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Abstract
The problem of designing automated agents, partic-
ularly automated planning agents that can explain
their decisions has been receiving a lot of attention
in recent years. The field of explainable planning or
XAIP has already made a lot of progress in recent
years and many of them centered around the prob-
lem of explaining decisions derived for classical
planning problems. As the field progresses there
is interest in tackling problems from more complex
planning formalisms. However, one important as-
pect to keep in mind as we start focusing on such
settings is that the explanatory challenges we study
in the context of classical planning problems do not
disappear when we move to more general settings
but are just magnified. As such, when we move to
these more general settings, a significant challenge
before us is to see how one could generalize the
well-established methods studied in the context of
classical planning problems to these new settings.
To provide a concrete example for this new research
program we will start with causal link explanations,
one of the earliest and most widely used explana-
tions techniques used in the context of policies gen-
erated for fully observable non-deterministic plan-
ning problems. This would see us generalizing a
concept that was originally developed for a specific
solution concept, i.e, sequential plans, and see them
applied to a very different solution concept (rooted
policies). We will develop a compilation-based
method for generating generalized causal link ex-
planations and show how as the domain is limited
to deterministic cases, our method would generate
causal link chains as identified by earlier works.

1 Introduction
As AI systems tackle more and more complex problems, the
need to explain their reasoning in intuitive terms to their users
becomes ever more pressing. This has led to a lot of interest
in studying and building explainable AI systems [Gunning
and Aha, 2019]. In particular, AI planning has been get-
ting a lot of attention as an ideal testbed for developing and
testing explainable AI techniques (XAI) [Fox et al., 2017].

This interest stems both from the complexity of problems
modern planners can handle and the availability of human-
readable symbolic models that are used by these planners.
There have also been recent cases made for using learned post
hoc symbolic models to provide explanations to sequential
decision-making problems, even when the original problem
may not be framed in those terms [Kambhampati et al., 2012;
Sreedharan and Kambhampati, 2021]. Despite all the inter-
est in explainable planning, the vast majority of the recent
works in explainable planning (XAIP) focus on determinis-
tic fully observable planning problems (referred to popularly
as classical planning problems) [Chakraborti et al., 2020]. In
many ways this is not surprising, after all as the name sug-
gests, classical planning is indeed one of the most mature sub-
fields within automated planning [Geffner and Bonet, 2013].
However, the reasons for the interest in this particular style
of planning problems go beyond just the availability of scal-
able planners. Arguably one of the big draws of classical
planning problems as an ideal research platform for XAIP
is that it presents a clean formulation of sequential decision-
making problems without other complexities. This allows
one to focus just on addressing some of the central explana-
tory problems related to sequential decision-making without
worrying about all the challenges raised by the various relax-
ations made by each planning formulation.

As both the field of XAIP and planning grows we can no
longer just focus our attention on classical planning problems
and start considering more expressive planning formalisms.
In this particular paper, we would like to take up the case
of generating explanations in the context of FOND or Fully
Observable Non-Deterministic planning problem. In recent
years FOND planners have been applied in various appli-
cation domains including dialogue generation [Muise et al.,
2019] and have also been used as the basis for deriving gen-
eralized plans [Bonet et al., 2019]. Though the utility of ex-
planation in FOND goes beyond just explaining decisions de-
rived by native FOND planners. By providing a qualitative
modeling framework for non-determinism, FOND planners
with appropriate assumptions about fairness could also be
used to provide post hoc explanations for decisions derived
by stochastic planners. It is widely known that people are
poor probabilistic reasoners [Tversky and Kahneman, 1993],
as such for most interactions with everyday users the system
could provide more intuitive explanations by first mapping



the decision-making problem into a FOND problem.
However, the goal of this paper is not just to introduce a

set of new techniques for generating explanations for FOND
problems but to also push for a new research agenda. One
that recognizes that the explanatory problems studied in the
context of classical planning problems do not disappear once
we move to more complex decision-making settings, but are
only magnified by the introduction of the other complexities.
As such we should treat the work done in generating expla-
nations for classical planning problems as a starting point to
develop more general methods that apply to the problems at
hand. As a demonstration of this research philosophy, we
will start with the causal chain explanations [Seegebarth et
al., 2012]. Such explanations are one of the earliest and most
widely used explanation strategies that have been considered
in the context of classical planning problems. We will pro-
pose a more general version of it that can be applied in the
context of FOND problems. This would involve us mapping
the concept of causal justification of action in a plan step that
was developed in the context of sequential plans and mapping
them over to a separate solution concept that is more common
in the context of FOND namely policies that map states to ac-
tions. We will present a compilation-based method for gen-
erating generalized causal chain explanations and show how
the method generates causal chains of the form discussed in
the context of classical planning problems when the domain is
limited to deterministic domains. The paper also evaluates the
effectiveness of the proposed method by analyzing the com-
putational characteristics of the method over standard FOND
benchmarks.

