layers of graph convolution, the final user and item embeddings are obtained
by averaging the weighted embeddings from all layers:

L L
Zy = Z ozlzq(f), 2 = Zalzzm (55)
1=0 1=0

where q is the layer weight, typically set to =, and z,,, z; € R?" are the final representations used
for downstream tasks.

D.3 INFONCE Loss

The enhanced representation is obtained by aggregating the directly connected nodes. The contrastive
loss for user u and item ¢ is as follows:

exp (sam(zu)2)/7')

Lt user = — 1 (56)
t u;] n oxp (sml((0) (k))/) + Zver;éu exp (mm(zu , 2)/T)
Ltitom = — Y _In exp (sim(e1”, 2%/ 7) (57)

icl exp (Slm(50)7 z(k))/T) +Zj61,j;ﬁi exp (sim(z,fo),](k))/)

. <0) 2(0)
Where mm(z&), z&k)) W is the cosine similarity, and 7 is the temperature coefficient.

|
1(,) is the embedding from other users (negative samples). The total contrastive loss is as follows:

Lstruct = Lst—user + Lst—item (58)

23

	Introduction
	Methods
	Deep Semantic Embedding Generator
	Definition of Reinforcement Learning
	Rule-Based Rewards
	HGPO Mechanism
	HGPO Objective Function

	Experiment
	Overall Performance
	HGPO In-depth Analysis
	Hyperparameter Sensitivity
	Ablation Experiment

	Conclusion
	Related work
	LLM Recommendation
	GNN-based Rec
	Graph Contrastive Learning

	Experimental Setup
	Datasets
	Baselines
	Evaluation Metrics
	Implementation Details
	Computational Cost and Efficiency
	Impact of different LLM architectures on the performance of LGHRec.
	Sensitivity Analysis on the False Negative Threshold

	Convergence Analysis of the HGPO Objective Function
	Review of the HGPO Algorithm
	Proof Outline
	Detailed Mathematical Proof
	Preliminaries
	Proving the Boundedness of HGPO
	Proving the Relevance of the Gradient
	Convergence to a Stationary Point

	Multi-Prototype Enhanced Graph Learner
	Graph Convolutional Layer
	Final Embedding Representation
	InfoNCE Loss

