

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LLM-CoT ENHANCED GRAPH NEURAL RECOMMEN- DATION WITH HARMONIZED GROUP POLICY OPTIMI- ZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Graph neural networks (GNNs) have advanced recommender systems by modeling interaction relationships. However, existing graph-based recommenders rely on sparse ID features and do not fully exploit textual information, resulting in low information density within representations. Furthermore, graph contrastive learning faces challenges. Random negative sampling can introduce false negative samples, while fixed temperature coefficients cannot adapt to the heterogeneity of different nodes. In addition, current efforts to enhance recommendations with large language models (LLMs) have not fully utilized their Chain-of-Thought (CoT) reasoning capabilities to guide representation learning. To address these limitations, we introduce LGHRec (LLM-CoT Enhanced Graph Neural Recommendation with Harmonized Group Policy Optimization). This framework leverages the CoT reasoning ability of LLMs to generate semantic IDs, enriching reasoning processes and improving information density and semantic quality of representations. Moreover, we design a reinforcement learning algorithm, Harmonized Group Policy Optimization (HGPO), to optimize negative sampling strategies and temperature coefficients in contrastive learning. This approach enhances long-tail recommendation performance and ensures optimization consistency across different groups. Experimental results on three datasets demonstrate that LGHRec improves representation quality through semantic IDs generated by LLM's CoT reasoning and effectively boosts contrastive learning with HGPO. Our method outperforms several baseline models. The code is available at: <https://anonymous.4open.science/r/LLM-Rec>.

1 INTRODUCTION

Recently, LLMs Guo et al. (2025); Wei et al. (2022) have advanced the recommendation community Lin et al. (2024); Kaur et al. (2025); Zhang et al. (2025a). Their generative capabilities enable the provision of rich semantic information, forming a one-stage recommendation paradigm. This paradigm shows promise in addressing the information loss issue that arises in traditional multi stage recommender systems. Current research on LLMs for recommendation can be divided into two categories. The first approach treats LLMs as recommender systems (LLMs as RSs) Chen et al. (2024); Yin et al. (2023); Zheng et al. (2024); Wang et al. (2019). However, it faces challenges such as low online inference efficiency, insufficient use of collaborative filtering signals, and hallucination issues Ji et al. (2023); Yao et al. (2023). The second approach utilizes knowledge generated by LLMs to enhance existing models (LLM-enhanced RSs) Hu et al. (2025); Wang et al. (2024); Yang et al. (2024); Liu et al. (2024a); Ren et al. (2024). This approach is more flexible but has not fully explored the deep potential of LLMs, particularly their CoT reasoning abilities. Most methods mainly rely on information extracted from general domain knowledge, neglecting the possibility of guiding LLMs to perform deeper semantic reasoning for recommendation tasks. How to guide LLMs to leverage CoT reasoning capabilities and enhance collaborative filtering signals remains an unresolved challenge.

GNNs Wang et al. (2019); He et al. (2020); Wu et al. (2022; 2024a) can capture higher-order collaborative signals but have drawbacks. They rely on ID features and struggle to leverage rich textual information for semantic modeling, resulting in insufficient information density in representations, particularly for long-tail items, where the representation quality is poor. GNNs are also sensitive to

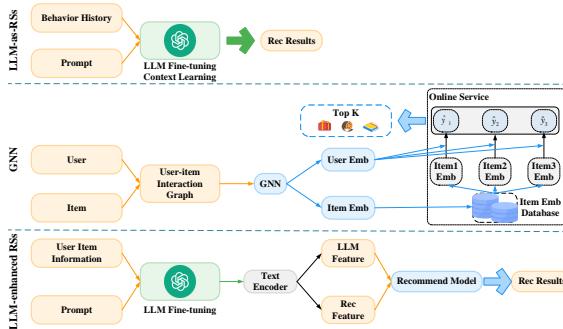


Figure 1: The differences between the three recommendation paradigms.

data sparsity Cao et al. (2023) and introduce noise when aggregating high-order neighbor information Jiang et al. (2023). Therefore, researchers introduce graph contrastive learning Lin et al. (2022), which enhance representation learning through structural and semantic contrastive losses. However, existing graph contrastive learning have limitations as well. In large scale scenarios, their random negative sampling introduces false negatives, which can mislead model’s optimization. Additionally, the fixed temperature coefficient in the contrastive loss is not adaptable to the varying embedding characteristics of groups with different degrees. This leads to poor contrastive learning results, particularly for long-tail items. The differences of three paradigms are illustrated in Figure 1.

To address these issues, we propose LGHRec, it integrates CoT reasoning ability of LLM with reinforcement learning for collaborative optimization. The goal is to combine semantic reasoning capabilities of LLMs with the collaborative filter strengths of GNNs. Reinforcement learning is used to optimize graph contrastive learning and enhance representation quality. LGHRec is LLM-enhanced RSs paradigm. Offline, CoT reasoning of LLM generates item descriptions and extracts embeddings as semantic IDs with higher information density. These semantic IDs are fused with IDs during training to serve as initial item representations for the GNN. This allows the GNN to learn higher quality representations by utilizing deep semantic information. Since semantic IDs are stored offline, the delay from online LLM calls is avoided, making LGHRec suitable for industrial applications. To address challenges in contrastive learning, including optimal negative sampling and temperature coefficient selection across groups with varying degrees, as well as performance imbalance in Group Relative Policy Optimization (GRPO) Shao et al. (2024), we introduce HGPO algorithm. HGPO incorporates cross-group coordination mechanism that constrains strategy differences between groups, ensure global strategy consistency while adapt to the characteristics of each group. It improves long-tail item recommendation performance. The contributions are as follows:

- We propose LGHRec, which leverages the CoT reasoning capabilities of LLMs to generate high quality semantic IDs for GNNs. This approach enhances the information density of ID features in GNNs while avoiding the high computational cost of online LLM inference.
- We introduce the HGPO algorithm to optimize graph contrastive learning. By employing adaptive negative sampling, temperature coefficient adjustments, and a cross-group coordination mechanism, HGPO improves contrastive learning performance, enhances the model’s adaptability to heterogeneous data, and boosts long-tail recommendation performance.
- We conduct extensive experiments on three datasets, demonstrating that LGHRec outperforms several baseline models and validating the effectiveness of the proposed method.

2 METHODS

We introduce the Deep Semantic Embedding Generator (DSEG) and HGPO. The implementation details of the GNN are provided in the Appendix. The architecture of LGHRec is shown in Figure 2.

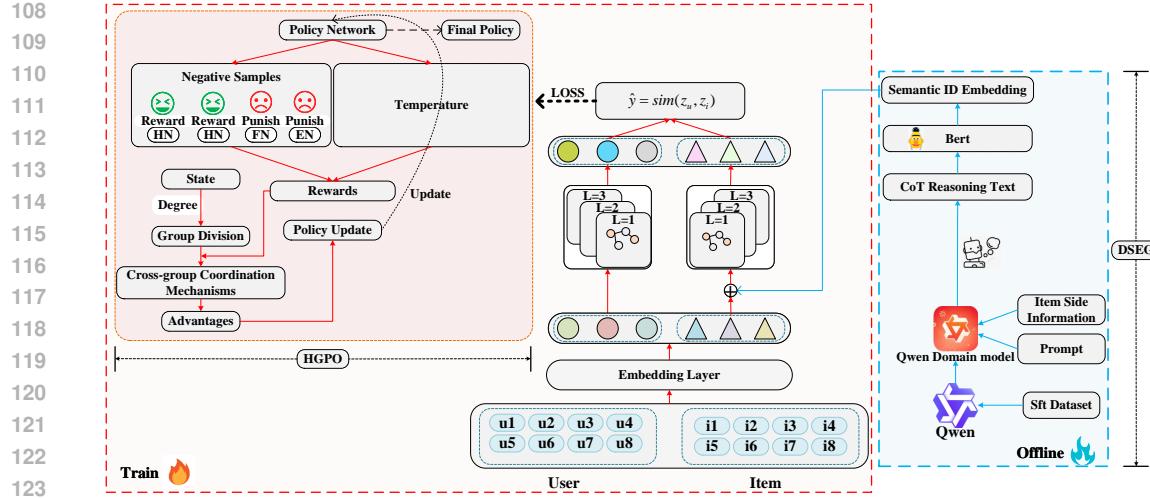


Figure 2: The architecture diagram of the proposed LGHRec.

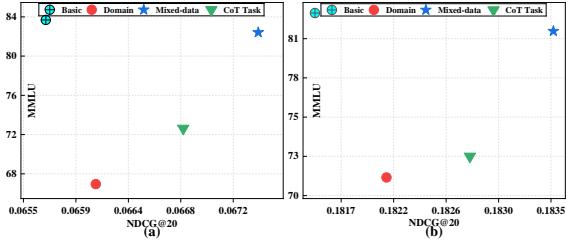


Figure 3: After using various fine-tuning methods, the general capabilities and recommendation performance of LGHRec: (a)Yelp dataset, (b)MIND dataset.

Figure 4: The prompt template for guiding LLM to perform CoT reasoning.

<im_start>system
 You are a professional text analysis expert. Your task is to generate a detailed chain of thought analysis based on the item's textual description according to the five requirements listed below, and then summarize keywords that describe the item's characteristics. Each keyword must be focused on the item's attributes. Please analyze objectively and rationally.
 1. The characteristic 1 of the item and the original text source of characteristic 1
 2. The characteristic 2 of the item and the original text source of characteristic 2
 3. The characteristic 3 of the item and the original text source of characteristic 3
 4. The characteristic 4 of the item and the original text source of characteristic 4
 5. The characteristic 5 of the item and the original text source of characteristic 5
 Provide response in strict JSON format: {“CoT”: “Step-by-step analysis with source text references”, “keywords”: “Summarized keywords”}<im_end>
 <im_start>user
 The text description of an item is as follows: {item's textual description}<im_end>

2.1 DEEP SEMANTIC EMBEDDING GENERATOR

Fine-tuning LLM can improve performance Bao et al. (2023). We explore some fine-tuning methods to generate item CoT reasoning text. We evaluate the NDCG@20 and MMLU, using Qwen2.5-32B-Instruct model under various fine-tuning methods, including base, domain-adaptive, CoT task and mixed fine-tuning. Mixed fine-tuning, which combines recommendation CoT dataset with general dataset, helps retain the model's foundational knowledge and prevents catastrophic forgetting. As shown in Figure 3, this method achieves the best balance between recommendation performance and general capabilities, making it the preferred method for LGHRec. We designed prompts, as shown in Figure 4, to guide LLM CoT reasoning, denoted as $T_{CoT}^{(i)}$, which is then encoded into semantic IDs $e_{CoT}^{(i)} \in \mathbb{R}^{d_c}$ using BERT model. This offline process ensures that item is processed once and periodically updated, storing semantic IDs for direct use during GNN training. It leverages the LLM's reasoning capabilities while avoiding the latency of online services. To fuse semantic IDs with collaborative filtering signals, we concatenate them with the ID embeddings $e_{ID}^{(i)} \in \mathbb{R}^{d_{id}}$ and apply linear layer, as initial item representations $e_i^{(0)}$. The initial user representation $e_u^{(0)}$ is based on ID embeddings, because user behavior changes more frequently, require real-time updates.

2.2 DEFINITION OF REINFORCEMENT LEARNING

In large scale recommender systems, contrastive learning face two challenges. First, calculate similarity of all samples is expensive, and random sampling may introduce false negatives. So, selecting high quality negative samples is essential. Second, the fixed temperature coefficient τ cannot adapt to the heterogeneity of users and items. Active users or popular items with higher node degrees require smaller τ to enhance the distinction of hard negative samples, while low activity users

162 or long-tail items with sparse information need larger τ to stabilize learn. To address these problems,
 163 we model the optimization of contrastive learning as reinforcement learning problem. The state for
 164 user u includes the user’s embedding z_u , the positive sample embedding z_k , the candidate negative
 165 sample pool N_u , and the user’s degree d_u . The action consists of selecting M negative samples from
 166 N_u and choosing τ for the anchor. The policy network $\pi_\theta(a_t|s_t)$ outputs probability of selecting
 167 negative samples and τ . The reward reflects the quality of the selected negative samples and τ .
 168

169 2.3 RULE-BASED REWARDS

170 **Reward Hard Negatives.** Hard negatives are similar to the anchor but should not be mistaken for
 171 positive samples. They provide gradient signals, helping the model learn finer features. Therefore,
 172 we assign a reward to negative samples that are similar to the anchor user embedding $z_u^{(0)}$ but differ
 173 in similarity from the positive sample embedding $z_u^{(k)}$. The expression is as follows:
 174

$$175 \quad R_{\text{hard}}(z_n^*) = \begin{cases} +w_1 & \text{if } \theta_{\text{easy}} < \text{sim}(z_u^{(0)}, z_n^*) < \theta_{\text{FN}} \text{ and } \text{sim}(z_u^{(k)}, z_n^*) < \theta_{\text{FP}} \\ 176 \quad 0 & \text{otherwise} \end{cases} \quad (1)$$

177 where $\theta_{\text{FN}}, \theta_{\text{easy}}, \theta_{\text{FP}}$ are similarity thresholds, and $w_1 > 0$.