2 Background
We will be focusing on cases where the planning problem
may be represented as a fully observable non-deterministic
planning problem (FOND). Such models may be represented
in declarative form using PDDL variants that use ‘oneof’ ef-
fects [Bryce and Buffet, 2008]. Mathematically, we expect
a FOND model to be represented by a tuple of the form
M = ⟨F,A, I,G⟩, where, F is a set of propositional fluents
that is used to define the state space for the planning problem
(S = 2F ); A is the set of actions available to the agent; I ⊆ F
is the initial state from which the agent needs to try achieving
the goal; and G ⊆ F is the goal specification and any state
that satisfy the goal specification (i.e., G ⊆ s) is considered
to be a valid goal state. To simplify the discussion, without
loss of generality, we will assume G is a singleton set con-
sisting of a single goal atom. Overloading the notation a bit,
we will also use the symbol G to denote the goal atom. Each
action a ∈ A is further defied by a tuple a = ⟨prea,E(a)⟩.
In this action definition, prea stands for the preconditions for
executing the action and E(a) the set of possible effects. In
this paper, we will exclusively focus on positive conjunctive
preconditions, as such we will represent each precondition as
a subset of fluents. E(a) = {⟨add1

a, del
1
a⟩, ...., ⟨add

k
a, del

k
a⟩}

represents the set of mutually exclusive effects that could oc-
cur as the result of executing the action a and add i

a ⊆ F and
del ia ⊆ F correspond to the add and delete effect correspond-
ing to the ith effect. With the action definitions in place we

can also define the set of transitions possible under this ac-
tion definition, denoted as T, such that we define a transition
⟨s1, a, s2⟩ to be possible (denoted as ⟨s1, a, s2⟩ ∈ T) if

s1 ⊆ prea and ∃j, such that

⟨add j
a, del

j
a⟩ ∈ E(a), s2 = (s1 \ del ja) ∪ add j

a

Throughout this paper, we will focus on cases where non-
determinism is considered to be fair, i.e., for every non-
deterministic action every possible effect is guaranteed to oc-
cur if the action is executed infinitely often. A solution to a
FOND problem takes the form of a policy that maps a state
to action, usually denoted by a function π : S → A ∪ {a∅}),
where a∅ is an artificial empty action assigned to states that
are either not supported by the policy or are goal states. A
concept that will be central to the main of the techniques are
traces supported by a given policy. We will refer to a state
action state sequence of the form τ = ⟨s1, a1, ..., sk⟩ as a
trace supported by a policy π if for every si, where i ̸= k,
we have π(si) = ai, ⟨si, ai, si+1⟩ ∈ T. A trace is said to
be a goal achieving trace if G ⊆ sk and a state state sj is
said to be reachable from si if there exists a trace of the form
τ = ⟨si, ai, ..., sj⟩.

In terms of a valid policy for a FOND problem, the liter-
ature generally differentiates between weak solutions, strong
and strong-cyclic solutions. Weak solutions are policies such
that there exists at least one goal-achieving trace from the ini-
tial state. A policy is said to be strong-cyclic if the goal is
reachable from all states reachable from the initial state. Fi-
nally, a policy is said to be a strong solution if we can again
guarantee that goal is reachable from all states reachable from
the initial state, but additionally, now we require that a state
can never be repeated in any given goal-reaching trace. How-
ever, in this paper we will not differentiate between these
specific classes of solutions and all methods studied here are
equally valid for all classes of valid policies.

Causal Chain Explanations As discussed earlier, in this
paper we will primarily focus on leveraging intuitions from
and generalizing a specific explanation technique studied in
the context of classical planning problems called causal link
chain explanations. As per [Seegebarth et al., 2012], the exact
explanatory query being addressed here is

“Why is the step ‘o:a’ “necessary” for π to constitute a
solution?”

Where each plan step consists of a label (denoted by ‘o’ in
the query) and an action (denoted by ‘a’), and the explanation
takes the form of a sequence of causal links that originates at
the step in question and terminates at the goal. Now a causal
link is said to exist between two-step oi : ai and oj : aj if
there exists a precondition for the action aj that is provided
by the add effect of ai. The causal link between the action is
denoted as oi : ai →p oj : aj , where p is the fact being ‘pro-
duced’ by action ai and being consumed by aj . Each causal
link is assumed to be not threatened by any other action, and
no action between the producer and consumer actions could
have supported that precondition. The goal of causal chain
explanation is to establish that an action is justified because
it helps establish some fact for another action, however, as



[Fink and Yang, 1993] points out, there could be different no-
tions of justification in this context. If we focus merely on
an action establishing a precondition, while no intermediate
action threatens the causal link or adds the fact, then it cor-
responds to the category called Backward Justified actions.
However, the removal of a backward justified action doesn’t
necessarily result in a solution being invalid (as the facts may
have been already added by a previous action). This brings
us to the notion of Well-Justified actions. An action is said to
be well-justified if the removal of that action will cause the
resultant plan to be invalid. In this paper, we will focus ex-
clusively on explanations that establish that the action is well
justified, and require that each causal link representing a pre-
condition establishment could not have been established by
previous actions. A plan is said to be well-justified if every
action in the plan is well-justified. It is worth noting however
that this is not the strongest notion of justification, in fact,
one could talk about Perfectly Justified plans. Specifically, a
plan is said to be perfectly justified if there exists no subset
of actions that can be removed, while preserving the validity
of the plan, i.e., the goal is still achievable by the remaining
sequence. However, in this paper, we won’t delve any fur-
ther into establishing or explaining perfectly justified plans.
Justification can be used as a basis for a weaker form of op-
timality, one that argues that each action in the plan serves a
purpose, in fact, a perfectly justified plan is referred to as a
minimal plan [Kambhampati, 1995].

3 Motivating Example
As a running example throughout the paper consider the pol-
icy generated by a futuristic daily planner that takes into ac-
count all the possible contingencies of the day and comes up
with a policy that will get you to the office in time. The policy
starts with you at home and as the first action, the daily plan-
ner recommends you to start the day by placing a call to your
local baker for a dozen of the day’s special donuts. At the end
of this action, you will find yourself at home having ordered a
dozen of maple-glazed donuts or a dozen strawberry sprinkle
donuts with a coupon for a free milkshake. Now based on the
outcome of this action the policy now requires you to take dif-
ferent routes to the office, with different potential branching
points owing to the various non-determinisms in the world.
Figure 1, presents a high-level overview of this policy with
its various contingencies. Regardless of your personal feel-
ings toward fried pastry, you may be confused as to why your
daily planner might be asking you to take the time to order
and pick up donuts when you should be trying to get as early
as possible to the office parking lot to get a free parking spot.
Looking at the immediate actions that follow, one may be for-
given to think that the action is just a random action thrown
into a seemingly pointless plan created by a faulty planner.
Additionally, you may not have the patience to go through
each possible trace corresponding to the multitude of ways
the world may evolve and how they may feed into your goal
of getting to your office. Ideally, you would want to be able
to leverage mechanisms like causal chain explanations that
demonstrate why the action is required for you to get to the
goal. However, as we move to the non-deterministic setting,

we don’t even have a clear notion of when action may be
required for a policy to be valid. So in this paper, we will
start by providing a formalization of when an action may be
required for the achievement of the goal and provide an ex-
planation strategy that will allow us to explain this fact to a
user of the system. Additionally, we will see that this expla-
nation strategy is a genuine generalization of the notion of
causal link explanations from classical planning settings.

4 Explaining Action Requirement
The specific explanatory query we are interested in studying
is the question

“Why is the action a required at state s in policy π for a
planning problem M?”