178 **Punish False Negatives.** False negatives are actually similar to the anchor but are incorrectly
 179 selected as negative samples. If the model treats them as negatives, it will mislead the learning
 180 process. Therefore, we assign a negative reward to samples that are highly similar to either the anchor
 181 user embedding $z_u^{(0)}$ or the positive sample embedding $z_u^{(k)}$. The reward is as follows:
 182

$$183 \quad R_{\text{false}}(z_n^*) = \begin{cases} -w_2 & \text{if } \text{sim}(z_u^{(0)}, z_n^*) \geq \theta_{\text{FN}} \\ 184 \quad -w_3 & \text{if } \text{sim}(z_u^{(k)}, z_n^*) \geq \theta_{\text{FP}} \\ 185 \quad 0 & \text{otherwise} \end{cases} \quad (2)$$

186 **Punish Easy Negatives.** Easy negatives are very dissimilar to the anchor, making them easy for
 187 the model to distinguish. The gradient information they provide is limited, and their contribution
 188 to the model’s learning is minimal. If the model frequently selects easy negatives, it may become
 189 less effective during training, failing to fully utilize hard negatives that enhance its discriminative
 190 ability. Therefore, we assign a negative reward to samples that are very dissimilar to the anchor user
 191 embedding $z_u^{(0)}$. The reward is defined as follows:
 192

$$193 \quad R_{\text{easy}}(z_n^*) = \begin{cases} -w_4 & \text{if } \text{sim}(z_u^{(0)}, z_n^*) \leq \theta_{\text{easy_low}} \\ 194 \quad 0 & \text{otherwise} \end{cases} \quad (3)$$

195 Where, $\theta_{\text{easy_low}}$ is a similarity threshold. The total reward for negative samples is as follows:
 196

$$197 \quad R_t = R_{\text{hard}} + R_{\text{false}} + R_{\text{easy}} \quad (4)$$

198 where $w_1 = w_2 = w_3 = 1, w_4 = 0.5$.
 199

200 **Self-Adaptive Temperature Reward R_τ .** In GNNs, nodes with high degrees have rich neighborhood
 201 information, making it easier to encounter hard negative samples during contrastive learning. For
 202 these nodes, smaller temperature coefficient τ can amplify similarity differences and help model learn
 203 more refined features. Conversely, nodes with low degrees have sparse interactions. The positive
 204 samples generated through data augmentation contain noise, result in low similarity with anchor. In
 205 this case, smaller τ would excessively penalize these nodes, hinder the model’s ability to learn from
 206 sparse positive signals. A larger τ helps tolerate noise and stabilizes learn for such nodes. So, fixed τ
 207 is insufficient for optimal learning across different node types, and an adaptive mechanism is needed
 208 to adjust the strength of contrastive learning based on node degree. We design reward to guide policy
 209 network adjust τ to match the target temperature $T_{\text{ideal}}(d_u)$ according to the degree of the node:
 210

$$211 \quad R_\tau(u, \tau_u^{(t)}) = -w_5 |\tau_u^{(t)} - T_{\text{ideal}}(d_u)| \quad (5)$$

212 where w_5 is the hyperparameter and $T_{\text{ideal}}(d_u)$ is as follows:
 213

$$214 \quad T_{\text{ideal}}(d_u) = \frac{1}{1 + \log(1 + d_u)} \quad (6)$$

216 2.4 HGPO MECHANISM
217

218 Existing contrastive learning methods struggle to adapt to all user and item groups, result in insufficient
219 representation learning for low activity users and long-tail items. The GRPO only improves relative
220 performance within a group, which can cause conflicts between strategies across different groups
221 and negative affect long-tail items. So, we propose HGPO, a reinforcement learning algorithm that
222 uses group average rewards to guide policy learning. HGPO introduces a cross-group coordination
223 mechanism to optimize contrastive learning, ensuring global policy consistency while adapting to the
224 unique characteristics of different groups. The mechanism of HGPO is as follows:

225 **Group Division \mathcal{G} .** Nodes are divided into K groups $\mathcal{G} = \{g_1, \dots, g_K\}$ based degree of the nodes.

226 **Group Average Reward $\bar{R}_{g(s_t)}$.** For state s_t belonging to group g , its group average reward is the
227 expected reward of all possible actions in that state. We estimate it in the train batch B as follows:

$$229 \quad \bar{R}_g \approx \frac{1}{|B_g|} \sum_{(s'_t, a'_t, r'_t) \in B_g} r'_t \quad (7)$$

232 where B_g is the set of all samples (s'_t, a'_t, r'_t) in batch B that belong to group g . \bar{R}_g represents the
233 average reward level of group g under the current policy.

234 **Relative Advantage A_t^{rel} .** For a sample (s_t, a_t, r_t) , its relative advantage is defined as the difference
235 between the actual reward r_t of the action and the group's average reward \bar{R}_g : $A_t^{\text{rel}} = r_t - \bar{R}_g$. If
236 $A_t^{\text{rel}} > 0$, the action outperforms the group average and should be encouraged.

238 2.5 HGPO OBJECTIVE FUNCTION
239

240 To maximize relative advantage, add entropy regularization to encourage exploration and introduce a
241 coordination loss to ensure cross-group consistency. The objective function of HGPO is as follows:

$$243 \quad L_{\text{HGPO}}(\theta) = -L^{\text{POLICY}}(\theta) + c_1 S[\pi_\theta] + L^{\text{HARM}}(\theta) \quad (8)$$

245 **Policy Loss.** This is a policy gradient term based on the relative advantage A_t^{rel} , and stability is
246 maintained through clipping. The expression is as follows:

$$248 \quad L^{\text{POLICY}}(\theta) = \hat{\mathbb{E}}_t [\min(r_t(\theta)A_t^{\text{rel}}, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon)A_t^{\text{rel}})] \quad (9)$$

250 Where, $r_t(\theta) = \frac{\pi_\theta(a_t | s_t)}{\pi_{\theta^{\text{old}}}(a_t | s_t)}$ is the probability ratio between the new and old policies. Maximizing
251 $L^{\text{POLICY}}(\theta)$ increases the probability of selecting positive relative advantage actions.

252 **Entropy Regularization $S[\pi_\theta]$.** Without sufficient exploration, the algorithm tends to converge
253 quickly on groups with more samples or stronger reward signals, such as high activity users and
254 popular items. As a result, long-tail items and low-activity users receive insufficient exploration,
255 leading to poor performance on these groups. Entropy regularization encourages the policy network to
256 maintain randomness, discover customized strategies for different groups, and improve performance
257 on long-tail recommendations. The expression is as follows:

$$259 \quad S[\pi_\theta] = \hat{\mathbb{E}}_t [H(\pi_\theta(\cdot | s_t))] \quad (10)$$

260 Since HGPO involves two types of action spaces—negative sample selection and temperature
261 coefficient selection. Therefore, the overall expression is the sum of both:

$$263 \quad H(\pi_\theta(\cdot | s_t)) = H_{\text{neg}}(\pi_\theta(a_{\text{neg}} | s_t)) + H_{\text{temp}}(\pi_\theta(a_{\text{temp}} | s_t)) \quad (11)$$

264 Where, H_{neg} is the entropy of the negative sample selection action. The policy $\pi_\theta(a_{\text{neg}} | s_t)$ outputs a
265 discrete probability distribution $P = \{p_1, p_2, \dots, p_M\}$ over the M possible negative samples, where
266 p_j is the probability of selecting the j -th action, and $\sum_{j=1}^M p_j = 1$. The expression is as follows:

$$268 \quad H_{\text{neg}} = - \sum_{j=1}^M p_j \log p_j \quad (12)$$

270 **Algorithm 1** HGPO Optimization Process

```

271 1: Initialize policy network parameters  $\theta$ 
272 2: for each training iteration do
273 3:   Collect data  $(s_t, a_t, r_t)$  using policy  $\pi_\theta$ 
274 4:   Divide nodes into groups  $\mathcal{G} = \{g_1, \dots, g_K\}$  based on degrees
275 5:   for each group  $g \in \mathcal{G}$  do
276 6:     Calculate group average reward  $\bar{R}_g$  from current batch
277 7:   end for
278 8:   for each sample  $(s_t, a_t, r_t)$  do
279 9:     Determine group  $g$  of state  $s_t$ 
280 10:    Calculate relative advantage  $A_t^{rel} = r_t - \bar{R}_g$ 
281 11:   end for
282 12:   Compute policy loss  $L^{POLICY}(\theta)$  using relative advantages with clipping
283 13:   Compute entropy regularization  $S[\pi_\theta]$  for negative sampling and temperature selection
284 14:   Compute harmonizing loss  $L^{HARM}(\theta)$  by minimizing variance of group rewards
285 15:   Update policy network parameters  $\theta$  by minimizing total loss:
286 16:    $L_{HGPO}(\theta) = -L^{POLICY}(\theta) + c_1 S[\pi_\theta] + L^{HARM}(\theta)$ 
287 17: end for

```

287 H_{temp} is the entropy of the temperature selection action. The policy $\pi_\theta(a_{temp}|s_t)$ outputs the
 288 parameters of a Gaussian distribution for the temperature coefficient in the current state s_t , specifically
 289 the mean μ and variance σ^2 , from which the temperature \mathcal{T} is sampled. The expression is as follows:
 290

$$291 H_{temp} = \frac{1}{2} \log(2\pi e \sigma^2) = \frac{1}{2} (1 + \log(2\pi \sigma^2)) \quad (13)$$

292 Therefore, a larger variance results in greater entropy and stronger exploration.
 293

294 **Coordination Loss $L^{HARM}(\theta)$.** We minimize the variance of the group average rewards \bar{R}_g
 295 using the objective function $L^{HARM}(\theta) = \lambda_{harm} \cdot \text{Var}_{g \in \mathcal{G}}[\bar{R}_g]$, where λ_{harm} controls the strength of
 296 coordination. Minimizing L^{HARM} encourages the policy network to optimize globally while adapting
 297 to the characteristics of each group through the relative advantage A_t^{rel} , ensuring similar average
 298 reward levels across groups. This approach prevents the algorithm from over optimizing one group at
 299 the expense of others. The optimization process of the HGPO algorithm is shown in Algorithm 1.
 300

301

3 EXPERIMENT

302

3.1 OVERALL PERFORMANCE

303 We applied LGHRec to some baselines across three datasets, with the results shown in Table 1.
 304 LGHRec improved the performance of all models. On the sparse Yelp2018 and Amazon-Book
 305 datasets, LGHRec mitigated data sparsity challenges through deep semantic augmentation and
 306 optimization for long-tail items. This resulted in significant performance improvements of 3% to
 307 7%. Notably, on the denser MIND dataset, where baselines already captured strong collaborative
 308 signals, LGHRec still achieved a performance gain of up to 7.49% through its advanced optimization
 309 strategies. It demonstrate the robustness of the LGHRec across diverse data environments.
 310

311

3.2 HGPO IN-DEPTH ANALYSIS

312 **Performance Comparison of Interactive Sparsity Levels.** We divided users and items into five
 313 levels based on interaction frequency across the three datasets. We then compared the NDCG@20
 314 performance of LGHRec and the baseline across different activity groups. As shown in Figure 5,
 315 LGHRec improved performance for low activity users and reduced the performance gap between
 316 groups with varying activity levels. On the Yelp and Book datasets, where long-tail items are more
 317 prevalent, LGHRec achieved more substantial improvements, demonstrating its effectiveness in
 318 enhancing long-tail recommendations. This improvement is attributed to the HGPO mechanism,
 319 which stabilizes the learning of low degree nodes through adaptive temperature adjustment and
 320 ensures that long-tail groups are not overshadowed by high activity groups via coordination loss.
 321

322 **Embedding Distribution Analysis.** We used kernel density estimation to visualize the learned item
 323 embeddings on the Yelp dataset, as shown in Figure 6. The results show that embeddings learned

Table 1: Overall performance comparisons.

Model	Variants	Yelp2018				Amazon-Book				MIND			
		Recall@10	Recall@20	NDCG@10	NDCG@20	Recall@10	Recall@20	NDCG@10	NDCG@20	Recall@10	Recall@20	NDCG@10	NDCG@20
Baseline													
SGL	Base	0.0363	0.0675	0.0412	0.0555	0.0232	0.0478	0.0306	0.0379	0.0794	0.1366	0.0946	0.1252
	+ LGHRec	0.0387	0.0710	0.0428	0.0582	0.0241	0.0508	0.0326	0.0392	0.0826	0.1435	0.0996	0.1301
	RelalImpr ↑	6.70%	5.13%	3.95%	4.78%	3.75%	6.26%	6.41%	3.32%	3.98%	5.07%	5.27%	3.92%
SimGCL	Base	0.0412	0.0721	0.0467	0.0601	0.0248	0.0515	0.0324	0.0410	0.0957	0.1642	0.1012	0.1279
	+ LGHRec	0.0430	0.0764	0.0493	0.0620	0.0262	0.0551	0.0345	0.0434	0.1002	0.1680	0.1086	0.1308
	RelalImpr ↑	4.39%	6.01%	5.59%	3.13%	5.67%	6.96%	6.61%	5.93%	4.70%	2.34%	7.27%	2.27%
LightGCL	Base	0.0464	0.0793	0.0521	0.0668	0.0312	0.0585	0.0329	0.0436	0.1069	0.1757	0.1134	0.1384
	+ LGHRec	0.0480	0.0852	0.0558	0.0692	0.0322	0.0626	0.0346	0.0456	0.1110	0.1829	0.1188	0.1427
	RelalImpr ↑	3.48%	7.43%	7.06%	3.53%	3.28%	6.94%	5.19%	4.65%	3.80%	4.10%	4.78%	3.14%
VGCL	Base	0.0431	0.0757	0.0482	0.0642	0.0278	0.0611	0.0374	0.0476	0.1125	0.1813	0.1187	0.1439
	+ LGHRec	0.0453	0.0796	0.0513	0.0689	0.0296	0.0637	0.0392	0.0509	0.1205	0.1851	0.1222	0.1518
	RelalImpr ↑	5.01%	5.10%	6.47%	7.37%	6.63%	4.21%	4.91%	6.99%	7.14%	2.08%	2.95%	5.47%
NESCL	Base	0.0375	0.0743	0.0475	0.0611	0.0298	0.0624	0.0428	0.0513	0.1248	0.1975	0.1366	0.1615
	+ LGHRec	0.0390	0.0781	0.0508	0.0633	0.0309	0.0669	0.0456	0.0543	0.1341	0.2101	0.1463	0.1665
	RelalImpr ↑	3.95%	5.07%	6.90%	3.53%	3.71%	7.14%	6.44%	5.91%	7.49%	6.35%	7.12%	3.12%
SCCF	Base	0.0481	0.0799	0.0474	0.0638	0.0337	0.0639	0.0438	0.0522	0.1203	0.1879	0.1295	0.1742
	+ LGHRec	0.0498	0.0850	0.0500	0.0671	0.0350	0.0680	0.0461	0.0556	0.1240	0.2004	0.1324	0.1813
	RelalImpr ↑	3.51%	6.39%	5.38%	5.24%	3.92%	6.44%	5.24%	6.51%	3.09%	6.64%	2.23%	4.05%
CIKG	Base	0.0469	0.0761	0.0465	0.0613	0.0659	0.1077	0.0747	0.0921	0.1256	0.1889	0.1312	0.1631
	+ LGHRec	0.0495	0.0808	0.0487	0.0650	0.0675	0.1152	0.0794	0.0972	0.1314	0.1958	0.1349	0.1725
	RelalImpr ↑	5.53%	6.13%	4.83%	6.01%	2.47%	6.93%	6.24%	5.53%	4.60%	3.66%	2.81%	5.75%
AutoGraph	Base	0.0473	0.0772	0.0479	0.0628	0.0764	0.1146	0.0959	0.1163	0.1301	0.1962	0.1359	0.1687
	+ LGHRec	0.0495	0.0800	0.0499	0.0646	0.0797	0.1192	0.1030	0.1206	0.1350	0.2048	0.1427	0.1746
	RelalImpr ↑	4.69%	3.66%	4.23%	2.81%	4.28%	4.02%	7.36%	3.68%	3.79%	4.38%	5.01%	3.49%
LightCCF	Base	0.0485	0.0802	0.0484	0.0644	0.0347	0.0577	0.0375	0.0462	0.1314	0.1996	0.1402	0.1748
	+ LGHRec	0.0521	0.0826	0.0504	0.0674	0.0370	0.0599	0.0389	0.0490	0.1412	0.2052	0.1488	0.1835
	RelalImpr ↑	7.33%	3.03%	4.12%	4.70%	6.71%	3.78%	3.63%	6.13%	7.46%	2.81%	6.11%	4.97%
TALLRec	Base	0.0461	0.0761	0.0449	0.0625	0.0331	0.0548	0.0369	0.0452	0.1334	0.1934	0.1410	0.1734
	LGHRec(LightCCF)	0.0521	0.0826	0.0504	0.0674	0.0370	0.0599	0.0389	0.0490	0.1412	0.2052	0.1488	0.1835
	RelalImpr ↑	13.02%	8.54%	12.25%	7.84%	11.78%	9.31%	5.42%	8.41%	5.84%	6.10%	5.53%	5.82%
SPRec	Base	0.0464	0.0778	0.0465	0.0631	0.0338	0.0556	0.0362	0.0439	0.1322	0.1921	0.1379	0.1720
	LGHRec(LightCCF)	0.0521	0.0826	0.0504	0.0674	0.0370	0.0599	0.0389	0.0490	0.1412	0.2052	0.1488	0.1835
	RelalImpr ↑	12.28%	6.17%	8.39%	6.81%	9.47%	7.73%	7.46%	11.62%	6.80%	6.81%	7.90%	6.68%

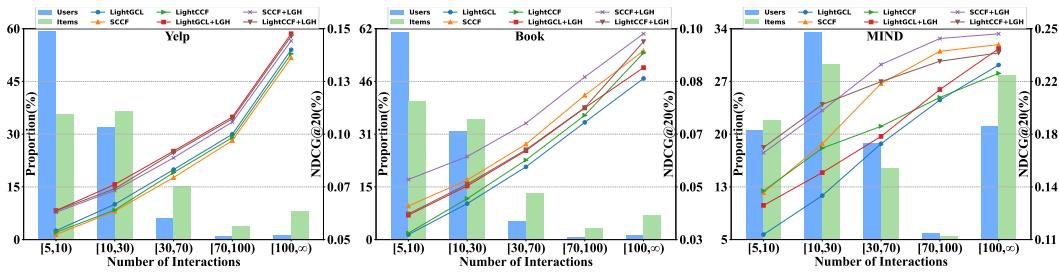


Figure 5: A comparison of NDCG@20 between LGHRec and baseline models across three datasets, grouped by different user and item interaction levels based on interaction count.

using only ID embeddings (a) form dispersed and unevenly dense clusters, making it difficult to distinguish semantically similar items. After introducing CoT semantic information from LLMs (b), the embedding distribution becomes more coherent, improving the discriminability of the embeddings. Embeddings learned by the full LGHRec model (c) exhibit a more uniform and dispersed distribution, indicating that the model is able to learn finer features to better distinguish different items.

Adaptive Temperature Coefficient. To verify HGPO can select the optimal temperature coefficient τ for different degrees nodes, we visualized the average τ selected by HGPO on the Yelp dataset. As shown in Figure 7(a), HGPO assigns larger τ values to low degree nodes, with τ gradually decreasing as node degree increases. This adaptive behavior demonstrates the effectiveness of HGPO: smaller τ values enhance the feature discriminability of high activity nodes, while larger τ values stabilize the learning process for low activity nodes in sparse data scenarios. In this way, HGPO dynamically adjusts the strength of contrastive learning based on node characteristics.

Negative Sampling Analysis. We compared similarity distribution for negative samples selected by HGPO and random sample on Yelp. As shown in Figure 7(b), 39.83% of the negative samples selected by HGPO fall within the hard negative range [0.5, 0.8), which is much higher than the 20.39% through random sample. This increase is due to R_{hard} incentivize the selection of rich information samples. In contrast, only 15.37% of easy negative samples (similarity < 0.2) were selected by HGPO, compared to 45.67% from random sample, as R_{false} penalizes easy negatives. Although HGPO selected more false negative samples (9.51% versus 4.32% with random sampling), this reflects HGPO’s exploration of the boundaries of hard samples. With R_{easy} controlling the selection of false negatives, HGPO balances exploration and risk, focusing on rich information hard negatives.

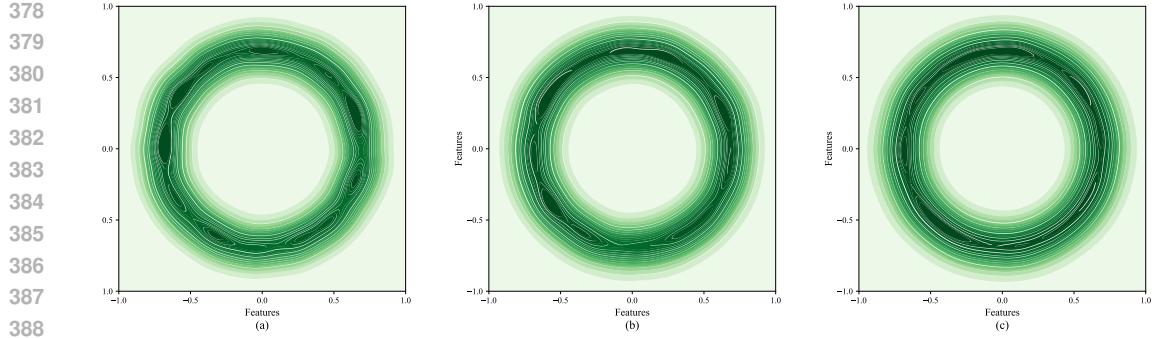


Figure 6: The KDE visualizes the distribution of item embeddings.

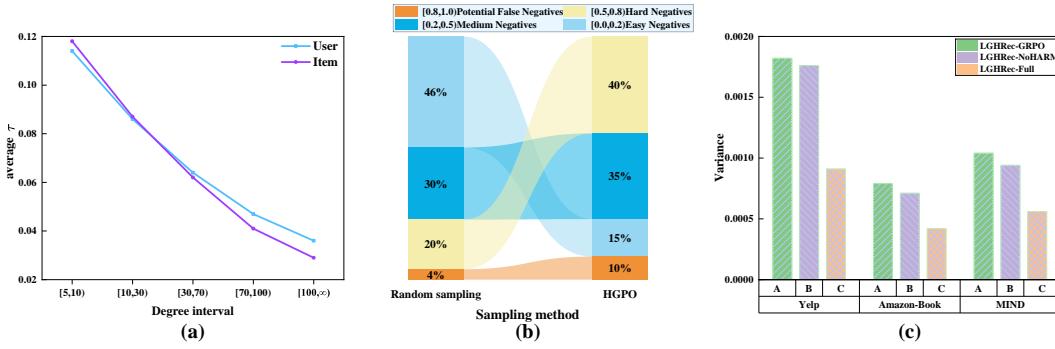


Figure 7: The results of various mechanisms of HGPO on the Yelp dataset.

Effect of Coordination Mechanism. The coordination loss L^{HARM} addresses strategy inconsistency that arises when GRPO is applied to different activity groups, which can result in over optimization of certain groups at the expense of others. We compared NDCG@20 variance across user activity groups for the full LGHRec, LGHRec-NoHARM (without coordination loss), and LGHRec-GRPO (with HGPO replaced by GRPO). As shown in Figure 7(c), the full LGHRec exhibited the lowest performance variance across activity groups. When coordination loss was removed, the performance variance of LGHRec-NoHARM increased and became similar to LGHRec-GRPO. This result indicates that the coordination loss helps align strategies across groups by penalizing differences in average rewards. It prevents the over optimization of high activity groups.

3.3 HYPERPARAMETER SENSITIVITY

We use LightCCF as backbone and adjust the coordination weight (λ_{harm}), entropy coefficient (c_1), and temperature reward coefficient (w_5) on three datasets. We observe the NDCG@20, as shown in Figure 8. When the coordination weight $\lambda_{\text{harm}} = 0$, the model degenerates into GRPO, result in low performance and confirm the effectiveness of the coordination mechanism. As λ_{harm} increases to around 0.5, performance improves due to better alignment of strategies across different groups. However, if λ_{harm} becomes too high, performance slightly decreases because of excessive emphasis on consistency. For the entropy coefficient c_1 , setting it to 0 leads to insufficient exploration and suboptimal performance. A small value promotes exploration and improves performance, while a large value causes the strategy to become too random, result in performance degradation. Regarding the temperature reward coefficient w_5 , when set it to 0 causes a performance drop. Increasing w_5 encourages the model to learn temperature adjustment strategies for heterogeneous data, with performance peaking at $w_5 = 1.2$. However, if w_5 is too high, the model focuses excessively on the temperature reward and neglects negative sample selection, thereby reducing performance.