Which is just a mapping of the question studied in [Seege-
barth et al., 2012] to the FOND setting and we will use the
notation ⟨s, a, π,M⟩ to denote the specific query. The first
order of business here is to quantify exactly when an action
is required for a goal. We will say that an action is required
for the policy if it is well-justified. Repeating the definition
in the context of sequential plans, one could informally say
that an action ’a’ is well-justified at state ’s’ if without the ex-
ecution of action ’a’ at state ’s’ the goal could not have been
achieved by the rest of the policy. However, this is not an
operationalizable description of the property as by the very
nature of policy as a solution concept, the execution of an ac-
tion is necessary as the change of the state is needed to enable
the execution of the rest of the policy. While in the context of
sequential plans, one could meaningfully talk about remov-
ing an action from the sequence and then testing whether the
remaining plan is valid or not, it is unclear how one could per-
form such transformations over a policy. At the same time,
it is worth remembering that the concept of whether or not
an action is well-justified at a particular policy step is still a
relevant question to ask. After all, it would make no sense
to claim that one could make a non-well-justified sequential
plan well-justified by just mapping it to a policy. In this paper,
we will try to propose a formal definition of this concept that
leverages the fact that from any given state, one could char-
acterize how the policy contributes to the goal by considering
all the goal-achieving traces.

Definition 1. An action ‘a’ is said to be required (or equiva-
lently well-justified) at a state ‘s’ for a policy ’π’ to achieve
a goal G, if for every goal-reaching trace originating at state
’s’ the action ’a’ is well-justified.

In our example discussed above, that means that every out-
come of the action ‘order donuts’ contributes at least one
useful fact that may be needed by some future actions.

Note that the notion of an action being required is an ex-
tremely strong condition, and there could very well be goal-
reaching policies where none of the actions are required (a
fact that is true for “well-justified” actions in classical plan-
ning as well). One could also look at weaker notions of how
an action contributes to a goal (for example if the action ‘a’
is well-justified in at least one of the trace or ‘a’ may be well-
justified for some subset of traces), however, that also means
that one could in principle build a valid weak solution with



Figure 1: A simple overview of the daily planner policy, which highlights the actions that are determined by the policy along with some of
the non-deterministic effects caused by the action.

the rest of the policy while ignoring the current action. We
will leave the investigation of such weaker forms of justifi-
cations and how they may correspond to existing notions of
justification for sequential plans as future work. Additionally,
we will also leave the question of extending these notions to
the policy as a whole as future work.

Now with the central property that we hope to explain in
place, the next question is how to explain this property to a
user? One obvious strategy could be to just enumerate all
possible goal-reaching traces and present a causal link con-
tributed by the action. However, even in the smallest do-
mains, this explanatory scheme would overwhelm most users.
Instead, we will focus on generating a more abstract explana-
tion that will leverage necessary subgoals made feasible by
the execution of the action and the explanation takes the form
of a chain of such subgoals, where the achievement of the
first subgoal in the sequence requires the execution of the ac-
tion and any subsequent subgoals require the achievement of
earlier subgoals. In particular, for grounding the concept of
a necessary subgoal we will build on the notion of a policy
landmark introduced in [Sreedharan et al., 2020b], which de-
fined policy landmarks as being facts and their corresponding
ordering that needs to be satisfied by every trace with a non-
zero probability that can be sampled from the initial state.
In our case, we will use a more restricted version of policy
landmarks one that additionally requires that the landmarks
we focus on are required as preconditions for different ac-
tions. We will refer to such policy landmarks as causal policy
landmarks. By focusing on causal policy landmarks, we ef-
fectively filter out any facts that just appear as side-effects of
some actions and only focus on the facts used by actions in
the policy. In the case of our daily planner domain, a possible
subgoal sequence could be
We need to perform order donuts to achieve the subgoal
sequence

security-guard-bribed→
parked-at-executive-parking-spot→
in-executive-elevator→ at-office.

4.1 Generating Subgoal Sequence
As in the case of [Sreedharan et al., 2020b], we will be lever-
aging the all outcome determinization [Yoon et al., 2007] of
the problem to identify the landmarks, but we will be lever-
aging a new compilation to be able to separate the landmarks

that are part of action preconditions from the ones that may
just be side effects.

In particular, we will be leveraging a formulation that
maintains two copies of each fluent, i.e, for each fluent f that
is part of the original problem definition we will introduce a
new fluent fϕ. We will maintain the mapping between the
two copies using the function ϕ : f 7→ fϕ and also overload
the function to also apply to sets.