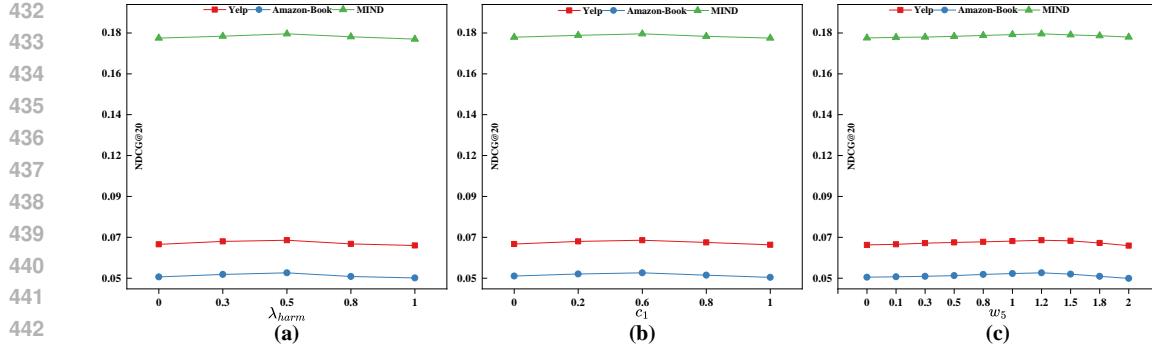


Figure 8: The results of three representative hyperparameter experiments.

Table 2: Results of ablation experiments performed on three datasets

Variants	Yelp2018	Amazon-Book	MIND	Explanation
LGHRec (Full)	0.00%	0.00%	0.00%	Full model with all components.
Impact of DSEG:				
LGHRec-NoDSEG	-6.12%	-7.96%	-5.26%	Without semantic enhancement, using LightCCF+HGPO.
LGHRec-RawText	-3.53%	-4.82%	-3.31%	Using raw text embeddings without CoT.
LGHRec (Basic LLM CoT)	-2.58%	-3.14%	-2.10%	Using LLM-generated CoT embeddings without fine-tuning.
LGHRec (Domain-tuned CoT)	-1.83%	-2.32%	-1.32%	Using LLM-generated CoT embeddings with domain fine-tuning.
LGHRec (CoT Task Fine-tuned)	-0.91%	-1.21%	-0.61%	Using LLM-generated CoT embeddings with CoT task fine-tuning.
LGHRec (Weighted Sum Fusion)	-1.10%	-1.52%	-0.88%	Using weighted summation for feature fusion.
Impact of HGPO:				
LGHRec-NoHGPO	-4.27%	-5.23%	-3.98%	Use standard contrastive loss (fixed τ , random negative sampling)
LGHRec-NoAdaptiveTau	-2.12%	-2.72%	-2.13%	HGPO optimizes only negative sampling with τ fixed
LGHRec-RandomNeg	-2.83%	-3.41%	-2.79%	HGPO only optimizes τ , using random negative sampling
LGHRec-GRPO	-1.34%	-1.71%	-1.14%	Using GRPO optimization without the coordination mechanism

3.4 ABLATION EXPERIMENT

We evaluated NDCG@20 on three datasets, the results in Table 2. The full LGHRec outperformed LGHRec-NoDSEG, demonstrate that LLM-generated semantic IDs enhance the information density and quality of the graph model’s representations. The CoT reasoning capability of LLMs proved crucial, because LGHRec provide higher quality representations compare to LGHRec-RawText, which uses only raw text embeddings. The mixed fine-tuning method achieve the best results, effectively generate high quality semantic IDs, balance recommendation performance and general capabilities. In feature fusion, concatenation and linear layer outperformed weighted summation. Regard the impact of HGPO, the full LGHRec outperformed LGHRec-NoHGPO, confirm the effectiveness of HGPO. LGHRec also performed better than LGHRec-GRPO, highlight the importance of the coordination loss in HGPO for ensuring consistency across groups. Remove the adaptive temperature adjustment mechanism in LGHRec-NoAdaptiveTau led to performance drop, indicate that adaptive temperature adjustment is essential. Finally, LGHRec-RandomNeg, which uses random negative sampling, performed worse than the full LGHRec, demonstrate the superiority of guiding the agent to select rich information negative samples through reinforcement learning.

4 CONCLUSION

We propose LGHRec, which leverages the CoT reasoning ability of LLMs to generate semantic IDs for items offline, thereby guiding the collaborative filtering process of GNNs. LGHRec employs HGPO to optimize graph contrastive learning through strategic negative sampling, cross-group coordination, and adaptive temperature adjustment. The main contribution of LGHRec is its ability to enhance representation quality and information density via CoT reasoning, while optimizing contrastive learning with HGPO. This approach balances semantic richness, efficiency, and data heterogeneity. Experimental results show that LGHRec outperforms several graph contrastive learning models, demonstrating the effectiveness of combining LLM CoT reasoning with reinforcement learning in graph recommender systems. Future research will explore integrating multimodal information, such as images, into LLM CoT reasoning to generate item representations that incorporate both visual and textual semantic understanding.

486 REFERENCES
487

488 Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He. Tallrec: An
489 effective and efficient tuning framework to align large language model with recommendation. In
490 *Proceedings of the 17th ACM Conference on Recommender Systems*, pp. 1007–1014, 2023.

491 Xuheng Cai, Chao Huang, Lianghao Xia, and Xubin Ren. Lightgcl: Simple yet effective graph
492 contrastive learning for recommendation. *arXiv preprint arXiv:2302.08191*, 2023.

493 Tianruo Cao, Honghui Chen, Zepeng Hao, and Tao Hu. Lora-ncl: Neighborhood-enriched contrastive
494 learning with low-rank dimensionality reduction for graph collaborative filtering. *Mathematics*, 11
495 (16):3577, 2023.

496 Junyi Chen and Toyotaro Suzumura. A prompting-based representation learning method for recom-
497 mendation with large language models. *arXiv preprint arXiv:2409.16674*, 2024.

498 Runjin Chen, Mingxuan Ju, Ngoc Bui, Dimosthenis Antypas, Stanley Cai, Xiaopeng Wu, Leonardo
499 Neves, Zhangyang Wang, Neil Shah, and Tong Zhao. Enhancing item tokenization for generative
500 recommendation through self-improvement. *arXiv preprint arXiv:2412.17171*, 2024.

501 Jiaxin Deng, Shiyao Wang, Kuo Cai, Lejian Ren, Qigen Hu, Weifeng Ding, Qiang Luo, and Guorui
502 Zhou. Onerec: Unifying retrieve and rank with generative recommender and iterative preference
503 alignment. *arXiv preprint arXiv:2502.18965*, 2025.

504 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
505 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of
506 the North American chapter of the association for computational linguistics: human language
507 technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

508 Yingpeng Du, Di Luo, Rui Yan, Xiaopei Wang, Hongzhi Liu, Hengshu Zhu, Yang Song, and Jie
509 Zhang. Enhancing job recommendation through llm-based generative adversarial networks. In
510 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 8363–8371, 2024.

511 Chongming Gao, Ruijun Chen, Shuai Yuan, Kexin Huang, Yuanqing Yu, and Xiangnan He. Sprec:
512 Self-play to debias llm-based recommendation. In *Proceedings of the ACM on Web Conference
513 2025*, pp. 5075–5084, 2025.

514 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
515 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
516 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

517 Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
518 Simplifying and powering graph convolution network for recommendation. In *Proceedings of the
519 43rd International ACM SIGIR conference on research and development in Information Retrieval*,
520 pp. 639–648, 2020.

521 Zheng Hu, Zhe Li, Ziyun Jiao, Satoshi Nakagawa, Jiawen Deng, Shimin Cai, Tao Zhou, and Fuji
522 Ren. Bridging the user-side knowledge gap in knowledge-aware recommendations with large
523 language models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp.
524 11799–11807, 2025.

525 Minhye Jeon, Seokho Ahn, and Young-Duk Seo. Topic-aware knowledge graph with large language
526 models for interoperability in recommender systems. *arXiv preprint arXiv:2412.20163*, 2024.

527 Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko Ishii, and Pascale Fung. Towards mitigating
528 hallucination in large language models via self-reflection. *arXiv preprint arXiv:2310.06271*, 2023.

529 Yangqin Jiang, Chao Huang, and Lianghao Huang. Adaptive graph contrastive learning for recom-
530 mendation. In *Proceedings of the 29th ACM SIGKDD conference on knowledge discovery and
531 data mining*, pp. 4252–4261, 2023.

532 Kirandeep Kaur, Manya Chadha, Vinayak Gupta, and Chirag Shah. Efficient and responsible
533 adaptation of large language models for robust and equitable top-k recommendations, 2025. URL
534 <https://arxiv.org/abs/2501.04762>.

540 Yuxuan Lei, Jianxun Lian, Jing Yao, Xu Huang, Defu Lian, and Xing Xie. Recexplainer: Aligning
 541 large language models for explaining recommendation models. In *Proceedings of the 30th ACM*
 542 *SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 1530–1541, 2024.

543

544 Qingyao Li, Wei Xia, Kounianhua Du, Qiji Zhang, Weinan Zhang, Ruiming Tang, and Yong Yu.
 545 Learning structure and knowledge aware representation with large language models for concept
 546 recommendation. *arXiv preprint arXiv:2405.12442*, 2024.

547

548 Xinyu Lin, Wenjie Wang, Yongqi Li, Shuo Yang, Fuli Feng, Yinwei Wei, and Tat-Seng Chua. Data-
 549 efficient fine-tuning for llm-based recommendation. In *Proceedings of the 47th international ACM*
 550 *SIGIR conference on research and development in information retrieval*, pp. 365–374, 2024.

551

552 Zihan Lin, Changxin Tian, Yupeng Hou, and Wayne Xin Zhao. Improving graph collaborative filtering
 553 with neighborhood-enriched contrastive learning. In *Proceedings of the ACM web conference 2022*,
 554 pp. 2320–2329, 2022.

555

556 Fan Liu, Yaqi Liu, Huilin Chen, Zhiyong Cheng, Liqiang Nie, and Mohan Kankanhalli. Understanding
 557 before recommendation: Semantic aspect-aware review exploitation via large language models.
 558 *ACM Transactions on Information Systems*, 43(2):1–26, 2025.

559

560 Qidong Liu, Xian Wu, Xiangyu Zhao, Yeqing Wang, Zijian Zhang, Feng Tian, and Yefeng Zheng.
 561 Large language models enhanced sequential recommendation for long-tail user and item. *arXiv*
 562 *e-prints*, pp. arXiv–2405, 2024a.

563

564 Qidong Liu, Xiangyu Zhao, Yuhao Wang, Yeqing Wang, Zijian Zhang, Yuqi Sun, Xiang Li, Maolin
 565 Wang, Pengyue Jia, Chong Chen, et al. Large language model enhanced recommender systems:
 566 Taxonomy, trend, application and future. *arXiv preprint arXiv:2412.13432*, 2024b.

567

568 Sichun Luo, Bowei He, Haohan Zhao, Wei Shao, Yanlin Qi, Yinya Huang, Aojun Zhou, Yuxuan Yao,
 569 Zongpeng Li, Yuanzhang Xiao, et al. Recranker: Instruction tuning large language model as ranker
 570 for top-k recommendation. *ACM Transactions on Information Systems*, 2024.

571

572 Haohao Qu, Wenqi Fan, Zihuai Zhao, and Qing Li. Tokenrec: learning to tokenize id for llm-based
 573 generative recommendation. *arXiv preprint arXiv:2406.10450*, 2024.

574

575 Xubin Ren, Wei Wei, Lianghao Xia, Lixin Su, Suqi Cheng, Junfeng Wang, Dawei Yin, and Chao
 576 Huang. Representation learning with large language models for recommendation. In *Proceedings*
 577 *of the ACM Web Conference 2024*, pp. 3464–3475, 2024.

578

579 Keigo Sakurai, Ren Togo, Takahiro Ogawa, and Miki Haseyama. Llm is knowledge graph reasoner:
 580 Llm’s intuition-aware knowledge graph reasoning for cold-start sequential recommendation. In
 581 *European Conference on Information Retrieval*, pp. 263–278. Springer, 2025.

582

583 Rong Shan, Jianghao Lin, Chenxu Zhu, Bo Chen, Menghui Zhu, Kangning Zhang, Jieming Zhu,
 584 Ruiming Tang, Yong Yu, and Weinan Zhang. An automatic graph construction framework based
 585 on large language models for recommendation. *arXiv preprint arXiv:2412.18241*, 2024.

586

587 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 588 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 589 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

590

591 Chao Sun, Yaobo Liang, Yaming Yang, Shilin Xu, Tianmeng Yang, and Yunhai Tong. Rlrf4rec:
 592 Reinforcement learning from recsys feedback for enhanced recommendation reranking. *arXiv*
 593 *preprint arXiv:2410.05939*, 2024.

594

595 Peijie Sun, Le Wu, Kun Zhang, Xiangzhi Chen, and Meng Wang. Neighborhood-enhanced supervised
 596 contrastive learning for collaborative filtering. *IEEE Transactions on Knowledge and Data
 597 Engineering*, 36(5):2069–2081, 2023.