For a given model M = ⟨F,A, I,G⟩ and a query regarding
the use of action a in state s for policy π, we will be creating
a new model that will allow for the use of such duplicate flu-
ents, i.e., Mπ

⟨s,a⟩ = ⟨Fπ
⟨s,a⟩, A

π
⟨s,a⟩, I

π
⟨s,a⟩, G

π
⟨s,a⟩⟩, such that

Fπ
⟨s,a⟩ = F ∪ ϕ(F )

Aπ
⟨s,a⟩ = {asji | ⟨sj , ai⟩ ∈ π}

Iπ⟨s,a⟩ = s ∪ ϕ(s)

Gπ
⟨s,a⟩ = G

Note that the new initial state corresponds to the state s part
of the query and contains fluents from both the original fluent
set and the new copy fluent set. Each new action in the set
Aπ

⟨s,a⟩ correspond to a specific state action mapping defined
in the policy π. Specifically, an action a

sj
i ∈ Aπ

⟨s,a⟩ will en-
code the fact that this copy of the action ai is meant to be
executed only in state sj , but also has preconditions that may
only be a subset of the fluents that are true in sj . The former
captured in terms of the fluents belonging to the set ϕF and
the latter by using fluents from the original set F . Similarly,
action effects will now include copies of the original effects
of the action in terms of both fluent set, thereby allowing us
to capture both the actions capability of allowing the contin-
ued execution of the policy while allowing us to maintain a
separate accounting of how the action contribute to the pre-
conditions of future actions. More formally, the action will
be defined as asji = ⟨pre

a
sj
i
,E(asji )⟩, such that

pre
a
sj
i

= ϕ(sj) ∪ preai

E(asji ) = {⟨ϕ(addm
ai
) ∪ addm

ai
, ϕ(delmai

) ∪ delmai
⟩ |

⟨addm
ai
, delmai

⟩ ∈ E(ai)}
One point to note here that is that to effectively constrain

application of actions to specific states in the policy, we have
to not only consider facts that are true in the state but also the
ones that are false. We can still use our positive precondition
formulation to support this by using the standard compilation
technique to compile away negative preconditions. Since this



is a standard technique, we will not include this as part of our
formalization, but the reader is adviced to keep in mind that
when we say ϕ(s) is part of the precondition it also includes
new positive fluents that corresponds to the fluents that may
be false in state s (with the necessary changes made to the
effects as well).

Now the resultant model Mπ
⟨s,a⟩ is still a non-deterministic

planning domain. To generate landmarks, we will be
considering an all outcome determinization of the model
D(Mπ

⟨s,a⟩). Given the nature of the determinization, the
set of goal-reaching traces for the model Mπ

⟨s,a⟩ would ex-
actly correspond to the set of valid plans for the deterministic
model D(Mπ

⟨s,a⟩). This brings us to the first proposition
Now, we will be using the D(Mπ

⟨s,a⟩) to identify the causal
landmark set [Keyder et al., 2010], where causal landmarks
are landmarks that correspond to landmarks that always ap-
pear in the precondition of an action. However, for our pur-
poses, we can’t directly use the causal landmark set generated
from D(Mπ

⟨s,a⟩) as the preconditions of the actions in the
model also contain state descriptions. As such the landmarks
directly calculated from D(Mπ

⟨s,a⟩) may contain facts that are
not part of any action preconditions. Our use of a distinct set
of fluents to capture the state and preconditions allows us to
filter out such landmarks. Specifically, let L = ⟨L,≺⟩ be the
landmark set, where L ⊆ Fπ

⟨s,a⟩ is the set of landmark fluents
and ≺ is the ordering between the fluents (we will specifi-
cally focus on sound ordering derived from delete relaxations
of the problem [Richter et al., 2008]), then we will use the set
L′ = ⟨L′,≺⟩, where L′ = L \ ϕ(F ).

Proposition 1. The landmark set L′ for the model D(Mπ
⟨s,a⟩)

correspond to the causal policy landmarks for policy π.

We can establish this proof by following a slightly modified
version of the proof described in [Sreedharan et al., 2020b].
It’s also worth noting that, we are guaranteed that G ⊆ L′

Before we can generate our explanation, we need to iden-
tify the landmarks whose achievement actually requires the
execution of the action in question (a) at state s. To identify
whether a landmark f ∈ L requires the action, we will be
using a modified version of the model Mπ

⟨s,a⟩, denoted as

M̂π
⟨s,a⟩,→f = ⟨Fπ

⟨s,a⟩, Â
π
⟨s,a⟩, I

π
⟨s,a⟩, {f}⟩ The first thing to

note is that the goal of the new problem is to achieve {f}.
The next change is that of introduction of the new action set
Âπ

⟨s,a⟩. In particular Âπ
⟨s,a⟩ is formed from Aπ

⟨s,a⟩ by remov-
ing the action corresponding to the query state action pair (as)
and replacing it with a new action (âs) that will allow for the
policy execution but will not contribute to preconditions of
any future action. Specifically, we will define the action as
pre âs = ϕ(s) ∪ prea
E(âs) = {⟨ϕ(addm

ai
), ϕ(delmai

)⟩ | ⟨addm
ai
, delmai

⟩ ∈ E(ai)}
Now we can use the formulation to identify whether the ac-
tion was required by testing the solvability of this modified
problem. In particular, we will have

Proposition 2. An action ‘a’ is required at a state ‘s’ for a
policy ’π’ to achieve a landmark f (where requirement is de-
fined as per Definition 1), if and only if the modified planning

problem D(M̂π
⟨s,a⟩,→f ) is unsolvable.

Proof Sketch. To show the validity of the ‘if’ part, we first
need to remember that f was a policy landmark, and thus ev-
ery trace from s at one point led to a state containing f . Thus
if there was a path whose validity didn’t depend on a causal
link contributed by the action ‘a’, that path should remain still
valid under the modified model M̂π

⟨s,a⟩,→f . The ‘only if’ part
can be shown by a symmetric argument.

Finally, we can establish that the action was never re-
quired if we show that the compilation for the goal G (i.e.
D(M̂π

⟨s,a⟩,→G) is unsolvable.
However to provide the explanation we have to not only

identify a single landmark that is required, but ideally,
we would like to present a chain of facts each requiring
the last fact to be achieved. Note that here we can’t just
rely on the landmark ordering as it may also encode the
relationship being enforced by the state part of the precon-
ditions. So we will build a variation of Mπ

⟨s,a⟩ denoted

as M̂π
⟨s,a⟩,f1→f2

that will try to identify such requirement
relationship between landmarks. Specifically, we will have
M̂π

⟨s,a⟩,f1→f2
= ⟨Fπ

⟨s,a⟩, Â
π
⟨s,a⟩,f1→f2

, Iπ⟨s,a⟩, {f2}⟩. Now

the goal is to achieve f2, and we will form Âπ
⟨s,a⟩,f1→f2

from
Aπ

⟨s,a⟩ by removing f1 from all add effects while preserving

ϕ(f1). More formally, let as
′

j ∈ Aπ
⟨s,a⟩, then we have a

correspond action âs
′

j,f1→f2
∈ Âπ

⟨s,a⟩,f1→f2
, such that

E(âs′j,f1→f2
) = {⟨adds′,m

aj
\ f1, del

s′,m
aj

\ f1⟩ |
⟨adds′,m

aj
, dels

′,m
aj

⟩ ∈ E(as′j )}

Since the requirement ordering will be a subset of the land-
mark ordering, we will only need to run this test between
landmarks when there already exists an ordering. We will
denote this requirement ordering with the notation ≺R.

Finally, to generate the explanation chain itself, we will
iterate over a topological sort over L′ and find the first land-
mark f1 that requires action a and build a chain consisting of
a set of totally ordered landmarks over the requirement order-
ing that terminates with the goal G. More formally
Definition 2. A chain of facts E = ⟨f1, ..., fj , ..., fn⟩, such
that all fi ∈ F is considered a valid explanation for the
query ⟨s, a, π,M⟩, if

1. Every fact fi in E is a causal policy landmark for the
policy π and model M

2. f1 requires the action ‘a’ to be executed in state s

3. For all pairs of landmarks, fi and fi+1, we have fi ≺R

fi+1

4. Finally, we have fn = G.

The above definition presents a general description for a
valid explanation. Note that the set of valid explanation cov-
ered by the above definition may not be equivalent in how
effective the user may find them to be. As such one may need
to use additional criteria to choose an explanation from this
set of valid explanations. Choosing a landmark with the least



number of preceding facts as the first element in the chain
being one such possible criteria.