598

599 Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural graph collaborative
 600 filtering. In *Proceedings of the 42nd international ACM SIGIR conference on Research and
 601 development in Information Retrieval*, pp. 165–174, 2019.

594 Yan Wang, Zhixuan Chu, Xin Ouyang, Simeng Wang, Hongyan Hao, Yue Shen, Jinjie Gu, Siqiao Xue,
 595 James Zhang, Qing Cui, et al. Llmrg: Improving recommendations through large language model
 596 reasoning graphs. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp.
 597 19189–19196, 2024.

598

599 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 600 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 601 *neural information processing systems*, 35:24824–24837, 2022.

602

603 Bin Wu, Xiangnan He, Qi Zhang, Meng Wang, and Yangdong Ye. Gcrec: Graph-augmented capsule
 604 network for next-item recommendation. *IEEE Transactions on Neural Networks and Learning*
 605 *Systems*, 34(12):10164–10177, 2022.

606

607 Bin Wu, Xun Su, Jing Liang, Zhongchuan Sun, Lihong Zhong, and Yangdong Ye. Graph gating-mixer
 608 for sequential recommendation. *Expert Systems with Applications*, 238:122060, 2024a.

609

610 Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and Xing Xie. Self-
 611 supervised graph learning for recommendation. In *Proceedings of the 44th international ACM*
SIGIR conference on research and development in information retrieval, pp. 726–735, 2021.

612

613 Yihong Wu, Le Zhang, Fengran Mo, Tianyu Zhu, Weizhi Ma, and Jian-Yun Nie. Unifying graph
 614 convolution and contrastive learning in collaborative filtering. In *Proceedings of the 30th ACM*
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 3425–3436, 2024b.

615

616 Yunjia Xi, Weiwen Liu, Jianghao Lin, Xiaoling Cai, Hong Zhu, Jieming Zhu, Bo Chen, Ruiming Tang,
 617 Weinan Zhang, and Yong Yu. Towards open-world recommendation with knowledge augmentation
 618 from large language models. In *Proceedings of the 18th ACM Conference on Recommender*
 619 *Systems*, pp. 12–22, 2024.

620

621 Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-pack:
 622 Packed resources for general chinese embeddings. In *Proceedings of the 47th international ACM*
SIGIR conference on research and development in information retrieval, pp. 641–649, 2024.

623

624 Shenghao Yang, Weizhi Ma, Peijie Sun, Qingyao Ai, Yiqun Liu, Mingchen Cai, and Min Zhang.
 625 Sequential recommendation with latent relations based on large language model. In *Proceedings*
 626 *of the 47th International ACM SIGIR Conference on Research and Development in Information*
 627 *Retrieval*, pp. 335–344, 2024.

628

629 Yonghui Yang, Zhengwei Wu, Le Wu, Kun Zhang, Richang Hong, Zhiqiang Zhang, Jun Zhou, and
 630 Meng Wang. Generative-contrastive graph learning for recommendation. In *Proceedings of the*
 631 *46th international ACM SIGIR Conference on Research and Development in Information Retrieval*,
 632 pp. 1117–1126, 2023.

633

634 Jia-Yu Yao, Kun-Peng Ning, Zhen-Hui Liu, Mu-Nan Ning, Yu-Yang Liu, and Li Yuan. Llm lies:
 635 Hallucinations are not bugs, but features as adversarial examples. *arXiv preprint arXiv:2310.01469*,
 636 2023.

637

638 Bin Yin, Junjie Xie, Yu Qin, Zixiang Ding, Zhichao Feng, Xiang Li, and Wei Lin. Heterogeneous
 639 knowledge fusion: A novel approach for personalized recommendation via llm. In *Proceedings of*
the 17th ACM Conference on Recommender Systems, pp. 599–601, 2023.

640

641 Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung Nguyen. Are graph
 642 augmentations necessary? simple graph contrastive learning for recommendation. In *Proceedings*
 643 *of the 45th international ACM SIGIR conference on research and development in information*
 644 *retrieval*, pp. 1294–1303, 2022.

645

646 Chiyu Zhang, Yifei Sun, Minghao Wu, Jun Chen, Jie Lei, Muhammad Abdul-Mageed, Rong Jin,
 647 Angli Liu, Ji Zhu, Sem Park, et al. Embsum: Leveraging the summarization capabilities of large
 648 language models for content-based recommendations. In *Proceedings of the 18th ACM Conference*
on Recommender Systems, pp. 1010–1015, 2024a.

648 Weizhi Zhang, Yuanchen Bei, Liangwei Yang, Henry Peng Zou, Peilin Zhou, Aiwei Liu, Yinghui
 649 Li, Hao Chen, Jianling Wang, Yu Wang, Feiran Huang, Sheng Zhou, Jiajun Bu, Allen Lin, James
 650 Caverlee, Fakhri Karray, Irwin King, and Philip S. Yu. Cold-start recommendation towards
 651 the era of large language models (llms): A comprehensive survey and roadmap, 2025a. URL
 652 <https://arxiv.org/abs/2501.01945>.

653 Xiaokun Zhang, Bo Xu, Youlin Wu, Yuan Zhong, Hongfei Lin, and Fenglong Ma. Finerec: Exploring
 654 fine-grained sequential recommendation. In *Proceedings of the 47th International ACM SIGIR
 655 Conference on Research and Development in Information Retrieval*, pp. 1599–1608, 2024b.

656

657 Xiaoyu Zhang, Yishan Li, Jiayin Wang, Bowen Sun, Weizhi Ma, Peijie Sun, and Min Zhang. Large
 658 language models as evaluators for recommendation explanations. In *Proceedings of the 18th ACM
 659 Conference on Recommender Systems*, pp. 33–42, 2024c.

660 Yabin Zhang, Wenhui Yu, Erhan Zhang, Xu Chen, Lantao Hu, Peng Jiang, and Kun Gai. Recgpt:
 661 Generative personalized prompts for sequential recommendation via chatgpt training paradigm.
 662 *arXiv preprint arXiv:2404.08675*, 2024d.

663

664 Yu Zhang, Yiwen Zhang, Yi Zhang, Lei Sang, and Yun Yang. Unveiling contrastive learning’s
 665 capability of neighborhood aggregation for collaborative filtering. *arXiv preprint arXiv:2504.10113*,
 666 2025b.

667 Qian Zhao, Hao Qian, Ziqi Liu, Gong-Duo Zhang, and Lihong Gu. Breaking the barrier: utilizing
 668 large language models for industrial recommendation systems through an inferential knowledge
 669 graph. In *Proceedings of the 33rd ACM International Conference on Information and Knowledge
 670 Management*, pp. 5086–5093, 2024.

671 Wayne Xin Zhao, Junhua Chen, Pengfei Wang, Qi Gu, and Ji-Rong Wen. Revisiting alternative
 672 experimental settings for evaluating top-n item recommendation algorithms. In *Proceedings of the
 673 29th ACM International Conference on Information & Knowledge Management*, pp. 2329–2332,
 674 2020.

675

676 Bowen Zheng, Yupeng Hou, Hongyu Lu, Yu Chen, Wayne Xin Zhao, Ming Chen, and Ji-Rong Wen.
 677 Adapting large language models by integrating collaborative semantics for recommendation. In
 678 *2024 IEEE 40th International Conference on Data Engineering (ICDE)*, pp. 1435–1448. IEEE,
 679 2024.

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702
703 **Appendix**704
705 **A RELATED WORK**706
707 **A.1 LLM RECOMMENDATION**

708 Research on using LLMs for recommendations can be categorized into two types. The first category
 709 is **LLM-as-RSs**, where LLMs are directly employed as recommender systems Bao et al. (2023);
 710 Zhang et al. (2024d); Luo et al. (2024); Lei et al. (2024); Zhang et al. (2024c). These systems are
 711 fine-tuned to generate recommendation lists. For instance, RecGPT Zhang et al. (2024d) fine-tunes
 712 a Transformer model for sequential recommendation; EITGR Chen et al. (2024) uses LLMs to
 713 generate item labels and adapt tokenization strategies dynamically; SPRec Gao et al. (2025) generates
 714 positive and negative samples iteratively to optimize preference alignment; TALLRec Bao et al.
 715 (2023) optimizes through instruction fine-tuned and recommendation task refinement; and RLRF4Rec
 716 Sun et al. (2024) generates user preferences with LLMs and refines them through feedback training.
 717 Although this approach offers end-to-end generative capabilities, it faces challenges such as low
 718 efficiency, underuse of collaborative signals, and hallucination problems. The second category is
 719 **LLM-enhanced RSs**, which improve existing recommendation models using the output text from
 720 LLMs. Pretrained language models Devlin et al. (2019) or specialized embedding methods Xiao
 721 et al. (2024) extract embeddings from LLM-generated text, which are then used as item features in
 722 recommendation models Xi et al. (2024); Zhang et al. (2024a); Liu et al. (2024b); Qu et al. (2024);
 723 Deng et al. (2025). For example, KAR Xi et al. (2024) integrates knowledge extracted from LLMs
 724 into the model; Du et al. (2024) optimizes representations by extracting explicit and implicit user
 725 information; and EmbSum Zhang et al. (2024a) uses LLMs to generate user interests as model
 726 features. This approach is more flexible and friendly, but current methods have not fully leveraged
 727 the chain-of-thought (CoT) reasoning capabilities of LLMs to produce higher quality, more rich
 728 information semantic representations.

729 **A.2 GNN-BASED REC**

730 Some methods He et al. (2020) rely on ID features and make insufficient use of textual semantic
 731 information. To address this, some studies attempt to combine large language models (LLMs) with
 732 graph neural networks (GNNs) to enhance graph structures or node features. For instance, LLMs
 733 are used to infer potential relationships between nodes and add edges Zhao et al. (2024); Liu et al.
 734 (2025); Zhang et al. (2024b). One approach, LLM-KERec Zhao et al. (2024), extracts entities and
 735 infers relationships using LLMs to construct supplementary graphs. Another method introduces
 736 latent factors inferred by LLMs as new nodes to build richer semantic graphs Shan et al. (2024);
 737 Jeon et al. (2024); Hu et al. (2025), such as AutoGraph Shan et al. (2024), which uses LLMs to
 738 infer user preferences and item knowledge, encoding them into semantic vectors and extracting latent
 739 factors as graph nodes. Other studies have enhanced GNN node feature representations directly with
 740 LLMs Sakurai et al. (2025), for example, by extracting preference features to drive reinforcement
 741 learning Sakurai et al. (2025). Some works Li et al. (2024); Chen & Suzumura (2024) design specific
 742 prompts to input node text into LLMs for enhancement, then encode the output as embeddings. Our
 743 LGHRec also follows the node feature enhancement paradigm but distinguishes itself by utilizing the
 744 chain-of-thought (CoT) reasoning capability of LLMs. Instead of generating simple text descriptions,
 745 LGHRec produces text with deeper logic and analysis, aiming to obtain semantic IDs with higher
 746 information density.

747 **A.3 GRAPH CONTRASTIVE LEARNING**

748 Graph contrastive learning is used in recommender systems to address the issue of data sparsity
 749 Lin et al. (2022); Wu et al. (2021); Yang et al. (2023); Zhang et al. (2025b); Sun et al. (2023); Yu
 750 et al. (2022); Wu et al. (2024b); Cai et al. (2023). Some methods include SGL Wu et al. (2021)
 751 (data augmentation), SimGCL Yu et al. (2022) (add noise), LightGCL Cai et al. (2023) (SVD
 752 enhancement), and NCL Lin et al. (2022) (structural and semantic prototype contrast). However,
 753 these approaches face challenges such as false negative samples and fixed temperature coefficients.
 754 Additionally, when using the GRPO reinforcement learning algorithm to handle groups with varying
 755 node degrees, it fails to ensure coordination between the strategies of different groups. This leads to

756
757
758
759 Table 3: Basic statistics of datasets.
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810

Datasets	Users	Items	Interactions	Density
Yelp2018	277631	112394	4250483	0.00013
Amazon-Book	1856344	704093	27164983	0.00002
MIND	47495	28420	5311336	0.00393

optimization biased toward active users and popular items, causing performance imbalances. The HGPO algorithm we propose helps mitigate this issue.

B EXPERIMENTAL SETUP

B.1 DATASETS

We conducted experiments on three datasets: Yelp2018¹, Amazon-Book², and MIND³. For each dataset, we applied a 5-core setting, randomly selecting 80% of the data for training, 10% for validation, and the remaining 10% for testing. Detailed statistics for the datasets are provided in Table 3. The extremely low density of these datasets underscores the issue of data sparsity, which is the primary challenge addressed by both graph contrastive learning and our proposed HGPO algorithm.