4.2 Relationship to Causal Link Explanations
Now to see how these explanations compare against the
causal chains, we will constrain ourselves to deterministic
settings, where every action has a single outcome. Thus from
any state, there can at most be one goal-achieving trace. We
will assume the same policy structure. Now we will show
that every valid explanation (per Definition 2) corresponds to
the fact that are part of a causal chain explanation and every
causal chain explanation correspond to an explanation of the
form described in Definition 2.

Proposition 3. For a given causal chain explanation ⟨s1 :
a1 →f1 s2 : a2, ...., sm : am →g sg : a∅⟩, the chain E =
⟨f1, ..., g⟩ is a valid explanation for the requirement query
⟨s1, a1, π,M⟩, when M is completely deterministic.

Proof Sketch. To see why this is true, we can see that all three
requirements of a valid explanation provided in Definition 2
are met here. (1.) directly holds as all the facts are causal pol-
icy landmarks (they all appear in the precondition and there is
only one path). (2.) holds automatically as this is a fact that is
contributed by the action and per our definition of causal link
explanation no action between the producer and consumer
would generate the fact f1. Thus f1 would cause M̂π

⟨s,a⟩,→f1
to be unsolvable as model will disallow any use of actions
after s2 to be used. (3.) holds because the causal links are
preconditions and as such removal of them causes the subse-
quent fact to be unachievable at the subsequent step.

Similarly, we can also show that

Proposition 4. For any valid explanation chain E =
⟨f1, ..., g⟩ for the query ⟨s1, a1, π,M⟩ (where M is com-
pletely deterministic), there exist a causal chain explanation
of the form ⟨s1 : a1 →f1 s2 : a2, ...., sm : am →g sg : a∅⟩,
for some action set {a2, ..., am}.

The proof for this proposition follows a similar line of ar-
gument to the one described in Proposition 3.

5 Empirical Evaluation
As a way to provide a preliminary evaluation of the expla-
nation generation methods discussed in this paper, we ran
our method on several standard FOND benchmarks [Muise,
2018]. In the evaluation, we were interested in identifying
(a) the frequency with which well-justified action occurs in
policies generated for these planners (b) time-taken to gen-
erate the explanation chain, and (c) the average length of the
explanation chains generated. For generating the policies, we
used the PRP planner [Muise et al., 2012] which by default
produces a policy defined over partial states. We generate the
full state policy by executing this policy defined over partial
states from the initial state (favoring actions with lower dis-
tance when multiple partial states match).

For generating the landmarks, we made use of the imple-
mentation of [Keyder et al., 2010] provided by the FastDown-
ward system [Helmert, 2006]. Additionally, we again used

the FastDownward planner to test the unsolvability of the var-
ious subgoals. Table 1, provides an overview of the various
statistics we calculated from the experiments. The experi-
ments were run on four domains and five problems instance
per domain (the first five provided in the benchmark). We
skipped one for exploding blocks world and one for the zeno-
travel as the goal conditions were already true in the initial
state. For each policy, you can note that a significant number
of non-trivial action pairs are well justified. By non-trivial
state-action pairs, we refer to any reachable state action pair
where the action didn’t correspond to the goal. The gener-
ation time for the causal chains were quite within the limits
to be applicable for systems that require quick response time.
In fact for all domains except Triangle-tireworld the average
time taken for explanations generated was less than four sec-
onds. The maximum average chain length we obtained was
three. Note that, currently for the causal chain generation, we
were merely trying to find a chain to the goal and were not
trying to calculate the shortest or the longest chain.

6 Related Work
The history of causal chain explanation starts much earlier
than their latest incarnation in [Seegebarth et al., 2012]. One
of the earliest works to look at a similar form of information
was the PRIAR system [Kambhampati, 1991] that introduced
the notion of validation structures that encodes such infor-
mation in the form of plan annotations. Validation structures
were proposed as a correctness explanation that could then be
used to guide various tasks including plan retrieval, refitting,
and modification [Kambhampati, 1990]. Another early work
that looked at the introduction of similar information was that
of [Veloso, 1992], which looked at performing regression-
based analyses to determine initial state conditions relevant to
the goal. In more recent work, such information was also used
by [Chakraborti et al., 2019] to provide an overview of the
plan as a whole. [Bryce et al., 2017] also looks at similar in-
formation to visualize plans by visualizing causal link chains
in the style of metro rail maps. [Bercher et al., 2014] presents
human subject studies to verify the effectiveness of such ex-
planations by grounding these explanations in the context of
the application of an assistive system for putting together a
home theater system.