B.2 BASELINES

To evaluate the effectiveness of LGHRec, we selected the following models as backbones and integrated the DSEG and HGPO components of LGHRec into them for comparison:

- **SGL** Wu et al. (2021): Generates node views through node deletion, edge deletion, and random walks.
- **SimGCL** Yu et al. (2022): Introduces graph contrastive learning by omitting explicit graph augmentation.
- **LightGCL** Cai et al. (2023): Utilizes singular value decomposition for graph augmentation in contrastive learning.
- **VGCL** Yang et al. (2023): Proposes a variational graph generation contrastive learning framework, generating contrastive views through sampling.
- **NESCL** Sun et al. (2023): Introduces neighborhood-enhanced contrastive learning, treating the anchor’s collaborative neighbors as positive samples.
- **SCCF** Wu et al. (2024b): Proposes contrastive collaborative filtering, capturing higher-order connectivity based on an improved contrastive loss function, without requiring graph convolution layers.
- **CIKG** Hu et al. (2025): It uses LLMs to infer user interests, structuring this knowledge into a hybrid graph for enhanced recommendation.
- **AutoGraph** Shan et al. (2024): It leverages LLMs to create semantic vectors and uses vector quantization to extract latent factors for graph construction.
- **LightCCF** Zhang et al. (2025b): Introduces lightweight contrastive learning by incorporating neighborhood aggregation objectives.
- **TALLRec** Bao et al. (2023): It aligns LLM with recommendation tasks by formatting data as instructions and utilizing an two-stage LoRA-based fine-tuning process.
- **SPRec** Gao et al. (2025): It addresses biases that emerge during LLM fine-tuning by employing Direct Preference Optimization.

¹<https://business.yelp.com/data/resources/open-dataset/>

²<http://jmcauley.ucsd.edu/data/amazon/>

³<https://msnews.github.io/>

Table 4: Computational cost and efficiency of LGHRec.

Dataset	Model Variant	Pre-processing LLM CoT Generate(minute)	Pre-processing BERT Encoding(minute)	Pre-processing Complexity	Train (Sec/Epoch)	Train Complexity	Train Memory	Train Total Time	Inference (Ms/Batch)
Yelp2018	Baseline(LightCCF)	N/A	N/A	N/A	11.8 ± 0.16	$O(L \cdot E \cdot d)$	3.26GB	108.32m	25.3 ± 0.7
	Baseline+DSEG + LGHRec(Full Model)	149.3	2.3	$O(I)$	12.4 ± 0.13	$O(L \cdot E \cdot d)$	3.31GB	84.92m	28.9 ± 0.6
Amazon-Book	Baseline(LightCCF)	N/A	N/A	N/A	16.1 ± 0.84	$O(L \cdot E \cdot d + V)$	3.53GB	150.28m	29.8 ± 0.8
	Baseline+DSEG + LGHRec(Full Model)	903.7	15.2	$O(I)$	48.6 ± 4.98	$O(L \cdot E \cdot d)$	3.49GB	318.74m	29.3 ± 0.6
Steam	Baseline(LightCCF)	N/A	N/A	N/A	59.9 ± 3.25	$O(L \cdot E \cdot d + V)$	3.85GB	563.28m	29.9 ± 0.8
	Baseline+DSEG + LGHRec(Full Model)	37.9	0.6	$O(I)$	10.5 ± 0.13	$O(L \cdot E \cdot d)$	3.23GB	81.34m	23.1 ± 0.5
		37.9	0.6	$O(I)$	11.2 ± 0.19	$O(L \cdot E \cdot d)$	3.27GB	69.45m	27.9 ± 0.5
					15.6 ± 0.49	$O(L \cdot E \cdot d + V)$	3.39GB	124.68m	28.5 ± 0.6

B.3 EVALUATION METRICS

We used two Top-K metrics He et al. (2020); Wu et al. (2021): Recall@K and NDCG@K, and report results for $K = 10$ and $K = 20$. The all-ranking evaluation strategy Zhao et al. (2020) was adopted, where, for each user in the test set, the model is required to predict and rank the scores of all items that the user has not interacted with. The hit rate of the top-K ranked items is then evaluated.

B.4 IMPLEMENTATION DETAILS

All methods use the Adam optimizer with a learning rate of 0.001, a batch size of 4096, and an embedding dimension of 64. The GNN consists of three layers. We employ an early stopping strategy with a patience value of 10 to prevent overfitting. The number of negative samples, K , is set to 10% of the total number of nodes. The reward function thresholds are: $\theta_{FN} = 0.8$, $\theta_{easy} = 0.5$, $\theta_{FP} = 0.8$, and $\theta_{easy_low} = 0.2$. The clipping range ε for HGPO is 0.2. The learning rate for the policy network is 0.0001. The entropy regularization coefficient is $c_1 \in \{0, 0.2, 0.6, 0.8, 1.0\}$, the coordination loss coefficient is $\lambda_{harm} \in \{0, 0.3, 0.5, 0.8, 1.0\}$, and the temperature reward coefficient $w_5 \in \{0, 0.1, 0.3, 0.5, 0.8, 1.0, 1.2, 1.5, 1.8, 2.0\}$. Users and items are divided into five groups based on their degree. We use the Qwen2.5-32B-Instruct model, fine-tuned with a mixed fine-tuning strategy, to generate CoT text for the items. Pre-trained BERT is used to extract embeddings. All experiments are implemented in PyTorch on a server equipped with eight NVIDIA A100 GPUs.

B.5 COMPUTATIONAL COST AND EFFICIENCY

Our approach maintains efficient online inference by shifting the costly LLM computations to a one-time offline preprocessing stage. We analyzed the computational cost in detail. The results are shown in Table 4. Here, N/A indicates that the baseline lacks an LLM inference stage, N is the number of items, V is the total number of nodes, E is the total number of interactions, L is the number of GNN layers, and d is the embedding dimension. All measurements were performed on a single NVIDIA A100 GPU with a batch size of 4096. By front-loading the expensive CoT inference into the offline phase, our method preserves high efficiency during online serving.

The computational cost of LGHRec is divided into two parts. First, there is the one-time offline preprocessing cost. The DSEG module uses an LLM to generate CoT semantic ID vectors, with a time complexity of $O(I)$. On a large dataset like Amazon-Book, this step takes about 15 hours. Although substantial, this one-time cost is acceptable for industrial applications. The resulting high-quality semantic IDs can be stored and reused indefinitely. Additionally, inference time on large datasets can be further reduced by leveraging distributed acceleration frameworks such as vLLM. Second, the training-phase cost increases with the HGPO module. For example, on Yelp, each epoch’s training time rises from 11.8 s to 16.1 s. We consider this a reasonable trade-off given the model’s performance gains.

The key advantage of our approach lies in the guarantee of online inference efficiency. As shown in the Inference column of Table 4, LGHRec’s per-batch latency remains nearly unchanged compared to the baselines. For example, on Amazon-Book, latency increases only from 25.6ms to 29.9ms. In an online recommendation service, the system only invokes the pre-trained GNN model to compute user and item embeddings. It does not perform costly LLM inference or run the HGPO policy network. This decoupled design delivers significant accuracy gains while meeting industry requirements for low latency and high throughput. These results demonstrate LGHRec’s practicality for real-world deployment.

Table 5: Impact of different LLM architectures on the performance of LGHRec.

Variants	Yelp2018		Amazon-Book		MIND	
	Recall@10	NDCG@10	Recall@10	NDCG@10	Recall@10	NDCG@10
Qwen-2.5-32B-Instruct(Base)	—	—	—	—	—	—
DeepSeek-R1-Distill-Qwen-14B	-0.96%	-0.77%	-0.81%	-0.77%	-0.72%	-0.77%
Llama-3.1-8B-Instruct	-1.34%	-1.59%	-1.35%	-1.03%	-0.93%	-0.99%
Qwen-2.5-7B-Instruct	-1.15%	-1.19%	-1.08%	-0.77%	-0.80%	-0.87%
Qwen3-8B	-0.77%	-0.99%	-0.54%	-0.51%	-0.64%	-0.78%
Qwen3-32B	+0.96%	+1.19%	+1.08%	+1.03%	+0.83%	+0.98%

B.6 IMPACT OF DIFFERENT LLM ARCHITECTURES ON THE PERFORMANCE OF LGHREC.

We evaluated multiple LLM architectures, with results summarized in Table 5. Qwen-2.5-32B-Instruct served as our baseline. These findings support two key conclusions. First, Within a single model family, performance increases with model size. For instance, Qwen3-32B outperforms its smaller variants. Its superior context comprehension and reasoning capabilities generate higher-quality Chain-of-Thought outputs. Second, When comparing across model families, we find that the performance of LGHRec is correlated with the general ability of LLM, such as MMLU score, and the models with stronger general ability improve the recommendation performance more, such as the newer Qwen3 series models, which is consistent with the conclusions of related studies ???. We demonstrate that our framework effectively leverages and benefits from more advanced LLMS.

B.7 SENSITIVITY ANALYSIS ON THE FALSE NEGATIVE THRESHOLD

We conducted experiments on two representative datasets, Yelp2018 and Amazon-Book. We performed a hyperparameter sensitivity analysis on the four similarity thresholds in the reward function θ_{FN} , θ_{easy} , θ_{FP} and θ_{easy_low} . We used LightCCF, a strong performer in our paper, as the backbone network. For each analysis, we varied one threshold within a reasonable range while keeping all other parameters at their optimal settings as reported in the paper, and we observed the changes in the NDCG@20 metric. The results summarized in Table 6.

θ_{FN} defines the similarity lower bound for the false negatives, and indirectly sets the similarity upper bound for the hard negatives $[\theta_{easy}, \theta_{FN}]$. An appropriate θ_{FN} is crucial for the model to distinguish between false and true negatives. We tested its value within the range [0.7, 0.9]. From the results, we observe that the model achieves its best performance when θ_{FN} is set to 0.8. A too low θ_{FN} (e.g., 0.7) narrows the valid range and may mistakenly penalize some informative hard negatives as false negatives, thereby impairing learning. Conversely, a too high θ_{FN} (e.g., 0.9) relaxes the judgment of false negatives, potentially preventing the model from effectively identifying and excluding samples that are truly similar to the anchor, which also degrades performance. Overall, the model maintains high stability in the range [0.75, 0.85].

θ_{easy} defines the similarity lower bound for the hard negatives, used to distinguish between hard negatives and easy negatives. It determines the difficulty range of negative samples that the model focuses on. We tested its value within the range [0.3, 0.7]. When θ_{easy} is set to 0.5, the model can effectively identify and reward the most informative hard negatives. If this value is too low (e.g., 0.3), many low discrimination easy negatives are mistakenly treated as hard negatives, reducing the value of the reward signal. Conversely, if it is too high (e.g., 0.7), the range of hard negatives becomes overly narrow, causing the model to miss many valuable training signals and leading to a more pronounced performance drop. Experimental results indicate that the model’s performance remains relatively stable within the range [0.4, 0.6].

θ_{FP} is used to penalize negative samples that are overly similar to the positive sample rather than to the anchor user, helping to avoid selecting negatives that are semantically very close to the positive. We tested its value within the range [0.7, 0.9]. The experiments show that θ_{FP} performs best at 0.8. A too low θ_{FP} (e.g., 0.7) makes the model overly conservative, mistakenly penalizing some high quality hard negatives that only have moderate similarity to the positive sample. Conversely, a too high θ_{FP} (e.g., 0.9) fails to effectively exclude negatives that are highly similar to the positive sample and may cause confusion. The sensitivity of this parameter is relatively low, with performance fluctuations minor within the range [0.75, 0.85], demonstrating good robustness.

$\theta_{\text{easy_low}}$ penalizes samples whose similarity falls below this threshold, preventing the model from wasting learning opportunities on overly simple negatives. We tested its value within the range [0.1, 0.3]. When $\theta_{\text{easy_low}}$ is set to 0.2, the model achieves optimal performance. This indicates that moderately penalizing the least informative negatives is beneficial. If the value is too low (e.g., 0.1), the penalty on easy negatives is insufficient, and the model may still select ineffective samples. Conversely, if it is too high (e.g., 0.3), it may mistakenly penalize samples that carry weak but useful signals, slightly harming performance. The parameter remains stable within the range [0.15, 0.25].

From the above experiments, we observe that although the choice of these similarity thresholds does affect final performance, LGHRec maintains strong stability within reasonable variations of these values. This demonstrates the robustness of our method and confirms that the default values chosen in our paper are empirically justified.

Table 6: Hyperparameter sensitivity analysis for reward function thresholds on Yelp2018 and Amazon-Book datasets, evaluated using NDCG@20.

Parameter	Value	Yelp2018 (NDCG@20)	Amazon-Book (NDCG@20)
θ_{easy}	0.3	0.0658(-2.30%)	0.0478(-2.45%)
	0.4	0.0667(-0.96%)	0.0485(-1.02%)
	0.5 (Best)	0.0674(0.00%)	0.0490(0.00%)
	0.6	0.0664(-1.34%)	0.0483(-1.43%)
	0.7	0.0653(-3.07%)	0.0475(-3.06%)
$\theta_{\text{easy_low}}$	0.10	0.0663(-1.54%)	0.0483(-1.43%)
	0.15	0.0670(-0.58%)	0.0487(-0.61%)
	0.20 (Best)	0.0674(0.00%)	0.0490(0.00%)
	0.25	0.0668(-0.77%)	0.0486(-0.82%)
	0.30	0.0661(-1.92%)	0.0481(-1.84%)
θ_{FN}	0.70	0.0661(-1.92%)	0.0481(-1.84%)
	0.75	0.0668(-0.77%)	0.0486(-0.82%)
	0.80 (Best)	0.0674(0.00%)	0.0490(0.00%)
	0.85	0.0670(-0.58%)	0.0487(-0.61%)
	0.90	0.0662(-1.73%)	0.0482(-1.63%)
θ_{FP}	0.70	0.0664(-1.34%)	0.0484(-1.22%)
	0.75	0.0670(-0.58%)	0.0488(-0.41%)
	0.80 (Best)	0.0674(0.00%)	0.0490(0.00%)
	0.85	0.0671(-0.38%)	0.0489(-0.20%)
	0.90	0.0666(-1.15%)	0.0486(-0.82%)

C CONVERGENCE ANALYSIS OF THE HGPO OBJECTIVE FUNCTION

C.1 REVIEW OF THE HGPO ALGORITHM

The HGPO algorithm's objective function $L_{HGPO}(\theta)$ is defined as:

$$L_{HGPO}(\theta) = -L^{\text{POLICY}}(\theta) + c_1 S[\pi_\theta] + L^{\text{HARM}}(\theta) \quad (\text{Eq. A})$$

where:

1. $L^{\text{POLICY}}(\theta)$ is the policy loss based on the relative advantage function with clipping:

$$L^{\text{POLICY}}(\theta) = \widehat{\mathbb{E}}_t \left[\min(r_t(\theta) A_t^{\text{rel}}, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) A_t^{\text{rel}}) \right] \quad (\text{Eq. B})$$

Here, $r_t(\theta) = \frac{\pi_\theta(a_t|s_t)}{\pi_{\theta_{\text{old}}}(a_t|s_t)}$ is the importance-sampling weight, and the relative advantage is as follow:

$$A_t^{\text{rel}} = r_t - \bar{R}_{g(s_t)} \quad (16)$$

where r_t is the immediate reward for taking action a_t in state s_t , and $\bar{R}_{g(s_t)}$ is the average reward of the group g containing state s_t .

972 2. $S[\pi_\theta]$ is the entropy regularization term of the policy:
 973

$$974 S[\pi_\theta] = \widehat{\mathbb{E}}_t [H(\pi_\theta(\cdot | s_t))] \quad (\text{Eq. C}) \quad 975$$

976 with
 977

$$978 H(\pi_\theta(\cdot | s_t)) = H_{\text{neg}}(\pi_\theta(a_{\text{neg}} | s_t)) + H_{\text{temp}}(\pi_\theta(a_{\text{temp}} | s_t)) \quad (18)$$

979 3. $L^{\text{HARM}}(\theta)$ is the harmonization loss, which penalizes variance in average rewards across
 980 groups:
 981

$$980 L^{\text{HARM}}(\theta) = \lambda_{\text{harm}} \text{Var}_{g \in \mathcal{G}} [\bar{R}_g] \quad (\text{Eq. D}) \quad 981$$

982 We now proceed to prove that, when optimized via gradient descent, the HGPO algorithm converges
 983 to a (local) minimum of $L_{\text{HGPO}}(\theta)$.
 984

985 C.2 PROOF OUTLINE

986 We follow the standard convergence proof approach for optimization algorithms:
 987

- 988 1. **Boundedness:** Show that the objective function $L_{\text{HGPO}}(\theta)$ is lower-bounded under appropriate
 989 conditions.
- 990 2. **Sufficient Decrease:** Prove that at each iteration, if the gradient is non-zero, the objective
 991 value decreases sufficiently (or at least does not increase).
- 992 3. **Convergence to a Stationary Point:** By combining boundedness and sufficient decrease,
 993 demonstrate that the gradient of the policy parameters θ converges to zero, meaning the
 994 algorithm converges to a stationary point.
 995

996 C.3 DETAILED MATHEMATICAL PROOF

997 C.3.1 PRELIMINARIES

1000 **Boundedness of the Reward.** The reward at time step t consists of a rule-based component R_t
 1001 (composed of R_{hard} , R_{false} , R_{easy} as defined in Eqs. 1, 2, 3) and an adaptive temperature component
 1002 R_τ (Eq. 5). We show that both components are bounded.

1003 First, each of R_{hard} , R_{false} , R_{easy} is defined using similarity thresholds. Since cosine similarity lies in
 1004 the range $[-1, 1]$ and the weights w_1, w_2, w_3, w_4 are fixed constants, these terms are bounded.

1005 Second, the adaptive temperature reward is defined as follows:
 1006

$$1008 R_\tau = -w_5 |\tau_u^{(t)} - T_{\text{ideal}}(d_u)|, \quad T_{\text{ideal}}(d_u) = \frac{1}{1 + \log(1 + d_u)} \quad (20) \quad 1009$$

1010 For a finite node degree d_u , $T_{\text{ideal}}(d_u)$ is bounded. The action space $\tau_u^{(t)}$ also lies within a bounded
 1011 interval $[\tau_{\min}, \tau_{\max}]$, where $\tau_{\min} > 0$. Therefore, R_τ is bounded.

1012 As a result, the total reward $r_t = R_t + R_\tau$ is bounded. In other words, there exist constants R_{\min}
 1013 and R_{\max} such that $R_{\min} \leq r_t \leq R_{\max}$.
 1014

1015 **Smoothness of the Policy Function.** The policy network $\pi_\theta(a | s)$ is continuously differentiable
 1016 with respect to its parameters θ , and its gradient $\nabla_\theta \pi_\theta(a | s)$ is Lipschitz continuous. Additionally,
 1017 both the action probability outputs and the network's parameter values are bounded.

1018 **Boundedness of Importance Sampling Ratios.** The importance sampling ratio $r_t(\theta) = \frac{\pi_\theta(a_t | s_t)}{\pi_{\theta_{\text{old}}}(a_t | s_t)}$
 1019 is bounded in practice by applying clipping during updates, which prevents excessively large variance.
 1020

1021 **Boundedness of Entropy.** For the discrete negative-sampling action a_{neg} , the entropy is given by:
 1022

$$1023 H_{\text{neg}} = - \sum_{j=1}^{M_{\text{neg}}} p_j \log p_j, \quad 0 \leq H_{\text{neg}} \leq \log M_{\text{neg}} \quad (21) \quad 1024$$

1025 where M_{neg} is the size of the negative sample candidate pool.

1026 For the continuous temperature selection action a_{temp} , under a Gaussian policy $\mathcal{N}(\mu_\theta(s_t), \sigma_\theta^2(s_t))$,
 1027 the entropy is:

$$1028 \quad H_{\text{temp}} = \frac{1}{2} \log (2\pi e \sigma_\theta^2(s_t)) \quad (22)$$

1030 To ensure a lower bound and avoid degeneration as $\sigma \rightarrow 0$, we enforce $\sigma_\theta^2(s_t) \geq \sigma_{\min}^2 > 0$, which
 1031 yields a positive lower bound for H_{temp} .

1032 Therefore, the total entropy:

$$1034 \quad H(\pi_\theta(\cdot | s_t)) = H_{\text{neg}} + H_{\text{temp}} \quad (23)$$

1035 is lower-bounded. Consequently, the entropy regularization term:

$$1037 \quad S[\pi_\theta] = \widehat{\mathbb{E}}_t [H(\pi_\theta(\cdot | s_t))] \quad (24)$$

1039 is also bounded below.

1040 C.3.2 PROVING THE BOUNDEDNESS OF HGPO

1042 We need to show that the objective function $L_{\text{HGPO}}(\theta)$ admits a finite lower bound. Recall that:

$$1044 \quad L_{\text{HGPO}}(\theta) = -L^{\text{POLICY}}(\theta) + c_1 S[\pi_\theta] + L^{\text{HARM}}(\theta) \quad (25)$$

1046 **Analysis of the Policy Loss $L^{\text{POLICY}}(\theta)$.** The relative advantage is given by:

$$1048 \quad A_t^{\text{rel}} = r_t - \bar{R}_{g(s_t)} \quad (26)$$

1050 Since the immediate reward r_t is bounded, and the group-mean reward $\bar{R}_g = \mathbb{E}[r_t | s_t \in g]$ is also
 1051 bounded, it follows that A_t^{rel} is bounded. Let $|A_t^{\text{rel}}| \leq A_{\max_abs}$.

1052 The importance-sampling weight $r_t(\theta)$ is strictly positive, i.e., $r_t(\theta) > 0$.

1054 Next, we consider the clipped loss term $L_t^{\text{CLIP}}(\theta)$:

$$1056 \quad L_t^{\text{CLIP}}(\theta) = \min(r_t(\theta)A_t^{\text{rel}}, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon)A_t^{\text{rel}}) \quad (27)$$

1058 • If $A_t^{\text{rel}} \geq 0$, the clipped loss term becomes:

$$1060 \quad L_t^{\text{CLIP}}(\theta) = \min(r_t(\theta)A_t^{\text{rel}}, (1 + \epsilon)A_t^{\text{rel}}) \quad (28)$$

1062 since $r_t(\theta)$ typically hovers around 1 and the upper clipping bound $(1 + \epsilon)$ is active. Because
 1063 $r_t(\theta) \geq 0$, it follows that $L_t^{\text{CLIP}}(\theta) \geq 0$. Moreover, since $r_t(\theta)$ is restricted to the interval
 1064 $[0, C_{\text{ratio}}]$, we have: $L_t^{\text{CLIP}}(\theta) \leq C_{\text{ratio}}A_t^{\text{rel}}$.

1065 • If $A_t^{\text{rel}} < 0$, the clipped loss term becomes:

$$1066 \quad L_t^{\text{CLIP}}(\theta) = \max(r_t(\theta)A_t^{\text{rel}}, (1 - \epsilon)A_t^{\text{rel}}) \quad (29)$$

1068 since A_t^{rel} is negative, the minimum operation flips to a maximum, and the lower clipping
 1069 bound $(1 - \epsilon)$ is active. Hence, $L_t^{\text{CLIP}}(\theta)$ is bounded. For example, if $r_t(\theta) \in [1 - \delta, 1 + \delta]$
 1070 (with $r_t(\theta)$ typically near 1), then:

$$1072 \quad L_t^{\text{CLIP}}(\theta) \in [(1 - \epsilon)A_{\min_neg}, (1 + \epsilon)A_{\max_pos}] \quad (30)$$

1073 where A_{\min_neg} is the lower bound of the negative advantages and A_{\max_pos} is the upper
 1074 bound of the positive advantages.

1075 Therefore, the overall policy loss $L^{\text{POLICY}}(\theta) = \widehat{\mathbb{E}}_t [L_t^{\text{CLIP}}(\theta)]$ is bounded. Let
 1076 $L_{\min}^{\text{POLICY}} \leq L^{\text{POLICY}}(\theta) \leq L_{\max}^{\text{POLICY}}$.

1078 Hence, $-L^{\text{POLICY}}(\theta)$ is also bounded:

$$1079 \quad -L_{\max}^{\text{POLICY}} \leq -L^{\text{POLICY}}(\theta) \leq -L_{\min}^{\text{POLICY}} \quad (31)$$

1080 **Analysis of the Entropy Regularization Term** $c_1 S[\pi_\theta]$. From the boundedness of entropy, the
 1081 entropy regularization term $S[\pi_\theta]$ has a lower bound, denoted S_{\min} . If $c_1 > 0$ (as is typically chosen
 1082 to encourage exploration), then: $c_1 S[\pi_\theta] \geq c_1 S_{\min}$.

1083 **Analysis of the Harmonization Loss $L^{\text{HARM}}(\theta)$.** The harmonization loss is defined as:

$$1085 \quad L^{\text{HARM}}(\theta) = \lambda_{\text{harm}} \text{Var}_{g \in \mathcal{G}} [\bar{R}_g] \quad (32)$$

1086 Since \bar{R}_g is the mean reward of group g , and the immediate reward r_t is bounded ($R_{\min} \leq r_t \leq$
 1087 R_{\max}), we have: $R_{\min} \leq \bar{R}_g \leq R_{\max}$.