In terms of existing works that have tried to extend ap-
proaches and methods that were developed in the context
of classical planning problems to other planning formalisms,
most of the works tend to focus on methods that were al-
ready not tightly connected to the specific planning for-
malisms which were used by the original paper that intro-
duced it. Some popular examples include the use of model-
reconciliation techniques [Sreedharan et al., 2021a] and the
use of abstraction to explain unsolvability or plan infeasibility
[Sreedharan et al., 2021b; Sreedharan et al., 2019b]. Model-
reconciliation is easy to extend to other formulations as one
could technically apply the same principle of reconciliation
to any other model formulation. To the best of our knowl-
edge, the principle of model reconciliation has been applied
to MDPs [Sreedharan et al., 2019a], propositional knowledge
bases [Vasileiou et al., 2020] and numeric planning models



Domains Problems Policy Type
% of Non-Trivial
Well-Justified
State-action Pairs

Average Chain Length Average Time Taken (Secs)

Exploding Blocksworld

prob 1 Strong Cyclic 100% 2.71 2.97
prob 2 Strong Cyclic 100% 3 3.18
prob 3 Strong Cyclic 100% 2.52 2.85
prob 4 Weak Cyclic 75% 2.42 2.80

Tireworld

prob 1 Weak Cyclic 100% 2.8 3.34
prob 2 Strong Cyclic 100% 2 2.21
prob 3 Strong Cyclic 66.66% 2.5 2.87
prob 4 Strong Cyclic 100% 3 3.36
prob 5 Strong Cyclic 100% 2.5 3.03

Triangle Tireworld

prob 1 Strong Cyclic 100% 3 3.28
prob 2 Strong Cyclic 100% 2.5 3.17
prob 3 Strong Cyclic 66.66% 2.33 5.34
prob 4 Strong Cyclic 100% 2.25 12.39
prob 5 Strong Cyclic 100% 2.2 30.36

Zenotravel

prob 2 Strong Cyclic 100% 2.57 2.99
prob 3 Strong Cyclic 95% 2.4 2.76
prob 4 Strong Cyclic 100% 2.83 3.23
prob 5 Strong Cyclic 100% 2.57 2.91

Table 1: The evaluation of the proposed method on standard FOND benchmarks. Here non-trivial state action pair refers to state action pairs
where the policy didn’t assign the a∅ goal action.

[Vasileiou et al., ]. The thread of using abstraction to explain
unsolvability in the context of FOND problems [Sreedharan
et al., 2020a]. To the best of our knowledge, this is the only
other explanation work that has looked at FOND problems.

7 Conclusion and Discussion
The paper presents a generalization of causal chain explana-
tions to novel settings. In particular, we looked at how we
can use such explanations to justify why an action may be re-
quired at a particular state and proposed a compilation based
method to generate such explanation. We additionally saw
some of the computational characteristics of the discussed
method. However, even in the context of such generalized
causal chain explanation for FOND problems, there are mul-
tiple next steps to be considered. For one, we need to run
user studies to identify how helpful these explanations are.
Among all the possible causal chains we could generate for
a given query, people may have specific preferences on what
they would perceive as the most helpful explanation. Addi-
tionally there is the question what additional information we
could provide along with these chains that may further help
the user understand the role the action may play in the pol-
icy. Possible information, here could include providing an
exemplary trace from the current state to the goal along with
the causal chain or providing information about future actions
that may use these facts as preconditions, etc.

Then there is the various possible weaker notions of how
an action might contribute to the achievement of the goal.
As discussed there may be cases where an action may not be
required to get to the goal, though it may still be helping the
policy achieve the goal in certain traces. The question of how

we can detect such cases and provide effective explanations
in such cases is still an open question.

Finally, we hope that more work would consider other
problems of generalizing explanation methods designed for
classical planning problems to other planning formalisms.
Some obvious next steps include generalizing causal link to
other planning formalisms (temporal plans, stochastic plans)
and even other solution concepts like controller based poli-
cies. Even in the context of FOND problems there are open
problems related to explaining properties of the policy as a
whole. For example, are there methods from classical plan-
ning literature that could act as the basis for explaining why a
given policy may be a strong-cyclic solution or a weak-cyclic
one.
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