1089 The variance $\text{Var}_{g \in \mathcal{G}} [\bar{R}_g] = \mathbb{E}_g \left[(\bar{R}_g - \mathbb{E}_g[\bar{R}_g])^2 \right]$ of a bounded random variable is also bounded.
 1090 In particular:

$$1092 \quad 0 \leq \text{Var}_{g \in \mathcal{G}} [\bar{R}_g] \leq \frac{(R_{\max} - R_{\min})^2}{4} \quad (33)$$

1094 Since $\lambda_{\text{harm}} \geq 0$, it follows that:

$$1095 \quad 0 \leq L^{\text{HARM}}(\theta) = \lambda_{\text{harm}} \text{Var}_g [\bar{R}_g] \leq \lambda_{\text{harm}} \frac{(R_{\max} - R_{\min})^2}{4} \quad (34)$$

1097 Thus, $L^{\text{HARM}}(\theta)$ is both lower- and upper-bounded.

1099 **Summary of the Lower Bound of $L_{\text{HGPO}}(\theta)$.** We now summarize the lower bound of $L_{\text{HGPO}}(\theta)$:

$$1100 \quad L_{\text{HGPO}}(\theta) \geq -L_{\max}^{\text{POLICY}} + c_1 S_{\min} + \lambda_{\text{harm}} \cdot 0 = -L_{\max}^{\text{POLICY}} + c_1 S_{\min} \quad (35)$$

1102 Therefore, $L_{\text{HGPO}}(\theta)$ is lower-bounded. We denote this bound by:

$$1103 \quad L_{\text{HGPO},\min} = -L_{\max}^{\text{POLICY}} + c_1 S_{\min} \quad (36)$$

1105 C.3.3 PROVING THE RELEVANCE OF THE GRADIENT

1106 The HGPO algorithm updates the parameters θ via gradient descent:

$$1108 \quad \theta_{k+1} = \theta_k - \alpha_k \nabla_\theta L_{\text{HGPO}}(\theta_k) \quad (37)$$

1109 where α_k is the learning rate.

1111 Using the Taylor expansion for a differentiable function $f(x)$,

$$1112 \quad f(x') \approx f(x) + \nabla f(x)^T (x' - x) + \frac{1}{2} (x' - x)^T \mathbf{H}(x) (x' - x) \quad (38)$$

1114 where $\mathbf{H}(x)$ is the Hessian matrix.

1116 Applying this to $L_{\text{HGPO}}(\theta)$ at θ_k , we get:

$$1117 \quad L_{\text{HGPO}}(\theta_{k+1}) \approx L_{\text{HGPO}}(\theta_k) + \nabla_\theta L_{\text{HGPO}}(\theta_k)^T (\theta_{k+1} - \theta_k) + \frac{1}{2} (\theta_{k+1} - \theta_k)^T \mathbf{H}_k (\theta_{k+1} - \theta_k) \quad (39)$$

1120 Substituting $\theta_{k+1} - \theta_k = -\alpha_k \nabla_\theta L_{\text{HGPO}}(\theta_k)$, we get:

$$1121 \quad L_{\text{HGPO}}(\theta_{k+1}) - L_{\text{HGPO}}(\theta_k) \approx -\alpha_k \|\nabla_\theta L_{\text{HGPO}}(\theta_k)\|^2 + \frac{1}{2} \alpha_k^2 \nabla_\theta L_{\text{HGPO}}(\theta_k)^T \mathbf{H}_k \nabla_\theta L_{\text{HGPO}}(\theta_k) \quad (40)$$

1124 Assuming $L_{\text{HGPO}}(\theta)$ is L -smooth, i.e., its gradient is Lipschitz continuous with constant L , the
 1125 maximum eigenvalue of \mathbf{H}_k satisfies $\lambda_{\max}(\mathbf{H}_k) \leq L$. Hence,

$$1126 \quad \nabla_\theta L_{\text{HGPO}}(\theta_k)^T \mathbf{H}_k \nabla_\theta L_{\text{HGPO}}(\theta_k) \leq L \|\nabla_\theta L_{\text{HGPO}}(\theta_k)\|^2 \quad (41)$$

1128 Thus, we have:

$$1129 \quad L_{\text{HGPO}}(\theta_{k+1}) - L_{\text{HGPO}}(\theta_k) \leq -\alpha_k \|\nabla_\theta L_{\text{HGPO}}(\theta_k)\|^2 + \frac{L}{2} \alpha_k^2 \|\nabla_\theta L_{\text{HGPO}}(\theta_k)\|^2 \quad (42)$$

1132 Simplifying, we get:

$$1133 \quad L_{\text{HGPO}}(\theta_{k+1}) - L_{\text{HGPO}}(\theta_k) \leq -\alpha_k \left(1 - \frac{L \alpha_k}{2} \right) \|\nabla_\theta L_{\text{HGPO}}(\theta_k)\|^2 \quad (\text{Eq. E}) \quad (43)$$

1134 To guarantee a decrease in the objective, we require:
 1135

$$1136 \quad 1 - \frac{L\alpha_k}{2} > 0 \iff \alpha_k < \frac{2}{L} \quad (44)$$

1138 If we choose a sufficiently small learning rate, e.g., $\alpha_k = \alpha < \frac{1}{L}$, then:
 1139

$$1140 \quad 1 - \frac{L\alpha}{2} \geq \frac{1}{2} \quad (45)$$

1141 Therefore:
 1142

$$1143 \quad L_{HGPO}(\theta_{k+1}) - L_{HGPO}(\theta_k) \leq -\frac{\alpha}{2} \|\nabla_{\theta} L_{HGPO}(\theta_k)\|^2 \quad (46)$$

1144 This implies that whenever $\nabla_{\theta} L_{HGPO}(\theta_k) \neq 0$, the objective strictly decreases. If the gradient is
 1145 zero, the objective no longer changes, indicating that the algorithm has reached a stationary point.

1146 **L-Smoothness Discussion:** The components of $L_{HGPO}(\theta)$ are:
 1147

- 1148 • $-L^{\text{POLICY}}(\theta)$: $L^{\text{POLICY}}(\theta)$ involves min and clipping operations, making it non-smooth
 1149 at certain points. However, it is piecewise smooth in most regions, and gradient-based
 1150 optimization remains effective in practice despite these non-smooth points.
- 1151 • $c_1 S[\pi_{\theta}]$: The entropy term is smooth with respect to the policy parameters θ .
- 1152 • $L^{\text{HARM}}(\theta)$: Since \bar{R}_g is the expectation of r_t , and r_t depends on θ (through state/action
 1153 selection and the temperature coefficient $\tau_u^{(t)}$), the variance $\text{Var}[\bar{R}_g]$ is a smooth quadratic
 1154 function of \bar{R}_g . Therefore, $L^{\text{HARM}}(\theta)$ is also smooth.

1156 C.3.4 CONVERGENCE TO A STATIONARY POINT

1158 We have already shown that $L_{HGPO}(\theta)$ is lower-bounded by $L_{HGPO,\min}$, and that if the learning
 1159 rate α_k is chosen suitably (e.g., $\alpha_k = \alpha < 1/L$), then:

$$1160 \quad L_{HGPO}(\theta_{k+1}) \leq L_{HGPO}(\theta_k) - \frac{\alpha}{2} \|\nabla_{\theta} L_{HGPO}(\theta_k)\|^2 \quad (\text{Eq. F}) \quad (47)$$

1162 This implies that the sequence $\{L_{HGPO}(\theta_k)\}_{k \geq 0}$ is non-increasing.
 1163

1164 Summing Eq. F from $k = 0$ to $N - 1$:

$$1165 \quad \sum_{k=0}^{N-1} (L_{HGPO}(\theta_{k+1}) - L_{HGPO}(\theta_k)) \leq -\frac{\alpha}{2} \sum_{k=0}^{N-1} \|\nabla_{\theta} L_{HGPO}(\theta_k)\|^2 \quad (48)$$

1168 This gives:
 1169

$$1170 \quad L_{HGPO}(\theta_N) - L_{HGPO}(\theta_0) \leq -\frac{\alpha}{2} \sum_{k=0}^{N-1} \|\nabla_{\theta} L_{HGPO}(\theta_k)\|^2 \quad (49)$$

1172 Rearranging:
 1173

$$1174 \quad \frac{\alpha}{2} \sum_{k=0}^{N-1} \|\nabla_{\theta} L_{HGPO}(\theta_k)\|^2 \leq L_{HGPO}(\theta_0) - L_{HGPO}(\theta_N) \quad (50)$$

1176 Since $L_{HGPO}(\theta_N) \geq L_{HGPO,\min}$, it follows that:
 1177

$$1178 \quad \frac{\alpha}{2} \sum_{k=0}^{N-1} \|\nabla_{\theta} L_{HGPO}(\theta_k)\|^2 \leq L_{HGPO}(\theta_0) - L_{HGPO,\min} \quad (51)$$

1181 The right-hand side is a finite constant. As $N \rightarrow \infty$, for the series $\sum_{k=0}^{\infty} \|\nabla_{\theta} L_{HGPO}(\theta_k)\|^2$ to
 1182 converge, it must be that:

$$1183 \quad \lim_{k \rightarrow \infty} \|\nabla_{\theta} L_{HGPO}(\theta_k)\|^2 = 0 \quad (52)$$

1184 and hence:

$$1185 \quad \lim_{k \rightarrow \infty} \|\nabla_{\theta} L_{HGPO}(\theta_k)\| = 0 \quad (53)$$

1187 This proves that the gradient norm converges to zero, i.e., the algorithm converges to a stationary
 1188 point θ^* where $\nabla_{\theta} L_{HGPO}(\theta^*) = 0$.

1188 **D MULTI-PROTOTYPE ENHANCED GRAPH LEARNER**
 1189

1190 Given the user set U , the item set I , and the user-item interaction matrix $R \in \{0, 1\}^{|U| \times |I|}$, a
 1191 user-item bipartite graph $G = (V, E)$ can be constructed, where $V = U \cup I$ represents the nodes and
 1192 $E = \{(u, i) \mid R_{ui} = 1\}$ represents the edges.
 1193

1194 **D.1 GRAPH CONVOLUTIONAL LAYER**
 1195

1196 The graph convolution method of LightGCN He et al. (2020) is used for information propagation.
 1197 The embedding calculation for the l -th layer of users u and items i is as follows:
 1198

$$z_u^{(l+1)} = \sum_{i \in N(u)} \frac{1}{\sqrt{|N(u)||N(i)|}} z_i^{(l)}, \quad z_i^{(l+1)} = \sum_{u \in N(i)} \frac{1}{\sqrt{|N(i)||N(u)|}} z_u^{(l)} \quad (54)$$

1201 where $z_i^{(0)} = e_i$ represents the initial embedding after the previous method fuses the CoT feature,
 1202 and $z_u^{(0)} = e_u$. $N(u)$ and $N(i)$ denote the neighbor sets of user u and item i , respectively.
 1203

1204 **D.2 FINAL EMBEDDING REPRESENTATION**
 1205

1206 After passing through L layers of graph convolution, the final user and item embeddings are obtained
 1207 by averaging the weighted embeddings from all layers:
 1208

$$z_u = \sum_{l=0}^L \alpha_l z_u^{(l)}, \quad z_i = \sum_{l=0}^L \alpha_l z_i^{(l)} \quad (55)$$

1212 where α_l is the layer weight, typically set to $\frac{1}{L+1}$, and $z_u, z_i \in \mathbb{R}^{d'}$ are the final representations used
 1213 for downstream tasks.
 1214

1215 **D.3 INFONCE LOSS**
 1216

1217 The enhanced representation is obtained by aggregating the directly connected nodes. The contrastive
 1218 loss for user u and item i is as follows:
 1219

$$L_{\text{st-user}} = - \sum_{u \in U} \ln \frac{\exp \left(\text{sim}(z_u^{(0)}, z_u^{(k)}) / \tau \right)}{\exp \left(\text{sim}(z_u^{(0)}, z_u^{(k)}) / \tau \right) + \sum_{v \in U, v \neq u} \exp \left(\text{sim}(z_u^{(0)}, z_v^{(k)}) / \tau \right)} \quad (56)$$

$$L_{\text{st-item}} = - \sum_{i \in I} \ln \frac{\exp \left(\text{sim}(z_i^{(0)}, z_i^{(k)}) / \tau \right)}{\exp \left(\text{sim}(z_i^{(0)}, z_i^{(k)}) / \tau \right) + \sum_{j \in I, j \neq i} \exp \left(\text{sim}(z_i^{(0)}, z_j^{(k)}) / \tau \right)} \quad (57)$$

1227 Where $\text{sim}(z_u^{(0)}, z_u^{(k)}) = \frac{z_u^{(0) \top} z_u^{(k)}}{\|z_u^{(0)}\| \|z_u^{(k)}\|}$ is the cosine similarity, and τ is the temperature coefficient.
 1228 $z_v^{(k)}$ is the embedding from other users (negative samples). The total contrastive loss is as follows:
 1229

$$L_{\text{struct}} = L_{\text{st-user}} + L_{\text{st-item}} \quad (58)$$

1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241